
This paper is included in the Proceedings of the
17th USENIX Conference on File and Storage Technologies (FAST ’19).

February 25–28, 2019 • Boston, MA, USA

978-1-931971-48-5

Open access to the Proceedings of the
17th USENIX Conference on File and

Storage Technologies (FAST ’19)
is sponsored by

Software Wear Management for
Persistent Memories

Vaibhav Gogte, University of Michigan; William Wang and Stephan Diestelhorst, ARM;
Aasheesh Kolli, Pennsylvania State University and VMware Research; Peter M. Chen, Satish

Narayanasamy, and Thomas F. Wenisch, University of Michigan

https://www.usenix.org/conference/fast19/presentation/gogte

Software Wear Management for Persistent Memories

Vaibhav Gogte1, William Wang2, Stephan Diestelhorst2, Aasheesh Kolli3,4,
Peter M. Chen1, Satish Narayanasamy1, and Thomas F. Wenisch1

1University of Michigan
2ARM

3Pennsylvania State University
4VMware Research

Abstract
The commercial release of byte-addressable persistent memo-
ries (PMs) is imminent. Unfortunately, these devices suffer
from limited write endurance—without any wear manage-
ment, PM lifetime might be as low as 1.1 months. Existing
wear-management techniques introduce an additional indirec-
tion layer to remap memory across physical frames and re-
quire hardware support to track fine-grain wear. These mecha-
nisms incur storage overhead and increase access latency and
energy consumption.

We present Kevlar, an OS-based wear-management tech-
nique for PM that requires no new hardware. Kevlar uses ex-
isting virtual memory mechanisms to remap pages, enabling it
to perform both wear leveling—shuffling pages in PM to even
wear; and wear reduction—transparently migrating heavily
written pages to DRAM. Crucially, Kevlar avoids the need
for hardware support to track wear at fine grain. Instead, it
relies on a novel wear-estimation technique that builds upon
Intel’s Precise Event Based Sampling to approximately track
processor cache contents via a software-maintained Bloom fil-
ter and estimate write-back rates at fine grain. We implement
Kevlar in Linux and demonstrate that it achieves lifetime im-
provement of 18.4× (avg.) over no wear management while
incurring 1.2% performance overhead.

1 Introduction

Forthcoming Persistent Memory (PM) technologies, such as
3D XPoint [3, 46], promise to revolutionize storage hierar-
chies. These technologies are appealing in many ways. For
example, they are being considered as cheaper, higher ca-
pacity and/or energy-efficient replacements for DRAM [5,
64, 87, 119], low-latency and byte-addressable persistent stor-
age [22, 23, 83, 101], and even as hardware accelerators for
neural networks [89, 94]. We focus on systems with het-
erogeneous memory—with both DRAM and PM connected
to the memory bus. Such systems may use PM for persis-
tent data storage or to replace some or all of DRAM with a

cheaper/higher-capacity technology.
Nevertheless, PM’s limited write endurance [21,64,87,114,

119] may hinder adoption. Just like erase operations wear
out Flash cells, PM devices may also wear out after a certain
number of writes. The expected PM cell write endurance
varies significantly across technologies. For example, a phase-
change memory is expected to endure 107−109 writes [64,85,
87] while resistive RAM may sustain over 1010 writes [106].
So, system developers must consider PM cell write frequency
and manage wear to ensure memory endures for the expected
system lifetime.

PM wear-management techniques employ wear leveling,
spreading writes uniformly over all memory locations, and/or
wear reduction, reducing the number of writes with addi-
tional caching layers [26, 64, 85, 88, 92, 119]. Unfortunately,
prior techniques rely on various kinds of hardware support.
Some proposals [85, 119] add an additional programmer-
transparent address translation mechanism in the PM memory
controller. These mechanisms periodically remap memory
locations to uniformly distribute writes across the PM. Other
techniques [26, 88, 114] perform wear reduction by remap-
ping contents of frequently-written PM page frames to higher-
endurance DRAM. Such techniques depend on hardware sup-
port to estimate wear, for example, via per-page counters or
specialized priority queues/monitoring in the memory con-
troller. Unfortunately, PM-based mechanisms [26, 88, 114]
that rely on higher-endurance but volatile DRAM to reduce
wear do not support applications [77] that require crash con-
sistency when using PM as storage.

The indirection mechanisms proposed for PMs are analo-
gous to the translation layer [33, 58, 65] in Flash firmware,
which perform functionalities such as garbage collection [33,
58, 109] and out-of-place updates [33, 58, 65, 67] in addition
to wear leveling, and incur high erasure latency [33, 53, 67].
Additional translation layers increase design complexity and
incur higher access latency and power/energy consumption.
Indeed, recent work [12, 15, 40, 41, 50, 66, 82, 115] aims to
eliminate complexity and overhead associated with a Flash
translation layer by combining its features in either the virtual

USENIX Association 17th USENIX Conference on File and Storage Technologies 45

memory system in the OS [12, 15, 40, 41, 115], or in file-
system applications [15, 50, 66, 82]. We would prefer to avoid
additional indirection mechanisms for byte-addressable PMs,
which have lower access latency and offer a direct load/store
interface.

We note that the OS already maintains a mapping of virtual
to physical memory locations and that these mappings can be
periodically updated to implement wear management without
an additional translation layer. We build upon virtual memory
to implement Kevlar, a software wear-management system for
fast, byte-addressable persistent memories. Kevlar performs
both wear leveling, by reshuffling pages among physical PM
frames, and wear reduction, by judicious migration of wear-
heavy pages to DRAM, to achieve a configurable lifetime
target.

A critical aspect of wear management is to estimate the
wear to each memory location. Existing hardware tracks PM
writes only at the granularity of memory channels—too coarse
to be useful for wear management. Tracking PM writes at finer
granularity is complicated by write-back hardware caches; an
update to a memory location leads to a PM write only when a
dirty cache block is evicted from the processor’s caches.

Kevlar relies upon a novel, low-overhead wear-estimation
mechanism by using Intel’s Precise Events Based Sampling
(PEBS) [44], which allows us to intercept a sample of store
operations. Kevlar maintains an approximate representation
of hardware cache contents using Bloom filters [16], and
uses it to estimate relative fine-grain writeback rates. We
demonstrate that our estimation strategy incurs less than 1%
performance overhead.

Kevlar enables wear management for applications that em-
ploy PMs for capacity expansion [5, 55, 88] and/or durabil-
ity [77]. When a PM device is used for capacity expansion,
Kevlar exploits memory device heterogeneity and migrates
frequently updated PM pages to the neighboring DRAM—a
system-level option that cannot be exploited by device-level
wear-management schemes [85, 92, 119]. We show that mi-
grating as few as 1% of pages from PM to DRAM is sufficient
to achieve our target PM lifetime. For pages that require dura-
bility, Kevlar relies on reserve PM capacity and performs
directed migrations of frequently written pages across the
nominal and reserve capacity.

We implement Kevlar in Linux version 4.5.0 and evaluate
its impact on performance and PM lifetime. To summarize,
the contributions of Kevlar are:

• Wear leveling: We first develop an analytical framework
to show that even a simple, wear-oblivious random page
shuffling is sufficient to achieve near-ideal (uniform) wear
over the memory device lifetime at negligible (< 0.1%) per-
formance overhead. Unfortunately, even ideal wear leveling
provides insufficient lifetime for lower-endurance PMs.

• Wear estimation: We demonstrate how to estimate wear
at fine grain by using Intel’s PEBS to approximate cache

0

5

10

15

Ae
ro
sp
ik
e

M
ca
ch
ed

.

TP
CC

TA
TP

Re
di
s

Ec
ho

Lif
et

im
e

(m
on

th
s)

(b)(a)

Figure 1: (a) Pages sorted by number of writes (program entirety) in
Aerospike: There is a large disparity between most and least written pages.
(b) PM lifetime with no wear leveling: The lifetime until 1% of pages
sustain 107 writes can be as short as 1.1 months.

contents via a Bloom filter, thereby estimating the cache
write-backs to each page. We show that this mechanism is
21.7× more accurate than naive write sampling.

• Wear reduction: We demonstrate Kevlar, which uses our
wear-estimation technique to apply both wear leveling and
wear reduction, reducing wear by migrating less than 1% of
the application working set to neighboring DRAM (when
durability is not needed) incurring 1.2% (avg.) performance
overhead.

2 Background and Motivation

We briefly describe PM use cases and their drawbacks.

2.1 Persistent Memories (PMs)

Persistent memory technologies, such as Phase Change Mem-
ory [64, 87], Memristor [106], and Spin Torque Transfer
RAM [111] are byte-addressable, achieve near-DRAM per-
formance, and are denser and cheaper than DRAM. These
characteristics allow systems to leverage PMs in exciting new
ways. We focus on two well-studied use cases: (1) capacity
expansion and (2) memory persistency.

Capacity expansion: Owing to their higher density and
lower power consumption, PMs are projected to be cheaper
than DRAM [5, 31, 55, 64, 87, 119] on a dollar per GB basis.
Higher density enables greater peak capacity: Intel expects
to soon offer servers with up to 6TB of PM [3, 38]. System
designers can use this capacity to manage larger in-memory
data-structures [9, 42, 72].

Memory persistency: Since PMs are non-volatile, they
blur the traditional distinctions between memory and stor-
age. Recent research leverages PM non-volatility by ac-
cessing persistent data directly in memory via loads and
stores [22, 23, 28, 36, 48, 52, 60, 61, 63, 77, 83, 101]. The byte-
addressable load-store PM interface enables fined-grained
accesses to persistent data and avoids the expensive serializa-
tion and de-serialization layer of conventional storage [54].

