
Freeloader’s Guide Through the Google Galaxy
Joshua Adkins

University of California, Berkeley
Berkeley, California
adkins@berkeley.edu

Branden Ghena
University of California, Berkeley

Berkeley, California
brghena@berkeley.edu

Prabal Dutta
University of California, Berkeley

Berkeley, California
prabal@berkeley.edu

ABSTRACT
One of the largest impediments to pervasive sensing is ensuring
equally pervasive network access. While we can create wireless sen-
sors that last for years without human intervention, the network in-
frastructure to support their deployment requires planning, power,
and maintenance. The potential for a crowd-based solution to this
problem is ripe—ever pervasive smart phones have the hardware
and connectivity to serve as ubiquitous mobile gateways—however
the fragmentation of low power wireless protocols combined with
the lack of incentive for users to sacrifice their own resources trans-
porting others’ data has made this approach untenable.

Through an “off label” use of Google’s Physical Web and Nearby
Notifications, it was possible to ignore these problems and exploit
nearly the entire global population of Android phones to slowly
transport sensor data to an arbitrary web server. This mechanism
was enabled by default and transparent to the phone’s user. On one
hand, it served as an exciting opportunity to explore infrastructure-
free wireless networking. In a one week deployment of five devices
transmitting at 1Hz, we were able to successfully transport 326 kB
of data with an average data rate of 0.1–2.6 bps. This is slow, but
sufficient for many applications such as environmental monitoring
and sensor status reporting. On the other hand, a mobile operating
system probably should not have enabled exfiltration of arbitrary
data without a user’s knowledge or consent. While Nearby Notifi-
cations has now been decommissioned, we examine security policy
requirements for future systems that interact with nearby devices,
and we envision a similar, intentional mechanism to allow data
hitchhiking for the Internet of Things.

CCS CONCEPTS
• Networks → Network experimentation; Mobile and wireless
security; Mobile ad hoc networks.

KEYWORDS
Physical Web, Gateway, Android, Data transport
ACM Reference Format:
Joshua Adkins, Branden Ghena, and Prabal Dutta. 2019. Freeloader’s Guide
Through the Google Galaxy. In The 20th International Workshop on Mobile
Computing Systems and Applications (HotMobile ’19), February 27–28, 2019,
Santa Cruz, CA, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/3301293.3302376

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HotMobile ’19, February 27–28, 2019, Santa Cruz, CA, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6273-3/19/02.
https://doi.org/10.1145/3301293.3302376

1 INTRODUCTION
Google deployed the largest standardized and widely available net-
work for freely transporting extremely low-rate data from resource-
constrained devices, realizing coverage of as much as 20% of the
land area of the globe [10]. Interestingly, it is not clear whether
they are aware of their accomplishment. The Nearby notification
service [9], part of Google’s Physical Web [6], aimed to facilitate
interactions with physically close devices. However, it turns out
that this same service, installed and automatically running on every
Android smartphone between June 2016 and December 2018, could
be used to ferry sensor data.

The desire for ubiquitous, seamless connectivity for sensor net-
works has remained unfulfilled for some time now. The research
and industrial community has long explored a plethora of tech-
niques for enabling low-cost data transport for deployed sensors,
but while there are numerous MAC protocols and standards tar-
geting resource-constrained devices, the reality is that no single
leading standard has emerged. On top of this, reliable network de-
ployments require system administrators to install and maintain
gateways to provide coverage, an infrastructure requirement adding
unwanted overhead to real-world applications.

One enticing solution to this infrastructure challenge is the smart-
phone, and there have been several proposals suggesting their use
as gateways for pervasive sensors [5, 15, 18]. Phones go everywhere
people go, contain low-power networking hardware, maintain near
constant connectivity to the cloud through cellular infrastructure,
and have human oversight to maintain their functionality. Unfortu-
nately, we have never figured out how smartphone gateways would
work in practice. Just using smartphones does not fix the problems
with standardization, and users are hesitant to waste their precious
battery and data limits to transport others’ data. Furthermore, there
is an underlying concern of transporting malicious data or leaking
private information by acting as a gateway.

