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Abstract—This paper presents a fully synthesizable 
low power interconnect bus for millimeter-scale 
wireless sensor nodes. A segmented ring bus topology 
minimizes the required chip real estate with low 
input/output pad count for ultra-small form factors. 
By avoiding the conventional open drain-based 
solution, the bus can be fully synthesizable. Low 
power is achieved by obviating a need for local 
oscillators in member nodes. Also, aggressive power 
gating allows low-power standby mode with only 53 
gates powered on. An integrated wakeup scheme is 
compatible with a power management unit that has 
nW standby mode. A 3-module system including the 
bus is fabricated in a 180 nm process. The entire 
system consumes 8 nW in standby mode, and the bus 
achieves 17.5 pJ/bit/chip.    
 
Index Terms—Wireless sensor node, IoT, data bus, 
interconnect, low power    

I. INTRODUCTION 

Continued advances in ultra-low power circuit design 
techniques have steadily moved the next generation of 
computer systems towards the vision of smart dust — a 
miniature, integrated sensing, computing, storage, and 
communication platform [1]. These systems are highly 

optimized in volume and power draw, targeting a 
millimeter-scale form factor and running on μW in active 
mode and nW in standby mode [2]. Early efforts to 
realize such systems have resulted in monolithic and 
tightly integrated designs, with little capability for reuse 
[1, 3]. This design approach is in contrast to the 
modularity that has characterized embedded system 
design and enabled it to address a highly diverse 
application space. The miniature sensor node application 
space is similarly diverse, ranging from implantable 
medical monitors [4-6] to nearly invisible surveillance 
[7]. Hence, a modular design approach that enables 
extensive reuse of chip modules is a key to fully address 
its application space. The recently introduced millimeter-
scale modular sensing platform [8] is designed to exploit 
layered IC structure to maximize modularity as shown in 
Fig. 1. 

A critical component in the modular platform is the 
bus through which the different modules communicate 
with each other. However, the bus needs to satisfy unique 
constraints in the millimeter-scale sensor systems. 

First, the number of input/output (I/O) pads on each 
module should be kept low and fixed. In the proposed 
millimeter-scale form factor, bond-wires are used over 
through-silicon vias (TSVs) for inter-layer connection 
due to TSV’s high manufacturing cost and limited 
availability across technologies. With state-of-the-art 
wire bonding pitch being at least 35–-65 μm/pad, and 
accounting for several power supplies and a few module-
specific I/O wire pads, only a handful of pads are 
available for the bus interface in a millimeter-scale form 
factor. Therefore, wiring topology that requires 
additional pads for an additional module, such as SPI, is 
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not feasible. 
A wireless communication schemes with an on-chip 

antenna can eliminate wires between the layers and 
provide higher energy-per-bit efficiency (5.7 pJ/bit [9]). 
However, its large instant current (32 mA [9]) causes 
significant battery voltage drop since the millimeter-size 
battery typically has >1 kΩ of internal battery resistance 
[10], and it can result in system operation failure. 

Second, active power consumption should be low. Due 
to battery voltage drop with high internal resistance of 
millimeter-size batteries, the active power budget of 
millimeter sensors is limited to 10s of μW [10]. 

Third, sub-nW standby power and organic power 
mode control with regard to bus state is required. A 
millimeter-scale energy harvester can provide only nW 
power to a battery in a weak harvesting condition (i.e. 
millimeter-scale solar cell with indoor light). Hence, sub-
nW standby power is required for perpetual operation. 
This requires aggressive power gating and a power 
management unit (PMU) that can switch to an ultra-low, 
nW power mode. To avoid additional wires for 
communicating wakeup events, the bus interface must 
support a wakeup request originating from any node. 
This poses two challenges: 1) The logic that 
monitors/transmits such an event must be minimized 
since it remains always active and directly contributes to 
the standby power; 2) When the wakeup request is 
transmitted in the bus, the PMU is still in standby mode, 
meaning that active current draw used for this 
transmission should not exceed the nA range. 

Fourth, fully synthesizable design is desirable. 
Synthesizable bus interface significantly reduces time 
and effort to migrate between technologies and eases 

adoption. It not only allows fast design by “dropping-in” 
fully verified Verilog, but also ensures robust timing 
which is automatically checked by tools. 

To address these unique challenges of millimeter-scale 
sensor nodes, a new chip-to-chip bus interconnect, 
referred to as MBus, is proposed in [11] and discussed in 
from the system architectural viewpoint [12]. This paper 
describes the MBus in greater detail in circuit perspective. 
The bus nodes are arranged in a segmented ring topology, 
which gives a 4 pad count for each module and supports 
a fully synthesizable design. The MBus also achieves 
low power by obviating a need of local oscillators in the 
member nodes, using aggressive power gating, and 
controlling a PMU. The bus is implemented with a 3-
module system in a 180 nm process, and the measurement 
shows > 10 Mb/s data rate, with 17.6 pJ/bit/chip and 
8 nW system standby power. 

