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Abstract: We explorethe abstractiorof failuretranspareng

in which the operatingsystemprovidesthe illusion of fail-

ure-freeoperation.To provide failure transpareng anoper-

ating system must recover applications after hardware,

operatingsystem,and applicationfailures,and mustdo so

without help from the programmeror unduly slowing fail-

ure-freeperformanceWe describetwo invariantsthat must
be upheldto provide failure transparenc onethat ensures
sufficientapplicationstateis savedto guarante¢he usercan-

notdiscernfailures,andanothertthatensuresuficient appli-

cationstateis lost to allow recovery from failuresaffecting

applicationstate.We find that several real applicationsget

failure transpareng in the presenceof simple stop failures
with overheadof 0-12%. Lessencouraginglywe find that

applicationsviolate oneinvariantin the courseof upholding
the otherfor morethan90% of applicationfaultsand3-15%

of operatingsystemfaults, renderingtransparentrecovery

impossible for these cases.

1. Introduction

Oneof themostimportantjobs of the operatingsystem
is to conceathe compleities andinadequaciesf theunder-
lying machine Towardsthis end,modernoperatingsystems
provide a variety of abstractionsTo concealmachineslim-
ited memory for example, operatingsystemsprovide the
abstractionof practically boundlessvirtual memory Simi-
larly, operatingsystemggive the abstractiorof multithread-
ing for those applicationsthat might benefit from more
processors than are present in handw

Failures by computer system components,be they
hardware, software,or the application,area shortcomingof
modernsystemshat hasnot beenabstractedway. Instead,
computemprogrammersndusersroutinely have to dealwith
the effects of failures, even on machinesrunning state-of-
the-art operating systems.

With this paperwe explore the abstractionof failure
transparency in which the operatingsystemgenerateghe
illusion of failure-freeoperation.To provide thisillusion, the
operatingsystemmust handleall hardware, software, and
applicationfailuresto keepthem from affecting what the
user sees.Furthermore,the operatingsystemmust do so
without helpfrom the programmerandwithout unduly slow-
ing down failure-free operation.
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Fault-toleranceresearchhas establishedmary of the
componentsof failure transpareng such as programmer
transparentecovery [4, 11,25, 28], andrecovery for general
applicationg[4, 14]. Someresearcherbave even discussed
handling applicationdilures [13, 17, 31].

However, significant questions surrounding failure
transpareng remain. The focus of this paperis on delving
into several of theseunansweredjuestions.First, we will
explore the question*how doesone guarantedailure trans-
pareng in general?"The answerto this questioncomesin
theform of two invariants.Thefirst invariantis a reformula-
tion of existing recovery theory governingwhenanapplica-
tion must save its work to ensurethat the user does not
discernfailures. In contrast,the secondinvariant governs
how muchwork anapplicationmustloseto avoid forcing the
same &ilure during receery.

The Save-work invariant can require applicationsto
committheir statefrequentlyto stablestorage The question
thereforearises‘how expensve is it for generalapplications
to upholdthe Sare-work invariant?”In answeringhis ques-
tion we find, to our surprise,that even comple, general
applications are able tofefiently uphold See-work.

Given thatthe Save-work invariantforcesapplications
to presere work andthe Lose-work invariantforcesapplica-
tions to throw work away, we concludeby investigating the
question,“how often do theseinvariants conflict, making
failure transparengimpossible?The unfortunateansweris
that the inariants conflict all too often.

2. Guaranteeing Failure Transparency

We first delve into the question:how does one guaran-
tee failure transparency in general? Our exploration begins
with a synthesisof existing recovery theorythat culminates
in the Save-work invariant.In Section2.4, we then extend
recovery theoryto point out a parameterizatioof the space
of recovery protocols,as well as the relationshipbetween
protocolsat differentpointsin the spaceFinally, we develop
anew theoryandsecondnvariantfor ensuringthe possibil-
ity of recavery from filures that déct application state.

2.1. Primitivesfor general recovery

In attemptingto provide failure transpareny the goal
is to recover applicationsusingonly generattechniqueghat



require no help from the application. There are several
recovery primitives available to us in this domain: commit
events, rollback of a processand reexecution from a prior
state.

A processcan executecommit eventsto aid recovery
after a failure. By executinga commit event, a processre-
senesits stateat the time of the commitsothatit canlater
restore that state and continue execution. Although how
commit eventsareimplementeds not importantto our dis-
cussionexecutinga commiteventmight involve writing out
afull-processcheckpointo stablestorage endinga transac-

tion, or sending a state-update message to a backup process.

When a failure occurs,the applicationundegoesroll-
backof its failed processesachfailed processs returnedo
its last committedstate.From that state the recovering pro-
cessheagins reexecution, possiblyrecomputingwork lost in
the failure.

Providing genericrecovery requiresthat applications
tolerate forced rollback and reexecution. As a result, all

machine.That is, eachprocesshas stateand computesby
transitioningfrom stateto stateaccordingto the inputs it
receves. Each statetransition executedby a processis an
event. An event €, is the i’th event executedby processp.
Eventscancorrespondn realprogramdo simplechange®f
applicationstate sendingandreceving messagesndsoon.
We call eventsthat have an effect on the uservisible events
(theseeventshave traditionally beencalled “output events”
[11]). Under our model, computationproceedsasynchro-
noudly, thatis, without known boundson messagelelivery
time or the relatie speeds of processes.

As neededwe will ordereventsin our asynchronous
computationswith Lamport’s happens-before relation[19].
We may alsoneedto discusghe causalkelationshipbetween
events. For example,we may needto ask, “did evente in
someway cause event € ?” We will usehappens-before as
an approximationof causality We will however distinguish
betweenhappens-before’s useasan orderingconstraintand
its useasanapproximatiornof causalityby usingthe expres-

application operations must be either undoable or redoablesion causally precedes in this latter role. That is, we say

Mostapplicationoperationghatsimply modify process
stateareeasilyundone However, someevents,suchasmes-
sagesendsarehardto undo.Undoinga sendcaninvolve the
addedchallengeof rolling backthe recipients state.Other
eventscan be impossibleto undo. For example,we cannot
undo the effects on the userresulting from visible output.
However, systemsroviding failure transparengcensurethat
these usevisible events will never be undone.

Similarly, sincesimplestatechangesy the application
are idempotent, most application events can be safely
redone However, eventslike messagsendsandrecevesare
moredifficult to redo. For messagesendeventsto be redo-
able, the applicationmust either tolerateor filter duplicate
messaged-or receve eventsto be redoablemessagemust
be saved at eitherthe senderor recever so they canbe re-
deliveredafter a failure. Luckily, thesereexecutionrequire-
mentsarevery similar to the demandsnadeof systemshat
transmitmessagesn unreliablechannelge.g. UDP). Such
systemsnustalreadywork correctlyevenwith lost or dupli-
catedmessaged-or mary recovery systemsan application
or protocollayer’s naturalfiltering andretransmissiomech-
anismswill be enoughto supportthe needsof reexecution
recovery. For others,messagesnay have to be held in a
recovery buffer of somekind so they can be re-delvered
should a recek event be redone.

2.2. Computation and failure model

We will informally presenta recovery theorythat will
let us relatethe challengeof guaranteeindailure transpar-
eng to the preciseeventsexecutedby an application.For a
more formal ersion of the theorplease see [22].

We bagin by constructinga modelof computing.One
or more processesvorking togetheron a task is called a
computation. We model each processas a finite state

evente causally precedes event € if andonly if e happens-
before € and we intend to cemy thate causesvente'.