While these concerns have rightfully slowed the explicit adop-
tion of personal smartphones for generic data transport, we leverage
what was arguably an architectural bug in Google’s Physical Web
to explore the possibility of ubiquitous smartphone data transport.
The mechanism relied on Nearby Notifications, a service which
transported URL data contained in Bluetooth Low Energy (BLE) [2]
beacons through HTTP GET requests to populate summary infor-
mation about each device. Until December 2018, Nearby ran by
default on nearly all Android phones with Bluetooth enabled. The
amount of data transported was small, only 10 bytes at a time; and
slow, only transmitting data when a phone transitioned from idle to
active. But it resulted in a pervasive mechanism by which sensors
could send arbitrary data through smartphones carried by over
half of the population. This possibility allows us to explore 1) how

https://doi.org/10.1145/3301293.3302376
https://doi.org/10.1145/3301293.3302376
https://doi.org/10.1145/3301293.3302376


well this data channel worked in practice, 2) the security implica-
tions of its existence, and 3) the opportunity to use smartphones as
universal gateways moving forward.

In a one-week deployment of five devices around UC Berkeley’s
campus, we were able to transmit a total of 326 kB of data with
an average data rate ranging from 0.1–2.6 bps. The channel had
very low packet reception rates (PRR) ranging from 0 to 16%, and
equivalently poor energy efficiency, but we were still able to receive
data from sensors without any network deployment ormanagement
outside of a web server that was created to receive the HTTP GET
requests. This transport mechanism would not have been a good
choice for applications which need reliable, timely, or data intensive
transport, but it may have been perfectly suited to many other
applications such as low-rate environmental sensing, collecting
metrics about the usage of buildings or trails, and reporting the
status of sensors which are not currently networked.

In general, the only way to detect that a device was using your
phone for data transport was by actively scanning for BLE packets
that meet the Physical Web beacon specification. Furthermore, this
service was enabled by default on Android phones, and the only
way to stop your phone from being used was to turn off Bluetooth
or explicitly disable the Nearby notification service. If viewed as a
side channel for data exfiltration, this mechanism offers plenty of
bandwidth to offload a key or password, and it would be particularly
applicable for this use case given that a malformed BLE packet
could be transported without any notification to the user. While
architectural changes to the Physical Web could have significantly
slowed down this method of data transport, and the notification
service should not have performed HTTP GET requests without
displaying them to the phone’s user, it would be difficult to entirely
stop the leakage of information from a beaconing sensor to its
associated web server and still achieve the original goals of the
Nearby notification service.

Between the original writing of this paper and its publication,
Google announced the shutdown of Nearby Notifications due to
the increasingly spammy nature of messages being received by
users [1], and on December 6, 2018, the service was discontinued.
Therefore, the transport mechanism reported in this paper is no
longer functional. We do not believe, however, that this nullifies the
findings of the work. Google still deployed the largest ad-hoc net-
work for resource-constrained devices to date. Using this network
was incredibly easy because it required only knowledge of BLE
and HTTP, ubiquitous technologies in sensor networks and the
web respectively. Finally, we were able to successfully transport a
relatively large amount of data without over-utilizing the resources
of any one phone individually. Looking forward, this leads us to
imagine a world in which a data transport mechanism like this one
is encouraged and nurtured, and explore solutions to the economic,
standardization, and privacy concerns that might otherwise prevent
a wide-scale crowd-based data backhaul.

2 BACKGROUND & RELATEDWORK
First, we explore the background that lead to the Physical Web
as it exists today. Then we explore the works that inspire and are
benefited from opportunistic smartphone data transfer.

