
Embedded OSes Must Embrace Distributed Computing
Branden Ghena

brghena@berkeley.edu
University of California, Berkeley

Jean-Luc Watson
jeanluc.watson@berkeley.edu

University of California, Berkeley

Prabal Dutta
prabal@berkeley.edu

University of California, Berkeley

ABSTRACT
Long the case in automotive, aeronautics, and industrial settings,
embedded systems in myriad other areas are becoming distributed
systems in all but name. Driven by increasingly complex applica-
tions with wide-ranging hardware requirements, developers are
turning tomodular designs that integrate multiple processors onto a
single board. Unfortunately, problems already familiar to distributed
systems—coordinated execution, portable applications, and unified
system-wide administration—have no corresponding embedded
support and must be re-implemented in an ad hoc fashion for each
application. We argue that future embedded operating system de-
velopment should explicitly support these multi-microcontroller
systems, and can leverage distributed techniques to do so. We also
believe that the low-level nature of embedded sensing indicates that
OSes should not attempt to completely abstract the presence of sep-
arate hardware components and capabilities. Instead, they should
provide useful interfaces that support resource-constrained execu-
tion and modular application interactions. To that end, we identify
existing embedded OS efforts and distributed systems concepts that
can inform next-generation OS development.

1 INTRODUCTION
Typical Internet of Things (IoT) devices follow a predictable design.
Each has a microcontroller, radio, and sensors and actuators, all
wired together on a single circuit board. But even for simple devices,
there are many, mostly-independent tasks to be performed: wireless
communication, sensing, data processing, control algorithms, and
actuation. While these tasks can be, for the most part, developed in-
dependently, anyone who has performed system integration knows
that simply combining each software component will likely fail;
interrupts collide, memory is exhausted, and energy-use estimates
are trampled until engineering effort ensures a stable system.

Increasingly, platform designers are solving these integration
and resource allocation problems by creating multi-microcontroller
devices. Commonly, one microcontroller is dedicated to running a
networking stack, while another performs sensing and processing,
with physical separation ensuring that software tasks cannot in-
terfere with each other. While this design technique solves several
engineering challenges, it also introduces new ones. Embedded
systems are becoming distributed systems, facing traditional issues
of communication, task placement, and system administration.

Support for these distributed design patterns in current embed-
ded operating systems is limited. Research platforms often eschew
an OS altogether in favor of implementing application-specific com-
munication protocols, at the cost of limited flexibility and portability.
Commercial cyber-physical systems have seen some efforts to pro-
mote interoperability through common interfaces. For example,

NGOSCPS 2019, April 15, 2019, Montreal, Canada

LonWorks is a platform for managing control networks that com-
municate and share state with other devices over the network [14].
However, we argue that next generation of embedded operating
systems for IoT devices will need to support not only networked,
but distributed applications, for which shared memory, coordinated
execution, and reliable communication should be OS services that
do not require explicit implementation at the application level.

Embedded operating systems will also need to manage the tasks
running on the device. While some tasks are hardware-specific and
typically will be co-located with the peripheral with which they
are interacting, other functions, such as sensor data processing and
control algorithms, are more independent. For these types of tasks,
the operating system should enable simple migration between mi-
crocontrollers on a platform, even at run time. Similarly, while often
only a single microcontroller is connected to the network interface
of a device, all microcontrollers on the system need firmware up-
dates. Next generation embedded operating systems should allow
code updates to be securely transferred between processors.

Distributed computing has a long history of widespread use, and
embedded distributed systems will certainly be able to leverage
prior work. However, this new domain has several fundamental,
distinctive challenges, such as the heterogeneity of hardware re-
sources and emphasis on low-power operation, which require us
to revisit traditional solutions in a new light. Applying these ideas
to properly supervise cooperating systems of microcontrollers will
be critical to enabling a new generation of complex, but reliable,
Internet of Things platforms.

2 MULTI-MICROCONTROLLER PLATFORMS
What is driving the creation of multi-microcontroller platforms?
A common reason is to create a physical separation of concerns.
In platforms like PowerBlade [6] and SurePoint [12], one micro-
controller is devoted to timing-sensitive operations and the other
to wireless communications. In Amulet [10] and Flicker [11], one
microcontroller solely manages low-power operation. Most of these
platforms use software written in bare-metal C without any OS
support. Amulet, the exception, provides a runtime system for event-
driven applications, but only on the low-power microcontroller.