46 17th USENIX Conference on File and Storage Technologies USENIX Association

PM drawbacks: Whereas PMs exhibit many useful prop-
erties, they also have two key drawbacks. First, PM cells have
limited write endurance. For example, PCM endures only
107 - 109 writes [85]. In contrast, DRAM endurance is essen-
tially unbounded (> 1015 writes) [87]. Limited PM endurance
may lead to rapid capacity loss for write-intensive applica-
tions. Figure 1(a) shows the disparity between writes seen
by the hottest and coldest pages for Aerospike (see Section 5
for our methodology). Absent wear management, frequently
written-back addresses wear out sooner, compromising life-
time. Figure 1(b) shows the lifetime until 1% of memory
locations wear out in a device with a write endurance of 107

writes (such as PCM) under the write patterns of various ap-
plications assuming no efforts to manage wear. For example,
we observe that TPCC can wear out a PCM memory device
within 1.1 months.

Second, PM access latency and bandwidth, while close
to DRAM, fall short [64, 87, 106]. So, applications sensi-
tive to memory performance might still prefer DRAM. Prior
works [5, 55, 84] mitigate this challenge by identifying hot/
cold regions of applications’ footprints and placing hot re-
gions in DRAM and cold regions in PM. Unlike these
works [5, 55, 84], we exploit memory device heterogeneity
to improve device lifetime when PMs are employed for ca-
pacity expansion and/or memory persistency. To this end, we
propose Kevlar, a wear-management mechanism to improve
low-endurance PM device lifetime.

2.2 Wear-aware virtual memory system

Prior PM wear-management mechanisms [85–87, 92, 119]
require an additional indirection layer in hardware to uni-
formly wear PM cells. However, these mechanisms suffer
from several drawbacks. First, these mechanisms [85–87, 92]
use volatile DRAM caches to reduce wear to PM. These
mechanisms do not readily support applications [77] that rely
on PM durability, since the volatile DRAM caches lose data
upon power failure. Second, these mechanisms perform ad-
ditional DRAM cache lookups and address translation for
each memory access, delaying PM loads/stores. Third, wear
leveling alone sometimes achieves PM lifetime of only 2.3
years (as shown later in Section 6.2)—lower than the desired
system lifetimes. These device-level mechanisms are unable
to exploit memory system heterogeneity for applications that
employ PMs for capacity expansion.

We explore low-overhead OS wear-management mecha-
nisms that can extend PM device lifetime to a desired tar-
get without any additional indirection layers. Indeed, our
approach is analogous to similar ongoing efforts [12, 15,
40, 41, 50, 66, 82, 115] in Flash-based systems to identify
and eliminate performance bottlenecks in the Flash transla-
tion layer (FTL). These works avoid FTL complexities and
overheads by folding its features either into the virtual mem-
ory system [12, 15, 40, 41, 115], or into file system applica-

tions [15, 50, 66, 82]. Like these works, we aim to build PM
wear-management into the virtual memory system. Note that,
contrary to block-based access to Flash, PM updates arise
from LLC write-backs. Unfortunately, there are no straight-
forward mechanisms to measure LLC write-backs directly at
fine grain—a critical challenge that we solve in Kevlar.

3 Kevlar

We detail wear-management approaches in Kevlar.

3.1 Wear leveling

Modern OSes, such as Linux, manage memory via a paging
mechanism to translate virtual to physical memory addresses.
Linux manages the page tables used by the hardware trans-
lation mechanism, and already reassigns virtual-to-physical
mappings for a variety of reasons (e.g., to improve NUMA
locality).

Kevlar’s Wear-Leveling (WL) mechanism uses existing OS
support to periodically remap virtual pages to spread writes
uniformly. Kevlar makes a conservative assumption that a
write to a physical PM page modifies all locations within that
page. Thus, Kevlar does not need an additional intra-page
wear-leveling mechanism. We observe that periodic random
shuffling of virtual-to-physical mappings—migrating each
virtual page to a randomly selected physical page frame—is
sufficient to uniformly distribute writes to PM provided shuf-
fles are frequent enough. A key advantage of this approach
is that it is wear oblivious—it requires no information about
the wear to each location; it only requires the aggregate write-
back rate to memory, which is easily measurable on modern
hardware. Surprisingly, we find that this simple approach
may be acceptable for PM devices with a sufficiently high
endurance (e.g., 109 writes).

We consider a scheme that periodically performs a random
shuffle of all virtual pages, reassigning each virtual page to
a randomly selected physical page. Whereas our analysis as-
sumes all pages are shuffled at once for simplicity, in practice,
pages are shuffled continuously and incrementally over the
course of the shuffle period. Our analysis poses the question:
How many times must the address space be shuffled for the ex-
pected number of writes to each page to approach uniformity?
Furthermore, at what point does the wear incurred by shuffling
exceed the wear from the application? To simplify discussion,
we use “write” to mean write-back from the last-level cache
to the PM throughout this section.

Analysis. Let W represent the write distribution to physical
pages and Wi be the write rate to ith physical page in the
memory. We define an equality function E as:

E(x,y) =

{
1 x == y
0 x! = y

(1)

USENIX Association 17th USENIX Conference on File and Storage Technologies 47

a. PDF and CDF for N shuffles b. Write rate of nth percentile hot pages

150

650

15 150 1500 15000 150000

W
rit

e
ra

te

Number of shuffles

 99th percentile write rate
90th percentile write rate
Mean write rate

0
0.2
0.4
0.6
0.8

1

308 313 318 323 328

Pr
ob

ab
ili

ty

Write rate

PDF: 0 shuffles PDF: 1 shuffle
PDF: N shuffles CDF: N shuffles

Probability = 0.99

99th percentile write rate

Mean write rate

Probability = 0.50

Figure 2: (a) Write-back rate distribution: We use an application’s write
distribution to derive 99th percentile write rate after N shuffles. (b) Write-
back rate vs. shuffles: The disparity in page write rates shrinks with the
increase in shuffles.

Given a write distribution W over n physical pages, Pk
n

represents the probability density function (PDF) for W after
k shuffles. Using the distribution W, we can compute the
probability P0

n (x) of physical page with the write rate x with
0 shuffles (initial state) as:

P0
n (x) =

1
n
×

n

∑
i=1

E(Wi,x) (2)

With no shuffles, one can easily compute the expected life
of each physical page by dividing the expected endurance (in
number of writes) by the write rate x, yielding an expected
lifetime distribution over pages. When we consider a shuffle’s
effect, each page will experience an average write rate x’ of
two write rates x1 and x2 chosen uniformly at random from
W . Since the PDF of the sum of two random variables is the
convolution of their respective PDFs, we can calculate the
expected distribution of write rates after S shuffles, PS

n , as:

PS
n (X = x′/2) =

∞

∑
k=−∞

PS−1
n (X = k)PS−1

n (X = x′− k) (3)

Note the normalization by one half, since we want the average
(rather than the sum) of the random variables.

We illustrate the PDF P0
n (expected write rate without shuf-

fles) of the page write distribution as expressed by Eq. 2 in
Fig. 2 (a). The PDF P0

n has a heavy right-tailed distribution
with high variance (i.e. the write-rate of few pages is high
as compared to the mean write rate), a characteristic typical
of the applications we have studied. Moreover, due to high
variance, there is a wide write-rate range that might occur for
any given page. Next, we compute the PDF PS

n using Eq. 3
for shuffles ranging from one to N. With each shuffle, the
PDF variance shrinks, while the probability of a near-mean
write rate increases. Note that the PDF mean P1

n appears to
be higher than the PDF P0

n due to the heavy right-tail of P0
n .

The mean in fact stays constant after each shuffle.
Fig. 2 (a) illustrates how the PDF after N shuffles con-

verges to the mean write rate (equivalently, writes become
uniformly distributed over the physical pages). In Figure 2 (a),
we also show the cumulative distribution function (CDF) for
N shuffles where the CDF CN

n is used to compute the top nth

percentile of pages with the highest write rate after N shuffles
(i.e., the “hottest” pages). CN

n (p) provides the minimum ex-
pected write rate of the most heavily written (1− p)∗100% of

the pages. For example, in Fig. 2 (a), we mark with a dotted
line the 99th percentile. The CN

n (p = 0.99) gives the mini-
mum expected write rate of the most heavily written 1% of
pages after N shuffles. From this rate, we can estimate when
we expect this 1% of pages to have worn out. As the num-
ber of shuffles grows, the variance shrinks and CN

n (p = 0.99)
approaches the mean write rate.

We illustrate how the write rate of the hottest pages com-
pares to the mean as a function of the number of shuffles in
Fig. 2 (b). Note that our approach can estimate the wear rate
at any percentile, but we present results primarily for the 99th

percentile. Without shuffles, there is a large disparity between
the most-written 1% of pages and the mean. The gap rapidly
shrinks with additional shuffles. Given the hottest pages’ write
rates in Fig. 2(b), we compute lifetime of a device with a 107

write endurance.
Tracing Methodology. We collect write-back traces for

a set of applications (detailed in Section 5) using the Dy-
namoRio [17] instrumentation tool and its online cache simu-
lation client drcachesim. Since drcachesim can simulate
only a two-level cache hierarchy with power-of-two cache
sizes, we model an 8-way 256KB L2 cache and 32MB 16-way
associative L3 cache, which is close to the configuration of
the physical system on which we evaluate our Kevlar proto-
type (described in Table 1). We instrument loads and stores to
trace all memory references and run drcachesim online to
simulate the system’s cache hierarchy. We record writebacks
from the simulated LLC to PM. We then extract write rate
distributions to analyze expected PM lifetime under shuffling.