Physical Web
Beacon

j2y.us/rdata

Google j2y.us

(2) Fetch
metadata 

j2y.us/rdata
No HTTPS =
No display 

"data" 

(4) GET 
j2y.us/rdata 

(6) OK

DB

Cache

j2y.us/rdata

Hit, Miss 
Stale(15min) 

(3)

(5)

ACK(scan request)

(1)

Figure 1: Architecture of Google’s Physical Web and our
transport mechanism. (1) In the Physical Web smartphones scan
for Eddystone-compliant beacons using BLE and respond with a
scan request when a beacon is received. (2) The phone requests that
a Google server fetch metadata about the URL in that beacon. (3)
If the server has the metadata for that URL cached, it will respond
from its cache, (4) otherwise it will GET the URL from the remote
server. (5) If that server is under control of a third-party, they can
store the URL path as data and (6) respond with an OK. If the bea-
con and server do not use HTTPS none of this is displayed on a
user’s phone. To prevent caching of repeat data, some randomness
‘r’ can be appended into the URL path. This process was enabled
by default on phones running Android 4.4 and newer through the
Nearby notification service and occurs for a few seconds every time
the phone transitions from idle to active.

Eddystone, Physical Web, and Nearby. For the last four years
Apple and Google have been pushing to make the distributed set
of devices and sensors that comprise the Internet of Things more
scalable and interactive, and they have attempted to accomplish this
goal by binding physical devices to web-based resources. In 2014,
Google released the UriBeacon protocol, which enables BLE beacons
to point to URLs [7]. UriBeacon was replaced by the Eddystone
standard, which adds the ability to beacon unique IDs and telemetry
data in addition to URLs [8]. In an Eddystone packet, which is what
we use for this work, URLs can be up to 17 bytes, not including the
protocol specification (e.g., http://).

The Physical Web project is a browser for physical devices which
uses Eddystone beacons (along with other discovery protocols) to
find and display relevant web content [6]. The architecture for
the Physical Web is shown in Figure 1. In the Physical Web, the
smartphone listens for Eddystone URL beacons, the contents of
which are fetched from a Google server when the user requests. If
the page is in the server’s cache, it is sent to the user, otherwise it
is fetched from the remote location then served to the smartphone
and cached on the server for some period of time.

Nearby Notifications is a service which by default ran in the
background on all phones running Android 4.4 or newer [9] starting



in June 2016. If the user’s Bluetooth was turned on, and Nearby was
not manually disabled, it would perform a BLE scan every time the
phone transitioned from an idle to active state (such as when the
user wakes up their screen). Upon receiving an Eddystone beacon,
it would fetch the metadata for the advertised URL using an HTTP
GET request, displaying a notification which the user could click to
open the website. If the Eddystone beacon did not conform to the
Physical Web and Nearby security standards, the metadata would
still be fetched from the remote server, but the beacon would not
be displayed to the user. Other phones, such as iPhones, could still
receive and use Eddystone beacons to find nearby devices, but they
did not run Nearby Notifications.

In October, 2018 Google announced that it would shut down the
Nearby Notification service due to spammy notifications appearing
on users’ phones, and in December, 2018 the service was stopped [1].
This means that notifications are no longer being pushed to users’
smartphones about nearby devices and the fetching of metadata
about nearby devices is no longer operating as a background service.

Mobile Phones asGateways. The ubiquity of smartphonesmakes
them a prime target for providing opportunistic connectivity to
devices. Fürst et al. investigate the use of smartphones as access
points for home appliances [5], guaranteeing that a user is present
when communication occurs and alleviating some security con-
cerns. Classic Bluetooth has been used to provide communication
for devices in oilfields and offices [15]. The authors find that inten-
tional visitation of sensors is often required given the limited range
of Bluetooth. While some applications exist, a large area of research
remains in determining what services smartphone gateways should
provide to sensors, in creating policies for handling data flows, and
in providing incentives to users that are providing this access [18].
Furthermore, little research has performed any at-scale evaluation
of smartphones as gateways.

Applications ofUbiquitous IntermittentNetworking. For low
power sensors, getting internet connectivity is a difficult process.
Maybe they are deployed along hiking trails with no WiFi to be
found for miles [11, 17]. Maybe they are deployed throughout
cities [3, 16], where networks are everywhere, but none of them are
available for transporting your data. All of these locations are short
on low-power connectivity but high on foot traffic. Data transfer
through Physical Web beacons could breathe life into these applica-
tions by ubiquitously and cheaply communicating measurements.
These ideas also connect strongly to delay tolerant networking [4].
While beacons may be unattended for long stretches, the eventual
presence of a smartphone enables application data to be transmit-
ted. While the explored networking channel is not delay tolerant,
it may be possible to include delay tolerance as a feature of future
smartphone gateways.