Alternatively, some platforms use multiple microcontrollers to
enable modularity. Burnout [15] has ten wearable accelerometers,
each including a separate microcontroller tasked with measuring
muscle fatigue. All report measurements to a central microcon-
troller in charge of logging and wireless communication. Sign-
post [1], a city-scale sensing platform, expects sensor modules to
contain their own microcontroller capable of taking measurements.
It uses a custom multi-master I2C messaging scheme between the
microcontrollers as its OS does not provide such a mechanism.
The rise of these multi-microcontroller research platforms without
corresponding software support for their design demonstrates an
unsatisfied need that the operating systems community can fulfill.

1



NGOSCPS 2019, April 15, 2019, Montreal, Canada Branden Ghena, Jean-Luc Watson, and Prabal Dutta

3 OPERATING SYSTEM REQUIREMENTS
Embedded operating systems for multi-microcontroller platforms
have many of the same requirements as any other embedded OS.
They need to have low memory and processing overhead to accom-
modate resource-constrained systems, and they need to encourage
low-power operation for battery-powered devices. For many cyber-
physical systems, the OS must also support real-time, deadline-
driven operation. However, distributed embedded systems exhibit
several additional domain-specific requirements.

Inter-Microcontroller Communication. A primary enabler for
multi-microcontroller systems is communication. Operations run-
ning on two separate microcontrollers need to send commands and
share results with each other. On a single processor, communication
is as simple as calling a function and passing a data buffer, and we
advocate that OSes provide abstractions that emulate this simplic-
ity. The introduction of memory ownership concepts in modern
systems programming languages like Rust can make this commu-
nication simpler, transferring control of a slice of memory rather
than implementing more complex shared memory techniques.

Inter-chip communication will introduce additional latency into
task coordination. While reducing latency is good, more important
is that connections are deterministic so that developers can have
an expectation of reliable behavior and long-term system stability.
A related requirement necessary for many systems is a priority
mechanism. Platform designers should be able to configure whether
an incomingmessage or the task at hand ismore important, and take
steps to reduce interfering bus contention as necessary. Handling
of communication failures, although rare in a single circuit board
context, is also necessary for long-term system robustness.

An example of inter-microcontroller communication in practice
is CoMOS [9], a multi-microcontroller OS developed for a sound
source localization device. CoMOS provides an explicit send_msg()
function and handles the routing of messages between chips. We
argue that communication should instead be more implicit. In our
view, communication between two loosely-coupled application
components, even across multiple processors, should be no differ-
ent to implement than for communication within a single micro-
processor, with the OS managing interaction behind the scenes.
Making inter-microcontroller communication seamless may also
require toolchain support during the software development and
compilation stage in addition to runtime support by the OS.

Task Migration. Embedded OSes should additionally provide an
abstraction for software portability, so that application code can be
re-targeted to any available, appropriate microprocessor in the sys-
tem. Even during the design process, changing system requirements
can shift application tasks betweenmicrocontrollers to reducework-
load or meet energy consumption constraints. Developing software
components that can be easily transferred when necessary avoids
expending unnecessary additional engineering effort. However, we
caution that many tasks are so closely tied to the physical platform
they execute on that making them agnostic to the presence of a
multi-microcontroller system is likely to yield unintuitive results.
For example, a task that samples a sensor it assumes is connected
directly to “its” processor may receive data with a vastly longer
delay than expected because components elsewhere on the device
require immediate higher-priority service. Thus, tasks must be

aware of module boundaries at a logical level. Tock [13], a multi-
processing OS for embedded systems, demonstrates one possible
mechanism of software independence. Processes in Tock interact
with a microcontroller-specific kernel through a restricted set of
system calls, allowing the same application code to run on any
platform as long as the hardware resources it needs are available.

Runtime migration of tasks between microcontrollers is also
sometimes necessary for optimal efficiency. Some tasks, such as
control algorithms or data processing, are inherently movable, and
when a platform’s workload changes, optimal placement for appli-
cations can shift. CoMOS describes an example of this, in which an
FFT can be executed in a more energy efficient manner on either
an MSP430 or an ARM7 core depending on the window size [8].

Platform Management. Finally, operating systems should sup-
port management of microcontrollers anywhere on a platform,
regardless of the physical interconnect. Frequently, only one micro-
controller actually interfaces with a network, but firmware updates
are needed for all processors on a system. Future embedded OSes
should enable authenticated, reliable firmware updates over inter-
processor communication channels just as they should over the
network, ensuring that updated components retain full compatibil-
ity with the remainder of the system. Other management aspects,
such as the ability to watchdog and reset other microcontrollers in
the system are also important for increasing platform robustness.