Determining optimal shuffles. In Fig. 3(a), we show the
lifetime, normalized to what is possible under ideal wear level-
ing, as a function of the number of shuffles. We assume some
redundancy in the PM device similar to prior works [85, 86]
and define its lifetime as the time when 1% of pages are ex-
pected to fail. Note that the lifetime under ideal wear leveling
is the device endurance divided by the application’s average
write-back rate. As shown in Figure 3(a), frequently written
virtual pages are mapped to a different set of physical pages
after every shuffle, leading to improved device lifetime with
more shuffles. Interestingly, for all applications, after about
8192 shuffles, the expected lifetime converges to that of ideal
wear leveling (i.e., the write distribution is uniform). Note
that we do not consider the additional writes incurred due
to remapping virtual-to-physical page mappings after each
shuffle in Figure 3(a).

Figure 3(b) shows the write amplification caused due to the
shuffle operations. The write amplification shows the ratio
of the total writes incurred after shuffling as compared to
the application’s PM writes. The write amplification can be
higher than 1.4x (40% additional writes) for greater than 216

shuffles as shown in Figure 3(b).
Peak lifetimes occur when memory is shuffled 8192 times

over the device lifetime. With 8192 shuffles, we perform 5%
additional writes for wear leveling. Fig. 3(c) shows the writes

48 17th USENIX Conference on File and Storage Technologies USENIX Association

a. Normalized lifetime of 1% pages vs shuffles c. Lifetime of 1% pages accounting for shuffle writes b. Write-amplification due to shuffle writes

0
0.5

1
1.5

2
2.5

3

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

Li
fe

tim
e

(in
 y

ea
rs

)

Number of Shuffles

Aerospike Memcached TPCC
TATP Redis Echo

0
0.2

0.4

0.6

0.8
1

1.2
0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

N
or

m
ai

ze
d

Li
fe

tim
e

Number of shuffles

Aerospike Memcached TPCC
TATP Redis Echo

< 1.01 1.03 1.05 1.10 1.20
1.41

1.81

0.00

0.50

1.00

1.50

2.00

<
20

48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

W
rit

e
A

m
pl

ifi
ca

tio
n

Number of Shuffles

Figure 3: (a) Lifetime of 1% of pages vs. shuffles: The expected lifetime converges to the ideal lifetime for shuffles > 8192, (b) Write-amplification due
to shuffle writes: Kevlar performs 5% additional writes with 8192 shuffles, (c) Lifetime of 1% of pages, accounting for shuffle writes: The lifetime of PM
peaks at 8192 shuffles, following which shuffle writes become significant.

due to shuffle operations, which may grow to dwarf the appli-
cation’s writes if shuffles are too frequent (i.e. >16384).

Discussion. Shuffling memory 8192 times over the PM
device lifetime uniformly distributes PM writes. However, the
lifetime achievable via even ideal wear leveling is limited by
an application’s average write rate. For our applications, this
lifetime is only 2.3 to 2.8 years for a device that wears out
after 107 writes (see Fig. 3(c)). Wear leveling alone may be
insufficient to meet lifetime targets.

To achieve desired lifetimes, we must augment Kevlar’s
wear-leveling mechanism with a wear-reducing mechanism.
The key challenge for wear reduction is to monitor the wear to
each virtual page at low overhead. There is no straightforward
mechanism for the OS to directly monitor device wear at fine
granularity. PM devices incur wear only when writes reach the
device. Write-back caches absorb much of the processor write
traffic, so the number of stores to a location can be a poor in-
dicator of actual device wear. Current x86 hardware can count
writebacks per memory channel, but provides no support for
finer-grain (e.g., page or cache line) monitoring. Mechanisms
that monitor writes via protection faults (e.g., [5, 34]) incur
high performance overhead and fail to account for wear re-
duction by writeback caches, grossly overestimating wear
for well-cached locations. Instead, Kevlar builds a software
mechanism to estimate per-page wear intensity.

3.2 Wear Estimation

We design a wear-estimation mechanism that approximately
tracks hardware cache contents to estimate per-page PM write-
back rates. Our mechanism builds upon Intel’s PEBS perfor-
mance counters [45] to sample store operations executed by
the processor. Note that, although we focus on Intel platforms,
other platforms—AMD Instruction Based Sampling [29] and
ARM Coresight Trace Buffers [7]—provide analogous mon-
itoring mechanisms. Kevlar’s write estimation mechanism
monitors the retiring stores to maintain an estimate of hard-
ware cache contents.

Monitoring stores. PEBS captures a snapshot of proces-
sor state upon certain configurable events. We configure
PEBS to monitor MEM_UOPS_RETIRED.ALL_STORES events.

As stores retire, PEBS can trigger an interrupt to record state
into a software-accessible buffer; we record the virtual ad-
dress accessed by the retiring store.

Although accurate, sampling every store with PEBS is pro-
hibitive. Instead, we rely on systematic sampling to reduce
performance overhead: we configure PEBS with a Sample
After Value (SAV). For a SAV of n, PEBS captures only ev-
ery nth event. Like prior work [71], we choose prime SAVs
to avoid bias from periodicities in the systematic sampling.
We explore the accuracy and overhead of SAV alternatives in
Section 6.1.

We obtain the virtual addresses of sampled stores to esti-
mate per-page write-back rates. A naive strategy to compute
write-back rates is to assume that each sampled store results
in a write-back. However, with write-back hardware caches,
a PM write occurs only when a dirty block is evicted from
the cache hierarchy; many stores coalesce in the caches. In-
deed, in our applications, the naive strategy drastically over-
estimates writebacks (see Section 6.1). Consequently, we
design an efficient software mechanism that estimates tem-
poral locality due to hardware caches to predict which stores
incur write-backs.

Estimating temporal locality. Prior mechanisms have
been proposed to estimate temporal locality in storage [102,
103] or multicore [13, 90, 91] caches. These mechanisms
maintain stacks or hashmaps to compute reuse distances for
accesses to sampled locations. Instead, we focus on modeling
temporal locality in hardware caches to estimate LLC write-
backs using sampled stores. We estimate temporal locality by
using a Bloom filter [16] to approximately track dirty memory
locations stored in the caches. For each store sampled by
PEBS, we insert its cache block address into the Bloom filter.
(Algorithm 1: Line 12-14). Whenever a new address is added
to the filter, we assume it is the store that dirties the cache
block, and hence will eventually result in a writeback. Further
stores to the same cache block will find their address already
present in the Bloom filter; we assume these hit in the cache
and hence do not produce additional write-backs. Thus, the
Bloom filter maintains a compact representation of likely dirty
blocks present in the cache.

Bloom filters have a limited capacity; after a certain num-

USENIX Association 17th USENIX Conference on File and Storage Technologies 49

ber of insertions into the set, their false positive rate increases
rapidly. We size the Bloom filter such that it can accurately
(less than 1% false positives) track a set as large as the capac-
ity of the processor’s last-level cache (LLC), which is roughly
700K cache blocks on our evaluation platform. We clear the
Bloom filter when the number of insertions reaches this size
(Algorithm 1: Line 19-29).

Of course, after clearing the filter, Kevlar would predict a
sudden false spike in writeback rates. We address this by using
two Bloom filters; Kevlar probes both filters but inserts into
only one “active” filter at a time (Algorithm 1: Line 3, 12-17).
When the active filter becomes full, we clear the inactive filter
and then make it active. As such, at steady state, one filter
contains 700K cache block addresses, while the other is active
and being populated (Algorithm 1: Line 12-17). We assume a
cache block will result in a store hit (no additional writeback)
if it is present in either filter (Algorithm 1: Line 6-10).

In essence, our tracking strategy filters out cache blocks
that have write reuse distances [56] of about 700K or less,
as such writes are likely to be cache hits. Effectively, we
assume that dirty blocks are flushed from the cache primarily
due to capacity misses, which is typically the case for large
associative LLCs [39, 113]. Note that our estimate of the
cache contents is approximate. For example, the Bloom filters
do not track read-only cache blocks. Moreover, due to SAV,
only a sample of writes are inserted. The mechanism works
despite these approximations because: (1) frequently written
addresses are likely to be sampled and inserted into the filters—
it is these addresses that are most critical to track; and (2) few
addresses have reuse distances near 700K—reuse distances
are typically much shorter or longer, so the filters are effective
in estimating whether or not a store is likely to hit. Although
Kevlar approximates writebacks by sampling retiring stores,
our goal in Kevlar is to measure relative hotness of the pages
as opposed to absolute writebacks per page. We show the
accuracy of our estimation mechanism to identify writeback
intensive pages later in Section 6.1.

Estimating write-backs. PEBS provides the virtual ad-
dress of sampled stores. Our handler then walks the software
page table to obtain the corresponding physical frame (Alg. 1:
Line 7). In our Linux prototype, we maintain a writeback
count in struct page, a data-structure associated with each
page frame. When we sample a store, we update the counter
for the corresponding physical page as shown in Alg. 1: Line 8.
Kevlar uses the estimated writebacks to identify writeback-
intensive pages.

3.3 Wear Reduction

As shown in Sec. 3.1, Kevlar’s wear-leveling mechanism can
achieve only 2.3- to 2.8-year lifetime for a PM device that
wears out after 107 writes. Our goal is to achieve a lifetime
target for a low-endurance PM device by migrating heavily
written pages to DRAM. We assume a nominal lifetime goal

of four years. This target is software-configurable; we discuss
longer targets in Section 6.2.

Consider an application with a memory footprint of N phys-
ical PM pages and a given lifetime target, the write rate to
the PM B writes/sec to achieve the lifetime target can be
computed as:

B =
Endurance×N

Li f etime
(4)

We use Eq. 4 to compute the number of writes the ap-
plication may make per 1GB (i.e. N = 256K small pages)
of PM footprint. For a given lower-bound endurance of 107

writes and a 4-year lifetime, writebacks must be limited to
20K writes/sec/GB. Configuring a different target lifetime or
device endurance changes the allowable threshold.