We will consideffailuresof two forms.A stop failureis
onein which executionof oneor moreprocesses thecom-
putationsimply ceasesStop failuresdo occurin real sys-
tems—theloss of power, the frying of a processaror the
abrupt halting of the operatingsystemall appearto the
recovery systemasstopfailures.Sincestopfailuresinstanta-
neouslystopthe executionof the applicationanddo not cor-
rupt application state, recovering from them is relatively
easy

Harderto handleare propagation failures. We definea
propagtion failure to be onein which a bug someavherein
thesystemcausegsheapplicationto entera stateit would not
enterin a failure-freeexecution. A propagtion failure can
begin with a bug in hardware, the operatingsystem,or the
application.Bugsin the applicationare always propagtion
failures,but bugsin hardware andthe operatingsystemare
propagtion filures only once thyeaffect application state.

Recweringfrom propagtionfailuresis hardbecause
processcan executefor sometime after the failure is trig-
gered Duringthattime theprocessanpropagtebuggydata
into larger portionsof its state,to other processespr onto
stable storage.

We canimaginebugsthatdo not causecrashesbut that
simply causeincorrect visible output by the application.
However, our focus with this work is on recovering from
failures. Therefore,we will assumethat applicationswill
detect &ults and dil before generating incorrect output.

2.3. Failuretransparency for stop failures

We startby examining how to ensurefailure transpar-
eng in the presencef stopfailures.We mustfirst fix a pre-
cise notion of “correct” recovery from failures. We could



establishalmostary standardrecovering the exact pre-fail-
ure state,losing lessthan 10 secondsof work, and so on.
However, giventhatour endgoalis to maskfailuresfrom the
user we will definecorrectrecovery in termsof the applica-
tion output seen by the user

Given a computationin which processehave failed,
recovered, and continuedecution:

Definition: Consistent Recwery

Recoreryis consistentif andonly if thereexistsacom-
plete, failure-free execution of the computationthat
would resultin a sequencef visible eventsequivalent
to the sequencef visible eventsactually outputin the
failed and receered run.

Thusfor anapplications recovery to be consistentthe
sumtotal of the applications visible outputbeforeandafter
afailure mustbe equialentto the outputfrom somefailure-
free execution of the application.

It is possiblethat mary differentmodesof consistent
recovery could be allowed dependingon how one defines
“equivalent”. For our purposeswe will call a sequencef
visible eventsV outputby a recoveredcomputationequiva-
lent to sequenceV' outputby a failure-freerun if the only
eventsin V thatdiffer from V' arerepeatsof earlierevents
from V.

We useequivalencein which duplicatevisible events
areallowedbecausguaranteeingo duplicationis very hard
(exactly once delivery problem). Furthermore, allowing
duplicatesprovides someflexibility in how oneattainscon-
sistentrecovery. More importantly userscanprobablyover-
look duplicatedvisible events.See[22] for a more detailed
discussion of equalence.

Our definition of consistentrecovery placestwo con-
straintson recovering applicationsFirst, computationgnust
alwaysexecutevisible eventsthatextenda legal, failure-free
sequencef visible events,evenin the presencedf failures.
We will call thisthevisibleconstaint. Secondcomputations
must always be able to executeto completion.This latter
constraintfollows from the fact that consistentrecovery is
definedin termsof completesequencesf visible events.If a
failure preventsan applicationfrom runningto completion,
its sequencecan never be complete.For reasonsthat will
becomeclear later, we will call this secondconstrainton
recovery theno-orphan constint.

Although consistentecovery andfailure transpareng
are closely related,they are not the samething. Providing
failure transparenc amountsto guaranteeingconsistent
recovery without ary helpfrom the application,andwithout
slowing the applicatiors ececution appreciably

Our next taskis to examinehow to guaranteepplica-
tions get consistentecovery. One particularclassof events
posesthe greatestchallenge:non-deterministicevents In a
state-machinea non-deterministieventis a transitionfrom
a statethathasmultiple possiblenext statesFor example,in

“tails”

Figure 1: Coin-flip application. Depending on whether non-
deterministic event €' or € gets executed, the applicatior
executes one of tavpossible visiblevents.

Figure 1, events ' and € are both non-deterministicln
real systemsnon-deterministi@ventscorrespondo actions
thatcanhave differentresultsbeforeandafter a failure, like
checkingthetime-of-dayclock, taking a signal,readinguser
input, or receiing a message.

Non-deterministiceventsareintimately relatedto con-
sistentrecovery. To seehow, again considerthe application
shavn in Figure 1. Imagine that the application executes
non-deterministievent ', thenthe visible event “heads”,
thenfails. Thenduringrecovery imaginethatthe application
rolls backandthis time executese’ followed by the visible
event“tails” . Althoughthis applicationcancorrectlyoutput
eitherheadsor tails, in no correctexecutiondoesit output
both headsandtails. Therefore recosery in this exampleis
not consistentand our sampleapplications non-determinis-
tic events are the culprits.

As discussedn Section2.1, applicationscan execute
commit eventsto aid later rollback. We would like to use
commiteventsto guarantee€onsistentecovery, avoiding the
inconsisteng non-deterministicevents can cause.The fol-
lowing theoremprovidesthe necessarandsufiicient condi-
tion for doing &actly that under stomflures.

Save-work Theorem

A computationis guaranteeaonsistentecovery from
stopfailuresif andonly if for eachexecutednon-deter-
ministic event €}, that causally precedesa visible or
commitevente, process executesa commitevent el
suchthat e}, happens-befer (or atomic with) e, and
i<j.

This theoremdictateswhen processesnustcommitin
orderto ensureconsistentecovery. At the heartof this theo-
rem is the Save-work invariant, which informally states
“eachprocesshasto commitall its non-deterministie@vents
thatcausallyprecedevisible or commitevents”. We canfur-
ther divide this invariant into separaterules, one that
enforcesthe visible constraintof consistentrecovery, and
onethat enforcesthe no-orphanconstraint.If we follow the
rule “commit every non-deterministicevent that causally
precedesa visible event”, we are assuredthat the applica-
tion’s visible outputwill alwaysextenda legal sequencef
visible events.We’'ll call this the Save-work-visible invari-
ant. If we follow the rule “commit every non-deterministic
eventthatcausallyprecedesi.commitevent”, we areassured
thatafinite numberof stopfailurescannotpreventthe appli-
cation from executing to completion. We'll call this the
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Figure 2: A problematic distributed computation.We see two
processedtimelines.The arrav betweerthe processesepresents
messagdrom B to A. Black boxesrepresent&ommits.The event
marked “ND” is a hon-deterministi@vent. ProcessA is anorphar
after ProcessB’s failure asA hascommitteda dependencen B’s
lost non-deterministicvent.

Save-work-orphaninvariant. To betterunderstandhis latter
rule, consider the computation depicted in Figure 2.

A processis called an orphan if it has committeda
dependenceon another processs non-deterministicevent
that hasbeenlost and may not be reexecuted.For example,
Process\ in Figure?2 is anorphanbecausét hascommitted
its dependence on Process Rist non-deterministicvent.

An orphancanpreventanapplicationfrom executingto
completionwhen it is upholding Save-work-visible. Con-
sideran orphanthat hascommitteda dependencen a lost
non-deterministicevent ep° . If the orphanattemptsto exe-
cute a visible event e, Save-work-visible requiresthat pro-
cessp commit ep° . However, since processp hasalready
failed and abortede}®, it cannotcommit it. Furthermore,
sincethe orphancannotabortits dependencen e}°, it can
never executee andthe computatiorwill notbeableto com-
plete.

The remedyfor this scenariois to uphold Save-work-
orphan,which ensuregshat ary non-deterministieventthat
causally precedes a commit is committed.

