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Abstract: We exploretheabstractionof failuretransparency
in which the operatingsystemprovides the illusion of fail-
ure-freeoperation.To provide failure transparency, anoper-
ating system must recover applications after hardware,
operatingsystem,and applicationfailures,and must do so
without help from the programmeror unduly slowing fail-
ure-freeperformance.We describetwo invariantsthat must
be upheldto provide failure transparency: one that ensures
sufficientapplicationstateis savedto guaranteetheusercan-
notdiscernfailures,andanotherthatensuressufficientappli-
cationstateis lost to allow recovery from failuresaffecting
applicationstate.We find that several real applicationsget
failure transparency in the presenceof simple stop failures
with overheadof 0-12%. Lessencouragingly, we find that
applicationsviolateoneinvariantin thecourseof upholding
theotherfor morethan90%of applicationfaultsand3-15%
of operatingsystemfaults, renderingtransparentrecovery
impossible for these cases.

1. Introduction
Oneof themostimportantjobsof theoperatingsystem

is to concealthecomplexitiesandinadequaciesof theunder-
lying machine.Towardsthis end,modernoperatingsystems
provide a varietyof abstractions.To concealmachines’lim-
ited memory, for example, operatingsystemsprovide the
abstractionof practically boundlessvirtual memory. Simi-
larly, operatingsystemsgive the abstractionof multithread-
ing for those applicationsthat might benefit from more
processors than are present in hardware.

Failures by computer system components,be they
hardware,software,or theapplication,area shortcomingof
modernsystemsthat hasnot beenabstractedaway. Instead,
computerprogrammersandusersroutinelyhave to dealwith
the effects of failures,even on machinesrunning state-of-
the-art operating systems.

With this paperwe explore the abstractionof failure
transparency in which the operatingsystemgeneratesthe
illusion of failure-freeoperation.To provide this illusion, the
operatingsystemmust handleall hardware, software, and
applicationfailures to keep them from affecting what the
user sees.Furthermore,the operatingsystemmust do so
withouthelpfrom theprogrammerandwithoutundulyslow-
ing down failure-free operation.

Fault-toleranceresearchhas establishedmany of the
componentsof failure transparency, such as programmer-
transparentrecovery [4, 11,25,28], andrecovery for general
applications[4, 14]. Someresearchershave even discussed
handling application failures [13, 17, 31].

However, significant questions surrounding failure
transparency remain.The focus of this paperis on delving
into several of theseunansweredquestions.First, we will
explore the question“how doesoneguaranteefailure trans-
parency in general?”The answerto this questioncomesin
theform of two invariants.Thefirst invariantis a reformula-
tion of existing recovery theory, governingwhenanapplica-
tion must save its work to ensurethat the user doesnot
discern failures. In contrast,the secondinvariant governs
how muchwork anapplicationmustloseto avoid forcing the
same failure during recovery.

The Save-work invariant can require applicationsto
commit their statefrequentlyto stablestorage.Thequestion
thereforearises“how expensive is it for generalapplications
to upholdtheSave-work invariant?”In answeringthis ques-
tion we find, to our surprise,that even complex, general
applications are able to efficiently uphold Save-work.

Given that the Save-work invariant forcesapplications
to preservework andtheLose-work invariantforcesapplica-
tions to throw work away, we concludeby investigating the
question,“how often do theseinvariantsconflict, making
failure transparency impossible?”Theunfortunateansweris
that the invariants conflict all too often.

2. Guaranteeing Failure Transparency
We first delve into thequestion:how does one guaran-

tee failure transparency in general? Our explorationbegins
with a synthesisof existing recovery theorythat culminates
in the Save-work invariant. In Section2.4, we then extend
recovery theoryto point out a parameterizationof thespace
of recovery protocols,as well as the relationshipbetween
protocolsatdifferentpointsin thespace.Finally, wedevelop
a new theoryandsecondinvariantfor ensuringthepossibil-
ity of recovery from failures that affect application state.

2.1. Primitives for general recovery
In attemptingto provide failure transparency, the goal

is to recover applicationsusingonly generaltechniquesthat
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require no help from the application. There are several
recovery primitives available to us in this domain:commit
events, rollback of a process,and reexecution from a prior
state.

A processcan executecommit eventsto aid recovery
after a failure.By executinga commit event,a processpre-
servesits stateat the time of the commit so that it canlater
restore that state and continue execution. Although how
commit eventsareimplementedis not importantto our dis-
cussion,executinga commiteventmight involve writing out
a full-processcheckpointto stablestorage,endinga transac-
tion, or sending a state-update message to a backup process.

Whena failure occurs,the applicationundergoesroll-
backof its failedprocesses;eachfailedprocessis returnedto
its last committedstate.Fromthatstate,the recoveringpro-
cessbegins reexecution,possiblyrecomputingwork lost in
the failure.

Providing genericrecovery requiresthat applications
tolerate forced rollback and reexecution. As a result, all
application operations must be either undoable or redoable.

Mostapplicationoperationsthatsimplymodify process
stateareeasilyundone.However, someevents,suchasmes-
sagesends,arehardto undo.Undoingasendcaninvolve the
addedchallengeof rolling back the recipient’s state.Other
eventscanbe impossibleto undo.For example,we cannot
undo the effects on the user resulting from visible output.
However, systemsproviding failuretransparency ensurethat
these user-visible events will never be undone.

Similarly, sincesimplestatechangesby theapplication
are idempotent, most application events can be safely
redone.However, eventslikemessagesendsandreceivesare
moredifficult to redo.For messagesendeventsto be redo-
able, the applicationmust either tolerateor filter duplicate
messages.For receive eventsto be redoable,messagesmust
be saved at either the senderor receiver so they canbe re-
deliveredafter a failure.Luckily, thesereexecutionrequire-
mentsarevery similar to thedemandsmadeof systemsthat
transmitmessageson unreliablechannels(e.g.UDP). Such
systemsmustalreadywork correctlyevenwith lost or dupli-
catedmessages.For many recovery systems,an application
or protocollayer’s naturalfiltering andretransmissionmech-
anismswill be enoughto supportthe needsof reexecution
recovery. For others,messagesmay have to be held in a
recovery buffer of somekind so they can be re-delivered
should a receive event be redone.

2.2. Computation and failure model
We will informally presenta recovery theorythat will

let us relatethe challengeof guaranteeingfailure transpar-
ency to the preciseeventsexecutedby an application.For a
more formal version of the theory, please see [22].

We begin by constructinga modelof computing.One
or more processesworking togetheron a task is called a
computation. We model each process as a finite state

machine.That is, eachprocesshasstateand computesby
transitioningfrom stateto stateaccordingto the inputs it
receives. Eachstatetransitionexecutedby a processis an
event. An event is the i’ th event executedby processp.
Eventscancorrespondin realprogramsto simplechangesof
applicationstate,sendingandreceiving messages,andsoon.
We call eventsthat have an effect on the uservisible events
(theseeventshave traditionally beencalled“output events”
[11]). Under our model, computationproceedsasynchro-
nously, that is, without known boundson messagedelivery
time or the relative speeds of processes.

As needed,we will order eventsin our asynchronous
computationswith Lamport’s happens-before relation [19].
We mayalsoneedto discussthecausalrelationshipbetween
events.For example,we may needto ask, “did event e in
someway cause event ?” We will usehappens-before as
an approximationof causality. We will however distinguish
betweenhappens-before’s useasan orderingconstraintand
its useasanapproximationof causalityby usingtheexpres-
sion causally precedes in this latter role. That is, we say
event e causally precedes event if andonly if e happens-
before  and we intend to convey thate causes event .