One approach is to use wear leveling (as described in
Sec. 3.1) by provisioning additional reserve capacity such
that the target lifetime is met. This strategy is applicable both
when PM is used for persistent storage or capacity expansion.
For instance, with N pages in an application, and average write
rate of B’ writes/sec/GB, the reserve capacity R to achieve a
4-year lifetime is given by:

R =
N×B′

2×104 (5)

When the application write rate is high relative to the de-
vice endurance, the required reserve can undermine any cost
advantages, as we show later in Section 6.3. Instead, for ca-
pacity expansion, we propose wear reduction by migrating
the hottest pages to high-endurance memory (DRAM). Kevlar
regulates the average write rate to the pages that remain in
PM to 20K writes/GB/sec such that we achieve the desired
lifetime of four years.

3.3.1 Page migration

Kevlar uses its write-back estimation mechanism to measure
per-page PM writeback rates and migrate the most write-
intensive pages to DRAM. Kevlar must regulate average PM
writeback rate to 20K writes/GB/sec to achieve a 4-year life-
time. Kevlar uses IMC.MC_CHy_PCI_PMON_CTR counters in
the Intel memory controller to count CAS_COUNT.WR events,
which measure write commands issued on the memory chan-
nels. Such counters already exist in DRAM controllers,
and analogous counters exist on other hardware platforms
(e.g. ARM’s L3D_CACHE_WB performance monitoring unit
counter [8]). This aggregate measure allows us to determine
whether pages must be migrated from PM to DRAM (or can
be migrated back) to maintain the target average rate of 20K
writes/GB/sec.

Migrating hot-pages to DRAM. Kevlar computes the PM
writeback rate at a fixed 10-second interval. If the average
writeback rate exceeds 20K writes/GB/sec during an interval,
Kevlar enables PEBS and samples the retiring stores as ex-
plained in Section 3.2. Kevlar estimates the PM writeback rate

50 17th USENIX Conference on File and Storage Technologies USENIX Association

Algorithm 1 Write-back estimation mechanism
1: Inputs:

PEBS record rec, Bloom Filter filterA, Bloom Filter filterB
2:
3: Initialize:

filterA.isActive = True
filterB.isActive = False
activate = LLC_CACHE_BLOCKS

4:
5: blockAddr = rec.strAddr » log2(LLC_BLOCK_SIZE)
6: if !filterA.isPresent(blockAddr) and !filterB.isPresent(blockAddr) then
7: pageStruct = doPageWalk(blockAddr)
8: pageStruct.WBCount+=1
9: memRef+=1

10: end if
11:
12: if filterA.isActive and !filterA.isPresent(blockAddr) then
13: filterA.add(blockAddr)
14: end if
15: if filterB.isActive and !filterB.isPresent(blockAddr) then
16: filterB.add(blockAddr)
17: end if
18:
19: if activate == memRef then
20: filterA.isActive = !filterA.isActive
21: filterB.isActive = !filterB.isActive
22: if filterA.isActive then
23: filterA.clear()
24: end if
25: if filterB.isActive then
26: filterB.clear()
27: end if
28: activate+=LLC_CACHE_BLOCKS
29: end if

at 4KB-page granularity. When migration is needed, Kevlar
scans writeback counters for all page frames and sorts them
by their estimated write-back counts. Kevlar then migrates
the hottest 10% of pages to DRAM. It continues monitor-
ing for an additional interval. Kevlar ceases migration, dis-
ables PEBS monitoring, and clears write-back counters when
the write-back rate falls below 20K writes/GB/sec. With this
monitoring and migration control loop, Kevlar achieves our
lifetime target with 1.2% performance impact.

Migrating cold pages to PM. An application’s access pat-
tern might change over its execution, so pages migrated to
DRAM may become cold. To minimize the application foot-
print in DRAM, it is desirable to migrate cold pages back
to PM. If Kevlar observes five consecutive intervals with a
PM writeback rate below 20K writes/GB/sec, it re-enables
PEBS for a 10-second interval, estimates the write-back rate
of pages in DRAM, and migrates 10% of cold pages from
DRAM back to PM.

4 Implementation

We implement Kevlar in Linux kernel version 4.5.0. We use
the Linux control group mechanism [74] to manage Kevlar
specific configuration parameters.

Wear leveling. Kevlar should shuffle the entire application
footprint once every 4.2 hours to achieve uniform wear lev-
eling over a lifetime of 4 years. Instead of gang-scheduling
the shuffle operations together every 4.2 hours, Kevlar peri-
odically shuffles a fraction of application footprint. Kevlar

maintains a shuffle bit in the struct page associated with
each page frame to indicate whether the page was shuffled
within the current shuffle interval. Kevlar scans the applica-
tion pages every 300-sec shuffle interval to identify the pages
that are yet to be shuffled. It randomly chooses a fraction of
pages to be shuffled in this shuffle interval by equally appor-
tioning the total number of pages yet to be shuffled to the time
remaining in a 4.2 hour shuffle operation.

The fraction of pages are then shuffled following these
steps: (1) Kevlar selects a pair of application pages in PM
to be swapped. (2) It locks the page table entries for both
pages so that any intermediate application accesses stall on
page locks. (3) It allocates a temporary page in DRAM (for
capacity workloads) to aid in swapping the contents of the two
pages in PM. (4) Once the pages are swapped, Kevlar restores
the page table entries so that the virtual addresses now map
to the swapped pages, unlocks the pages, and deallocates the
temporary DRAM page. (5) Once shuffled, Kevlar records
this event in the shuffle bit in page frame’s struct page of
the two pages.

Note that, we use a temporary page mapped in DRAM to
limit wear in PM due to shuffle. For persistent applications,
we map the temporary page in PM to ensure that the page
contents are persistent in case of intermediate failure. Once all
the pages are shuffled, Kevlar clears the shuffle bit in struct
page and initiates the next shuffle.

Wear estimation. Kevlar initializes PEBS to monitor the
MEM_UOPS_RETIRED.ALL_STORES event and a SAV to sam-
ple the retiring stores for wear estimation. We determine SAV
empirically to ensure that the monitoring has negligible perfor-
mance overhead. Kevlar implements two Bloom Filters, each
of size 840KB and a capacity of 700K cache blocks, corre-
sponding to the 45MB LLC of our system. We size the Bloom
filter to achieve less than 1% false positives. As explained in
Section 3.3.1, Kevlar performs a software page table walk to
identify the page frames being accessed by the sampled store,
and records writeback counts in struct page.

Wear reduction. Kevlar monitors PM writeback rate at a
10-second migration interval to determine if it needs to initi-
ate hot/cold page migration between DRAM and PM. If the
PM writeback rate triggers a migration, Kevlar scans the appli-
cation pages and identifies the top 10% hot (or cold) pages to
be migrated to DRAM (or PM). It performs migration using
a mechanism similar to the page shuffles in wear leveling: it
locks the page to be migrated, copies its contents to a newly
allocated page in DRAM (or PM), updates page table entries,
and unlocks the page. If no migration is triggered, Kevlar
disables PEBS sampling counters to minimize performance
monitoring overhead.

5 Methodology

We next discuss details of our prototype and evaluation.

USENIX Association 17th USENIX Conference on File and Storage Technologies 51

Core
Intel Xeon E5-2699 v3, 2.30GHz

36-core (72 hardware threads)
Dual-socket x86 server

L1 D&I Cache 32KB, 8-way associative

L2 Cache 256KB, 8-way associative

Shared LLC 45MB, 20-way associative

DRAM 256GB per socket

Operating System Linux Kernel 4.5.0

Table 1: System Configuration.

5.1 Emulating persistent memory

A system with byte-addressable persistent memory is not yet
commercially available. Hence, we emulate a hybrid PM-
DRAM memory system using a dual-socket server. We run
the application under test on a single socket and treat memory
local to that socket as DRAM. Conversely, we treat memory of
the remote socket as PM. Note that the local and remote nodes
are cache coherent across the sockets. Since each chip has its
own memory controllers, we use the performance counters in
each memory controller to monitor the total accesses to each
device and distinguish “PM” and “DRAM” accesses.

Using this emulation, our Kevlar prototype incurs the ac-
tual performance overheads of monitoring and migration that
would occur in a real hybrid-memory system. However, the la-
tency and bandwidth differential between our emulated “PM”
and “DRAM” is only the gap between local and remote socket
accesses. The performance differential between DRAM and
actual PM devices is technology dependent and remains un-
clear, but is likely higher than in our prototype. We expect
relative performance overhead of our mechanism (as detailed
later in Section 6.4) to be lower on a system with a high differ-
ential between DRAM and PM devices. Our results represent
a high estimate of the Kevlar’s performance overhead.

Nevertheless, our contributions with respect to wear man-
agement are orthogonal to the performance aspects of re-
placing DRAM with PM, which have been studied in prior
work [5, 55, 84]. We focus our evaluation on quantifying the
effectiveness and overheads of Kevlar’s mechanisms.

5.2 System configuration

We run our experiments on a dual-socket server with the
configuration listed in Table 1. We use the Linux control
group mechanism [74] to isolate the application to a particular
socket. We pin application threads to execute only on CPUs on
the local node, but map all memory to initially allocate in the
remote node using Linux’s memory and cpuset cgroups,
modeling a system where DRAM has been replaced by PM.
Kevlar expects a lifetime goal for the PM device as an input,
and performs wear leveling, estimation, and reduction for all
the processes in the cgroups. The test applications use all 18
CPU cores of the local node with hyper-threading enabled. For

client-server benchmarks, we run clients on another system
to avoid performance interference.

As explained in Section 3.2, we use Intel’s PEBS counters
to estimate PM page writeback frequency. We isolate these
counters to monitor only accesses from the application under
test using Linux’s perf_event cgroup mechanism. Thus,
spurious store operations from background processes or the
kernel do not perturb our measurements.

We measure the write rate to the PM (i.e. remote DRAM)
using the performance counters in the memory controller.
Unlike PEBS counters, these counters lie in a shared domain
and cannot be isolated to count only events for a particular
process. However, we have measured the write rate of the
background processes in an idle system and find that they
constitute less than 1% of the total writeback rate observed
during our experiments.