We must make two assumptionsfor the Save-work
Theoremto be necessaryWe ensurethe necessityof Save-
work-visible by assumingthat all non-deterministicavents
can causeinconsisteng. We ensurethe necessityof Save-
work-orphanby assuminghatall processef the computa-
tion affectthe computations visible output.For the detailsof
theseassumptionaswell asthe proof of the Save-work The-
orem, please see [22].

2.4. Upholding Save-work

There are mary ways an applicationcan uphold the
Save-work invariantto ensureconsistentrecovery for stop
failures.For example,an applicationcan executea commit
eventfor every eventexecutedby the application.Although
suchaprotocolwill causeaverylargenumberof commits,it
hasthe advantageof beingtrivial to implement:the protocol
doesnot needto figure out which eventsarenon-determinis-
tic, or which eventsarevisible. Evenwithout knowing event
types, it correctly upholds the &awork invariant.

Considera protocolin which eachprocessexecutesa
commit event immediately after each non-deterministic
event.In committingall non-deterministi@vents,this proto-

colwill certainlycommitthosenon-deterministi@ventsthat
causally precedevisible or commit events. Therefore it
upholdsSare-work and will guaranteeconsistentrecovery.
We call this protocol Commit After Non-Deterministic,or
CAND.

We canalsouphold Save-work without knowing about
the non-determinisnin the computationUnderthe Commit
Priorto Visible or Sendprotocol(CPVS),eachprocessom-
mits just beforedoing a visible event or a sendto another
processWhena processcommitsbeforeeachof its visible
events,it is assuredhatall its non-determinisnthatcausally
precedeshevisible eventis committed.If eachprocesslso
commits before every send event, then it cannot passa
dependenc®n an uncommittednon-deterministicavent to
another process. Thus, CPVS also upholde-Sark.

The Commit BetweenNon-Deterministicand Visible
or Send(CBNDVS) protocoltakesadwantageof knowvledge
of bothnon-determinisnandvisible andsendeventsin order
to uphold Save-work. Under this protocol, each process
commitsimmediatelybefore a visible or sendevent if the
processhasexecuteda non-deterministi@vent sinceits last
commit.

Sincecommiteventscaninvolve writing lots of datato
stablestorage they canbe slow. Therefore minimizing the
numberof commitsexecutedcanbeimportantto failure-free
performanceThereexist severalgenerakechniquegor min-
imizing commits.

Logging is agenerakechniqueor reducinganapplica-
tion’s non-determinism[12]. If an application writes the
result of a non-deterministicavent to a persistentog, and
thenusesthatlog recordduringrecovery to ensurethe event
executeswith the sameresult, the event is effectively ren-
dereddeterministic.Logging someof an applications non-
determinism can significantly reduce commit frequeng.
Loggingall anapplications non-determinisniets the appli-
cation uphold Sa-work without committing at all.

Trackingwhetheroneprocesss non-determinisntaus-
ally precedesventson anothermprocesscanbe comple. In
fact, we canthink of the CPVS protocol as pessimistically
committing before send events rather than track causality
betweenprocessesHowever, applicationscan avoid com-
mitting before sendswithout tracking causalityby employ-
ing adistributedcommit, suchastwo-phase commit (2PC)—
all processesvould commit wheneer ary processdoesa
visible event. Using two-phasecommit can reducecommit
frequeng if visible events are less frequent than sends.
Applicationscanfurtherreducecommitsby trackingcausal-
ity betweenprocessesnvolving in the coordinatedccommit
only those processes with red@t non-deterministicvents.

Not only caneachof theseprotocolsbeviewedasadif-
ferent techniquefor upholding Save-work, but so can all
existing protocols from the rewery literature.

For example,pure messagéogging protocolsmale all
messageeceie eventsdeterministic,allowing applications



whoseonly non-deterministiceventsare recevesto uphold
Save-work without committing. The different messagdog-
ging protocolsdiffer in how the logging is carriedout. For
example, Sender-based Logging (SBL) protocolskeepthe
log recordfor thereceve eventin thevolatile memoryof the
sender[15], while Family-based Logging (FBL) keepslog
entries in the memory of dmstream processes [2].

In the Manetho system,each processmaintainslog
recordsfor all the non-deterministieventsit dependson in
an antecedence graph. When a processwantsto executea
visible event, it upholdsSare-work by writing the anteced-
encegraphto stablestorage[11]. In the Optimistic Logging
protocol, processesvrite log recordsto stablestorageasyn-
chronously[28]. Whena procesavantsto do a visible event,
it upholds Save-work by first waiting for all relevant log
records to mad it to disk.

The Targon/32 systemattemptsto handle more non-
determinismthan these other logging protocols [4]. All
sourcef non-determinisnexceptsignalsarecorvertedinto
messagethatareloggedin the memoryof a backupprocess
on anotherprocessarWhenever a signal is delivered (an
event that remainsnon-deterministic),Targon/32 forces a
commit to uphold Sare-work. The Hypervisor systemlogs
all sourcesof non-determinismusing a virtual machine
under the operating system [5].

Under a CoordinatedCheckpointingprotocol, a pro-
cessexecuting a visible event essentiallyassumeghat all
processem the computatiorwith whichit hasrecentlycom-
municatechave executednon-deterministi@ventsthatcaus-
ally precedehe visible event[18]. To upholdthe Save-work
invariant,the processxecutingthe visible eventinitiatesan
agreemenprotocolto forceall theseotherprocesset com-
mit.

Eachof theserecovery protocolsrepresents different
techniquefor upholdingSare-work. Eachto varyingdegrees
trades off programmereffort and system compleity for
reduced commit frequep¢and hopefully verhead).

Someprotocolsfocustheir effort to reducecommitfre-
gueng on the challengeof identifying and reducingnon-
determinismOthersendeaor to useknowledgeof anappli-
cation’ visible events. Still othersdo someof each.Each
protocolcanbe seenasrepresenting pointin atwo-dimen-
sional spaceof protocols.One axis in the spacerepresents
effort madeto identify andpossiblycorvert applicationnon-
determinism.The otheraxis representgffort madeto iden-
tify visible eventsandto commitasfew non-visibleeventsas
possible.

Such a protocol spaceis useful becauseit helpsus
understandhe relationshipsbetweenhistorically disparate
protocolsandto identify new ones.Figure3 shows how the
protocolswe have describedn this sectionmight appeatrin
such a protocol space.

A protocol falling at the origin of the spacewould
uphold Save-work by committing every event executedby

Manetho

., Coordinated .
Optimistic logging

checkpointing

*« CPVS « CBNDVS

Effort made to commit only visible events

FBL

CAND SBL  Targon/32 Hypervisor
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»

Effort made to identify/convert non-deterministic events

Figure 3: Protocol space.All consistentrecovery protocolsfall
somevherein this space.Some protocolsfocus on dealing with
non-determinismwhile others concernthemseles with visible
events. Some do a little of each.

eachprocessexerting no effort to determinewhich events
arenon-deterministior visible. As protocolsfall furtherout

the horizontalaxis, they make suficient effort to recognize
that some events are deterministic and therefore do not

requirecommits.At the pointoccupiedoy CAND, the proto-

col males sufiicient effort to distinguishall of the applica-
tion’s deterministicand non-deterministievents, executing
a commit only after non-deterministicones. Beyond that
point, the protocolsbegin to employ logging, exerting effort

to corvertmoreandmoreof the applications non-determin-
istic eventsinto deterministioones A protocolin thatportion

of the spacegforcesa commitonly whenthe applicationexe-

cutessomeunloggednon-determinismAt the point occu-
pied by Hypervisor the protocol makes sufficient effort to

log all non-determinism, wer forcing a commit.

