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ABSTRACT
Bluetooth Low Energy (BLE) location trackers are popular and use-
ful for finding misplaced keys, devices, and other items. However,
they can also be used to track people and enable abuse. The com-
panies that make location trackers, such as Apple, have worked to
address these issues by adding notifications within their ecosystem
and publishing recommendations for other manufacturers, creat-
ing a vertically integrated solution. More generally, however, BLE
devices which rotate their MAC addresses remain elusive to respon-
sible detection within and across many manufacturer platforms.
Rotation of MAC addresses is crucial in some non-malicious usage
scenarios for the privacy of the device owner, but this feature also
makes detection more difficult. In this work, we propose and evalu-
ate a detection algorithm that is robust to rotating MAC addresses
by using parameters that appear to offer implicit continuity, includ-
ing signal strength and advertisement intervals. A preliminary test
of our algorithm, on four common BLE trackers and across multiple
scenarios, shows this approach to be promising and practical.

CCS CONCEPTS
• Security and privacy→ Social aspects of security and pri-
vacy;Mobile and wireless security; • Human-centered com-
puting → Ubiquitous and mobile computing systems and tools.
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1 INTRODUCTION
Pervasive use of Bluetooth Low Energy (BLE) devices is quickly
becoming a day-to-day reality. This explosion in devices is in part
driven by location trackers such as AirTags [2] and Tiles [5] which
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Figure 1: When traveling with a BLE location tracker, the
device MAC and RSSI can be used to detect malicious track-
ers. Current approaches assume a static MAC address which
would be successful from frame (1) to frame (2), butwould not
detect the device upon rotation in frame (3). Our approach
aims to help with this limitation by providing a method to
detect devices across MAC rotations.

are popular BLE devices that help find missing objects. Location
trackers result in a unique privacy and security challenge. They are
designed to track objects, which means they can easily be misused
to track people and enable abuse [16, 25]. Current approaches to
mitigate this problem require device manufacturers to change the
behavior of their tags, e.g., so they rotate MAC addresses infre-
quently or participate in special protocols to enable detection of
misuse. However, this is challenging to deploy because it requires
cooperation of all device manufacturers and does not address the
population of existing devices.

In this paper, we demonstrate an approach that can be used
to detect misuse of existing tracking devices, without requiring
any changes to existing devices or cooperation from the device
manufacturer. In particular, we demonstrate it is possible to link
together rapidly rotating (e.g., every 15 mins) MAC addresses using
transmission characteristics, such as signal strength and advertise-
ment intervals, to detect a wide range of BLE location trackers. This
algorithm, using no specialized hardware beyond what is found on
a cell phone, allows detection methods to move beyond detecting
trackers with semi-static MAC addresses.

Technology aided and enabled abuse is unfortunately neither
new, nor uncommon [12, 19]. Smart home devices can be used as
tools of domestic abuse with alarming ease. Cameras, locks, and
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thermostats can be controlled from apps remotely which means
that devices can be used to remove access to spaces, watch, and
intimidate others from afar [1, 25]. With mobile devices, this harm-
ful surveillance can extend beyond the home. Location trackers, in
particular, pose a threat because they are small in size and profile,
making them easy to hide in clothing, cars, or bags [7, 16]. Unlike
with mobile phones which are often password protected, it only
takes a moment of physical access to plant a BLE location tracker
in a bag or under a car in order to monitor someone from afar.

BLE tracking devices present a particular challenge because
they serve a valuable purpose (e.g., finding lost items) but they
must be designed to protect the privacy of both their owners as
well as of third parties. For a non-malicious tracker carried by its
owner, the uniquely identifying MAC address must be rotated not
too infrequently in order to prevent monitoring of the owner’s
presence, for example detecting visits to a public location where
there is a planted scanner. For a tracker that is surreptitiously and
maliciously planted on a victim to track them without their consent,
we would like some way for the victim to detect the presence of
the tracker; this is easier if the MAC address is static or rarely
changes, since then the victim’s phone can detect the presence of
an unfamiliar device that moves together with them.