5.3 Benchmarks
We study two categories of applications. We report memory
footprints of the benchmarks under study in Figure 9.

5.3.1 Capacity Expansion Workloads

We evaluate both the wear-leveling and wear-reduction mech-
anisms of Kevlar for the following benchmarks in a “capacity
expansion” PM use case.

NoSQL applications. Aerospike [1, 97], and Mem-
cached [4] are popular in-memory NoSQL databases. We
use YCSB clients [24] to generate the workload to Aerospike
and Memcached. We evaluate 400M operations on 4M keys
for Aerospike and 100M operations on 1M keys for Mem-
cached. We configure each record to have 20 fields resulting
in a data size of 2KB per record. As we are interested in man-
aging wear in write-intensive scenarios, we configure YCSB
for update-heavy workload with a 50:50 read-write ratio and
Zipfian key distribution.

MySQL. MySQL is a SQL database management sys-
tem. We drive MySQL using the open-source TPCC [98]
and TATP [79] workloads from oltpbench [27]. TPCC mod-
els an order fulfillment business and TATP models a mobile
carrier database. In each, we run default transactions with a
scale-factor of 320 for 1800 secs.

5.3.2 Persistent Workloads

We evaluate persistent applications from the WHISPER
benchmark suite [77], which use the Intel PMDK libraries [2]
for persistence. These applications divide their address space
into volatile and persistent subsets. The persistent subset must
always be mapped to PM to ensure recoverability in the event
of power failure. As such, Kevlar may not migrate pages in the
persistent subset to DRAM. We instead rely only on wear lev-
eling to shuffle these pages in PM. However, we allow pages

52 17th USENIX Conference on File and Storage Technologies USENIX Association

Figure 4: Estimated writebacks vs. observed writebacks. We compare the estimated writebacks with observed writebacks obtained from memory access
tracing. Each point on the scatter plot represents the number of writebacks to a page. The red line on each plot represents the ideal prediction curve.

87.53 78.23 67.14
94.42

63.22
96.25 80.10

0.00
20.00
40.00
60.00
80.00

100.00

Aerospike Mcached TPCC TATP Redis Echo Mean

Ac
cu

ra
cy

 (%
)

Figure 5: Comparison of top 10% estimated hot pages to top 10%
observed hot pages. Kevlar’s wear estimation identifies 80.10% (avg.) of
the 10% hottest written pages correctly.

in the volatile subset to migrate to DRAM if the aggregate
write rate to all pages exceeds 20K writes/GB/sec.

Linux presently provides no mechanism to label pages as
persistent or volatile. WHISPER benchmarks use Linux’s
tmpfs [96] memory mapped in DRAM to emulate persis-
tency, and the persistent pages are allocated in a fixed address
range. We hardcode this address range in our experiments to
prevent page migrations to DRAM.

We select the two NoSQL applications, Redis and Echo,
from WHISPER. Redis is a single-threaded in-memory key-
value store. We configure a Redis database comprising 1M
records, each with 10 fields. We use YCSB clients to perform
key-value operations on the Redis server with a Zipfian dis-
tribution. For our evaluation, we run 40M operations with an
update-heavy workload with a 50:50 read-to-write ratio. For
echo, we use the configuration provided with the WHISPER
benchmark suite and evaluate it using 2 client threads each
running 40M operations.

6 Evaluation

We evaluate Kevlar’s wear-management mechanisms.

6.1 Modeling Wear Estimation

We first evaluate the accuracy of Kevlar’s wear-estimation
mechanism as described in Section 3.2. We collect a ground-
truth writeback trace for each application using the online
cache simulator drcachesim in Dynamorio [17] with a trac-
ing infrastructure described in Section 3.1. We model the
PEBS sampling mechanism and bloom filters in drcache-
sim to record the estimated writeback rate. We compare the
ground-truth writebacks against the estimates provided by the
emulation of PEBS sampling and our Bloom filters.

0
10
20
30
40
50

Aerospike Mcached TPCC TATP Redis Echo Mean

R
M

S
er

ro
r

No bloom filter SAV = 23 SAV = 17 SAV = 11 SAV = 1

248.1 243.6 62.0

Figure 6: RMS Error with cache modeling. Kevlar achieves 20× lower
RMS error than a mechanism without cache modeling.

Comparison with ideal mechanism. In Figure 4, we show
estimated writebacks (vertical axis) and ground-truth ob-
served writebacks (horizontal axis) for each application for
one 10-sec sampling interval. We use log-linear scale1 to
highlight accuracy of our mechanism for higher write rate.
As instrumentation results in application slowdown, we ex-
pand the 10-second sampling duration by the slowdown due
to instrumentation measured for each workload. Due to the
log-linear scale, we plot a red curve in the Figure to show the
ideal prediction curve, where estimated and observed write-
backs match. For all applications, Figure 4 (a-f) indicates that
the estimated writebacks correlate closely to the ideal curve.
Echo performs cache flush operation following each store to
flush dirty cache blocks to PM. As a result, we observe 64
write-backs per page (owing to 64 cache blocks in a 4KB
page) for nearly all pages. As shown in Figure 4(f), Kevlar is
able to measure write-backs to these pages.

Prediction accuracy. Next, we compare the top 10% heav-
ily written pages as estimated by Kevlar’s wear-estimation
mechanism to the top 10% hottest observed (ground-truth)
pages. Figure 5 shows the percentage of heavily written pages
correctly estimated by Kevlar. Kevlar correctly estimates
80.1% hottest pages on average and up to 96.3% hottest pages
in Echo as compared to the ground truth.

We also demonstrate the accuracy of Kevlar’s prediction
mechanism by measuring root-mean-squared (RMS) error
between estimated and observed writebacks. The RMS er-
ror reports the standard-deviation of the difference between
estimated and observed writebacks. We study the impact of
hardware cache modeling using our Bloom filter mechanism

1We use log-linear scale to highlight estimated and observed writebacks
to hot pages that are crucial for our study. In contrast, a log-log scale dis-
cretizes lower writeback values and hides comparison between observed and
estimated writebacks for hot pages.

USENIX Association 17th USENIX Conference on File and Storage Technologies 53

0

10

20

30

40

Aerospike Memcached TPCC TATP Redis Echo Mean

Pe
rf

. o
ve

rh
ea

d
(in

 %
)

SAV = 1 SAV = 11 SAV = 17 SAV = 23

Figure 7: PEBS sampling overhead. Runtime overhead due to sampling
every retiring store is 13.2% (avg.). We configure PEBS SAV = 17 in Kevlar
with < 1% overhead.

by comparing Kevlar’s prediction mechanism with a mecha-
nism without the Bloom filter. Figure 6 shows the RMS error
of our writeback prediction mechanism normalized to the
average writeback rate of the application for different PEBS
SAV values. We choose prime numbers for PEBS SAV to
avoid periodicities in systematic sampling.

As compared to a mechanism that does not model cache
contents, we observe 100.0× and 106.8× improvement in
RMS errors for Memcached and Redis, respectively, with our
estimation mechanism (with SAV = 1). Overall, the Bloom
filters can approximate the dirty cache contents well, allow-
ing it to estimate writebacks with 21.6× lower RMS error on
average. The Bloom filters are critical to avoiding overesti-
mation of writebacks in Aerospike, Memcached, and Redis
by estimating temporal locality of memory accesses. Note
that, as shown in Figure 6, the standard deviation of the dif-
ference between absolute values of estimated and observed
writebacks is 2.85× that of the mean for SAV of 1. Although
the estimated writebacks are not accurate when compared to
absolute values, our goal in Kevlar is to measure the relative
hotness of the pages. As shown earlier in Figure 5, Kevlar
identifies 80.1% of the 10% hottest pages correctly.

Configuring PEBS SAV. We study the RMS error in Fig-
ure 6 and runtime performance overhead in Figure 7 for dif-
ferent PEBS SAV values. Figure 7 shows the monitoring
overhead for different SAVs when compared to the applica-
tion runtime without PEBS monitoring. Upon sampling a
store, PEBS triggers an interrupt and records architectural
state in a software buffer, which can lead to a performance
overhead. Taking an interrupt on every retiring store results
in substantial performance overhead. Indeed, with SAV=1,
the performance overhead due to PEBS sampling can be as
high as 112.9% (in Aerospike), and 13.2% on an average. In
contrast, the performance overhead in persistent applications,
Redis and Echo, is less than 3% as we sample only stores
to volatile pages, which may be migrated between PM and
DRAM. Interestingly, with SAV of 17, the average perfor-
mance overhead due to sampling is less than 1% (avg.) with
no substantial degradation in RMS error. As we do not see
any substantial performance gains for SAV > 17, we configure
PEBS to sample one in every 17 stores in Kevlar.

0
1
2
3
4
5
6
7

Aerospike Mcached. TPCC TATP Redis Echo Mean

Li
fe

tim
e

(in
 y

ea
rs

) No wear-mgmt. Ideal WL WL WL+WR (4 yrs) WL+WR (6 yrs)

Figure 8: PM Lifetime: Kevlar achieves greater than 4 years of lifetime;
11.2× (avg.) higher than no wear leveling.

6.2 PM Lifetime

We study Kevlar for lifetime targets of four and six years.
We compare Kevlar’s wear-management mechanisms to a
baseline with no wear leveling. We make a conservative as-
sumption that a write to a physical page modifies all locations
within that page for Kevlar’s wear-management mechanisms.
In contrast, we measure lifetime for the baseline via precise
monitoring at cache-line granularity.