3 HOW DATA CAN HITCHHIKE
To transfer data through the Physical Web, we encode it into the
Eddystone beacon URL. When an Android user wakes up their
phone, the phone receives these beacons and requests the metadata
for that URL from a Google server. If the metadata associated with
that URL is not already cached, the server calls HTTP GET on the
URL. The remote server can then extract data encoded in the path

11
Oct

2018

1712 13 14 15 16

Day

0
20
40
60
80

100

In
te

r-R
eq

ue
st

Ar
riv

al
 T

im
e 

(m
in

)

Same URL
Different URL

Figure 2: The daily average inter-request arrival time inmin-
utes for devices beaconing the same URL vs rotating URLs.
From this plot we see that nearly all beacons from rotating URLS
result in requests to our server and we can estimate the amount
of time until Google’s servers considered a cached URL stale and
fetched the page again from the remote server. We estimate this
time to average around 15 minutes, but as high as 30 minutes on
some days such as October 14th. We believe the beacon with very
high inter-request arrival times to be an outlier due to a combi-
nation of caching and very low reception rate, not indicative of
the actual cache refresh rate. To ensure repeated data gets to the
remote server, beacons transmitting at 1Hz with a 30 minute cache
refresh rate, must include an 11 bit nonce with their data.

of the requested URL and respond to the request with arbitrary data.
This process is shown in Figure 1. Notably, if the URL specified is not
using the HTTPS protocol, then the metadata for this beacon/URL
will not be displayed on the user’s phone as it would have been for
a valid Nearby Notification.

Therefore, to receive data through this mechanism all you need
to do is set up a web server with a short domain name and record
the paths of each request to this web server. Eddystone beacons can
contain up to 17 bytes of URL data, and the shortest domain name
we could reasonably purchase was j2y.us, leaving every beacon up
to 11 bytes of payload.

Cache Prevention. To ensure that every beacon has the oppor-
tunity to hit our server, we must prevent Google’s server from
caching the URL. We were unable to find any way to do this from
the server side, so instead we introduce a nonce to the URL.

To calculate the minimum length of this nonce, we first need to
establish the cache refresh rate of Google’s servers, as demonstrated
in Figure 2. In the experiment we find that the inter-request arrival
time for beacons sending the same URL is around 15minutes, and
confirm that it is significantly lower for URLs that are not repeated.
At a 1Hz transmission rate and a nonce overflow of 30minutes to
be conservative, 11 bits of nonce is required to prevent caching of
repeated data. Subtracting this from our available payload, each
beacon is capable of transmitting a little more than 9 bytes of data.

Acknowledgements and Adaptation. One of the largest down-
sides to this data channel is that it is unidirectional. Because data
transport is largely based on foot traffic, this means that beacons
spend significant periods of time transmitting with no smartphone
present to transport their data.

http://j2y.us


11
Oct
2018

1712 13 14 15 16

Day

0.0
0.2
0.4
0.6
0.8
1.0

Du
pl
ica

te
Pr
ob

ab
ilit

y

Hallway
Atrium

Kitchen
Classroom

Outside

Figure 3: The probability of the same packet being received
more than once by the server, every hour. High duplication
probabilities indicate that the network could carry more capacity,
and that beacons could take advantage of that capacity by trans-
mitting faster than our 1Hz transmission rate. Transmitting faster
should lower the probability that two phones receive the same bea-
con. For our packet reception rate and throughput calculations we
deduplicate the data, underestimating the maximum throughput.

To alleviate this, we propose using the “scan request” mecha-
nism of BLE. Scan requests are responses to beacons that scanners
transmit to request additional information from the device. While
searching for Physical Web devices, Android phones automatically
transmit a scan request for each beacon they discover. Beacons
can use this scan request to accomplish two goals: 1) have some
confidence that transmitted data will reach the remote server, and
2) adapt their transmission rate to better reflect the current phone
density in an attempt to save energy.