Apple and others have focused significant energy on fixing this
problem by detecting and notifying people within their ecosystem
of device trackers. In fact, Apple and Google announced an industry-
wide proposal to address risks of BLE location trackers [18]. The
proposal has devices rotate MAC addresses only every 24 hrs, while
away from the device owner, which allows people to detect when
they are being tracked using the device MAC address as an iden-
tifier [18]. However, many modern BLE devices, location trackers
included, periodically rotate their MAC addresses much more fre-
quently to prevent identification. Typically MAC rotation is crucial
for privacy, and considered a feature, because it helps reduce the
risk of persistent tracking (e.g., monitoring an individuals move-
ment throughout a mall based on observing their phone’s MAC
address at different locations in the mall over time). However, in
the case of malicious trackers (Figure 1) a rotating MAC makes it
hard to detect the presence of a hidden tracker.

We challenge the assumption that having a constant MAC is
necessary to detect malicious tracking. In fact, static MACs cannot
be depended upon because some BLE location trackers, such as the
Samsung Galaxy Smart Tag, do rotate their MACs frequently. A
motivated attacker could easily order and use trackers which do
not follow the guidelines. Instead of counting on a static MAC, we
take advantage of inherent properties of BLE which are continuous
across rotations, to detect devices. There is a set formula followed
by BLE advertisements, used by these devices. The spectrum for
BLE extends from 2402 MHz to 2480 MHz and in order to commu-
nicate, devices hop across 40 different channels at set frequencies.
Three of these channels are reserved for advertising (CH37, CH38,
CH39) [4]. Devices also advertise at set intervals, which typically
do not change with rotation. Advertisements are limited to 39 bytes
and must include a header (2-bytes) and MAC address (6-bytes) [4].
Advertisements also can but do not necessarily include different
data types including manufacturer data, TX power, local device
name, service universally unique identifiers (UUIDs), and service
data. For our algorithm, we use only the MAC address and received

Figure 2:While travelingwith our nRF device and BLE sniffer,
we recorded the RSSI and MAC addresses. Because, the signal
strength is relative to location we can use the characteristics
of the trace to link MACs across rotations, identifying our
nRF device as a tracker.

signal strength indicator (RSSI), which is supplied by all BLE radios,
along with timestamps to fingerprint devices while being robust to
manufacturer specific variations.

Our experimental setup uses a Raspberry Pi based BLE sniffer to
capture advertising data. The advertisement data is processed using
RSSI strength and a window based algorithm (described further
in Section 3) to link together MAC addresses which have rotated
(example rotation shown in Figure 2). We analyze our system on
four different popular BLE location trackers (AirTag, Tile, Samsung
Smart Tag, and Pebble) and for walking, biking and transit scenarios.
We also isolate and characterize each device using a Faraday cage
in order to understand how trackers advertise. Overall, this paper
presents and evaluates a method to detect persistent devices across
MAC rotations based on signal strength. We believe this technique
could augment and address a key limitation of current efforts to
prevent malicious tracking.

2 RELATEDWORK
The social aspects of technology enabled abuse and locations track-
ing are well explored research areas [9, 11, 13, 21–24]. Freed et
al. [12] conducted focus groups with survivors of intimate part-
ner violence (IPV) and interviewed IPV professions. They found
that many attacks, including location tracking, are facilitated by
off the shelf devices. This type of surveillance extends to online
communities as explored by Tseng et al. [25] meaning that attack-
ers often share techniques such as particular devices which avoid
detection. The social aspect of tracking points toward a need for
new techniques to enable more robust detection.

There has also already been substantial work in detecting mali-
cious tracking devices by both fingerprinting BLE transmissions and
identifying BLE devices over time [8, 14, 15], but these approaches
either depend on specialized RF sniffing hardware, pre-existing
knowledge on how MAC addresses rotate, or parsing out specific
fields in the advertised packet. Others simply do not track across ID
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rotations. Device fingerprinting based on signals is also a common
method to detect 802.11 devices [10, 17]. Our proposed work would
enable continued identification across BLE MAC rotations without
any specialized hardware or information about other advertisement
field values.