Wear leveling alone. We first consider lifetime for the
PM device achieved by Kevlar’s wear-leveling mechanism
alone. As discussed in Section 3.3, to achieve a four- (or six-)
year lifetime until 1% of locations wear out on a PM device
that can sustain only 107 writes, the average write rate must
be below 20,000 (or 13,333) writes/GB/second. Even after
wear leveling, all of the applications we study incur a higher
average write rate when their entire footprints reside in PM.
We also show lifetime due to ideal wear leveling in Figure 8
when writes are uniformly remapped in PM. Although wear
leveling substantially improves PM lifetimes over a baseline
of no wear leveling, it falls short of achieving the four-year
and six-year lifetime targets for all applications. As compared
to the baseline with no wear leveling, Kevlar with only wear
leveling achieves an average lifetime improvement of 9.8×
with 31.7× improvement in lifetime for TPCC.

Wear leveling + wear reduction. Wear reduction can im-
prove application lifetimes to meet our target while moving
only a remarkably small fraction of the application footprint
to DRAM. Kevlar in wear leveling + wear reducing mode
aims to limit the write-back rate to the PM at 20K (or 13.3K)
write/GB/second for four (or six) year lifetime target, by iden-
tifying the “hottest pages” that are being frequently written
back and migrating them to DRAM.

Owing to the writeback rate limit imposed by Kevlar’s
wear-reducing mechanism, as indicated in Figure 8, the life-
time with wear leveling + wear reduction exceeds the config-
ured target of four and six years for all applications. Kevlar’s
wear leveling + wear reduction mode (for a 6-year lifetime
configuration) achieves the highest lifetime improvement of
80.7× for TPCC, with an average improvement of 26.1×
when compared to no wear leveling.

High-endurance PMs: Absent wear-management mecha-
nisms, a PM device that can sustain 108 writes would wear out
within 9.8 months. Moreover, for PM devices with endurance
108 - 109, wear-leveling mechanism would be sufficient to

54 17th USENIX Conference on File and Storage Technologies USENIX Association

10.5GB
3.1GB 4.3GB 5.4GB 4.6GB

12.9GB

1.0

10.0

100.0

1000.0

10000.0

Aerospike Memcached TPCC TATP Redis Echo

M
em

. f
oo

tp
ri

nt
 (i

n
M

B)

Base WL only (4 yrs) WL only (6 yrs) WL+WR (4 yrs) WL+WR (6 yrs)

Figure 9: Application footprint in PM and DRAM: Kevlar migrates
< 1% of application footprint to DRAM. Blue and orange bars represent
application footprint in PM and DRAM respectively.

achieve the desired lifetimes of 4- and 6-years. For instance,
our wear-leveling mechanism alone can achieve a lifetime
of 24.0 years (average) for a PM device that can sustain 108

writes. Kevlar would not trigger wear-reduction mechanism
for PMs with high write endurance as the application write-
back rate would be lower than configured threshold. Never-
theless, the endurance numbers of commercial PM devices
(i.e. Intel’s 3D XPoint) are not publicly available. As such,
we can configure the endurance of a PM device in Kevlar.

6.3 Memory Overhead
Figure 9 shows the baseline memory footprint of the applica-
tions, and an additional memory footprint in DRAM necessary
to host the most frequently written PM pages that are migrated
by Kevlar. In addition, we also show the reserve footprint that
can be mapped in PM to achieve the lifetime targets using
wear-leveling mechanism alone as outlined in Equation 5.

Wear reduction for persistency applications. For the
WHISPER benchmarks that rely on persistency (Redis &
Echo), the pages in the persistent set must always remain
in PM. Nevertheless, some fraction of these applications’
footprints are volatile and may reside in PM or DRAM. We
initially map the entire footprint to the PM and allow only
volatile pages to migrate to DRAM. As a majority of memory
accesses are made to the volatile footprint in these applica-
tions [77], the wear-reducing mechanism can achieve a 4 year
lifetime by migrating only 23.6MB of footprint to DRAM.

Reserve PM required can be significant. The amount of
PM reserves required to ensure that the target lifetime be met
are significant. It can be as high as 2.7× for TPCC and 2.0×
for TATP for a six-year lifetime (1.3× average across all the
benchmarks). The required reserve capacity may undermine
the cost advantages of capacity expansion offered by PMs.

Reserve DRAM required is much smaller than reserve
PM. As can be seen from Figure 9, the reserve DRAM re-
quired is much smaller than the reserve PM required. This
difference is due to a difference in the write endurance of
DRAM (practically infinite) and the cell endurance we assume
for PM (107 writes). Note that Kevlar’s goal is to limit wear
while maximizing application footprint in PM (especially
for the capacity expansion use-case) and achieve configured
device lifetime. Thus, it migrates only the heavily written

-1
0
1
2
3
4
5
6
7
8

Aerospike Memcached TPCC TATP Redis Echo Mean

Sl
ow

do
w

n
(%

)

WL (4 yrs)
WL+Monitoring (4 yrs)
WL+WR (4 yrs)
WL+WR (6 yrs)

Figure 10: Performance overhead: Overhead of page monitoring and
migration in Kevlar is 1.2% (avg.) in our applications.

application footprint from PM to DRAM. In contrast, prior
mechanisms [5, 55] aggressively migrate pages to DRAM
and limit application performance degradation resulting from
slower PM accesses. Kevlar migrates less than 1% of the ap-
plication’s footprint to DRAM for four- and six-year lifetime
targets, on average.

6.4 Performance Overhead
Next, we present application slowdown due to Kevlar.

Page shuffle overhead. Figure 10 illustrates the slowdown
(lower is better) in applications resulting from our wear level-
ing, wear estimation, and page migration. The shuffle mech-
anism incurs a negligible average performance overhead of
0.04% (highest 0.1% in Echo) over the baseline with no wear
leveling.

Overheads from Kevlar’s monitoring and migration.
As explained in Section 3.3, we configure PEBS with SAV of
17, and further reduce performance overhead by filtering store
addresses using the Bloom filters. We observe up to 1.3%
slowdown from our PEBS sampling in Aerospike, with even
lower overheads in the remaining applications. Redis observes
a net gain (as much as 0.9%) when we enable migration and
relocate their frequently written pages to DRAM because the
local NUMA node (representing DRAM) is faster than the
remote node (representing PM) in our prototype. We expect
the performance gains to be more pronounced with PMs that
are anticipated to exhibit higher memory latency than remote
DRAM in our prototype. On an average, we see 1.2% (or
3.2%) slowdown due to our wear-management mechanisms
to achieve the lifetime goal of four (or six) years.

7 Related work

The adoption of PMs has been widely studied by both
academia and industry in processor architectures [23, 28, 51,
52, 60, 77, 83, 95, 117], file systems [20, 23, 30, 100, 105, 107,
108], logging/databases [10, 11, 18, 19, 35–37, 59, 62, 63, 68,
73, 80, 81, 104], data structures [43, 78, 99], and distributed
systems [57, 70, 116, 120]. We discuss the relevant works that
address wear out problem in PMs.

7.1 Wear-reduction mechanisms
We first discuss techniques that reduce PM writes.

USENIX Association 17th USENIX Conference on File and Storage Technologies 55

DRAM cache. Numerous works [32, 75, 87, 92] advocate
placing a DRAM cache in front of PM. The DRAM cache
absorbs most of the writes thereby reducing wear. A DRAM
cache presents three disadvantages: (1) it sacrifices capacity
that could instead be used to expand memory; (2) it increases
the latency of PM writes; and (3) it is inapplicable to writes
that require persistency, which must write through the cache.
Like many prior works [23, 28, 36, 51, 52, 60, 77, 83, 95, 117],
we assume that PM and DRAM are peers on the memory bus.

Page migration. Several works [6, 26, 88, 114] propose
migrating pages from PM to DRAM to reduce wear. Dhiman
et al. [26] use a software-hardware hybrid solution, where
dedicated hardware counters (one per PM page) that track
page hotness are maintained in PM and cached in the mem-
ory controller. RaPP [88] and Zhang et al. [114] use a set
of queues in the memory controller to estimate write inten-
siveness and perform page migrations to DRAM. However,
these mechanisms propose no wear-leveling solutions for the
remaining pages in PM. As such, these mechanisms may still
not achieve desired PM device lifetimes. For example, RaPP
can achieve a device lifetimes exceeding 3 years only if the
cell endurance exceeds 109 [88] – insufficient for PCM-based
memories with endurance of only 107 - 109 writes. Moreover,
these mechanisms do not support applications that require
crash consistency when using PM as storage [77]. Kevlar
incurs none of these hardware overheads and uses a novel
sampling scheme to estimate wear completely in the OS.

Heterogeneous main memory: Several works [5, 55, 84]
manage footprint between DRAM and PM for applications
that prefer DRAMs for high performance. These works map
heavily and least accessed regions of application footprint to
DRAM and PM respectively. Unlike these works [5, 55, 84],
Kevlar exploits heterogeneity to reduce PM wear.

Currently, Kevlar operates at a small (4KB) page granu-
larity. However, huge (2MB) pages are increasingly being
used to minimize performance penalties of using small pages
(due to increased TLB pressure), especially in virtualized sys-
tems. Kevlar can be further extended to operate at a huge page
granularity. For instance, Kevlar can be integrated with mech-
anisms such as Thermostat [5] to split a huge page into small
pages, monitor write rate at granularity of small pages, and
migrate pages between DRAM and PM. We leave evaluation
of Kevlar’s wear-reduction mechanism and development of
shuffling strategies to operate at a huge page granularity to
future work.