Wewill considerfailuresof two forms.A stop failure is
onein whichexecutionof oneor moreprocessesin thecom-
putationsimply ceases.Stop failuresdo occur in real sys-
tems—theloss of power, the frying of a processor, or the
abrupt halting of the operatingsystemall appearto the
recoverysystemasstopfailures.Sincestopfailuresinstanta-
neouslystoptheexecutionof theapplicationanddo not cor-
rupt application state, recovering from them is relatively
easy.

Harderto handlearepropagation failures. We definea
propagation failure to be onein which a bug somewherein
thesystemcausestheapplicationto enterastateit wouldnot
enter in a failure-freeexecution.A propagation failure can
begin with a bug in hardware, the operatingsystem,or the
application.Bugs in the applicationarealwayspropagation
failures,but bugsin hardwareandthe operatingsystemare
propagation failures only once they affect application state.

Recoveringfrom propagationfailuresis hardbecausea
processcan executefor sometime after the failure is trig-
gered.Duringthattimetheprocesscanpropagatebuggydata
into larger portionsof its state,to other processes,or onto
stable storage.

Wecanimaginebugsthatdonotcausecrashes,but that
simply causeincorrect visible output by the application.
However, our focus with this work is on recovering from
failures. Therefore,we will assumethat applicationswill
detect faults and fail before generating incorrect output.

2.3. Failure transparency for stop failures
We startby examininghow to ensurefailure transpar-

ency in thepresenceof stopfailures.We mustfirst fix a pre-
cise notion of “correct” recovery from failures.We could
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establishalmostany standard:recovering the exact pre-fail-
ure state,losing less than 10 secondsof work, and so on.
However, giventhatourendgoalis to maskfailuresfrom the
user, we will definecorrectrecovery in termsof theapplica-
tion output seen by the user.

Given a computationin which processeshave failed,
recovered, and continued execution:

Definition: Consistent Recovery
Recovery is consistentif andonly if thereexistsa com-
plete, failure-free execution of the computationthat
would result in a sequenceof visible eventsequivalent
to the sequenceof visible eventsactuallyoutputin the
failed and recovered run.

Thusfor anapplication’s recovery to beconsistent,the
sumtotal of theapplication’s visible outputbeforeandafter
a failuremustbeequivalentto theoutputfrom somefailure-
free execution of the application.

It is possiblethat many different modesof consistent
recovery could be allowed dependingon how one defines
“equivalent”. For our purposes,we will call a sequenceof
visible eventsV outputby a recoveredcomputationequiva-
lent to sequence outputby a failure-freerun if the only
eventsin V that differ from arerepeatsof earlierevents
from V.

We useequivalencein which duplicatevisible events
areallowedbecauseguaranteeingnoduplicationis veryhard
(exactly once delivery problem). Furthermore,allowing
duplicatesprovidessomeflexibility in how oneattainscon-
sistentrecovery. More importantly, userscanprobablyover-
look duplicatedvisible events.See[22] for a moredetailed
discussion of equivalence.

Our definition of consistentrecovery placestwo con-
straintson recoveringapplications.First, computationsmust
alwaysexecutevisible eventsthatextenda legal, failure-free
sequenceof visible events,even in the presenceof failures.
Wewill call this thevisibleconstraint. Second,computations
must always be able to executeto completion.This latter
constraintfollows from the fact that consistentrecovery is
definedin termsof completesequencesof visibleevents.If a
failure preventsan applicationfrom runningto completion,
its sequencecan never be complete.For reasonsthat will
becomeclear later, we will call this secondconstrainton
recovery theno-orphan constraint.

Although consistentrecovery and failure transparency
are closely related,they are not the samething. Providing
failure transparency amounts to guaranteeingconsistent
recovery without any help from theapplication,andwithout
slowing the application’s execution appreciably.

Our next taskis to examinehow to guaranteeapplica-
tions get consistentrecovery. Oneparticularclassof events
posesthe greatestchallenge:non-deterministicevents. In a
state-machine,a non-deterministicevent is a transitionfrom
a statethathasmultiple possiblenext states.For example,in

Figure 1, events and are both non-deterministic.In
realsystems,non-deterministiceventscorrespondto actions
thatcanhave differentresultsbeforeandaftera failure, like
checkingthetime-of-dayclock, takinga signal,readinguser
input, or receiving a message.

Non-deterministiceventsareintimately relatedto con-
sistentrecovery. To seehow, again considerthe application
shown in Figure 1. Imagine that the applicationexecutes
non-deterministicevent , thenthe visible event “heads”,
thenfails.Thenduringrecovery imaginethattheapplication
rolls backandthis time executes followedby the visible
event “tails” . Althoughthis applicationcancorrectlyoutput
eitherheadsor tails, in no correctexecutiondoesit output
both headsand tails. Therefore,recovery in this exampleis
not consistentandour sampleapplication’s non-determinis-
tic events are the culprits.

As discussedin Section2.1, applicationscan execute
commit events to aid later rollback. We would like to use
commiteventsto guaranteeconsistentrecovery, avoiding the
inconsistency non-deterministiceventscan cause.The fol-
lowing theoremprovidesthenecessaryandsufficient condi-
tion for doing exactly that under stop failures.

Save-work Theorem
A computationis guaranteedconsistentrecovery from
stopfailuresif andonly if for eachexecutednon-deter-
ministic event that causallyprecedesa visible or
commitevente, processp executesa commitevent
such that happens-before (or atomic with) e, and

.

This theoremdictateswhenprocessesmustcommit in
orderto ensureconsistentrecovery. At theheartof this theo-
rem is the Save-work invariant, which informally states
“eachprocesshasto commitall its non-deterministicevents
thatcausallyprecedevisible or commitevents”.We canfur-
ther divide this invariant into separaterules, one that
enforcesthe visible constraintof consistentrecovery, and
onethat enforcesthe no-orphanconstraint.If we follow the
rule “commit every non-deterministicevent that causally
precedesa visible event”, we are assuredthat the applica-
tion’s visible outputwill alwaysextenda legal sequenceof
visible events.We’ll call this the Save-work-visible invari-
ant. If we follow the rule “commit every non-deterministic
eventthatcausallyprecedesacommitevent”, weareassured
thata finite numberof stopfailurescannotpreventtheappli-
cation from executing to completion. We’ll call this the
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Figure 1: Coin-flip application. Depending on whether non-
deterministic event or gets executed, the application
executes one of two possible visible events.
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Save-work-orphaninvariant.To betterunderstandthis latter
rule, consider the computation depicted in Figure 2.

A processis called an orphan if it has committeda
dependenceon another process’s non-deterministicevent
that hasbeenlost andmay not be reexecuted.For example,
ProcessA in Figure2 is anorphanbecauseit hascommitted
its dependence on Process B’s lost non-deterministic event.

An orphancanpreventanapplicationfrom executingto
completionwhen it is upholding Save-work-visible. Con-
sideran orphanthat hascommitteda dependenceon a lost
non-deterministicevent . If the orphanattemptsto exe-
cute a visible event e, Save-work-visible requiresthat pro-
cessp commit . However, sinceprocessp hasalready
failed and aborted , it cannotcommit it. Furthermore,
sincetheorphancannotabortits dependenceon , it can
neverexecutee andthecomputationwill notbeableto com-
plete.

The remedyfor this scenariois to upholdSave-work-
orphan,which ensuresthat any non-deterministicevent that
causally precedes a commit is committed.

We must make two assumptionsfor the Save-work
Theoremto be necessary. We ensurethe necessityof Save-
work-visible by assumingthat all non-deterministicevents
can causeinconsistency. We ensurethe necessityof Save-
work-orphanby assumingthatall processesin thecomputa-
tion affect thecomputation’svisibleoutput.For thedetailsof
theseassumptionsaswell astheproofof theSave-work The-
orem, please see [22].