Unfortunately, because scan requests from multiple scanners
often conflict [12], waiting for a scan request to confirm data trans-
mission may significantly reduce a beacon’s data rate. To save
energy, nodes could back off their transmission rate the longer they
go without a scan request, then beacon very quickly on the first
scan request they receive. For example, in an indoor, commercial
setting, as long as the beacon does not slow its transmission so
much they that it fails to detect a scan request early in the morning,
this would allow it to save energy throughout the night and have
higher data throughput during the day when phones are present.

4 EXPERIMENTAL RESULTS
To evaluate the channel capacity and packet reception rate we
deploy 10 beacons around UC Berkeley’s campus for one week.
Deployments occurred in pairs, where one beacon in each pair
is transmitting the same URL, and the other is transmitting an
incrementing URL. Both of these beacons transmit at 1Hz, and we
log all requests received by the web server. Data analysis is only
performed on the five beacons with incrementing URLs because the
transmissions from the other beacons are often cached as explained
in Section 3. Nodes are deployed in variety of locations, including a
kitchenette, a heavily-used classroom, a hallway between offices, a
small atrium, and an outdoor garden near a sparsely traveled path.

Duplicate packets. Because each incrementing URL is only trans-
mitted once, we did not expect to receive a significant number of
duplicate packets. Upon analysis we find that during periods of high

foot traffic there is a high probability that packets are duplicated.
This was most likely caused by two phones receiving a packet at the
same time and triggering a request from a google server before the
URL from either request could be cached. This is effectively wasted
network capacity; if the beacons were transmitting faster, then
the probability that two phones receive the same beacon should
be lower. The probability of duplicate packets over time is shown
in Figure 3. We see that there are periods where nearly all packets
are duplicated at least once, and often packets are duplicated mul-
tiple times. We would certainly see higher total throughput if we
increased transmission rate, but because it is difficult to quantify
the degree of increase, we remove all duplicate packets in the re-
mainder of our analysis.

Packet reception rate. To measure the packet reception rate, we
deduplicate the received packets as mentioned above. In Figure 4,
we see packet reception rates that correlate with times that the
respective spaces are occupied. The burstiness of packet reception
rate indicates that back-off mechanisms based on scan requests
could be highly effective, however we did not evaluate the impact
of this policy experimentally.

Throughput. Because every packet carries the same amount of
data and beacons are transmitting at a uniform rate, network through-
put is a scalar multiple of the packet reception rate. We find average
network throughput to range from 0.1 bps for the outdoor node to
2.6 bps for the heavily trafficked classroom, with other nodes aver-
aging around 0.5 bps. This throughput does not reflect the reliable
network throughput. In many applications, data redundancy or the
scan request acknowledgment mechanism discussed in Section 3
would have to be introduced to ensure data reception, and this
would reduce final data throughput for a network of this type.

5 DISCUSSION
Never before have we been able to crowd-source data transport
through such a large percentage of the population. The idea that
we could stick a random sensor nearly anywhere and eventually
receive data from it is unprecedented. At the same time, the use of
this service did present a security vulnerability, and similar vulner-
abilities could easily be present in future services that interact with
nearby devices, especially if they are enabled on a large number of
smartphones by default. We therefore use this section both as an
opportunity to examine potential lessons learned about security
from this experiment, and to imagine a service such as this one
with the necessary oversight and capabilities such that the benefits
of universal data transport outweigh the security risks.

5.1 Safely Interacting with Nearby Devices
With the Nearby notification service now discontinued, we do
not feel it necessary to explore the specific methods by which
Google may fix the service, however we do believe analyzing the
primary reasons why this could be used for data exfiltration is useful
for future services interacting with proximal devices. At its core
the Nearby notification service could be used for data exfiltration
because 1) it was running en masse on smartphones without the
knowledge of many users and 2) it was interacting with devices
without clearly notifying the user of these interactions.