For the vertical axis,we canthink of the protocolatthe
origin as committing all eventsratherthan exert the effort
neededo determinewhich eventsarevisible. Protocolsfall-
ing further up the axis exert moreeffort to avoid committing
eventsthatarenot visible. At the point occupiedby CPVS,
protocols commit only the true visible events and send
events—committindbeforesenddakeslesseffort thantrack-
ing whetherthatsendleadsto a visible eventon anotherpro-
cess.Protocolsfalling yet further up in the space(suchas
CoordinatedCheckpointing)are able to ask remote pro-
cessego commitif neededUnderthoseprotocols,applica-
tions are forced to commit before visibleeats only

Someprotocolsfall in the middle of the spaceapply-
ing techniquedothfor identifying andcorvertingnon-deter-
minism, as well as for tracking the causal relationship
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Figure 4: Protocol space with other desigariables.

betweemon-deterministi@ventsandthe visible eventsthey
cause.

Although all protocolsin the spaceare equialentin
terms of upholding Save-work, they do differ in terms of
other designvariables.As shavn in Figure 4, we can map
trendsin severalimportantdesignvariablesontothe protocol
space.

The farthera protocolfalls from the origin, the lower
its commitfrequeny is likely to be,andtherefore the better
its performanceHowever, thisimprovedperformanceomes
attheexpenseof simplicity andreliability. Protocolscloseto
the origin are very simple to implement,and thereforeare
more likely to be implemented correctly

For protocolsthatfall on the vertical axis,therecovery
systemneedsonly rollback failed processesand let them
continuenormally. Protocolsfurtherto theright in the proto-
col spacehave longerrecovery timesbecauseafterrollback,
the recovery systemmustfor sometime constrainreexecu-
tion to follow the path tag&n before thedilure.

Thefurtheraprotocolfalls from thehorizontalaxis,the
morenon-determinisnit safelyleavesin the application.As
we will discussn Section2.6,the morenon-determinisnin
anapplication,the betterthe chanceit will survive propag-
tion failures.

2.5. Failuretransparency for stop and propagation

failures

As mentionedin Section 2.2, failures can take two
forms: stopfailuresand propagtion failures.Upholdingthe
Save-work invariantis enoughto guaranteeonsistentecor-
ery only in the presenceof stop failures. To illustrate this
obsenation, considera protocol that commitsall eventsa
processexecutes.This protocol clearly upholdsSave-work.
However, if the processexperiencesa propagtion failure

Il Il Il
T T T
ND begin overwrite

»
>,

event bgffer pointer use pointer
e init

Figure5: Samplepropagtionfailuretimeline. A non-deterministi
evente causeduffer initialization to overflow andtrashapointer A
commit aty time aftere will prevent receery from this &ilure.

(which by definition involves executingbuggy events), this
protocolis guaranteetb commitbuggystate As aresult,the
processwill fail again during recovery, andthe application
will never be able to complete after tlaldire.

Thus,in orderto guaranteeonsistentrecovery in the
presenceof propagtion failures, an application must not
only commit to uphold Sare-work, but whenit commitsit
must avoid preservingthe conditionsof its failure. In this
sectionwe examinewhat exactly an applicationmustdo to
guaranteeonsistentecovery in the presencef propagtion
failures.

As wasthe casein our discussiorof consistentecor-
ery, non-deterministicevents are central to the issue of
recoveringfrom propagtionfailures.Imagineanapplication
that, as a result of non-deterministicevent e, overrunsa
buffer it is clearingandzeroesout a pointerdown the stack
(seeFigureb). Later, it attemptsto dereferencehe pointer
andcrashesObviously if theapplicationcommitsafterzero-
ing the pointer recovery is doomed However, if theapplica-
tion commitsary time before zeroingthe pointerandaftere,
recovery will still bedoomedf thereareno othernon-deter-
ministic eventsafter e. In this case,the pointeris not cor-
ruptedin the last committedstate,but it is guaranteedo be
re-corruptedduring recwoery.

Note that had the applicationcommittedjust beforee
andnot after, all couldbewell. During recovery, theapplica-
tion would redo the non-deterministicevent which could
executewith a different result and avoid this failure alto-
gether

Thusnon-determinisninelpsour prospectdor recover-
ing from propagtion failuresby limiting the scopeof what
is presered by a commit.

But, not all non-determinisnis createdequalin this
regard. In building up the Save-work invariant,we consera-
tively treatedasnon-deterministi@ary eventthat could con-
ceivably have a different result during recovery. However,
somenon-deterministicavents are likely to have the same
resultbeforeandafterafailure,andtherecovery systemcan-
not dependon theseeventsto changeafterrecovery. We will
called thesewentsfixed non-deterministievents.

A commonexampleof a fixed non-deterministievent
is userinput. We cannotdependon the userto aid recovery
by enteringdifferentinput valuesafterafailure. Otherexam-
plesof fixed non-deterministi@ventsincludenon-determin-
istic eventswhoseresultsare basedon the fullness of the
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Figure 6: Threesamplemachineswith crashevents (eventsthat
endstatedfilled black). It is okayto commitin caseB at the point
marked. Committing either A or C where marked could prevent
recovery.

disk (suchasthewr i t e systemcall), or thatdependon the
numberof slotsleft in the operatingsystems openfile table
(such as thepen system call).

Non-deterministicventsthatarenot fixed we will call
transient non-deterministic events.Scheduledecisions sig-
nals,messag®rdering,thetiming of userinput, andsystem
callslikeget t i meof day areall transientnon-determinis-
tic events.

We needto incorporatanto our computationamodela
way to representhe eventual crashof a processduring a
propagtion failure. We will modela processs crashasthe
executionof a crash event. Whena processxecutesa crash
event,it transitionsnto a statefrom whichit cannotcontinue
execution.In the examplein Figure5, the crasheventis the
dereferencing of the null pointer

As mentionedabove, an untimely commit during a
propagtion failure can ensurethat recovery fails. Let us

examine in more detail when a process should not commit.

Clearly a processshouldnot commitwhile executinga
stringof deterministicaventsthatendin acrashevent.Doing
sois guaranteedo eithercommitthe buggy statethat leads
to the crash,or to ensurethat the faulty stateis regenerated
during receery. This case is slwn in Figure 6A.

However, a processcan safely commit beforea tran-
sientnon-deterministicevent as long as at leastone of the
possibleresultsof thateventdoesnotleadto the executionof
a crash eent (see Figure 6B).

How aboutcommitting beforea fixed non-determinis-
tic eventwhereone of the event’s possibleresultsleadsto a
crash?This caseis shavn in Figure 6C. If the application
commitsbeforethe fixed non-deterministicavent, recovery
is possibleonly if the eventexecuteswith aresultthatleads
down the pathnot including the crashevent. If the applica-
tion is unlucky andthe fixed non-deterministicavent sends
the applicationdown the pathtowardsthe crash the commit
will ensurerecovery always fails. Sincewe cannotrely on

fixed ND event -~ , crash event

Figure 7: Portion of a state machine, its crash events, anc
correspondinglangerougpaths.Crasheventsarethosethatendin
statedfilled black. Fixed non-deterministie@ventsare marked with
a slash. The shaded paths are dangerous.

fixed non-deterministicevents having resultsconducve to
recovery, we cannotcommitbeforeary fixed non-determin-
istic events that might lead to a crash.

We can infer that some pathsthrougha portion of a
statemachineareproblematicfor handlingpropagtionfail-
ures—committinganywhere along the pathscould prevent
recovery. We next presentan algorithm for finding these
paths.For this discussionwe assumeperfectknowledgeof
eachprocess crashevents. We recognizethat this is not
practical—if we knew all the crashevents,we could likely
fix all the bugs! However, makingthis assumptiorwill help
usto analyzewhenrecovery is possiblewith the bestpossi-
ble knawledge.

Given a single processs statemachineand its crash
events:

Single-Process Dangerous
Paths Algorithm

* Color all crasheents in the state machine.