4 LESSONS FROM CLASSICAL SYSTEMS
Multi-microcontroller systems differ dramatically from the general-
purpose distributed computing systems of traditional computer
science research. The primary concern is not that of providing a
generic execution environment and memory access abstraction [4,
16], but of facilitating interaction between an array of heteroge-
neous microcontrollers. In particular, distributed systems operate at
scale by coordinating thousands of servers to, for example, maintain
global consistency, efficiently distribute user data, or provide low la-
tency, failure resistant web services. Multi-microcontroller designs
do not face the same scaling challenges given the localized nature
of embedded sensing. Likewise, faced with unreliable networks and
frequently changing topologies, previous systems have required sig-
nificant fault tolerance [20]; embedded microcontrollers are more
stable in operation due to their static, well-defined hardware layout.
Nevertheless, multi-microcontroller sensors remain, fundamentally,
distributed systems and face many of the same challenges.

Message-Passing Interfaces.Distributed operating systems have
long used message-based protocols to coordinate system behav-
ior. Decades ago, both the LOCUS [20] and Amoeba [16] OSes
served requests to a global file system with simple remote pro-
cedure calls (RPCs), transparently managing serialization and ad-
dressing. The same has been applied to work on a heterogeneous
multicore OSwhere RPCs provided an efficient alternative to shared-
memory communication due to their compact representation [2],
and in NUMA systems where cores hosted independent kernel
instances [17]. Since the physical nature of embedded devices pre-
cludes shared memory access, a well-designed messaging interface
is critical for an embedded OS to build more powerful abstractions.

However, the embedded applications for which these systems
are designed present unique challenges. Complex sensing (e.g. lo-

2



Embedded OSes Must Embrace Distributed Computing NGOSCPS 2019, April 15, 2019, Montreal, Canada

calization [12]) often executes in tight control loops and is very
sensitive to messaging delays [18]. Thus, while language—and op-
erating system—independent interoperation mechanisms such as
CORBA [19] or Protocol Buffers [7] are useful tools to structure
communication, the OS must effectively manage them to expedite
critical communication and identify worst-case messaging over-
head. Further, in low-power systems, the energy cost of frequent
inter-microcontroller communication is a consideration that may
determine where software tasks are placed. Exposing communi-
cation primitives (e.g. Protocol Buffers) directly to the application
artificially freezes the application structure and reduces the ability
of the OS to dynamically pair tasks locally if possible.

Transparent Abstractions. Presenting a distributed collection of
computing nodes as a single machine is a core function of general-
purpose distributed operating systems. This provides a familiar
abstraction to user applications: computation and memory accesses
occurring in parallel across the system retain the semantics of
single-server execution. It is commonly achieved by transparently
intercepting local system calls to perform an RPC [20], invoke dis-
tributed consistency protocols [2], or page in remote memory [5].
Similarly, an embedded operating system will need to provide ab-
stractions that ease application development across microcontroller
boundaries, but it is not clear that traditional mechanisms can be
directly applied. Sensing applications cannot realistically execute
in a completely transparent environment, as they may depend on
specific low-level hardware. Instead, we argue that a distributed OS
should primarily implement opaque abstractions: interfaces that
easily bridge between logical components of an application without
hiding the distributed nature of the microcontrollers. For example,
a humidity sensor that wishes to export a data buffer through a
Bluetooth radio driver need not concern itself with the location of
the radio (be it on the same chip or external). Instead, a call to the
radio driver would transfer ownership of the buffer, with the OS
transparently triggering over-the-wire communication if necessary.

Load Distribution. Efficiently managing the placement of applica-
tion tasks across physical nodes is a recurring theme. In considering
execution on multiprocessor chips, Bertozzi et al. [3] require appli-
cation developers to define explicit process migration points within
the application such that it could be safely moved if necessary to
avoid overloading a processor or to pair it with a sibling task. The
Cilk-NOW runtime is an example of a global-level scheduler that
detects idle processors and dynamically steals upcoming tasks that
have not yet been executed to increase application parallelism [4],
and Baumann et al. identify that systems may contain fundamen-
tally different processors (e.g. GPUs or FPGAs) that should be as-
signed tasks for which they are best suited [2]. In an embedded
setting, the ability to flexibly direct where execution occurs will be
limited due to the physical design, power and timing constraints,
and sensor availability, but leveraging the same task migration
techniques could provide useful capabilities, for example, to batch
timing insensitive operations on a processor that offers a higher
startup cost but lower energy per cycle.

5 CONCLUSION
Multi-microcontroller systems are becomingmore popular as an em-
bedded design pattern that provides strong separation of concerns.