There are several responsible detection applications currently in
use for malicious trackers. Apple has released an app for Android
users, called TrackerDetect [3] with the limited scope of detecting
malicious AirTags on Android devices. Another application, Air-
Guard [15], periodically scans for BLE devices, stores their broad-
casted MAC addresses, and notices when a particular address is
seen repeatedly, but their app also does not associate device identity
across different broadcasted addresses. With MAC addresses used
as fixed device identifiers, the algorithm has to detect a device from
scratch after an address rotation. Finally, the BLE-Doubt [8] appli-
cation constructs the trajectory of a BLE device over time using
GPS data collected during sniffing and uses a combination of travel
duration and distance to determine whether to mark a tracker as
suspicious. Our algorithm is tangential to these efforts and could
be added to existing solutions enabling detection of a wider range
of BLE devices.

In a promising effort, Apple and Google released an announce-
ment of their intention to work together on an industry specifi-
cation [18] to combat the malicious use of location trackers. In
the proposed specification, as is required of many continuously
advertising BLE devices, a tracker traveling nearby its owner would
be mandated to rotate MAC addresses on a 15 minute period to
deter tracking of the owner. However, when the tracker is separated
from its owner, this is lengthened to a 24 hour period in order to
enable another smartphone to identify the device. Location trackers
which are near their owner, according to recommendations, should
also not advertise to reduce false positives. If all location trackers
followed these design guidelines, it would certainly increase the
ease of detecting malicious trackers, but the status quo is rotation
across the broad BLE ecosystem, and it seems likely some trackers
will continue to rotate.

Along with the MAC address, an advertising packet can also
contain other fields specific to the manufacturer and device. One
study [6] has shown that in particular, the manufacturer data field
of the advertisement sometimes has components change asyn-
chronously with the MAC ID rotations, allowing for correlation
across different MACs. This method was introduced as an attack
and therefore many devices have fixed this problem. Additionally,
this method relies on manufacturer data fields which are subject
to change over time [6]. In our case, we design an algorithm that
takes advantage of the proximity of the device to break MAC rota-
tion, which notably does not break the privacy properties of MAC
rotations in cases where the device is not continually present.

On the other end of the spectrum, there has been work on iden-
tifying BLE devices without using the actual content of their ad-
vertisements, but rather by the “fingerprint” of their individual
physical-layer hardware imperfections via measurements of RF
features like carrier frequency offset (CFO) and I/Q offset [14, 20].
This approach, while applicable to diverse BLE devices with high
short-term recognition accuracy, requires specialized RF sniffing
hardware and suffers from loss in classification accuracy over the
passage of time.

Figure 3: Pseudocode of algorithm for classifying a device as
a suspicious tracker. MAC addresses which match in charac-
teristics are linked together, and if present for over a time
length threshold, added to a list of suspicious potential track-
ers.

Significant work has been done in developing systems to identify
BLE devices across MAC rotations using specialized RF sniffing
hardware and data structures sleuthed fromproprietarymanufacturer-
specific data fields. There are also existing smartphone-based scan-
ners to increase awareness of BLE trackers one may be carrying
unwittingly, which rely on static MAC identifiers. However, a need
still exists for a reliable scanner without highly expensive hard-
ware requirements that is not duped by MAC address rotations. To
that end, we aim to design an algorithm that links together MAC
rotations in a tracking case, which could be integrated into existing
detection software.

𝑚𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒 = |𝑚𝑒𝑎𝑛𝑅𝑆𝑆𝐼𝑡𝑟𝑎𝑐𝑒 −𝑚𝑒𝑎𝑛𝑅𝑆𝑆𝐼𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 |
+|𝑠𝑡𝐷𝑒𝑣𝑅𝑆𝑆𝐼𝑡𝑟𝑎𝑐𝑒 − 𝑠𝑡𝐷𝑒𝑣𝑅𝑆𝑆𝐼𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ) |

+|𝑚𝑒𝑎𝑛𝐴𝑑𝑣𝑃𝑒𝑟𝑖𝑜𝑑𝑡𝑟𝑎𝑐𝑒 −𝑚𝑒𝑎𝑛𝐴𝑑𝑣𝑃𝑒𝑟𝑖𝑜𝑑𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 |
(1)