* Coloranevente if all eventsout of €'s endstateare
colored.

» Color anevente if at leastone eventout of €'s end
stateis coloredandis afixednon-deterministi@vent.

We call all the pathsin the statemachinecolored by
this algorithmdangerous paths. A portionof a statemachine
with its dangerous paths highlighted iswhdn Figure 7.

We now presentwithout proof a theoremwhich gov-
ernswhenrecovery is possiblein the presenceof propag-
tion failures.

Lose-work Theorem
Application-generiagecovery from propagtionfailures
is guaranteedo be possibleif andonly if the applica-
tion executes no commitvent on a dangerous path.



This theoremprovides an invariant for ensuringthe
possibility of recovery from propagtion failures:processes
mustnot commiton dangerougaths.lt is interestingto note
thatthelocationof theinitial bugthatcausedhecrashis sur-
prisinglyirrelevant.In theend,all thatmatterss theeventual
crashevent (or events)thatresultfrom thatbug andits loca-
tion relative to the application$ transientnon-deterministic
events.

How aboutfor multi-processapplications?The chal-
lengefor distributed applicationsis in computingtheir dan-
gerous paths. Unlike the dangerous paths algorithm
presentedabore, computingdangerougpathsfor a distrib-
utedapplicationcannotbe donestatically: whetherone pro-
cesss pathis dangerousandependnthe pathstakenby the
other processesn the computationand where they have
committed.

Givenaprocesd thatwantsto determinats dangerous
paths(presumablysoit cancommitwithout violating Lose-
work):

M ulti-Process Danger ous
Paths Algorithm

« Proces$ collectsa snapshobf wheneachprocessn
the computation last committed.

For eachnon-deterministiaeceve event that P has
executed treatthat receve as a transientnon-deter-
ministic event if the senders last commit occurred
beforethe send,and the senderexecuteda transient
non-deterministicvent betweenits last commit and
the send.All otherrecevesP hasexecutedarefixed
non-deterministiceents.

Run the single-processlangerougpathsalgorithmto
compute P8 dangerous paths.

2.6. Upholding L ose-wor k

Thesimplestway to upholdLose-work is to ensurehat
no processever commits. Although this solution has the
adwantageof requiringno application-specifiknowledgeto
implement,it also prohibits guaranteeingonsistentrecos-
ery.

Clearly, without perfectknowledgeof the applications
non-determinisnandcrasheventsit is impossibleto guaran-
teea committingapplicationupholdsLose-work. Despitethe
impossibility of directly upholdingthe invariant,we canuse
the Lose-work Theoremto drav some conclusionsabout
recovering from propagtion failures.

First, we obsenre thatit is impossibleto uphold both
Save-work and Lose-work for someapplications.Consider
anapplicationwith a visible eventon a dangerougpath.The
dangeroupathwill extendbackatleastto thelastnon-deter-
ministic event. Upholding Save-work forcesthe application
to commit betweenthe last non-deterministievent andthe
visible event, which will violate Lose-ark.

Secondsomeprotocolsdesignedo uphold Save-work
for stopfailuresguarantee thatapplicationswill notrecover

from propagtion failures.Theseprotocolseithercommitor

corvert all non-determinismgnsuringa commit after the

non-deterministicevent that steersa processonto a danger-
ous path, thus violating Lose-work. CAND, Sendetbased
logging, Tagon/32,andHypervisorareall examplesof pro-

tocolsthat prevent applicationsfrom surviving propagtion

failures.Indeed,ary protocolthatfalls onthehorizontalaxis

of the Save-work protocol space(seeFigure 3) will prevent
upholdingLose-work. The farthera protocolfalls from the

horizontalaxis, the moreit focusests attentionon handling
visible eventsandthe morenon-determinisnit leavessafely
uncommittedthusdecreasinghe chance®f violating Lose-
work (see Figure 4).

Although directly upholdingLose-work is impossible,
some applicationswith mostly “non-repeatable”bugs (so
called“Heisenhugs”[13]) maybeableto commitwith alow
probability of violating the invariant. Therearealsoa num-
ber of ways applicationscandeliberatelyende&or to mini-
mize the chancethat one of their commits causeshemto
violate Lose-vork.

First, applicationsshouldtry to crashassoonaspossi-
ble after their bugsgettriggered.Doing so shortensdanger-
ous pathsandthuslowersthe probability of the application
committingwhile executingon one.In orderto move crashes
soonef processean try to catch erroneousstateby per-
forming consisteng checks.For example,a processcould
traverseits datastructureslooking for corruption,it could
computea checksumover somedata, or it could inspect
guard bandsat the endsof its buffers and malloc’ed data.
Voting amongsindependenteplicasis a generalbut expen-
sive way to detecterroneousxecution[27]. Whena process
fails one of thesechecks,it simply terminatesexecution,
effectively crashing.

Although it is a good idea for processeso perform
theseconsisteng checksfrequently performingthemright
before committing is particularly important.

Applicationsmay alsobe ableto reducethe lik elihood
they will violate Lose-work by notcommittingall their state.
Applicationsmay have knowledgeof which dataabsolutely
mustbe presered, andwhich datacanbe recomputedrom
an earlier (hopefully bug-free) state.Shoulda bug corrupt
statethat is not written to stable storageduring commit,
recomputingthat stateafter a failure leaves openthe possi-
bility of not retriggering the tg.

Applicationscanalsotry to commitasinfrequentlyas
possible.When upholding Save-work, applicationsshould
do sowith a protocolthatcommitslessoftenandthatleaves
as much non-determinismas possible. Some applications
may be ableto add non-determinisnto their execution,or
they may be able to choosea non-deterministicalgorithm
over a deterministic one.

The applicationor the operatingsystemmay alsoable
to make somefixed non-deterministiceventsinto transient



onesby increasingdisk spaceor otherapplicationresource
limits after a &ilure.

In Section4 we will measurehow often several appli-
cationsviolate Lose-work in the processof upholdingSave-
work.

3. Cost of Upholding Save-wor k

In Section2.3, we presentedhe Save-work invariant,
which applicationscanupholdto guaranteeonsistentecor-
ery in the presenceof stop failures.However, we have not
talked aboutthe performancepenalty applicationsincur to
upholdit. As mentionedabove, executingcommits can be
expensve. It maybethecasefor realapplicationghatadher-
ing to Save-work maybeprohibitively expensve. In this sec-
tion we measurethe performancepenalty incurred for
several real applications upholding\@awork.

For this experimentwe have selectedour real applica-
tions: nvi, magic, xpilot and TreadMarks nvi is a public
domainversionof thewell known Unix text editorvi. magic
isaVLSI CAD tool. xpilot is a distributed,multi-usergame.
Finally, TreadMarksis a distributed sharedmemorysystem.
Within TreadMarks$ sharedmemoryervironmentwe runan
N-body simulation called Barnes-Hut.

Of theseapplications.all but TreadMarksare interac-
tive. We chosemainly interactve applicationsfor several
reasonskFirst, interactve applicationsare importantrecipi-
ents of failure transpareng (when these applicationsfail
thereis alwaysananngedusernearby).Secondjnteractve
applicationshave beenlittle studiedin recovery literature.
Finally, interactve applicationscanbe hardto recover: they
have copioussystemstate non-determinismandvisible out-
put, all of which requiring an able re@ry system.

TreadMarks and xpilot are both distributed applica-
tions, while the others are single-process.

To recover theseapplicationswe run them on top of
Discount Cheding, a systemdesignedto provide failure
transpareng efficiently using lightweight, full-process
checkpointg24]. DiscountCheckingis built on top of reli-
ablememoryprovided by the Rio File Cache[9], andlight-
weighttransactiongrovided by the Vistatransactiorlibrary
[23].