2.4. Upholding Save-work
There are many ways an applicationcan uphold the

Save-work invariant to ensureconsistentrecovery for stop
failures.For example,an applicationcanexecutea commit
event for every event executedby the application.Although
suchaprotocolwill causeavery largenumberof commits,it
hastheadvantageof beingtrivial to implement:theprotocol
doesnot needto figureout which eventsarenon-determinis-
tic, or which eventsarevisible.Evenwithout knowing event
types, it correctly upholds the Save-work invariant.

Considera protocol in which eachprocessexecutesa
commit event immediately after each non-deterministic
event.In committingall non-deterministicevents,this proto-

col will certainlycommitthosenon-deterministiceventsthat
causally precedevisible or commit events. Therefore it
upholdsSave-work and will guaranteeconsistentrecovery.
We call this protocol Commit After Non-Deterministic,or
CAND.

We canalsoupholdSave-work without knowing about
thenon-determinismin thecomputation.UndertheCommit
Prior to Visibleor Sendprotocol(CPVS),eachprocesscom-
mits just beforedoing a visible event or a sendto another
process.Whena processcommitsbeforeeachof its visible
events,it is assuredthatall its non-determinismthatcausally
precedesthevisible event is committed.If eachprocessalso
commits before every send event, then it cannot pass a
dependenceon an uncommittednon-deterministicevent to
another process. Thus, CPVS also upholds Save-work.

The Commit BetweenNon-Deterministicand Visible
or Send(CBNDVS) protocoltakesadvantageof knowledge
of bothnon-determinismandvisibleandsendeventsin order
to uphold Save-work. Under this protocol, each process
commits immediatelybeforea visible or sendevent if the
processhasexecuteda non-deterministiceventsinceits last
commit.

Sincecommiteventscaninvolve writing lots of datato
stablestorage,they canbe slow. Therefore,minimizing the
numberof commitsexecutedcanbeimportantto failure-free
performance.Thereexist severalgeneraltechniquesfor min-
imizing commits.

Logging is a generaltechniquefor reducinganapplica-
tion’s non-determinism[12]. If an application writes the
result of a non-deterministicevent to a persistentlog, and
thenusesthat log recordduringrecovery to ensuretheevent
executeswith the sameresult, the event is effectively ren-
dereddeterministic.Logging someof an application’s non-
determinism can significantly reduce commit frequency.
Loggingall anapplication’s non-determinismlets theappli-
cation uphold Save-work without committing at all.

Trackingwhetheroneprocess’s non-determinismcaus-
ally precedeseventson anotherprocesscanbe complex. In
fact, we can think of the CPVS protocol as pessimistically
committing before sendevents rather than track causality
betweenprocesses.However, applicationscan avoid com-
mitting beforesendswithout trackingcausalityby employ-
ing adistributedcommit,suchastwo-phase commit (2PC)—
all processeswould commit whenever any processdoesa
visible event. Using two-phasecommit can reducecommit
frequency if visible events are less frequent than sends.
Applicationscanfurtherreducecommitsby trackingcausal-
ity betweenprocesses,involving in the coordinatedcommit
only those processes with relevant non-deterministic events.

Not only caneachof theseprotocolsbeviewedasadif-
ferent techniquefor upholding Save-work, but so can all
existing protocols from the recovery literature.

For example,puremessageloggingprotocolsmake all
messagereceive eventsdeterministic,allowing applications

ND

failure

Process A

Process B

Figure 2: A problematic distributed computation.We see two
processes’timelines.Thearrow betweentheprocessesrepresentsa
messagefrom B to A. Black boxesrepresentscommits.The event
marked“ND” is a non-deterministicevent.ProcessA is anorphan
after ProcessB’s failure asA hascommitteda dependenceon B’s
lost non-deterministic event.
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whoseonly non-deterministiceventsarereceives to uphold
Save-work without committing.The differentmessagelog-
ging protocolsdiffer in how the logging is carriedout. For
example,Sender-based Logging (SBL) protocolskeep the
log recordfor thereceiveeventin thevolatilememoryof the
sender[15], while Family-based Logging (FBL) keepslog
entries in the memory of downstream processes [2].

In the Manetho system,each processmaintains log
recordsfor all the non-deterministiceventsit dependson in
an antecedence graph. When a processwantsto executea
visible event, it upholdsSave-work by writing the anteced-
encegraphto stablestorage[11]. In the Optimistic Logging
protocol,processeswrite log recordsto stablestorageasyn-
chronously[28]. Whena processwantsto do a visible event,
it upholdsSave-work by first waiting for all relevant log
records to make it to disk.

The Targon/32 systemattemptsto handlemore non-
determinismthan these other logging protocols [4]. All
sourcesof non-determinismexceptsignalsareconvertedinto
messagesthatareloggedin thememoryof a backupprocess
on anotherprocessor. Whenever a signal is delivered (an
event that remainsnon-deterministic),Targon/32 forces a
commit to uphold Save-work. The Hypervisor systemlogs
all sourcesof non-determinismusing a virtual machine
under the operating system [5].

Under a CoordinatedCheckpointingprotocol, a pro-
cessexecuting a visible event essentiallyassumesthat all
processesin thecomputationwith which it hasrecentlycom-
municatedhave executednon-deterministiceventsthatcaus-
ally precedethevisible event [18]. To upholdtheSave-work
invariant,theprocessexecutingthevisible event initiatesan
agreementprotocolto forceall theseotherprocessesto com-
mit.

Eachof theserecovery protocolsrepresentsa different
techniquefor upholdingSave-work. Eachto varyingdegrees
trades off programmereffort and system complexity for
reduced commit frequency (and hopefully overhead).

Someprotocolsfocustheir effort to reducecommitfre-
quency on the challengeof identifying and reducingnon-
determinism.Othersendeavor to useknowledgeof anappli-
cation’s visible events.Still othersdo someof each.Each
protocolcanbeseenasrepresentinga point in a two-dimen-
sional spaceof protocols.One axis in the spacerepresents
effort madeto identify andpossiblyconvert applicationnon-
determinism.The otheraxis representseffort madeto iden-
tify visibleeventsandto commitasfew non-visibleeventsas
possible.

Such a protocol spaceis useful becauseit helps us
understandthe relationshipsbetweenhistorically disparate
protocolsandto identify new ones.Figure3 shows how the
protocolswe have describedin this sectionmight appearin
such a protocol space.

A protocol falling at the origin of the spacewould
uphold Save-work by committing every event executedby

eachprocess,exerting no effort to determinewhich events
arenon-deterministicor visible.As protocolsfall furtherout
the horizontalaxis, they make sufficient effort to recognize
that some events are deterministic and therefore do not
requirecommits.At thepointoccupiedby CAND, theproto-
col makessufficient effort to distinguishall of the applica-
tion’s deterministicandnon-deterministicevents,executing
a commit only after non-deterministicones.Beyond that
point, theprotocolsbegin to employ logging,exertingeffort
to convert moreandmoreof theapplication’s non-determin-
istic eventsinto deterministicones.A protocolin thatportion
of thespaceforcesa commitonly whentheapplicationexe-
cutessomeunloggednon-determinism.At the point occu-
pied by Hypervisor, the protocol makes sufficient effort to
log all non-determinism, never forcing a commit.

For theverticalaxis,wecanthink of theprotocolat the
origin as committing all eventsrather than exert the effort
neededto determinewhich eventsarevisible.Protocolsfall-
ing furtherup theaxisexert moreeffort to avoid committing
eventsthat arenot visible. At the point occupiedby CPVS,
protocols commit only the true visible events and send
events—committingbeforesendstakeslesseffort thantrack-
ing whetherthatsendleadsto avisibleeventonanotherpro-
cess.Protocolsfalling yet further up in the space(suchas
CoordinatedCheckpointing)are able to ask remote pro-
cessesto commit if needed.Underthoseprotocols,applica-
tions are forced to commit before visible events only.