3 ALGORITHM DESIGN
The algorithm links rotated MAC addresses that belong to a single
device in order to determine if a device has been present for a signif-
icant amount of time. In order to link MAC addresses belonging to
the same device, we take advantage of other characteristics of the
trace which do not change, in particular the signal strength stays
high as long as the device is nearby and the advertisement profile
does not change. Therefore, when a trace disappears we look ahead
for a potential match. More specifically, we compute a match score,
shown in Equation (1), between the final ten advertisements of the
first fragment and the initial ten advertisements of the candidate
for the second fragment. We use the absolute value of the difference
between mean RSSI strength, RSSI standard deviation, and mean
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Figure 4: Example advertisement intervals for location track-
ers. This shows that for example the Samsung Galaxy adver-
tises predominantly at 2 second intervals with some longer
intervals likely due to missed advertisements. Airtags, Tile
and Pebble have similar, but distinct patterns, with Tile hav-
ing the longest advertisement period of around 4 seconds.

advertising interval in seconds. The match score is computed as
the sum of these factors.

The fragment with the lowest match score among all link candi-
dates, if above an experimentally determined threshold, is linked to
the first fragment, and then the process repeats using the combined
trace as a new fragment. This algorithm is laid out in pseudocode
in Figure 3. We use a variable time threshold of 10 to 40 minutes
with an average RSSI strength above -80 dB and minimum length
of 8 minutes as hyperparameters to determine whether to mark
a device as a suspicious tracker. For our threshold score we used
a large number (1000) to encourage matches. This could be tuned
down to reduce the risk of false positives.

To understand how different devices work, we isolated each de-
vice in a Faraday cage. We found that the devices advertise at set
intervals. The device advertisement patterns are shown in Figure 4.
The Galaxy Tag, for example, advertises predominantly at intervals
of 2 seconds. Longer times between advertisements could be due
to either missed packets or pauses in advertising. The other three
tags we measured followed a similar advertisement pattern with
some variation in the predominant interval (up to 5 seconds). This
is interesting and useful because it allows us to filter out devices
with much longer advertisement intervals (e.g AirPods). In terms
of rotation time, the Samsung Galaxy Tag is the only tag that we
observed rotations for (every 15 minutes). The other devices ro-
tate on longer time scales, which is in line with the Apple/Google
recommendations [18].

4 EXPERIMENTAL SETUP
The test system consists of a BLE sniffer, a simulated tag with
operator-designed advertisements and MAC rotation interval, and
several commercial tags (AirTag, Tile, Pebble, Samsung Galaxy
Tag). The sniffer is implemented on a Raspberry Pi using the Noble
module (Node.js BLE central module) to scan for and parse public,

Figure 5: A high level overview of our system. We use a Rasp-
berry Pi based JSON BLE sniffer to gather data from both
industry tags and our own nRF52-DK based BLE Tag. Data
from our sniffer is fed to a custom algorithm which detects
potential location trackers.

unencrypted BLE advertisement data into a log file. The logged
data includes MAC address and received signal strength of the
advertisement (RSSI), as well as a few other advertising data com-
ponents which we use for sanity checking the links: connectability,
public name of the device (if provided), transmitted power level
(if provided), manufacturer data (if provided), and the first avail-
able service UUID (if provided). The Raspberry Pi is powered by a
portable charger for mobile testing and various settings.

The simulated tag is implemented as a BLE peripheral on aNordic
nRF52 development board and provides a ground truth comparison
for the detection algorithm. The simulated tag has an advertising
interval of 1 second and rotates to a new MAC address every 15
minutes. The sequence of MAC addresses is known and can be
compared with sniffer-detected advertisements for verification of
the detection algorithm.