In orderto presere the full userlevel stateof a pro-
cess,DiscountCheckingmapsthe process entire address
spaceinto a sggmentof reliablememorymanagedy Vista.
Vista traps updatesto the process addressspaceusing
copy-on-write, and logs the before-imagesof updated
regionsto its persistenundolog. To capturethe application
statein theregisterfile (which cannotbe mappednto persis-
tentmemory),DiscountCheckingcopiestheregisterfile into
a persistenbuffer at committime. Thus,takinga checkpoint
amountsto copying the register file, atomically discarding
the undo log, and resetting page protections.

Although the stepsoutlinedso far will allow Discount
Checkingto checkpointand recover userlevel state, Dis-

countCheckingmustalsopresere andrecover the applica-
tion’s kernel state. To capture system state, the library
implementsa form of copy-on-write for kerneldata:it traps
systemcalls, copiestheir parametervaluesinto persistent
buffers, and then usesthose parametervaluesto directly
reconstructrelevant kernel stateduring recovery. For more
ontheinnerworkingsof DiscountChecking pleasesee[24].

As mentionedn Section2.4,thereexist alarge variety
of protocolsfor upholdingSare-work. In orderto getasense
of which work bestfor our suite of applicationswe imple-
mentedseren differentprotocolswithin DiscountChecking.
Our coreprotocolsare CAND, CPVS,andCBNDVS, which
we describedin Section 2.4. Recall that CAND upholds
Save-work by committing immediately after every non-
deterministicevent. CPVS commits just before all visible
andsendevents.CBNDVS commitsbeforea visible or send
eventif the processhasexecuteda non-deterministicavent
sinceits last commit. We also addedto DiscountChecking
the ability to log non-deterministiauserinput and message
receve eventsto renderthem deterministic,as well asthe
ability to usetwo-phasecommit so one processcan safely
passa dependenc on an uncommittednon-deterministic
event to anotherprocess.Adding thesetechniquesto our
coreprotocolsyieldedan additionalfour protocols:CAND-
LOG, CBNDVS-LOG, CP\2PC, and CBNDV-2PC. For
example,CAND-LOG executesa commitimmediatelyafter
ary non-deterministievent thathasnot beenlogged.CP\+
2PCcommitsall processestheneer ary procesexecutesa
visible, but doesnot needto commitbeforea processloesa
send.

In orderto implementtheseprotocols DiscountCheck-
ing needsto get notification of an applications non-deter-
ministic, visible, and send events. To learn of an
applications non-deterministicevents, Discount Checking
interceptsa processs signalsand non-deterministicsystem
calls such as get ti meof day, bi nd, sel ect, read,
recvnsg, recv, andr ecvfrom To learnof a process
visible and sendevents, DiscountCheckinginterceptscalls
towite,send, sendt o, andsendnsg.

In additionto measuringhe performanceof our appli-
cationson DiscountCheckingon Rio, we wantedto geta
senseof how our applicationsperformedusinga disk-based
recovery systemWe createda modifiedversionof Discount
Checkingcalled DC-disk thatwrote out a redolog synchro-
nouslyto disk at checkpointtime. Although we did not add
the codeneededo let DC-disktruncateits redolog, or even
properlyrecover applications,ts overheadshouldbe repre-
sentatve of what a lightweight disk-basedrecovery system
can do.

We ran our experimentson 400 MHz Pentiumll com-
puterseachwith 128 MB of memory(100 MHz SDRAM).
EachmachinerunsFreeBSD2.2.7with Rio andis connected
to a 100 Mb/s switchedEthernet.Rio wasturnedoff when
using DC-disk. Eachcomputerhasa single IBM Ultrastar
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Figure 8: Performanceof several protocolsfor four applications
Eachapplicationhasits own protocolspace At eachpointin eact
spacewe list the protocolat that point, the numberof checkpoint
in thecompleterun of theapplication,andtheruntimeoverheador
Discount Checking, and for DC-disk. For xpilot we list the
protocol, number of checkpoints per second, followed by
sustainabldrame rate for Discount Checkingand DC-disk. Full
speed foxpilot is 15 frames per second.

DCAS-34330Wultra-wide SCSI disk. All points represent
theaverageof five runs.The standardieviation for eachdata
point waslessthan 1% of the meanfor DiscountChecking,
and lessthan 4% of the meanfor DC-disk. The distributed
workloads(TreadMarks and xpilot) were both run on four
computers.We simulate fast interactve ratesby delaying
100msbetweereachkeystroke in nvi andby delayingl sec-
ond between each mouse-generated commamegitc.

We presentheresultof our runsin Figure8. For each
applicationwe shav the protocolspacedevelopedin Section
2.4.In eachapplications protocolspacewe plot the protocol
usedfor eachdata point, and the numberof checkpoints
taken during the completerun of the applicationwhenrun-
ning on that protocol.For eachprotocols datapoint we also
shav the percentexpansionin executiontime that protocol
causecdcomparedo anunrecwerableversionof theapplica-
tion, first for Discount Checking, then for DC-disk.

Becausexpilot is a real-time,continuousprogramwe
reportits performanceasthe framerateit cansustainrather
than runtime overhead.Higher frame ratesindicate better
interactvity, with full speedbeing 15 frames-peisecond.
xpilot’s numberof checkpointss givenasthelargestcheck-
pointing frequeny (in checkpointsgper second)amongstits
processes.

We can make a number of interesting obsenations
basedon theseresults.As expected commitfrequeng gen-
erally decreasesandperformancencreasesyith radial dis-
tance from the origin. The sole exception to this rule is
xpilot, wherehaving all processesommitwheneer ary one




of themwantsto executea visible event(asis donein proto-
cols using two-phasecommit) resultsin a net increase in
commit frequeng

Despitethefactthatseveralof theseapplicationgyener-
ate mary commits,thereis at least one protocol for each
applicationwith very low overheadfor DiscountChecking.
We concludethat the cost of upholding Save-work using
Discount Checking on these applications i8.10

For all the interactve applications,the overheadof
using DC-disk is not prohibitive. We seeoverheadof 12%
and27%for nvi andmagic respectely. xpilot is ableto sus-
tain ausabled framespersecondOntheotherhand,no pro-
tocol for DC-disk was able to keep up with TreadMarks.
From our experimentswe concludethat Save-work canbe
upheldwith a disk-basedecorery systemfor mary interac-
tive applications with reasonablynaverhead.

We obsenre that the protocolsthat perform best for
eachapplicationarethe onesthatexploit theinfrequentclass
of eventsfor that applicationin decidingwhento commit.
For example, TreadMarks has very few visible events,
despitehaving copiousnon-deterministicand sendevents.
For it, the 2PC protocolswhich let it commit only for the
rare visible gents are the big win.

While overheadis low for mary applicationswe can
conceve of applicationsfor which Save-work incursa large
performanceoverhead Theseapplicationsvould have copi-
ous visible and non-deterministicevents—thatis, no rare
classof events—andthey would be computeboundrather
thanuserbound.Applicationsthat might fall into this cate-
gory includeinteractve scientificor engineeringsimulation,
online transaction processing, and medical visualization.