11
Oct
2018

1712 13 14 15 16

Time

0.00
0.01
0.02
0.03

PR
R

Hallway
Atrium

Kitchen
Classroom

Outside

(a) Full Week PRR

06:00 00:00
16-Oct

09:00 12:00 15:00 18:00 21:00
Time

0.00
0.04
0.08
0.12
0.16
0.20

PR
R

Hallway
Atrium

Kitchen
Classroom

Outside

(b) Single Day PRR

Figure 4: (a) The packet reception rate (PRR) plotted across a full week averaged over 3 hour intervals, and (b) the PRR plotted
for a single day averaged over 5minute intervals. From the PRR we can see that, as we expect, more highly trafficked areas successfully
transmit more packets. In (a), the highest PRR is in the classroom during a homework/office hours session that fills up the room, and we see
the sparsely traveled walkway consistently has the lowest PRR. While these are low packet reception rates, falling to zero during the middle
of the night, all nodes successfully transmitted some packets each day, even during the weekend.

Even with the brief Bluetooth listening window on each phone
and the caching implemented to limit the number of requests re-
ceived by each device’s web server, the sheer scale of all Android
devices performing a specific task is powerful enough to result
in significant data transport. This leads us to believe that Google
should have used much stronger caching policies when implement-
ing Nearby Notifications and more generally that the side effects of
background services operating at this scale need to be more care-
fully considered. Other research has discussed the need to make
peripheral interactions more apparent to a device’s user [13, 14],
and we believe this argument should extend to external devices,
especially for interactions not explicitly initiated by the user.

On a more positive note, this experiment exposes the benefits
of MAC address randomization. We at first hypothesized that this
mechanism could have been used for low-infrastructure people-
tracking by recording the MAC addresses of scan requests and then
sending them through that same persons’s smartphone. However,
the BLE MAC address randomization present in newer versions
of Android, rotates addresses quickly enough that this is not pos-
sible. It may have still been possible to scan for more permanent
MAC addresses on another networking interfaces (such as the MAC
addresses associated with a WiFi connection) and transport them
over the proposed mechanism, but this would greatly increase the
complexity of the system.

5.2 Envisioning a Crowd-Sourced Gateway
An important path forward is to address the core problems holding
back the vision of a global, crowd-sourced gateway: compensation
for used resources, security and privacy concerns, and a minimal
but sufficient set of services for universal data transport.

Compensation. To compensate for used resources we imagine a
global clearinghouse for transferred data. Data is shuttled from
a user’s phone, to their mobile service provider, then from their
mobile service provider to the clearinghouse. To retrieve the data,
entities must both verify their identity (most likely using existing
PKI) and pay the going rate for data transfer, which can then be
applied to directly to the bill of the user who transferred the data.

While rather complicated, a solution like this one could be almost
entirely facilitated a large company like Google, Samsung, or Veri-
zon. Also important, users need to be able to set limits as to how
much data they transfer, and how much battery this can consume.
Given the utility of even small amounts of sensor data, we do not
expect either of these be technically limiting so much as necessary
for providing users with the agency to enforce security and privacy
constraints. Additionally, the amount of data transferred by these
devices is small relative to the image and video heavy mobile brows-
ing users do on a daily basis. Even if all 326 kB collected during
this study had been transferred by a single phone, that user’s costs
would have been affected imperceptably.

Security and Privacy. If users are transferring others’ data, there
will always be a chance for data exfiltration. Solutions to prevent it
border on contradictory to the goal, however allowing users to au-
dit the list of owners or domains for the data they have transferred
is at least a step in the right direction. We also imagine encourag-
ing users to create geofenced zones in which data should not be
transported except from approved devices to prevent easy tracking
of users in and around their homes. Secure facilities and corporate
campuses would need to continue down the path of both active net-
work scanning to eliminate threats and policies to turn off network
interfaces or remove phones entirely. From a privacy perspective,
any global service, through Google or otherwise, should continue
operating as a proxy for requests so that owners of beacons can
not identify the IP address or MAC address of a courier phone.