Lastly, we validate our sniffer and detection algorithm with
four commercial location tracker tags from various manufacturers
(AirTags, Tiles, Pebbles, and Galaxy Smart Tags). These are each
paired with a smartphone to put them in operational mode and then
kept out of range of the phone they have been paired with so that
they behave as they would away from the owner. We aim to answer
two key research questions in our evaluation. How well does our
MAC linking algorithm perform? And how long approximately
does it take to detect devices without false positives?

5 RESULTS
In this section, we test our algorithm with our ground truth nRF
device, evaluate our system with the four different industry BLE
location trackers, and finally show how much time it takes to elim-
inate false positives and detect trackers while walking and biking.
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Scenario Minimum Time St. Deviation Time
Walking 21 mins 0.4 mins
Biking 16 mins 2.32 mins

Table 1: We measured the minimum and standard deviation
for the time length thresholds across our 5 tests in each sce-
nario for identification of all three devices. This gives an
estimate for how long is necessary to eliminate false posi-
tives in our three scenarios.

5.1 Algorithm Performance
We measure the algorithm in terms of how many links are success-
fully matched between trace segments. For example, if a device
rotates every 15 minutes over an hour we expect the algorithm to
stitch together four segments with three links for a perfect recon-
struction of the RSSI trace. Because, we programmed the nRF device
to rotate with consecutive MAC addresses, we are able to check
how many nRF device links succeeded compared with the perfect
ground truth advertised data. Our linked nRF trace missed a total
of 2 links across all five 50 minute walking tests and 1 link across
all five 45 minute biking tests giving a failure rate of 10.5% and
6.3% respectively. All three links that the algorithm missed were
at the very end of the log file (i.e when the MAC rotated and the
test abruptly ended shortly after rotation). This is not unexpected
because if the trace is too short (under 8 minutes) the algorithm
filters it out, and because the missing link is at the end of the se-
quence, it does not impact the number of devices detected. The nRF
device is correctly detected as a present tracker across all tests.

5.2 Device Based Tests
With each BLE tag, we walked around campus for one hour with a
location tracker in a pocket and our detection device in our back-
pack. This method allows us to simulate a realistic tracking scenario.
We also carried our ground truth nRF52 tag in our backpack as a
reference point. The large amount of BLE traffic from devices we
encounter makes tracker detection challenging. Our sniffer picked
up traffic from the participants own devices, our nRF52 tracker, the
BLE location tracker of interest along with background traffic from
surrounding devices.

We ran a 1 hour walking test with all four devices and were able
to detect each device with the full hour of data and a threshold
length set to 30 minutes to classify as a tracker. In our tests, the
AirTag, Tile, and Pebble devices did not rotate their MAC addresses.
The Galaxy Smart Tag rotated MAC addresses approximately every
15 minutes. Our algorithm also flagged the participant’s phone as a
tracker, which rotated every 15 minutes as well.

We tested our algorithm with different thresholds lengths to
estimate how long it takes to detect devices that are following a
participant (results in Figure 6). We expected that with longer time
intervals there would be fewer false positives. When we modify
the threshold length to be 10 minutes, we find that between 13 and
23 devices are present around the participant for 10 minutes or
more over the entire test segment. This over estimate makes sense
because devices in the surrounding area are flagged as potential
trackers before we have time to move away from them. With longer

Figure 6: The number of devices detected by our algorithm
based on the amount of time. Our algorithm accurately de-
tects the three devices traveling with the participant with a
30 minute threshold for all four devices tested.

time thresholds, fewer devices are flagged as traveling with us. All
four devices in our test resulted in 3 trackers with a 30 minute
threshold. The three detected devices are the nRF52 device, the
participants phone, and the BLE location tracker.

5.3 Scenario Based Tests
In addition to testing with different devices while walking the
same path on campus, we also tested our algorithm with variable
thresholds while walking and biking. Finally we tested while taking
public transit and observed false positives due to others traveling
with us.

For our walking tests, we walked in 45 minute intervals across
both crowded downtown areas and forested paths. We collected
5 walking tests in total with the Samsung Galaxy Tag in a pocket
or bag and our detecting device in our bag. The Samsung Galaxy
Tag was chosen as the device to test with because of the rapid
MAC rotations. In addition to the Samsung Galaxy Tag, we also
carried our nRF device and cell phone. In all five tests, the algorithm
correctly identifies the three devices within 25 minutes, shown
in Figure 7. Similarly in our biking tests, we followed different
paths in both urban and rural areas for 45 minutes each, shown
in Figure 8. The minimum time length threshold and the standard
deviation threshold are shown in Table 1.