Someprotocolsfall in the middle of the space,apply-
ing techniquesbothfor identifyingandconvertingnon-deter-
minism, as well as for tracking the causal relationship

Figure 3: Protocol space.All consistentrecovery protocols fall
somewhere in this space.Someprotocolsfocus on dealing with
non-determinism,while others concern themselves with visible
events. Some do a little of each.
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betweennon-deterministiceventsandthevisible eventsthey
cause.

Although all protocolsin the spaceare equivalent in
terms of upholding Save-work, they do differ in terms of
other designvariables.As shown in Figure 4, we can map
trendsin severalimportantdesignvariablesontotheprotocol
space.

The farthera protocol falls from the origin, the lower
its commitfrequency is likely to be,andtherefore,thebetter
its performance.However, this improvedperformancecomes
at theexpenseof simplicity andreliability. Protocolscloseto
the origin are very simple to implement,and thereforeare
more likely to be implemented correctly.

For protocolsthat fall on theverticalaxis,therecovery
systemneedsonly rollback failed processesand let them
continuenormally. Protocolsfurtherto theright in theproto-
col spacehave longerrecovery timesbecauseafter rollback,
the recovery systemmust for sometime constrainreexecu-
tion to follow the path taken before the failure.

Thefurtheraprotocolfalls from thehorizontalaxis,the
morenon-determinismit safelyleavesin theapplication.As
we will discussin Section2.6, themorenon-determinismin
anapplication,thebetterthechanceit will survive propaga-
tion failures.

2.5. Failure transparency for stop and propagation
failures
As mentionedin Section 2.2, failures can take two

forms:stopfailuresandpropagation failures.Upholdingthe
Save-work invariantis enoughto guaranteeconsistentrecov-
ery only in the presenceof stop failures.To illustrate this
observation, considera protocol that commits all eventsa
processexecutes.This protocolclearly upholdsSave-work.
However, if the processexperiencesa propagation failure

(which by definition involvesexecutingbuggy events),this
protocolis guaranteedto commitbuggystate.As aresult,the
processwill fail again during recovery, and the application
will never be able to complete after the failure.

Thus, in order to guaranteeconsistentrecovery in the
presenceof propagation failures, an application must not
only commit to uphold Save-work, but when it commits it
must avoid preservingthe conditionsof its failure. In this
sectionwe examinewhat exactly an applicationmustdo to
guaranteeconsistentrecovery in thepresenceof propagation
failures.

As wasthe casein our discussionof consistentrecov-
ery, non-deterministicevents are central to the issue of
recoveringfrom propagationfailures.Imagineanapplication
that, as a result of non-deterministicevent e, overruns a
buffer it is clearingandzeroesout a pointerdown the stack
(seeFigure5). Later, it attemptsto dereferencethe pointer
andcrashes.Obviously if theapplicationcommitsafterzero-
ing thepointer, recovery is doomed.However, if theapplica-
tion commitsany time before zeroingthepointerandaftere,
recovery will still bedoomedif thereareno othernon-deter-
ministic eventsafter e. In this case,the pointer is not cor-
ruptedin the last committedstate,but it is guaranteedto be
re-corrupted during recovery.

Note that had the applicationcommittedjust beforee
andnotafter, all couldbewell. During recovery, theapplica-
tion would redo the non-deterministicevent which could
executewith a different result and avoid this failure alto-
gether.

Thusnon-determinismhelpsour prospectsfor recover-
ing from propagation failuresby limiting the scopeof what
is preserved by a commit.

But, not all non-determinismis createdequal in this
regard.In building up theSave-work invariant,we conserva-
tively treatedasnon-deterministicany event thatcouldcon-
ceivably have a different result during recovery. However,
somenon-deterministiceventsare likely to have the same
resultbeforeandaftera failure,andtherecoverysystemcan-
not dependon theseeventsto changeafterrecovery. We will
called these eventsfixed non-deterministic events.

A commonexampleof a fixednon-deterministicevent
is userinput. We cannotdependon the userto aid recovery
by enteringdifferentinputvaluesaftera failure.Otherexam-
plesof fixednon-deterministiceventsincludenon-determin-
istic eventswhoseresultsare basedon the fullnessof the
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disk (suchasthewrite systemcall), or thatdependon the
numberof slotsleft in theoperatingsystem’s openfile table
(such as theopen system call).

Non-deterministiceventsthatarenot fixedwe will call
transient non-deterministic events.Schedulerdecisions,sig-
nals,messageordering,thetiming of userinput, andsystem
calls likegettimeofday areall transientnon-determinis-
tic events.

We needto incorporateinto our computationalmodela
way to representthe eventual crashof a processduring a
propagation failure. We will modela process’s crashasthe
executionof a crash event. Whena processexecutesa crash
event,it transitionsinto astatefrom which it cannotcontinue
execution.In theexamplein Figure5, thecrashevent is the
dereferencing of the null pointer.

As mentionedabove, an untimely commit during a
propagation failure can ensurethat recovery fails. Let us
examine in more detail when a process should not commit.

Clearlya processshouldnot commitwhile executinga
stringof deterministiceventsthatendin acrashevent.Doing
so is guaranteedto eithercommit the buggy statethat leads
to the crash,or to ensurethat the faulty stateis regenerated
during recovery. This case is shown in Figure 6A.

However, a processcan safely commit beforea tran-
sient non-deterministicevent as long as at leastone of the
possibleresultsof thateventdoesnot leadto theexecutionof
a crash event (see Figure 6B).

How aboutcommittingbeforea fixed non-determinis-
tic eventwhereoneof theevent’s possibleresultsleadsto a
crash?This caseis shown in Figure 6C. If the application
commitsbeforethe fixed non-deterministicevent, recovery
is possibleonly if theeventexecuteswith a resultthat leads
down the pathnot including the crashevent. If the applica-
tion is unlucky and the fixed non-deterministicevent sends
theapplicationdown thepathtowardsthecrash,thecommit
will ensurerecovery always fails. Sincewe cannotrely on

fixed non-deterministicevents having resultsconducive to
recovery, we cannotcommitbeforeany fixednon-determin-
istic events that might lead to a crash.

We can infer that somepathsthrougha portion of a
statemachineareproblematicfor handlingpropagationfail-
ures—committinganywherealong the pathscould prevent
recovery. We next presentan algorithm for finding these
paths.For this discussion,we assumeperfectknowledgeof
eachprocess’s crashevents.We recognizethat this is not
practical—if we knew all the crashevents,we could likely
fix all thebugs!However, makingthis assumptionwill help
us to analyzewhenrecovery is possiblewith thebestpossi-
ble knowledge.

Given a single process’s statemachineand its crash
events:

Single-Process Dangerous
Paths Algorithm

• Color all crash events in the state machine.

• Color an event e if all eventsout of e’s endstateare
colored.

• Color an event e if at leastoneevent out of e’s end
stateis coloredandis afixednon-deterministicevent.

We call all the pathsin the statemachinecoloredby
this algorithmdangerous paths. A portionof a statemachine
with its dangerous paths highlighted is shown in Figure 7.

We now presentwithout proof a theoremwhich gov-
ernswhenrecovery is possiblein the presenceof propaga-
tion failures.

Lose-work Theorem

Application-genericrecovery from propagationfailures
is guaranteedto be possibleif andonly if the applica-
tion executes no commit event on a dangerous path.