Architecture of Smartphone Gateway. A universal smartphone
gateway could provide a full and capable networking solution for re-
source constrained sensors including reliable and bidirectional data
transport, delay tolerance, time updates, and even phone-collected
information such as location to help contextualize the data being
transported. We explore the possibilities for these extra services
in our prior work [18]. However, one of the largest impediments
to realizing these services in practice is standardization, and the
reason that this transport mechanism was so easy to implement
was its use of well-understood interfaces such as BLE advertising



and HTTP to transport the data. Even though this architecture
only provided unreliable, unidirectional communication, it still can
support a sufficient number of applications that a more intentional
version may gain traction given a proper compensation scheme
and transparency policy.

Moving forward, the use of a specific scan request packet or
a BLE connection could be formalized to acknowledge successful
custody transfer, and delay tolerance could be supported by simply
waiting to forward data until a cellular signal is available. These
two additions would add significant functionality and enable ap-
plications such as off-the-grid environmental monitoring without
adding significant complexity. To enable bidirectional communica-
tion and end-to-end acknowledgment of data transport, we imagine
an HTTP proxy service which utilizes BLE connections to send
HTTP requests and return HTTP responses similar to that proposed
in our prior work [18]. We again stress, however, that we believe
the expansion of gateway services to support all or even a large
portion of IoT applications is likely to make standardizing these
services more difficult. Further, applications which need reliable
or bidirectional communication are much more likely to find the
opportunistic nature of a smartphone gateway lacking.

5.3 Ethics
As a final aside, wewould like to briefly discuss our ethics in running
this experiment. To start, we collected no human data or personally
identifiable information; all requests to our server came directly
from a Google server. Because we do not have identifiable human
subjects, we are outside the scope of an IRB. We also note that the
potential harms of our experiment are incredibly low, potentially
non-existent. All Android phones were already running this feature,
and there are already many beacons deployed around campus, so
the traffic generated by our beacons is a fraction of the existing
beacon traffic and should not impact battery life or data use of
nearby phones. Finally, the ability of any entity to immediately
use this feature upon submission was limited because it requires
physically deploying new beacons or performing a firmware update
on existing beacons, neither of which seem plausible at scale. Of
course now the ability of someone to use this service maliciously
does not exist due to its discontinuation.

6 CONCLUSIONS
The Physcial Web is envisioned and intentioned to support nearby
intelligent spaces, bridging the gap between users and the devices
around them. In practice, the PhysicalWeb andNearbyNotifications
was also the single largest network backhaul for low-power devices
ever deployed, literally affording coverage everywhere people go.
Now that Nearby Notifications has been discontinued, where do
we go from here? We could view this as a now-patched security
vulnerability, for both persons and property owners, noting that
unwitting individuals may have been inadvertently supporting
the exfilitration of data. Or, we could could choose to recognize
this as a missed opportunity. By characterizing the impact of the
current system and adding just enough capability for a wider set
of applications, we could finally enable the dream of pervasive,
low-power data backhaul.

7 ACKNOWLEDGMENTS
This work was supported in part by the CONIX Research Center,
one of six centers in JUMP, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA. Additionally, this material is
based upon work supported by the National Science Foundation un-
der grant numbers CNS-1824277, DGE-1256260, and DGE-1106400,
and NSF/Intel CPS Security under grant CNS-1822332.

REFERENCES
[1] Android Developers Blog. 2018. Discontinuing support for Android Nearby

Notifications. https://android-developers.googleblog.com/2018/10/discontinuing-
support-for-android.html. (25 Oct 2018).

[2] Bluetooth Special Interest Group. 2018. Bluetooth SIG. https://www.bluetooth.
com/. (Mar 2018).

[3] Yun Cheng, Xiucheng Li, Zhijun Li, Shouxu Jiang, Yilong Li, Ji Jia, and Xiaofan
Jiang. 2014. AirCloud: a cloud-based air-quality monitoring system for everyone.
In Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems
(SenSys’14). ACM.

[4] Kevin Fall. 2003. A delay-tolerant network architecture for challenged internets.
In Proceedings of the 2003 conference on Applications, technologies, architectures,
and protocols for computer communications (SIGCOMM’03). ACM.