This paper is organized as follows. Section II describes 
conventional serial buses. Section III discusses design 
and implementation of MBus. Section IV shows the 
measurement results. Finally, the conclusion is given in 
Section V. 

II. CONVENTIONAL SERIAL BUSES 

Conventional serial bus standards such as SPI [13], I2C 
[14], UNI/O [15] and 1-Wire [16] are designed to have 
small pad counts and have been widely used for 
applications where speed is not critical. However, these 
standards cannot be adopted for millimeter-scale sensors 
due to their limits on scalability, power and 
synthesizability. 

Standard SPI protocol requires a dedicated slave-select 
(SS) wire for each module in the system as shown in Fig. 
2(a). Hence, the maximum number of modules needs to 
be determined in design time, often resulting in over-
provisioning and a large total pad count. For instance, in 
a moderate 8-module system, the SPI controller would 
require at least 11 pads, which is impossible to realize in 
a millimeter-scale system. Fig. 2(b) shows a variant of 
SPI that uses daisy chains for data and slave selection 
[17]. Although it reduces the pad count down to 5, delay 
is significantly increased and multi-master operation is 
still not allowed, which is a critical feature in the target 
system.  

I2C, UNI/O and 1-Wire require only 2 or 4 pads on 

Power Lines

Data Bus

 

Fig. 1. Conceptual diagram of a millimeter-scale modular 
sensing platform. 
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each module, and the pad count does not increase as 
additional modules are attached to the system. These 
buses utilize pad-efficient, open drain-based designs with 
shared pull-up resistors that allow bi-directional wires. 
However, the open drain-based design is not acceptable 
for the millimeter-scale sensor platform due to high 
power consumption of the resistors. For instance, I2C 
uses a kΩ-range pull-up resistor as shown in Fig. 3(a). It 
results in 100s of μW of power draw, which is 100× the 
typical power budget of a millimeter-scale sensor node. 
Large resistor value can be used for lower power 
consumption, but it slows down the maximum speed the 
bus can operate and it is also difficult to implement a 
large on-chip resistor due to size limitation. Fig. 3(b) 

shows an I2C variant that reduces power consumption by 
using output keepers instead of resistors [8]. However, it 
includes custom drivers, ratioed logic, and delay chains 
that require design margin and post-silicon tuning. Table 
1 summarizes the characteristics of the conventional 
serial buses and the proposed MBus for the millimeter-
scale sensor systems. 

The proposed scheme can be also used for regular non-
layered inter-IC communication. In the case, the I/O pad 
count for I2C is 2 by using shared wires for CLK and 
DOUT. However, the MBus still has advantages over the 
conventional schemes: lower power against I2C, UNI/O 
and 1-Wire and multi-master feature against SPI and 
Daisy-Chain SPI.  

III. CIRCUIT DESCRIPTION 

To satisfy the new requirements for chip-to-chip 
communication in millimeter-scale sensor systems, a new 
bus interconnect (MBus) is proposed with following 
properties.  

 
1. Segmented Ring Topology 

 
Fig. 4 shows MBus topology. Each MBus node has 

four I/O pads (unit area), which are DOUT, DIN, CLKOUT, 
and CLKIN. DATA and CLK connections are arranged in 
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Fig. 2. Serial Peripheral Interface (SPI) (a) Standard SPI bus,
(b) Daisy-chained SPI bus. 
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Fig. 3. I2C (a) Typical I2C bus, (b) I2C variant without pull-up 
resistors. 

 
 

Table 1. Conventional serial buses and proposed MBus for 
millimeter-scale sensor systems 

 SPI Daisy- 
Chain SPI I2C 

UNI/O 
or   

1-Wire 
MBus 

I/O Pad Count 3+N 5 4 2 4 
Scalability Low High High High High 

Output Type High Z High 
Z 

Open 
Drain 

Open 
Drain 

High  
Z 

Power Low Low High High Low 
Synthesizability Yes Yes No No Yes 

Multi-Master No No Yes No Yes 

N: number of modules 
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Fig. 4. MBus ring topology. 
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ring topology by connecting DOUT/CLKOUT to the next 
node’s DIN/CLKIN and eventually looping back. The 
required pad count per node is fixed with a variable 
number of layers. 