A:

B:

C:

crash event

★

fixed ND events

Figure 6: Threesamplemachineswith crashevents(events that
endstatesfilled black). It is okay to commit in caseB at thepoint
marked. Committing either A or C wheremarked could prevent
recovery.

crash eventfixed ND event

Figure 7: Portion of a state machine, its crash events, and
correspondingdangerouspaths.Crasheventsarethosethat endin
statesfilled black.Fixednon-deterministiceventsaremarkedwith
a slash. The shaded paths are dangerous.
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This theoremprovides an invariant for ensuringthe
possibility of recovery from propagation failures:processes
mustnot commiton dangerouspaths.It is interestingto note
thatthelocationof theinitial bugthatcausedthecrashis sur-
prisingly irrelevant.In theend,all thatmattersis theeventual
crashevent(or events)thatresultfrom thatbug andits loca-
tion relative to the application’s transientnon-deterministic
events.

How about for multi-processapplications?The chal-
lengefor distributedapplicationsis in computingtheir dan-
gerous paths. Unlike the dangerous paths algorithm
presentedabove, computingdangerouspathsfor a distrib-
utedapplicationcannotbedonestatically:whetheronepro-
cess’spathis dangerouscandependonthepathstakenby the
other processesin the computationand where they have
committed.

GivenaprocessPthatwantsto determineits dangerous
paths(presumablyso it cancommitwithout violating Lose-
work):

Multi-Process Dangerous
Paths Algorithm

• ProcessPcollectsasnapshotof wheneachprocessin
the computation last committed.

• For eachnon-deterministicreceive event that P has
executed,treat that receive as a transientnon-deter-
ministic event if the sender’s last commit occurred
beforethe send,and the senderexecuteda transient
non-deterministicevent betweenits last commit and
the send.All otherreceivesP hasexecutedarefixed
non-deterministic events.

• Run the single-processdangerouspathsalgorithmto
compute P’s dangerous paths.

2.6. Upholding Lose-work
Thesimplestway to upholdLose-work is to ensurethat

no processever commits. Although this solution has the
advantageof requiringno application-specificknowledgeto
implement,it also prohibits guaranteeingconsistentrecov-
ery.

Clearly, without perfectknowledgeof theapplication’s
non-determinismandcrasheventsit is impossibleto guaran-
teeacommittingapplicationupholdsLose-work. Despitethe
impossibilityof directly upholdingthe invariant,we canuse
the Lose-work Theoremto draw some conclusionsabout
recovering from propagation failures.

First, we observe that it is impossibleto uphold both
Save-work and Lose-work for someapplications.Consider
anapplicationwith a visible eventon a dangerouspath.The
dangerouspathwill extendbackat leastto thelastnon-deter-
ministic event. UpholdingSave-work forcesthe application
to commit betweenthe last non-deterministicevent andthe
visible event, which will violate Lose-work.

Second,someprotocolsdesignedto upholdSave-work
for stopfailuresguarantee thatapplicationswill not recover

from propagation failures.Theseprotocolseithercommitor
convert all non-determinism,ensuringa commit after the
non-deterministicevent that steersa processonto a danger-
ous path, thus violating Lose-work. CAND, Sender-based
logging,Targon/32,andHypervisorareall examplesof pro-
tocols that prevent applicationsfrom surviving propagation
failures.Indeed,any protocolthatfallson thehorizontalaxis
of the Save-work protocolspace(seeFigure3) will prevent
upholdingLose-work. The farthera protocol falls from the
horizontalaxis,themoreit focusesits attentionon handling
visible eventsandthemorenon-determinismit leavessafely
uncommitted,thusdecreasingthechancesof violating Lose-
work (see Figure 4).

Although directly upholdingLose-work is impossible,
some applicationswith mostly “non-repeatable”bugs (so
called“Heisenbugs” [13]) maybeableto commitwith a low
probability of violating the invariant.Therearealsoa num-
ber of waysapplicationscandeliberatelyendeavor to mini-
mize the chancethat one of their commitscausesthem to
violate Lose-work.

First, applicationsshouldtry to crashassoonaspossi-
ble after their bugsget triggered.Doing soshortensdanger-
ouspathsandthuslowersthe probability of the application
committingwhile executingonone.In orderto movecrashes
sooner, processescan try to catch erroneousstateby per-
forming consistency checks.For example,a processcould
traverseits datastructureslooking for corruption, it could
computea checksumover somedata, or it could inspect
guardbandsat the endsof its buffers and malloc’ed data.
Voting amongstindependentreplicasis a generalbut expen-
sive way to detecterroneousexecution[27]. Whena process
fails one of thesechecks,it simply terminatesexecution,
effectively crashing.

Although it is a good idea for processesto perform
theseconsistency checksfrequently, performingthem right
before committing is particularly important.

Applicationsmayalsobeableto reducethe likelihood
they will violateLose-work by notcommittingall their state.
Applicationsmay have knowledgeof which dataabsolutely
mustbepreserved,andwhich datacanbe recomputedfrom
an earlier (hopefully bug-free)state.Shoulda bug corrupt
state that is not written to stablestorageduring commit,
recomputingthat stateafter a failure leavesopenthe possi-
bility of not retriggering the bug.

Applicationscanalsotry to commit asinfrequentlyas
possible.When upholding Save-work, applicationsshould
do sowith a protocolthatcommitslessoftenandthat leaves
as much non-determinismas possible.Some applications
may be able to add non-determinismto their execution,or
they may be able to choosea non-deterministicalgorithm
over a deterministic one.

The applicationor the operatingsystemmay alsoable
to make somefixed non-deterministicevents into transient
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onesby increasingdisk spaceor otherapplicationresource
limits after a failure.

In Section4 we will measurehow often several appli-
cationsviolateLose-work in theprocessof upholdingSave-
work.

3. Cost of Upholding Save-work
In Section2.3, we presentedthe Save-work invariant,

whichapplicationscanupholdto guaranteeconsistentrecov-
ery in the presenceof stop failures.However, we have not
talked about the performancepenaltyapplicationsincur to
uphold it. As mentionedabove, executingcommitscan be
expensive.It maybethecasefor realapplicationsthatadher-
ing to Save-work maybeprohibitively expensive.In thissec-
tion we measurethe performancepenalty incurred for
several real applications upholding Save-work.

For this experimentwe have selectedfour realapplica-
tions: nvi, magic, xpilot and TreadMarks. nvi is a public
domainversionof thewell known Unix text editorvi. magic
is a VLSI CAD tool. xpilot is a distributed,multi-usergame.
Finally, TreadMarksis a distributedsharedmemorysystem.
Within TreadMarks’ssharedmemoryenvironmentwerunan
N-body simulation called Barnes-Hut.

Of theseapplications,all but TreadMarksare interac-
tive. We chosemainly interactive applicationsfor several
reasons.First, interactive applicationsare importantrecipi-
ents of failure transparency (when theseapplicationsfail
thereis alwaysanannoyedusernearby).Second,interactive
applicationshave beenlittle studiedin recovery literature.
Finally, interactive applicationscanbehardto recover: they
havecopioussystemstate,non-determinism,andvisibleout-
put, all of which requiring an able recovery system.

TreadMarksand xpilot are both distributed applica-
tions, while the others are single-process.

To recover theseapplicationswe run them on top of
Discount Checking, a systemdesignedto provide failure
transparency efficiently using lightweight, full-process
checkpoints[24]. DiscountCheckingis built on top of reli-
ablememoryprovidedby theRio File Cache[9], andlight-
weight transactionsprovidedby theVistatransactionlibrary
[23].