[5] Jonathan Fürst, Kaifei Chen, Mohammed Aljarrah, and Philippe Bonnet. 2016.
Leveraging physical locality to integrate smart appliances in non-residential
buildings with ultrasound and Bluetooth Low Energy. In 2016 IEEE First Inter-
national Conference on Internet-of-Things Design and Implementation (IoTDI’16).
IEEE.

[6] Google. 2017. The Physical Web. https://google.github.io/physical-web/. (Jun
2017).

[7] Google Inc. 2015. UriBeacon Open Source Project. https://github.com/google/
uribeacon. (July 2015).

[8] Google Inc. 2017. Eddystone. https://github.com/google/eddystone. (Apr 2017).
[9] Google Inc. 2018. Nearby. https://developers.google.com/nearby/. (Oct 2018).
[10] GSM Association. 2012. Universal Access – How Mobile can Bring Communica-

tions to All. https://www.gsma.com/publicpolicy/wp-content/uploads/2012/03/
universalaccessfullreport.pdf. (2012).

[11] Jyh-How Huang, Saqib Amjad, and Shivakant Mishra. 2005. Cenwits: a sensor-
based loosely coupled search and rescue system using witnesses. In Proceedings of
the 3rd international conference on Embedded networked sensor systems (SenSys’05).
ACM.

[12] Robin Kravets, Albert F Harris, III, and Roy Want. 2016. Beacon trains: blazing
a trail through dense BLE environments. In Proceedings of the Eleventh ACM
Workshop on Challenged Networks (CHANTS’16). ACM.

[13] Zongheng Ma, Saeed Mirzamohammadi, and Ardalan Amiri Sani. 2017. Un-
derstanding sensor notifications on mobile devices. In Proceedings of the 18th
International Workshop on Mobile Computing Systems and Applications (HotMobile
’17). ACM.

[14] Saeed Mirzamohammadi and Ardalan Amiri Sani. 2018. Viola: trustworthy sensor
notifications for enhanced privacy onmobile systems. IEEE Transactions onMobile
Computing (2018).

[15] Unkyu Park and John Heidemann. 2011. Data muling with mobile phones for
sensornets. In Proceedings of the 9th ACM Conference on Embedded Networked
Sensor Systems (SenSys’11). ACM.

[16] Rijurekha Sen, Abhinav Maurya, Bhaskaran Raman, Rupesh Mehta, Ramakrish-
nan Kalyanaraman, Nagamanoj Vankadhara, Swaroop Roy, and Prashima Sharma.
2012. Kyun queue: a sensor network system to monitor road traffic queues. In
Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems
(SenSys’12). ACM.

[17] Gilman Tolle, Joseph Polastre, Robert Szewczyk, David Culler, Neil Turner, Kevin
Tu, Stephen Burgess, Todd Dawson, Phil Buonadonna, David Gay, and others.
2005. A macroscope in the redwoods. In Proceedings of the 3rd international
conference on Embedded networked sensor systems (SenSys’05). ACM.

[18] Thomas Zachariah, Noah Klugman, Bradford Campbell, Joshua Adkins, Neal
Jackson, and Prabal Dutta. 2015. The Internet of Things has a gateway problem.
In Proceedings of the 16th International Workshop on Mobile Computing Systems
and Applications (HotMobile’15). ACM.

https://android-developers.googleblog.com/2018/10/discontinuing-support-for-android.html
https://android-developers.googleblog.com/2018/10/discontinuing-support-for-android.html
https://www.bluetooth.com/
https://www.bluetooth.com/
https://google.github.io/physical-web/
https://github.com/google/uribeacon
https://github.com/google/uribeacon
https://github.com/google/eddystone
https://developers.google.com/nearby/
https://www.gsma.com/publicpolicy/wp-content/uploads/2012/03/universalaccessfullreport.pdf
https://www.gsma.com/publicpolicy/wp-content/uploads/2012/03/universalaccessfullreport.pdf

	Abstract
	1 Introduction
	2 Background & Related Work
	3 How Data Can Hitchhike
	4 Experimental Results
	5 Discussion
	5.1 Safely Interacting with Nearby Devices
	5.2 Envisioning a Crowd-Sourced Gateway
	5.3 Ethics

	6 Conclusions
	7 Acknowledgments
	References