4. Measuring Conflict between the Sae-work
and Lose-work Invariants

Guaranteeingconsistentrecovery in the presenceof
stop and propagtion failures requiresupholding both the
Save-work and Lose-work invariants. Unfortunately some
failure scenariognale it impossibleto uphold both invari-
ants simultaneously

For example, considerthe failure timeline shaovn in
Figure9. In thistimeline, theapplicationexecutesa transient
non-deterministi@ventthatcausesdt to executedown acode
path containinga bug. The applicationeventually executes
the buggy code(shavn as“fault activation”), thencorrectly
executesavisible event. After this visible event,the program
crashes.Section 2.5’'s coloring algorithm shavs that the
entire execution path from the transientnon-deterministic
eventto the crashforms a dangerougpath,alongwhich the
Lose-work invariant prohibits a commit. Unfortunately the
Save-work invariantspecificallyrequiresa commit between
the transientnon-deterministicevent and the visible event.
For this application,bothinvariantscannotbe upheldsimul-
taneously

11

visible
event

fault
activation

transient
non-deterministic

crash
event

Figure 9: Failuretimelinein whichthe Save-work invariantandthe
Lose-work invariantconflict. The shadedportion is the dangerou
path.

Someapplicationsmay have bugsthat preventuphold-
ing Lose-work even without committing to uphold Save-
work. For example, mary applicationscontain repeatable
bugs(socalled,“Bohrbugs”[13]). With thesefaultsit is pos-
sible to executefrom the initial stateof the programto the
bug without ever executing a transient non-deterministic
event. In otherwords,the dangeroupathresultingfrom the
bug extendsall the way backto the initial stateof the pro-
gram.And sincetheinitial stateof ary applicationis always
committed, applicationswith Bohrlugs inherently violate
Lose-work.

In this section,we ende&or to examinehow oftenin
practice faults causea fundamentalconflict betweenthe
Save-work and Lose-work invariants.Our focusis on soft-
ware faults (both in the applicationand operatingsystem),
which field studiesand everyday experienceteachis the
dominant cause oéflures today [13].

4.1. Application faults

We would like to measurehow often upholding Save-
work forcesan applicationto commit on a dangerougath,
like the applicationdepictedin Figure 9. We divide this
probleminto three subproblemsFirst, how often doesan
applicationbug createadangeroupathbeginningatthe start
stateof the application?As describedaborve, this scenario
arisesfrom Bohrhugsin the application.Second,given an
applicationfault that doesdependon a transientnon-deter-
ministic event (a Heisenlug), how often is the application
forced to commit betweenthe transientnon-deterministic
event at the beginning of the dangerougath and the fault
activation? Third, how often is the application forced to
commit betweenthe fault activation and the crash? We
examine this third question first usingauft-injection study

Our stratgy is to force crashesof real applications,
recover the applicationsand measureafter the fact whether
ary of their commitsto upholdSave-work occurredbetween
fault activation andthe crash.We inducefaultsin the appli-
cationby runninga versionof the applicationwith changes
in the sourcecode to simulatea variety of programming
errors.Theseerrorsincludeactionslik e overwriting random
datain the stackor heap,changingthe destinationvariable,
neglectingto initialize a variable,deletinga branch,deleting
arandomline of sourcecode,andoff-by-oneerrorsin condi-
tionslike >=and<. Seg[6] for moreinformationon our fault
model. W\ only consider runs where the program crashes.



nvi postgres

Fault Type Lose-work Lose-work

violations violations
Stack bit flip 0% 35%
Heap bit flip 83% 92%
Destination reg 18% 0%
Initialization 4% 6%
Delete branch 81% 86%
Delete instruction 51% 13%
Off by one 24% 0%
Average 37% 33%

Table 1: Fraction of applicationfaults in nvi and postgres that
violate Lose-work by committing after the fault is activated. For
eachfault type we list the percentof crashesby that fault that
commit after the fault is activated. Over all fault types,nvi and
postgres commit after the fault activation for 37% and 33% of all
crashes respeutly.

Checkpointingandrecovery for the applicationds pro-
vided by Discount Checking using the CPVS protocol.
CPVSis the bestprotocol possiblefor not violating Lose-
work for non-distrituted applications.For our experiments,
we usetwo applicationsithe Unix text editor nvi, and post-
gres, a large, publicly available relational databaseThese
two applicationdiffer greatlyin their codesizeandamount
of data thg touch while &ecuting.

We detecta run in which the application commits
betweerfault activationandthe crashby instrumentingDis-
count Checkingto log eachfault activation and commit
event.If theprogramcommitsafteractivatingthefault,it has
violatedthe Lose-work invariant.We alsoconductanend-to-
endcheckof this criteria by suppressinghe fault activation
during recovery, recorering the processandtrying to com-
plete the run. As expected,we found that runs recorered
from crashedf andonly if they did not commit after fault
activation.

We collecteddatafrom approximately50 crashesfor
eachfault type. Table 1 shavs the fraction of crasheghat
violated the Lose-work invariant by committing after fault
activation. For both nvi and postgres, approximately35% of
faultscausedhe processo commitalongthis portion of the
dangeroupath.While notincludedin thetable,7-9% of the

runs did not crashut resulted in incorrect program output.

We next turn our attentionto questionone,namely for
whatfractionof bugsdoesthe dangeroupathextendbackto
the initial stateof the program?That is, of the bugs users
encounter what portion are deterministic(Bohrkugs), and
what portion dependon a transientnon-deterministicavent
(Heisenlngs)?Although it is difficult to measurethis frac-
tion directly, several prior studieshave attemptedto shed
light on this issue.
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Chandraand Chenshaved that for Apache, GNOME,
and MySQL, threelarge, publicly available software pack-
agespnly 5-15%of thebugsin the developers buglog were
Heisenlgs (for shippingversionsof the applications)[7].
TheremainingbugswereBohrbugs.Most of thesedetermin-
istic bugs resultedfrom untestedooundaryconditions(e.g.
an older versionof Apache crashedvhenthe URL wastoo
long). Several otherresearchertave found a similarly low
occurrenceg5-29%)of applicationbugsthatdependon tran-
sientnon-deterministi@ventslik e timing [20, 29, 30]. Note
thattheseresultsconflict with the corventionalwisdomthat
maturecodeis populatednainly by Heisenligs—ithasbeen
held that the easietto-find Bohrtugswill be capturedmore
often during development[13, 17]. It appearshat for non-
mission-critical applications,the current software culture
tolerates a surprising number of deterministigd

We have yet to tacklethe secondguestionwhich asks
how oftenanapplicationis forcedto commiton the danger-
ous path betweenthe transientnon-deterministicevent and
fault activation (seeFigure9). Unfortunately we areunable
to measurehis frequeng usingour fault-injectiontechnique
becauseno realistic model exists for placinginjectedbugs
relatve to an applications transient non-deterministic
events.However, aswe will see,the casefor genericrecor-
ery from applicationfailuresis alreadysuficiently discour-
aging, even optimistically assumingno commits on this
portion of the dangerous path.

We would like to composaheseseparatexperimental
resultsin orderto illuminate the overarchingquestionof this
section.Our fault-injectionstudyshaows thatnvi andpostgres
violate Lose-work in atleast35%of crashegrom non-deter-
ministic faults.If we assumehe samedistribution of deter-
ministic and non-deterministidougsin nvi and postgres as
found in Apache, GNOME, and MySQL by Chandraand
Chen,thesenon-deterministidaultsmake up only 5-15%of
crashesTherefore,Lose-work is upheldin at most65% of
15%, or 10% of applicationcrashesLose-work and Save-
work appearto conflictin the remaining90% of failuresby
theseapplications.While extrapolatingother applications’
fault distributionsto nvi andpostgres is somavhat question-
able,asis generalizingo all applicationdrom the measure-
mentof two, thesepreliminaryresultsraiseseriousguestions
aboutthe feasibility of genericrecovery from propagtion
failures.