In order to preserve the full user-level stateof a pro-
cess,DiscountCheckingmapsthe process’s entire address
spaceinto a segmentof reliablememorymanagedby Vista.
Vista traps updatesto the process’s addressspaceusing
copy-on-write, and logs the before-imagesof updated
regionsto its persistentundolog. To capturetheapplication
statein theregisterfile (whichcannotbemappedinto persis-
tentmemory),DiscountCheckingcopiestheregisterfile into
apersistentbuffer at committime.Thus,takingacheckpoint
amountsto copying the register file, atomically discarding
the undo log, and resetting page protections.

Although the stepsoutlinedso far will allow Discount
Checking to checkpointand recover user-level state,Dis-

countCheckingmustalsopreserve andrecover the applica-
tion’s kernel state. To capture system state, the library
implementsa form of copy-on-write for kerneldata:it traps
systemcalls, copiestheir parametervalues into persistent
buffers, and then usesthose parametervalues to directly
reconstructrelevant kernel stateduring recovery. For more
ontheinnerworkingsof DiscountChecking,pleasesee[24].

As mentionedin Section2.4, thereexist a largevariety
of protocolsfor upholdingSave-work. In orderto getasense
of which work bestfor our suiteof applications,we imple-
mentedsevendifferentprotocolswithin DiscountChecking.
Our coreprotocolsareCAND, CPVS,andCBNDVS, which
we describedin Section 2.4. Recall that CAND upholds
Save-work by committing immediately after every non-
deterministicevent. CPVS commits just before all visible
andsendevents.CBNDVS commitsbeforea visible or send
event if the processhasexecuteda non-deterministicevent
sinceits last commit. We alsoaddedto DiscountChecking
the ability to log non-deterministicuserinput andmessage
receive events to renderthem deterministic,as well as the
ability to usetwo-phasecommit so one processcan safely
passa dependency on an uncommittednon-deterministic
event to anotherprocess.Adding thesetechniquesto our
coreprotocolsyieldedanadditionalfour protocols:CAND-
LOG, CBNDVS-LOG, CPV-2PC, and CBNDV-2PC. For
example,CAND-LOG executesa commit immediatelyafter
any non-deterministicevent that hasnot beenlogged.CPV-
2PCcommitsall processeswhenever any processexecutesa
visible,but doesnot needto commitbeforea processdoesa
send.

In orderto implementtheseprotocols,DiscountCheck-
ing needsto get notification of an application’s non-deter-
ministic, visible, and send events. To learn of an
application’s non-deterministicevents, Discount Checking
interceptsa process’s signalsand non-deterministicsystem
calls such as gettimeofday, bind, select, read,
recvmsg, recv, andrecvfrom. To learnof a process’s
visible andsendevents,DiscountCheckinginterceptscalls
to write, send, sendto, andsendmsg.

In additionto measuringtheperformanceof our appli-
cationson DiscountCheckingon Rio, we wantedto get a
senseof how our applicationsperformedusinga disk-based
recovery system.We createda modifiedversionof Discount
CheckingcalledDC-disk thatwroteout a redolog synchro-
nouslyto disk at checkpointtime. Although we did not add
thecodeneededto let DC-disktruncateits redolog, or even
properlyrecover applications,its overheadshouldbe repre-
sentative of what a lightweight disk-basedrecovery system
can do.

We ranour experimentson 400MHz PentiumII com-
puterseachwith 128 MB of memory(100 MHz SDRAM).
EachmachinerunsFreeBSD2.2.7with Rio andis connected
to a 100 Mb/s switchedEthernet.Rio was turnedoff when
using DC-disk. Eachcomputerhasa single IBM Ultrastar
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DCAS-34330Wultra-wide SCSI disk. All points represent
theaverageof five runs.Thestandarddeviation for eachdata
point waslessthan1% of themeanfor DiscountChecking,
and lessthan4% of the meanfor DC-disk. The distributed
workloads(TreadMarks and xpilot) were both run on four
computers.We simulate fast interactive ratesby delaying
100msbetweeneachkeystroke in nvi andby delaying1 sec-
ond between each mouse-generated command inmagic.

We presentthe resultof our runsin Figure8. For each
applicationweshow theprotocolspacedevelopedin Section
2.4.In eachapplication’sprotocolspaceweplot theprotocol
used for eachdata point, and the numberof checkpoints
taken during the completerun of the applicationwhenrun-
ning on thatprotocol.For eachprotocol’s datapoint we also
show the percentexpansionin executiontime that protocol
causedcomparedto anunrecoverableversionof theapplica-
tion, first for Discount Checking, then for DC-disk.

Becausexpilot is a real-time,continuousprogramwe
reportits performanceasthe framerateit cansustainrather
than runtime overhead.Higher frame rates indicate better
interactivity, with full speedbeing 15 frames-per-second.
xpilot’s numberof checkpointsis givenasthelargestcheck-
pointing frequency (in checkpointsper second)amongstits
processes.

We can make a number of interestingobservations
basedon theseresults.As expected,commit frequency gen-
erally decreases,andperformanceincreases,with radialdis-
tance from the origin. The sole exception to this rule is
xpilot, wherehaving all processescommitwhenever any one
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Figure 8: Performanceof several protocolsfor four applications.
Eachapplicationhasits own protocolspace.At eachpoint in each
space,we list theprotocolat thatpoint, thenumberof checkpoints
in thecompleterunof theapplication,andtheruntimeoverheadfor
Discount Checking, and for DC-disk. For xpilot we list the
protocol, number of checkpoints per second, followed by
sustainableframe rate for DiscountCheckingand DC-disk. Full
speed forxpilot is 15 frames per second.
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of themwantsto executea visible event(asis donein proto-
cols using two-phasecommit) resultsin a net increase in
commit frequency.

Despitethefactthatseveralof theseapplicationsgener-
ate many commits, there is at least one protocol for each
applicationwith very low overheadfor DiscountChecking.
We concludethat the cost of upholding Save-work using
Discount Checking on these applications is low.

For all the interactive applications,the overheadof
using DC-disk is not prohibitive. We seeoverheadof 12%
and27%for nvi andmagic respectively. xpilot is ableto sus-
tainausable9 framespersecond.On theotherhand,nopro-
tocol for DC-disk was able to keep up with TreadMarks.
From our experiments,we concludethat Save-work canbe
upheldwith a disk-basedrecovery systemfor many interac-
tive applications with reasonably low overhead.

We observe that the protocols that perform best for
eachapplicationaretheonesthatexploit theinfrequentclass
of eventsfor that applicationin decidingwhen to commit.
For example, TreadMarks has very few visible events,
despitehaving copiousnon-deterministicand sendevents.
For it, the 2PC protocolswhich let it commit only for the
rare visible events are the big win.

While overheadis low for many applications,we can
conceive of applicationsfor which Save-work incursa large
performanceoverhead.Theseapplicationswould have copi-
ous visible and non-deterministicevents—thatis, no rare
classof events—andthey would be computeboundrather
thanuserbound.Applicationsthat might fall into this cate-
gory includeinteractive scientificor engineeringsimulation,
online transaction processing, and medical visualization.

4. Measuring Conflict between the Save-work
and Lose-work In variants

Guaranteeingconsistentrecovery in the presenceof
stop and propagation failures requiresupholding both the
Save-work and Lose-work invariants.Unfortunately, some
failure scenariosmake it impossibleto uphold both invari-
ants simultaneously.

For example, considerthe failure timeline shown in
Figure9. In this timeline,theapplicationexecutesa transient
non-deterministiceventthatcausesit to executedown acode
path containinga bug. The applicationeventually executes
the buggy code(shown as“f ault activation”), thencorrectly
executesavisibleevent.After thisvisibleevent,theprogram
crashes.Section 2.5’s coloring algorithm shows that the
entire execution path from the transientnon-deterministic
event to the crashforms a dangerouspath,alongwhich the
Lose-work invariantprohibitsa commit. Unfortunately, the
Save-work invariantspecificallyrequiresa commit between
the transientnon-deterministicevent and the visible event.
For this application,both invariantscannotbeupheldsimul-
taneously.