In our transit tests, we carried the Samsung Galaxy Tag in our
pocket while riding AC transit for 45 minutes and while riding
BART for 1 hour. In this scenario, we were able to detect the Sam-
sung Galaxy Tag and link across rotations, but we also observed
multiple false positives even with a threshold of 35 minutes. This
brings up an important limitation of our approach, if we travel with
other people, the algorithm will also detect and attempt to link
together their devices including cell phones. We discuss this along
with other challenges in Section 6.
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Figure 7: The number of devices detected by our algorithm
based on the time length threshold while walking with the
Samsung Galaxy Tag. Our algorithm accurately detects the
three devices traveling with the participant with a 25 minute
threshold for all five walking tests.

6 LOOKING FORWARD
Our algorithm and setup is not a complete solution, and is designed
to supplement the existing work in the area. In particular, choosing
when to notify and what is a tracking scenario remains challenging,
and should be done with care to prevent harmful false alarms.

Real-Time. To be useful to people, giving timely notifications
is crucial. Our current implementation of our algorithm works in
post processing. However, it could be integrated into an existing
application to check the logs and link MACs every couple hours.
The linked MACs could then be fed into the existing applications
and treated as the semi-static MAC addresses when determining if
the device is a tracker.

Owned Devices. During tests, we also detected our phone as
a “tracker”. To avoid detecting other devices that are owned, peo-
ple need a way to mark devices as safe and recognized. One way
to do this could be to use the OS to query for previously paired
BLE devices. We could also give people an opportunity to mark a
particular device as being safe each time it reappeared. This is an
important feature because frequent false positives could inundate
a user with annoying notifications which mask real risk.

Advanced Adversaries. Our algorithm and existing detection
applications [8, 15] are designed to detect off the shelf devices which
are not engineered to track people. Because our approach relies
on RSSI characteristics, an advanced adversary could still avoid
detection by changing the frequency and transmit strength of the
device at the same time as MAC rotation. Fortunately, the majority
of attacks are “UI-bound” and not carried out by an attacker with
access to custom devices and firmware [12]. However detecting
in this case as well would be interesting to explore in the future,
perhaps using hardware specific radio information such as clock
skew.

Tracking is Social. To track another person maliciously is in-
herently social and not only about the underlying information. For
example, the same information (location over time and space) could

Figure 8: The number of devices detected by our algorithm
based on the time length threshold while biking with the
Samsung Galaxy Tag. Our algorithm accurately detects the
three devices traveling with the participant with a 25 minute
threshold for all five biking tests.

be freely shared with a trusted friend, or even implicitly shared with
a stranger who happens to be taking the same path. Co-location of
devices is a technical challenge distinct from when to notify a user
about the possibility of tracking. Being robust to a range of different
cases is a difficult and open challenge in the space of detecting track-
ers, Apple’s detection mechanism for AirTags, for example, often
gives false positives when traveling with other people. To help with
this case, it could be useful to use side channel information includ-
ing the phone GPS (for path analysis) as BLE-Doubt shows [8], the
phone accelerometer (to avoid detecting when stationary), or user
interaction to give more information about the scenario. Deciding
how to notify could also benefit from user studies for behavior
analysis, or social graph information such as understanding if a
user is with a trusted friend. In all of these cases, privacy challenges
caused by using additional side-channel information should also
be considered.

7 CONCLUSION
In conclusion, we present our algorithm to detect location tracking
devices using MAC addresses and RSSI. We show that it works
with four different common BLE tracking devices and in different
scenarios albeit with false positives in the transit case. In the future,
we hope this type of algorithm can be added to existing applications
or software which detect malicious trackers. Acknowledging that
the problem is not completely solved and impacted by social factors,
we also give ideas for future work and discuss open challenges.
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