The signals shoot through the rings, and a message 
generated in one node can be sent to any node. In the 
proposed topology, the signal ring chains (DATA and 
CLK) are segmented by nodes, and only one driver is 
assigned to each segmented wire. Thus, compared to the 
conventional open drain-based design, it is not sensitive 
to variation of the strength of drivers and can be designed 
in low power without passive components. 

 
2. Single Clock Generating Oscillator 

 
In many conventional buses, each node requires an 

oscillator generating a local clock for state machine 
operation. For example, in multi-master I2C configuration, 
each node needs a local reference clock so that it can drive 
clock and data wires as a bus master. This means there are 
redundant clock generating oscillators which always run 
even when the bus is idle. MBus proposes to use a 
centralized clock driving scheme where the clock is only 
driven by the Mediator node as shown in Fig. 4. This 
scheme can reduce power consumption significantly since 
only one oscillator is required for the Mediator node. Since 
flip-flops in regular nodes are clocked by CLKIN, regular 
nodes only consume static leakage power when the bus is 
idle. Note that any node can still initiate MBus message 
transaction, although only the Mediator node includes the 
clock generator. 

3. Minimizing Standby Power 
 
Fig. 5 shows a block diagram of MBus related 

circuitry in an MBus node. A member node includes 
three controllers—Sleep Controller, Bus Controller, and 
Interrupt Controller—which is the minimum set of 
modules required for regular node operation. The Bus 
Controller handles most of the MBus operations in a 
regular node. It accepts message transmission requests 
and initiates message transactions. It also interprets 
message transaction on the bus and forwards the message 
to the local node if the message was targeted to the node. 
To achieve reasonable operation speed for complex logic, 
the Bus Controller is designed with regular-Vth 
transistors. Therefore, to minimize standby power, the 
Bus Controller is power gated with a high-Vth gating 
transistor in standby mode. The power gating is 
controlled by Sleep Controller which releases power 
gating once any activity is detected on the bus so that the 
Bus Controller can immediately start parsing next 
message upon wake up. When a node is in standby mode, 
it still needs to be able to monitor events on the node. For 
this purpose, always-on External Interrupt Controller is 
designed with high-Vth transistors to minimize standby 
power overhead. 

The Mediator node additionally includes an Activity 
Detector, an oscillator and a Mediator Controller for the 
special role of the Mediator. In standby mode, both 
oscillator and Mediator Controller are power gated with a 
high Vth power gating header. The power gating is 
controlled by the Activity Detector which releases power 
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Fig. 5. MBus block diagram and power gating. 
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gating when there is a wake up request on the bus so that 
the oscillator can provide clock for new message 
transaction. 

 
4. Clock Gating for Low Active Power 

 
When an MBus message is transmitted on the bus, 

target address of the message is parsed by the Bus 
Controller on each node. Both CLKIN and DIN need to be 
forwarded to Bus Controller logic at this point. Once the 
target address is parsed, and if it is determined that the 
current message is not addressed to the node that the Bus 
Controller belongs to, CLKIN and DIN input to the Bus 
Controller is gated until the end of current message to 
reduce dynamic energy consumption by 23%. CLKIN and 
DIN are still forwarded to next node through CLKOUT and 
DOUT so that target layer can still receive the message. 

 
5. Co-operation with PMU 

 
In standby mode, member nodes forward both DATA 

and CLK. The Mediator breaks the loop by fixing both 
CLKOUT and DOUT high in standby mode. To minimize 
standby power, all MBus components except the 
frontend (i.e. Muxes in Fig. 5) are power-gated. In this 
state, PMU (Fig. 6) is in its lowest power mode, where 
conversion efficiency is optimized for low loading 
current (i.e. 10 nA). To transmit a full message (8 or 32-
bit address and arbitrary length data), the PMU must 
switch to a high power mode before the MBus power 
gates are released since the lowest power mode cannot 
sustain power supply with power gate released. In this 

high power mode, the PMU is optimized for delivering 
10s of μW of power for full bus operation. 

Mode transition from low power mode to high power 
mode could be done in the following procedures. Power 
gates are not released initially and DIN/DOUT are left in a 
high state in standby mode. Wakeup is then initiated by a 
node pulling DOUT low, which consumes negligible 
power. This falling edge is propagated along the ring of 
DATA until it is detected by the Mediator which 
switches the PMU to high-power mode. After the PMU 
completes the state transition, the mediator starts to 
propagate clock edges through DATA. The first four 
edges are used by the regular nodes to sequentially 
release power gates, clock, isolation gates, and reset, at 
which point the member node becomes fully active.  