Someapplicationsmayhave bugsthatpreventuphold-
ing Lose-work even without committing to uphold Save-
work. For example, many applicationscontain repeatable
bugs(socalled,“Bohrbugs”[13]).With thesefaultsit is pos-
sible to executefrom the initial stateof the programto the
bug without ever executing a transient non-deterministic
event. In otherwords,thedangerouspathresultingfrom the
bug extendsall the way back to the initial stateof the pro-
gram.And sincetheinitial stateof any applicationis always
committed, applicationswith Bohrbugs inherently violate
Lose-work.

In this section,we endeavor to examinehow often in
practice faults causea fundamentalconflict betweenthe
Save-work andLose-work invariants.Our focus is on soft-
ware faults (both in the applicationand operatingsystem),
which field studiesand everyday experienceteach is the
dominant cause of failures today [13].

4.1. Application faults
We would like to measurehow often upholdingSave-

work forcesan applicationto commit on a dangerouspath,
like the application depictedin Figure 9. We divide this
problem into three subproblems.First, how often doesan
applicationbugcreateadangerouspathbeginningat thestart
stateof the application?As describedabove, this scenario
arisesfrom Bohrbugs in the application.Second,given an
applicationfault that doesdependon a transientnon-deter-
ministic event (a Heisenbug), how often is the application
forced to commit betweenthe transientnon-deterministic
event at the beginning of the dangerouspath and the fault
activation? Third, how often is the application forced to
commit betweenthe fault activation and the crash?We
examine this third question first using a fault-injection study.

Our strategy is to force crashesof real applications,
recover the applications,andmeasureafter the fact whether
any of their commitsto upholdSave-work occurredbetween
fault activationandthecrash.We inducefaultsin theappli-
cationby runninga versionof the applicationwith changes
in the sourcecode to simulatea variety of programming
errors.Theseerrorsincludeactionslike overwriting random
datain the stackor heap,changingthe destinationvariable,
neglectingto initialize a variable,deletinga branch,deleting
arandomline of sourcecode,andoff-by-oneerrorsin condi-
tionslike>= and<. See[6] for moreinformationonour fault
model. We only consider runs where the program crashes.

Figure9: Failuretimelinein which theSave-work invariantandthe
Lose-work invariantconflict. The shadedportion is the dangerous
path.

transient
crashnon-deterministic

event

visiblefault
activation event
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Checkpointingandrecovery for theapplicationsis pro-
vided by Discount Checking using the CPVS protocol.
CPVS is the bestprotocol possiblefor not violating Lose-
work for non-distributedapplications.For our experiments,
we usetwo applications:the Unix text editor nvi, andpost-
gres, a large, publicly available relational database.These
two applicationsdiffer greatlyin their codesizeandamount
of data they touch while executing.

We detect a run in which the application commits
betweenfault activationandthecrashby instrumentingDis-
count Checking to log each fault activation and commit
event.If theprogramcommitsafteractivatingthefault, it has
violatedtheLose-work invariant.Wealsoconductanend-to-
endcheckof this criteriaby suppressingthe fault activation
during recovery, recovering the process,andtrying to com-
plete the run. As expected,we found that runs recovered
from crashesif andonly if they did not commit after fault
activation.

We collecteddatafrom approximately50 crashesfor
eachfault type. Table 1 shows the fraction of crashesthat
violated the Lose-work invariant by committing after fault
activation.For bothnvi andpostgres, approximately35%of
faultscausedtheprocessto commitalongthis portionof the
dangerouspath.While not includedin thetable,7-9%of the
runs did not crash but resulted in incorrect program output.

We next turn our attentionto questionone,namely, for
whatfractionof bugsdoesthedangerouspathextendbackto
the initial stateof the program?That is, of the bugs users
encounter, what portion are deterministic(Bohrbugs), and
what portion dependon a transientnon-deterministicevent
(Heisenbugs)?Although it is difficult to measurethis frac-
tion directly, several prior studieshave attemptedto shed
light on this issue.

ChandraandChenshowed that for Apache, GNOME,
and MySQL, three large, publicly available software pack-
ages,only 5-15%of thebugsin thedeveloper’sbug log were
Heisenbugs (for shippingversionsof the applications)[7].
TheremainingbugswereBohrbugs.Mostof thesedetermin-
istic bugs resultedfrom untestedboundaryconditions(e.g.
an older versionof Apache crashedwhenthe URL wastoo
long). Several other researchershave found a similarly low
occurrence(5-29%)of applicationbugsthatdependon tran-
sientnon-deterministiceventslike timing [20, 29, 30]. Note
that theseresultsconflict with theconventionalwisdomthat
maturecodeis populatedmainlyby Heisenbugs—ithasbeen
held that the easier-to-find Bohrbugswill be capturedmore
often during development[13, 17]. It appearsthat for non-
mission-critical applications,the current software culture
tolerates a surprising number of deterministic bugs.

We have yet to tacklethe secondquestion,which asks
how oftenanapplicationis forcedto commiton thedanger-
ous path betweenthe transientnon-deterministicevent and
fault activation (seeFigure9). Unfortunately, we areunable
to measurethis frequency usingour fault-injectiontechnique
becauseno realistic model exists for placing injectedbugs
relative to an application’s transient non-deterministic
events.However, aswe will see,thecasefor genericrecov-
ery from applicationfailuresis alreadysufficiently discour-
aging, even optimistically assumingno commits on this
portion of the dangerous path.

We would like to composetheseseparateexperimental
resultsin orderto illuminatetheoverarchingquestionof this
section.Our fault-injectionstudyshowsthatnvi andpostgres
violateLose-work in at least35%of crashesfrom non-deter-
ministic faults.If we assumethe samedistribution of deter-
ministic and non-deterministicbugs in nvi and postgres as
found in Apache, GNOME, and MySQL by Chandraand
Chen,thesenon-deterministicfaultsmake up only 5-15%of
crashes.Therefore,Lose-work is upheldin at most65% of
15%, or 10% of applicationcrashes.Lose-work and Save-
work appearto conflict in the remaining90% of failuresby
theseapplications.While extrapolatingother applications’
fault distributionsto nvi andpostgres is somewhatquestion-
able,asis generalizingto all applicationsfrom themeasure-
mentof two, thesepreliminaryresultsraiseseriousquestions
about the feasibility of genericrecovery from propagation
failures.

4.2. Operating systems faults
Although failures due to applicationfaults appearto

frequentlyviolate Lose-work, we can hopefor betternews
for faults in the operatingsystem.In contrastto application
faults,not all operatingsystemfaultscausepropagationfail-
ures:somecrashthe systembefore they affect application
state.Commitsat any time by theapplicationareokayin the
presenceof thesestopfailures.Thusif failuresby theoperat-

Fault Type
nvi

Lose-work
violations

postgres
Lose-work
violations

Stack bit flip 0% 35%

Heap bit flip 83% 92%

Destination reg 18% 0%

Initialization 4% 6%

Delete branch 81% 86%

Delete instruction 51% 13%

Off by one 24% 0%

Average 37% 33%

Table 1: Fraction of application faults in nvi and postgres that
violate Lose-work by committing after the fault is activated.For
eachfault type we list the percentof crashesby that fault that
commit after the fault is activated.Over all fault types,nvi and
postgres commit after the fault activation for 37% and33% of all
crashes respectively.
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ing systemusuallymanifestasstopfailures,wewould rarely
observe system failures causing Lose-work violations.