Other. DCW [119] and Flip-N-Write [21] perform read-
compare-write operation to ensure that only the data bits that
have changed are written. Bittman et al. [14] proposes data
structures aimed at minimizing the number of bit-flips per PM
write operation. Ferreira et al. [32] enable eviction of clean
cache lines over dirty cache lines at the expense of potentially
slowing down future reads to evicted cache lines. Recent
works, MCT [25] and Mellow Writes [112], improve the en-
durance by reconfiguring memory voltage levels and slowing

write accesses to the PM. These proposals can achieve high
device lifetime but at a significant performance overhead,
especially when write latency is critical to application per-
formance [77]. NVM-Duet [69] employs a smart-refresh
mechanism to eliminate redundant memory refresh opera-
tions thereby reducing PM wear. Others [49, 118] propose
solutions to manage wear when using persistent memory tech-
nologies to build caches. These techniques are orthogonal to
our proposal and can be used in conjunction with Kevlar.

7.2 Wear-leveling mechanisms

Qureshi et al. [87], Zhou et al. [119], Security refresh [92],
Online Attack Detection [86] and Start-Gap [85] observe that
cache lines within a PM page do not wear out equally and pro-
pose mechanisms to remap cache lines for uniform intra-page
wear. All of these works rely on additional address indirection
mechanisms in hardware. Unlike Kevlar, these mechanisms
cannot exploit the heterogeneity of memory systems as dis-
cussed earlier in Section 2.2.

Error recovery. DRM [47] and SAFER [93] gracefully
degrades PM capacity as memory cells wear out by reusing
and remapping failed cells to store data. FREE-p [110] and
NVMAlloc [76] leverage ECC and checksum mechanisms to
tolerate wear out errors.

8 Conclusion

We have presented Kevlar, a wear-management mechanism
for persistent memories. Kevlar relies on a software wear-
estimation mechanism that uses PEBS-based sampling in a
novel approach to estimate dirty cache contents and predict
writebacks to PM. It uses a wear-leveling mechanism that
shuffles PM pages every ~4 hours with an overhead of less
than 0.10% achieving up to 31.7× higher lifetime as compared
to PM with no wear leveling. Kevlar employs wear-reduction
mechanism to further extend PM lifetime. It migrates the
hottest pages to higher durability memory. Kevlar, imple-
mented in Linux kernel (version 4.5.0), achieves four-year
target lifetime with 1.2% performance overhead.

Acknowledgements

We would like to thank our shepherd, Carl Waldspurger, and
the anonymous reviewers for their valuable feedback. We
are grateful to Akshitha Sriraman, Kumar Aanjaneya, Neha
Agarwal, Animesh Jain, and Amirhossein Mirhosseini for
their suggestions that helped us improve this work. This work
was supported by ARM and the National Science Foundation
under the award NSF-CCF-1525372.

56 17th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Aerospike. http://www.aerospike.com/. [Online;
accessed 17-Jun-2017].

[2] pmem.io: Persistent memory programming. https:
//pmem.io/pmdk/.

[3] Reimagining the Data Center Memory and Stor-
age Hierarchy. https://newsroom.intel.com/
editorials/re-architecting-data-center-
memory-storage-hierarchy.

[4] Memcached - a distributed memory object caching
system, 2012.

[5] Neha Agarwal and Thomas F. Wenisch. Thermo-
stat: Application-transparent page management for
two-tiered main memory. In Proceedings of the Twenty-
Second International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ASPLOS ’17, 2017.

[6] Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKin-
ley, and Lieven Eeckhout. Write-rationing garbage
collection for hybrid memories. In Proceedings of the
39th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2018, pages
62–77, New York, NY, USA, 2018. ACM.

[7] ARM. Embedded trace macrocell,
2011. http://infocenter.arm.com/
help/topic/com.arm.doc.ihi0014q/
IHI0014Q_etm_architecture_spec.pdf.

[8] ARM. Arm architecture reference manual,
2017. https://static.docs.arm.com/ddi0487/
ca/DDI0487C_a_armv8_arm.pdf.

[9] Joy Arulraj and Andrew Pavlo. How to build a non-
volatile memory database management system. In
Proceedings of the 2017 ACM International Confer-
ence on Management of Data, SIGMOD ’17, pages
1753–1758, New York, NY, USA, 2017. ACM.

[10] Joy Arulraj, Andrew Pavlo, and Subramanya R. Dul-
loor. Let’s talk about storage and recovery methods for
non-volatile memory database systems. In Proceedings
of the 2015 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’15, 2015.

[11] Joy Arulraj, Matthew Perron, and Andrew Pavlo. Write-
behind logging. Proc. VLDB Endow., 10(4):337–348,
November 2016.

[12] Anirudh Badam and Vivek S. Pai. Ssdalloc: Hybrid
ssd/ram memory management made easy. In Proceed-
ings of the 8th USENIX Conference on Networked Sys-
tems Design and Implementation, NSDI’11, pages 211–
224, Berkeley, CA, USA, 2011. USENIX Association.

[13] N. Beckmann and D. Sanchez. Talus: A simple way to
remove cliffs in cache performance. In 2015 IEEE 21st
International Symposium on High Performance Com-
puter Architecture (HPCA), pages 64–75, Feb 2015.

[14] Daniel Bittman, Mathew Gray, Justin Raizes, Sinjoni
Mukhopadhyay, Matt Bryson, Peter Alvaro, Darrell
D. E. Long, and Ethan L. Miller. Designing data struc-
tures to minimize bit flips on nvm. In The 7th IEEE
Non-Volatile Memory Systems and Applications Sym-
posium (NVMSA), August 2018.

[15] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet.
Lightnvm: The linux open-channel SSD subsystem. In
15th USENIX Conference on File and Storage Tech-
nologies (FAST 17), pages 359–374, Santa Clara, CA,
2017. USENIX Association.

[16] Burton H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426,
July 1970.

[17] Derek Bruening, Timothy Garnett, and Saman Ama-
rasinghe. An infrastructure for adaptive dynamic opti-
mization. In Proceedings of the International Sympo-
sium on Code Generation and Optimization: Feedback-
directed and Runtime Optimization, CGO ’03, pages
265–275, Washington, DC, USA, 2003. IEEE Com-
puter Society.

[18] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud
Bhandari. Atlas: leveraging locks for non-volatile
memory consistency. In Proceedings of the Confer-
ence on Object-Oriented Programming, Systems, Lan-
guages, and Applications, 2014.

[19] Andreas Chatzistergiou, Marcelo Cintra, and Stratis D.
Vaglis. Rewind: Recovery write-ahead system for in-
memory non-volatile data structures. Proceedings of
the VLDB Endowment, 8(5), 2015.

[20] I-C. K. Chen, C-C. Lee, and T. N. Mudge. Instruction
prefetching using branch prediction information. In
Proc. of the International Conference on Computer
Design, 1997.

[21] Sangyeun Cho and Hyunjin Lee. Flip-n-write: a simple
deterministic technique to improve pram write perfor-
mance, energy and endurance. In Proceedings of the
International Symposium on Microarchitecture, 2009.

[22] Joel Coburn, Adrian M. Caulfield, Ameen Akel,
Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and
Steven Swanson. Nv-heaps: Making persistent ob-
jects fast and safe with next-generation, non-volatile
memories. In Proceedings of the 16th International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2011.

USENIX Association 17th USENIX Conference on File and Storage Technologies 57

http://www.aerospike.com/
https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://newsroom.intel.com/editorials/re-architecting-data-center-memory-storage-hierarchy
https://newsroom.intel.com/editorials/re-architecting-data-center-memory-storage-hierarchy
https://newsroom.intel.com/editorials/re-architecting-data-center-memory-storage-hierarchy
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0014q/IHI0014Q_etm_architecture_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0014q/IHI0014Q_etm_architecture_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0014q/IHI0014Q_etm_architecture_spec.pdf
https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.pdf
https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.pdf

[23] Jeremy Condit, Edmund B. Nightingale, Christopher
Frost, Engin Ipek, Benjamin Lee, Doug Burger, and
Derrick Coetzee. Better i/o through byte-addressable,
persistent memory. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles, 2009.

[24] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking
cloud serving systems with ycsb. In Proceedings of
the 1st ACM symposium on Cloud computing, pages
143–154. ACM, 2010.

[25] Zhaoxia Deng, Lunkai Zhang, Nikita Mishra, Henry
Hoffmann, and Frederic T. Chong. Memory cocktail
therapy: A general learning-based framework to opti-
mize dynamic tradeoffs in nvms. In Proceedings of
the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-50 ’17, pages 232–244,
New York, NY, USA, 2017. ACM.

[26] Gaurav Dhiman, Raid Ayoub, and Tajana Rosing.
Pdram: A hybrid pram and dram main memory system.
In Proceedings of the 46th Annual Design Automation
Conference, DAC ’09, 2009.

[27] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino,
and Philippe Cudre-Mauroux. Oltp-bench: An exten-
sible testbed for benchmarking relational databases.
Proceedings of the VLDB Endowment, 7(4):277–288,
2013.

[28] Kshitij Doshi, Ellis Giles, and Peter Varman. Atomic
persistence for scm with a non-intrusive backend con-
troller. In 2016 IEEE International Symposium on
High Performance Computer Architecture (HPCA),
pages 77–89. IEEE, 2016.

[29] Paul J Drongowski. Instruction-based sampling:
A new performance analysis technique for amd
family 10h processors. Advanced Micro Devices,
2007. http://developer.amd.com/wordpress/
media/2012/10/AMD_IBS_paper_EN.pdf.

[30] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. System software for persistent mem-
ory. In Proceedings of the 9th European Conference
on Computer Systems, 2014.

[31] Subramanya R. Dulloor, Amitabha Roy, Zheguang
Zhao, Narayanan Sundaram, Nadathur Satish, Rajesh
Sankaran, Jeff Jackson, and Karsten Schwan. Data tier-
ing in heterogeneous memory systems. In Proceedings
of the Eleventh European Conference on Computer
Systems, EuroSys ’16, pages 15:1–15:16, New York,
NY, USA, 2016. ACM.

[32] Alexandre P. Ferreira, Miao Zhou, Santiago Bock,
Bruce Childers, Rami Melhem, and Daniel Mossé. In-
creasing pcm main memory lifetime. In Proceedings
of the Conference on Design, Automation and Test in
Europe, DATE ’10.