Building modular devices that isolate tasks, operate at low power,
and satisfy real-time requirements is critical to enabling complex
IoT sensing applications. In this paper, we assert that embedded
operating systems need to provide support for these use cases by
leveraging distributed system concepts. Specifically, coordinated
execution, processor-agnostic task migration, and system-wide
management capabilities are primitives that will substantially sim-
plify embedded software development. Relevant work in distributed
systems is encouraging in that it suggests a modular, distributed
operating system is possible, having demonstrated the utility of
message-based communication, abstractions over hardware bound-
aries, and dynamically-placed execution. While care must be taken
to ensure that introducing distributed systems techniques to the
embedded domain does not compromise existing guarantees of
real-time and low-power operation, doing so has the potential of
reducing the development burden for future embedded systems and
enabling the creation of robust, capable platforms.

REFERENCES
[1] Joshua Adkins, Branden Ghena, Neal Jackson, Pat Pannuto, Samuel Rohrer, Brad-

ford Campbell, and Prabal Dutta. 2018. The signpost platform for city-scale
sensing (IPSN’18).

[2] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
2009. The multikernel: a new OS architecture for scalable multicore systems
(SOSP’09).

[3] Stefano Bertozzi, Andrea Acquaviva, Davide Bertozzi, and Antonio Poggiali. 2006.
Supporting task migration in multi-processor systems-on-chip: a feasibility study.
In Proceedings of the conference on Design, automation and test in Europe.

[4] Robert D Blumofe, Philip A Lisiecki, et al. 1997. Adaptive and reliable paral-
lel computing on networks of workstations. In USENIX 1997 Annual Technical
Conference on UNIX and Advanced Computing Systems.

[5] David Cheriton. 1988. The V distributed system. Commun. ACM (1988).
[6] Samuel DeBruin, Branden Ghena, Ye-Sheng Kuo, and Prabal Dutta. 2015.

Powerblade: A low-profile, true-power, plug-through energy meter (SenSys’15).
[7] Google. 2008. Protocol Buffers | Google Developers. . Accessed: 2019-02-18.
[8] Michel Goraczko, Jie Liu, Dimitrios Lymberopoulos, Slobodan Matic, Bodhi

Priyantha, and Feng Zhao. 2008. Energy-optimal software partitioning in hetero-
geneous multiprocessor embedded systems (DAC 2008).

[9] Chih-Chieh Han, Michel Goraczko, Johannes Helander, Jie Liu, Bodhi Priyantha,
and Feng Zhao. 2006. CoMOS: An operating system for heterogeneous multi-
processor sensor devices. Technical Report. Microsoft Research.

[10] Josiah Hester, Travis Peters, Tianlong Yun, Ronald Peterson, Joseph Skinner,
Bhargav Golla, Kevin Storer, Steven Hearndon, Kevin Freeman, Sarah Lord,
et al. 2016. Amulet: An energy-efficient, multi-application wearable platform
(SenSys’16).

[11] Josiah Hester and Jacob Sorber. 2017. Flicker: Rapid Prototyping for the Battery-
less Internet-of-Things (SenSys’17).

[12] Benjamin Kempke, Pat Pannuto, Bradford Campbell, and Prabal Dutta. 2016.
SurePoint: Exploiting ultra wideband flooding and diversity to provide robust,
scalable, high-fidelity indoor localization (SenSys’16).

[13] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B Giffin, Pat Pannuto,
Prabal Dutta, and Philip Levis. 2017. Multiprogramming a 64kB Computer Safely
and Efficiently (SOSP’17).

[14] Dietmar Loy, Dietmar Dietrich, and Hans-Joerg Schweinzer. 2012. Open control
networks: LonWorks/EIA 709 technology.

[15] Frank Mokaya, Roland Lucas, Hae Young Noh, and Pei Zhang. 2016. Burnout: a
wearable system for unobtrusive skeletal muscle fatigue estimation (IPSN’16).

[16] Sape J. Mullender, Guido Van Rossum, AS Tananbaum, Robbert Van Renesse, and
Hans Van Staveren. 1990. Amoeba: A distributed operating system for the 1990s.
Computer (1990).

[17] Edmund B Nightingale, Orion Hodson, Ross McIlroy, Chris Hawblitzel, and
Galen Hunt. 2009. Helios: heterogeneous multiprocessing with satellite kernels
(SOSP’09).

[18] Hideyuki Tokuda, Tatsuo Nakajima, and Prithvi Rao. 1990. Real-Time Mach:
Towards a Predictable Real-Time System.. In USENIX Mach Symposium.

[19] Steve Vinoski et al. 1997. CORBA: integrating diverse applications within dis-
tributed heterogeneous environments. IEEE Communications magazine (1997).

[20] Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg Thiel. 1983.
The LOCUS distributed operating system. In ACM SIGOPS Operating Systems
Review.

3

https://developers.google.com/protocol-buffers/

	Abstract
	1 Introduction
	2 Multi-microcontroller Platforms
	3 Operating System Requirements
	4 Lessons from Classical Systems
	5 Conclusion
	References