We wantedto measurethefractionof operatingsystem
failures for which applications are able to successfully
recover. This fractionwill includecaseswheretheoperating
systemexperienceda stopfailure,aswell ascasesin which
thesystemfailurewasa propagationfailureandtheapplica-
tion did not violate Lose-work.

In order to performthis measurement,we again usea
fault-injectionstudy. This time we inject faultsinto the run-
ning kernel rather than into the application [9].

We again rannvi andpostgres with DiscountChecking
upholdingSave-work usingCPVS.For eachrun, we started
theapplicationandinjecteda particulartypeof fault into the
kernel.We discardedruns in which neitherthe systemnor
theapplicationcrashed.If eithertheoperatingsystemor the
applicationcrashed,we rebootedthe systemandattempted
to recover the application.We repeatedthis processuntil
eachfault type had inducedapproximately50 crashes.The
results of this experiment are shown in Table 2.

Of the 350 operatingsystemcrasheswe inducedfor
eachapplication,we foundthatnvi failedto properlyrecover
in 15%of crashes.postgres did better, only failing to recover
3%of thetime.Thesenumbersareencouraging:application-
genericrecovery is likely to work for operatingsystemsfail-
ures, despite the challenge of upholding Lose-work.

If we assumethat all propagation failureswill violate
Lose-work with the probabilitiesin Table 1 (regardlessof
whetherthe propagation failure began in the operatingsys-
tem or application),we caninfer how often systemfailures
manifestas propagation failures in our experiments.Com-
bining our applicationcrashresultswith our operatingsys-
temcrashresultsimpliesthatfor nvi, 41%of systemfailures
werepropagationfailures.For postgres, 10%of systemfail-
uresmanifestas propagation failures.We hypothesizethat
the proportion of propagation failures differs for the two

applicationsbecauseof thedifferentrateat which they com-
municatewith theoperatingsystem:thenon-interactive ver-
sionof nvi usedin ourcrashtestsexecutesalmost10timesas
many system calls per second aspostgres executes.

5. Related Work
Many fault-tolerant systems are constructedusing

transactionsto aid recovery. Transactionssimplify recovery
by groupingseparateoperationsinto atomicunits, reducing
thenumberof statesfrom which anapplicationmustrecover
after a crash.However, the programmermust still bearthe
responsibility for building recoverability into his or her
applications,a task that is difficult even with transactions.
We have focusedon higher-level application-generictech-
niquesthatabsolve programmersfrom addingrecovery abil-
ities to their software. However, we use transactionsto
implement our abstraction.

A numberof researchershave endeavoredto build sys-
temsthatprovidesomeflavor of failuretransparency for stop
failures[3, 4, 5, 11, 14, 21, 25, 26]. Our work extendstheir
work by analyzing propagation failures as well.

The theoryof distributedrecovery hasbeenstudiedat
length[10]. Prior work hasestablishedthatcommittedstates
in distributedsystemsmustform a consistentcut to prevent
orphanprocesses[8], thatrecoverablesystemsmustpreserve
a consistentcut before visible events [28], and that non-
determinismboundsthe statespreserved by commits [11,
16]. Our Save-work invariantis equivalentto theconfluence
of these prior results.

TheSave-work invariantcontributesto recovery theory
by expressingthe establishedrulesfor recovery in a single,
elementalinvariant.Viewing consistentrecovery throughthe
lens of Save-work, we exposedthe protocol spaceand the
relationshipsbetweenthedisparateprotocolson it, aswell as
several new protocols.

To the bestof our knowledge,no prior work haspro-
posedan invariant for surviving propagation failures that
relatesall relevant events in a process,nor has any prior
work attemptedto evaluatethe fraction of propagation fail-
ures for which consistent recovery is not possible.

CAND, CPVS,andCBNDVS all beara resemblanceto
simple communication-inducedcheckpointing protocols
(CIC) [1]. However there are someimportant differences.
First, all CIC protocolsassumeno knowledgeof application
non-determinism.As a result, they are forced to roll back
any processthat has received a messagefrom an aborted
sender. Commits under theseprotocolsserve primarily to
limit rollback distance,andto prevent the dominoeffect. In
contrast,our protocolsall to varying degreesmake useof
knowledge of application non-determinism.Rather than
abort the receivers of lost messages,they allow sendersto
deterministicallyregeneratethe messages.Underour proto-
cols, only failed processes are forced to roll back.

Fault Type
nvi

failed
recoveries

postgres
failed

recoveries

Stack bit flip 12% 10%

Heap bit flip 8% 6%

Destination reg 10% 0%

Initialization 16% 0%

Delete branch 26% 4%

Delete instruction 12% 4%

Off by one 22% 0%

Average 15% 3%

Table 2: Percentof OS faults in which nvi andpostgres failed to
recover. We list thepercentageof crashesthatled to failuresduring
recovery for each fault type and over all failures.
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Recovery systemsoftendependon theassumptionthat
applicationswill not commit faulty state—aso called“f ail-
stopassumption”[27]. Our examinationof propagationfail-
ures amountsto a fine parsingof the traditional fail-stop
assumptionin whichweconsiderasinglecommit’sability to
preserve not just pastexecution,but all future executionup
to the next non-deterministicevent. Making a fail-stop
assumptionin the presenceof propagation failures is the
sameasassumingthatapplicationscansafelycommitat any
time without violating the Lose-work invariant.

6. Conclusion
The lure of operatingsystemsthat concealfailuresis

quitepowerful. After all, whatuseror programmerwantsto
be burdenedwith the complexities of dealingwith failures?
Ideally, we couldhandleall thosecomplexities onceandfor
all in the operating system.

Ourgoalwith thispaperhasbeento explorethesubject
of failure transparency, looking at what it takesto provide it
and exposing the circumstanceswhere providing it is not
possible.We find thatproviding failure transparency in gen-
eralinvolvesupholdingtwo invariants,aSave-work invariant
whichconstrainswhenanapplicationmustpreserve its work
beforea failure,anda Lose-work invariantwhich constrains
how much work the applicationhasto throw away after a
failure.

For stopfailures,whichdonot requireupholdingLose-
work, thepictureis quite rosy. We show thatSave-work can
beefficiently upheldfor a varietyof realapplications.Using
a transparentrecovery systembasedon reliablememory, we
find overheadsof only 0-12%for our suiteof real applica-
tions.Wealsofind thatdisk-basedrecoverymakesacredible
goof it, with interactiveapplicationsexperiencingonly mod-
erate overhead.

Unfortunately, thepictureis somewhatbleaker for sur-
viving propagationfailures.Guaranteeingthatanapplication
can recover from a propagation failure requiresupholding
our Lose-work invariant,andSave-work andLose-work can
directly conflict for somefault scenarios.In our measure-
mentsof applicationfaults in nvi and postgres, upholding
Save-work causesthemto violateLose-work for at least35%
of crashes.Evenworse,studieshave suggestedthat85-95%
of applicationbugstodaycausecrashesthatviolatetheLose-
work invariantby extendingthedangerouspathto theinitial
state.

We concludethat providing failure transparency for
stopfailuresaloneis feasible,but thatrecoveringfrom prop-
agation failuresrequireshelp from theapplication.Applica-
tionscanhelpby performingbettererrordetection,masking
errors through N-version programming,reducing commit
frequency by allowing the loss of somevisible events,or
reducingthe comprehensivenessof the statesaved by the
recoverysystem.Our resultspoint to interestingfuturework.
Sincepureapplication-genericrecovery is not alwayspossi-

ble,whatis theproperbalancebetweengenericrecoveryser-
vices provided by the operatingsystem and application-
specific aids to recovery provided by the programmer?
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