4.2. Operating systems faults

Although failures due to applicationfaults appearto
frequentlyviolate Lose-work, we canhopefor betternews
for faultsin the operatingsystem.In contrastto application
faults,not all operatingsystemfaultscausepropagtionfail-
ures: somecrashthe systembeforethey affect application
state.Commitsat ary time by the applicationareokayin the
presencef thesestopfailures.Thusif failuresby theoperat-



nvi postgres
Fault Type failed failed
recoveries recoveries
Stack bit flip 12% 10%
Heap bit flip 8% 6%
Destination reg 10% 0%
Initialization 16% 0%
Delete branch 26% 4%
Delete instruction 12% 4%
Off by one 22% 0%
Average 15% 3%

Table 2: Percentof OS faultsin which nvi and postgres failed to
recover. We list the percentagef crasheghatled to failuresduring
recovery for eachdult type and eer all failures.

ing systemusuallymanifestasstopfailures,we would rarely
obsene systemdilures causing Lose-ark violations.

We wantedto measurehe fraction of operatingsystem
failures for which applications are able to successfully
recover. This fractionwill includecasesvherethe operating
systemexperienceda stopfailure, aswell ascasesn which
the systemfailure wasa propagtionfailure andthe applica-
tion did not violate Lose-ork.

In orderto performthis measurementye again usea
fault-injectionstudy This time we inject faultsinto the run-
ning kernel rather than into the application [9].

We again rannvi andpostgres with DiscountChecking
upholdingSare-work using CPVS. For eachrun, we started
the applicationandinjecteda particulartype of faultinto the
kernel. We discardedrunsin which neitherthe systemnor
the applicationcrashedlf eitherthe operatingsystemor the
applicationcrashedwe rebootedthe systemand attempted
to recover the application. We repeatedthis processuntil
eachfault type hadinducedapproximately50 crashesThe
results of this xperiment are shan in Table 2.

Of the 350 operatingsystemcrasheswe inducedfor
eachapplicationwe foundthatnvi failedto properlyrecover
in 15%of crashespostgres did better only failing to recover
3% of thetime. Thesenumbersareencouragingapplication-
genericrecovery s likely to work for operatingsystemdail-
ures, despite the challenge of upholding Losekw

If we assumehat all propagtion failureswill violate
Lose-work with the probabilitiesin Table 1 (regardlessof
whetherthe propagtion failure began in the operatingsys-
tem or application),we caninfer how often systemfailures
manifestas propagtion failuresin our experiments.Com-
bining our applicationcrashresultswith our operatingsys-
temcrashresultsimpliesthatfor nvi, 41% of systemfailures
werepropagtion failures.For postgres, 10% of systenfail-
ures manifestas propagtion failures. We hypothesizethat
the proportion of propagtion failures differs for the two
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applicationshecaus®f the differentrateat which they com-
municatewith the operatingsystemthe non-interactie ver-
sionof nvi usedin our crashtestsexecutesalmostl0timesas
mary system calls per second@stgres executes.

5. Related Work

Many fault-tolerant systems are constructed using
transactiongo aid recovery. Transactionsimplify recovery
by groupingseparateperationsnto atomic units, reducing
the numberof statesfrom which anapplicationmustrecover
after a crash.However, the programmemuststill bearthe
responsibility for building recoverability into his or her
applications,a task that is difficult even with transactions.
We have focusedon higherlevel application-generidech-
niquesthatabsole programmers$rom addingrecovery abil-
ities to their software. However, we use transactionsto
implement our abstraction.

A numberof researcherbhave ende&oredto build sys-
temsthatprovide someflavor of failuretransparengfor stop
failures[3, 4, 5, 11, 14, 21, 25, 26]. Our work extendstheir
work by analyzing propaion failures as well.

The theory of distributedrecovery hasbeenstudiedat
length[10]. Prior work hasestablishedhatcommittedstates
in distributed systemamustform a consistentut to prevent
orphanprocessef8], thatrecorerablesystemsnustpresere
a consistentcut before visible events [28], and that non-
determinismboundsthe statespresered by commits[11,
16]. Our Save-work invariantis equivalentto the confluence
of these prior results.

The Save-work invariantcontritutesto recovery theory
by expressingthe establishedulesfor recovery in a single,
elementalnvariant.Viewing consistentecovery throughthe
lens of Save-work, we exposedthe protocol spaceand the
relationshipdetweerthedisparatgrotocolsonit, aswell as
several nev protocols.

To the bestof our knowledge, no prior work haspro-
posedan invariant for surviving propagtion failures that
relatesall relevant eventsin a process,nor hasary prior
work attemptedo evaluatethe fraction of propagtion fail-
ures for which consistent regery is not possible.

CAND, CPVS,andCBNDVS all beararesemblancé
simple communication-inducedcheckpointing protocols
(CIC) [1]. However there are someimportant differences.
First, all CIC protocolsassumeno knowledgeof application
non-determinismAs a result, they are forcedto roll back
ary processthat hasreceved a messagdrom an aborted
sender Commits under these protocols sene primarily to
limit rollback distanceandto preventthe dominoeffect. In
contrast,our protocolsall to varying degreesmake use of
knowledge of application non-determinism.Rather than
abortthe recevers of lost messagesthey allow senderso
deterministicallyregeneratdhe messagedJnderour proto-
cols, only &iled processes are forced to roll back.



Recaorery systemsoften dependon the assumptiorthat
applicationswill not commitfaulty state—aso called*“f ail-
stopassumption’[27]. Our examinationof propagtion fail-
ures amountsto a fine parsingof the traditional fail-stop
assumptionn which we considera singlecommit’s ability to
presere not just pastexecution,but all future executionup
to the next non-deterministicevent. Making a fail-stop
assumptionin the presenceof propagtion failuresis the
sameasassuminghatapplicationscansafelycommitatarny
time without violating the Lose-avk invariant.

6. Conclusion

The lure of operatingsystemsthat concealfailuresis
quite powerful. After all, whatuseror programmemantsto
be burdenedwith the compleities of dealingwith failures?
Ideally, we could handleall thosecompleities onceandfor
all in the operating system.

Our goalwith this paperhasbeento explorethe subject
of failuretranspareng looking at whatit takesto provide it
and exposing the circumstancesvhere providing it is not
possible We find that providing failure transparengin gen-
eralinvolvesupholdingtwo invariants a Saze-work invariant
which constrainsvhenanapplicationmustpresere its work
beforea failure,anda Lose-work invariantwhich constrains
how much work the applicationhasto throv away after a
failure.

For stopfailures,which do notrequireupholdingLose-
work, the pictureis quite rosy. We shaowv that Save-work can
be efficiently upheldfor a variety of real applicationsUsing
atransparentecovery systembasedon reliablememory we
find overheadsof only 0-12%for our suite of real applica-
tions.We alsofind thatdisk-basedecorery makesa credible
goof it, with interactve applicationsexperiencingonly mod-
erate @erhead.

Unfortunately the pictureis somevhatblealer for sur-
viving propagtionfailures.Guaranteeinghatanapplication
can recover from a propagtion failure requiresupholding
our Lose-work invariant,and Save-work andLose-work can
directly conflict for somefault scenariosin our measure-
mentsof applicationfaults in nvi and postgres, upholding
Save-work causeshemto violate Lose-work for atleast35%
of crashesEvenworse,studieshave suggestedhat 85-95%
of applicationbugstodaycausecrasheshatviolatethe Lose-
work invariantby extendingthe dangerougpathto theinitial
state.

We concludethat providing failure transpareng for
stopfailuresaloneis feasible but thatrecovering from prop-
agationfailuresrequireshelp from the application.Applica-
tions canhelp by performingbettererror detection masking
errors through N-version programming,reducing commit
frequeny by allowing the loss of somevisible events, or
reducingthe comprehensinessof the statesaved by the
recovery systemOur resultspointto interestingfuturework.
Sincepureapplication-genericecovery is not always possi-
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ble,whatis the properbalancebetweergenericrecovery ser-
vices provided by the operating systemand application-
specific aids to res@ry provided by the programmer?
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