 
6. PMU Design 

 
To demonstrate MBus co-operation with PMU, a 

switched-capacitor DC-DC converter is designed to 
accommodate low and high power mode operation 
requirement. The PMU down-converts 3.8 V thin-film 
lithium battery output to 1.2 V or 0.6 V low voltage 
supply for low power operation as shown in Fig. 6. The 
system can fail by losing supply voltage if the DC-DC 
converter cannot provide sufficient required current. The 
amount of current that can be provided by the switched-
capacitor DC-DC converter is proportional to flying 
capacitance and switching frequency. Therefore, to 
implement low and high power mode, switching 
frequency is controlled with mode. In low power mode, 
switching frequency is lowered as low as 340 Hz to 
minimize switching loss of DC-DC converter and 
improve conversion efficiency with low standby power 
as low as a few nW. In high power mode, switching 
frequency as high as 335 kHz is used to provide 10s of 
μW of currents. An example of the PMU design achieves 
conversion efficiency of 60.7% and 63.8% for low and 
high power mode, respectively [18]. 

 
7. Robust Timing 

 
In an MBus-based system, the loading and driving 

strength of DOUT/CLKOUT drivers on each node can be 
unpredictable due to irregular wirebonding and process 
variation. This creates uncertainty in the relative arrival 
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time of DIN/CLKIN. Therefore, with conventional single-
phase clocking scheme, a large number of hold-time 
buffers would be required to prevent a hold time 
violation, which would incur power and performance 
penalties. In the proposed MBus, driving and latching 
edges are separated as shown in Fig. 7. By sampling DIN 
on positive CLKIN edge and driving DOUT on negative 
CLKIN edge, setup and hold time margins are balanced. 
While this incurs a performance penalty, it makes hold 
time scale with frequency, guaranteeing robust operation 
with post-silicon frequency tuning. 

IV. MEASUREMENT RESULTS 

MBus is implemented in six chips (three in a 180 nm 
CMOS process shown in Fig. 8) in three different 
technologies and two FPGA fabrics, and they all 
interoperate without error and with no need for tuning. 
MBus can achieve higher than 10 Mb/s communication 
performance, which is limited by test configuration. An 
MBus member node is implemented with 227 sequential 

and 2900 combinational logic cells, occupying 37.2 μm2.  
Fig. 9 shows how MBus seamlessly operates with 

power mode conversion in sensor system. In the scenario 
shown in Fig. 9(a), the system wakes up for 10 ms to 
initiate low power temperature measurement. While 
temperature is measured, the system stays at low power 
mode. Once the measurement is done, the system wakes 
up for 20 ms to process and store data and then re-enters 
sleep mode. Fig. 9(b) show that, upon wake up request 
(DATA pull-down), PMU switches to high power mode 
and rest of the MBus message is handled when power is 
stable (PMU draws >10 µA). Fig. 9(c) shows that, after 
sleep request message, PMU switches to low power 
mode after ~4 ms of preparation time for member nodes.  

Table 2 summarizes the performance of the proposed 
design and compares to the previous works. The MBus 
Mediator consumes 27.5 pJ/bit when sending a message. 
MBus member node consumes 22.7 pJ/bit and 17.6 pJ/bit 
for receiving and forwarding a message, respectively. 
Compared to the low power I2C variant demonstrated in 
[8], MBus achieves 23% energy saving for the 3-layer 

 

Fig. 7. Setup/hold time diagram (a) Conventional positive edge 
trigger, (b) MBus clocking. 

 

 

Fig. 8. Die Photograph (a) Implemented millimeter-scale 
MBus-based sensor system with processor, temperature sensor, 
and wireless radio, (b) Individual modules.  
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system at 617 kHz, by minimizing flop switching and 
number of oscillators. This saving further increases with 
additional layers since an additional MBus layer only 
consumes 17.6 pJ/bit whereas an additional layer in I2C-
Variant system would consume approximately 29.3pJ/bit 
due to additional oscillator with it. Note that these active 
energy consumption numbers are two orders of 
magnitude lower than traditional I2C.  

The entire system consumes 8 nW in standby mode, 
but this number is mainly dominated by other 
components such as an optical wakeup receiver, a low-
power mode PMU, a battery supervisor, and 3 kB SRAM. 

IV. CONCLUSION 

Today’s emerging sensing platform needs a bus 
interconnect that addresses area and energy constraints 
rather than focusing on increasing performance or 
bandwidth. In this paper, MBus, a new serial 
interconnect is proposed to addresses inter-chip 
communication requirements for the next generation of 
ultra-low power, millimeter-scale wireless sensor nodes. 
A complete millimeter-scale modular system is presented, 
which consists of sensors, a processor, and a radio 
connected with MBus. MBus offers 8 nW standby power, 
17.6 pJ/bit/chip energy consumption, 4 I/O pad count, is 
fully synthesizable, and supports multi-master operation, 
all with robust timing. These features open the door to 
modular, pervasive computing systems. 
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