[33] Eran Gal and Sivan Toledo. Algorithms and data
structures for flash memories. ACM Comput. Surv.,
37(2):138–163, June 2005.

[34] Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and
Michael M. Swift. Badgertrap: A tool to instrument
x86-64 tlb misses. SIGARCH Comput. Archit. News.

[35] Vaibhav Gogte, Stephan Diestelhorst, William Wang,
Satish Narayanasamy, Peter M. Chen, and Thomas F.
Wenisch. Failure-atomic synchronization-free regions,
2018. http://nvmw.ucsd.edu/nvmw18-program/
unzip/current/nvmw2018-final42.pdf.

[36] Vaibhav Gogte, Stephan Diestelhorst, William Wang,
Satish Narayanasamy, Peter M. Chen, and Thomas F.
Wenisch. Persistency for synchronization-free regions.
In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion, PLDI 2018, pages 46–61, New York, NY, USA,
2018. ACM.

[37] Jorge Guerra, Leonardo Marmol, Daniel Campello,
Carlos Crespo, Raju Rangaswami, and Jinpeng Wei.
Software persistent memory. In Presented as part of the
2012 USENIX Annual Technical Conference (USENIX
ATC 12), pages 319–331, Boston, MA, 2012. USENIX.

[38] SAP HANA. Bringing persistent memory tech-
nology to sap hana: Opportunities and challenges,
2016. https://www.flashmemorysummit.com/
English/Collaterals/Proceedings/2016/
20160810_FR21_Caklovic.pdf.

[39] M. D. Hill and A. J. Smith. Evaluating associativity in
cpu caches. IEEE Trans. Comput., 38(12):1612–1630,
December 1989.

[40] J. Huang, A. Badam, M. K. Qureshi, and K. Schwan.
Unified address translation for memory-mapped ssds
with flashmap. In 2015 ACM/IEEE 42nd Annual Inter-
national Symposium on Computer Architecture (ISCA),
pages 580–591, June 2015.

[41] Jian Huang, Anirudh Badam, Laura Caulfield, Suman
Nath, Sudipta Sengupta, Bikash Sharma, and Moin-
uddin K. Qureshi. Flashblox: Achieving both perfor-
mance isolation and uniform lifetime for virtualized
ssds. In 15th USENIX Conference on File and Storage
Technologies (FAST 17), pages 375–390, Santa Clara,
CA, 2017. USENIX Association.

58 17th USENIX Conference on File and Storage Technologies USENIX Association

http://developer.amd.com/wordpress/media/2012/10/AMD_IBS_paper_EN.pdf
http://developer.amd.com/wordpress/media/2012/10/AMD_IBS_paper_EN.pdf
http://nvmw.ucsd.edu/nvmw18-program/unzip/current/nvmw2018-final42.pdf
http://nvmw.ucsd.edu/nvmw18-program/unzip/current/nvmw2018-final42.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2016/20160810_FR21_Caklovic.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2016/20160810_FR21_Caklovic.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2016/20160810_FR21_Caklovic.pdf

[42] Yihe Huang, Matej Pavlovic, Virendra Marathe, Margo
Seltzer, Tim Harris, and Steve Byan. Closing the per-
formance gap between volatile and persistent key-value
stores using cross-referencing logs. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages
967–979, Boston, MA, 2018. USENIX Association.

[43] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and
Beomseok Nam. Endurable transient inconsistency in
byte-addressable persistent b+-tree. In 16th USENIX
Conference on File and Storage Technologies (FAST
18), pages 187–200, Oakland, CA, 2018. USENIX As-
sociation.

[44] Intel. Intel microarchitecture codename nehalem
performance monitoring unit programming guide (ne-
halem core pmu). https://software.intel.com/
sites/default/files/m/5/2/c/f/1/30320-
Nehalem-PMU-Programming-Guide-Core.pdf.

[45] Intel. Intel 64 and ia-32 architectures soft-
ware developer’s manual, 2018. https:
//software.intel.com/sites/default/files/
managed/39/c5/325462-sdm-vol-1-2abcd-
3abcd.pdf.

[46] Intel and Micron. Intel and micron pro-
duce breakthrough memory technology, 2015.
http://newsroom.intel.com/community/
intel_newsroom/blog/2015/07/28/intel-
and-micron-produce-breakthrough-memory-
technology.

[47] Engin Ipek, Jeremy Condit, Edmund B. Nightingale,
Doug Burger, and Thomas Moscibroda. Dynamically
replicated memory: Building reliable systems from
nanoscale resistive memories. In Proceedings of the
Fifteenth Edition of ASPLOS on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS XV, 2010.

[48] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli.
Failure-atomic persistent memory updates via justdo
logging. In Proceedings of the Twenty-First Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2016.

[49] Yongsoo Joo, Dimin Niu, Xiangyu Dong, Guangyu
Sun, Naehyuck Chang, and Yuan Xie. Energy- and
endurance-aware design of phase change memory
caches. In Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’10, 2010.

[50] William K. Josephson, Lars A. Bongo, Kai Li, and
David Flynn. Dfs: A file system for virtualized flash
storage. Trans. Storage, 6(3):14:1–14:25, September
2010.

[51] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra. Atom:
Atomic durability in non-volatile memory through
hardware logging. In 2017 IEEE International Sym-
posium on High Performance Computer Architecture
(HPCA), pages 361–372, Feb 2017.

[52] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and
Stratis Viglas. Efficient persist barriers for multi-
cores. In Proceedings of the international symposium
on Microarchitecture, 2015.

[53] Jeong-Uk Kang, Heeseung Jo, Jin-Soo Kim, and Joon-
won Lee. A superblock-based flash translation layer
for nand flash memory. In Proceedings of the 6th ACM
&Amp; IEEE International Conference on Embedded
Software, EMSOFT ’06, pages 161–170, New York,
NY, USA, 2006. ACM.

[54] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, An-
drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Re-
designing lsms for nonvolatile memory with nov-
elsm. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 993–1005, Boston, MA, 2018.
USENIX Association.

[55] Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and
Karsten Schwan. Heteroos: Os design for heteroge-
neous memory management in datacenter. In Pro-
ceedings of the 44th Annual International Symposium
on Computer Architecture, ISCA ’17, pages 521–534,
New York, NY, USA, 2017. ACM.

[56] G. Keramidas, P. Petoumenos, and S. Kaxiras. Cache
replacement based on reuse-distance prediction. In
2007 25th International Conference on Computer De-
sign, pages 245–250, Oct 2007.

[57] Daehyeok Kim, Amirsaman Memaripour, Anirudh
Badam, Yibo Zhu, Hongqiang Harry Liu, Jitu Pad-
hye, Shachar Raindel, Steven Swanson, Vyas Sekar,
and Srinivasan Seshan. Hyperloop: Group-based nic-
offloading to accelerate replicated transactions in multi-
tenant storage systems. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM ’18, pages 297–312, New
York, NY, USA, 2018. ACM.

[58] Jesung Kim, Jong Min Kim, S. H. Noh, Sang Lyul Min,
and Yookun Cho. A space-efficient flash translation
layer for compactflash systems. IEEE Transactions on
Consumer Electronics, 48(2):366–375, May 2002.

[59] Hideaki Kimura. Foedus: Oltp engine for a thousand
cores and nvram. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’15, 2015.

USENIX Association 17th USENIX Conference on File and Storage Technologies 59

https://software.intel.com/sites/default/files/m/5/2/c/f/1/30320-Nehalem-PMU-Programming-Guide-Core.pdf
https://software.intel.com/sites/default/files/m/5/2/c/f/1/30320-Nehalem-PMU-Programming-Guide-Core.pdf
https://software.intel.com/sites/default/files/m/5/2/c/f/1/30320-Nehalem-PMU-Programming-Guide-Core.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-technology
http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-technology
http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-technology
http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-technology

[60] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley,
S. Liu, P.M. Chen, and T.F. Wenisch. Delegated persist
ordering. In Proceedings of the 49th International
Symposium on Microarchitecture, 2016.

[61] Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Di-
estelhorst, Peter M. Chen, Satish Narayanasamy, and
Thomas F. Wenisch. Language-level persistency. In
Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture, ISCA ’17, pages 481–
493, New York, NY, USA, 2017. ACM.

[62] Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Di-
estelhorst, Peter M. Chen, Satish Narayanasamy, and
Thomas F. Wenisch. Tarp: Translating acquire-release
persistency, 2017. http://nvmw.eng.ucsd.edu/
2017/assets/abstracts/1.

[63] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M.
Chen, and Thomas F. Wenisch. High-performance
transactions for persistent memories. In Proceedings
of the Twenty-First International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, 2016.

[64] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug
Burger. Architecting phase change memory as a scal-
able dram alternative. In Proceedings of the 36th An-
nual International Symposium on Computer Architec-
ture, 2009.

[65] Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-
Ho Lee, Sangwon Park, and Ha-Joo Song. A log buffer-
based flash translation layer using fully-associative sec-
tor translation. ACM Trans. Embed. Comput. Syst.,
6(3), July 2007.

[66] Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu, Ji-
hong Kim, and Arvind. Application-managed flash. In
14th USENIX Conference on File and Storage Tech-
nologies (FAST 16), pages 339–353, Santa Clara, CA,
2016. USENIX Association.

[67] H. L. Li, C. L. Yang, and H. W. Tseng. Energy-aware
flash memory management in virtual memory system.
IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 16(8):952–964, Aug 2008.

[68] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai
Qian, Yongwei Wu, Weimin Zheng, and Jinglei Ren.
Dudetm: Building durable transactions with decou-
pling for persistent memory. In Proceedings of the
Twenty-Second International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’17, 2017.

[69] Ren-Shuo Liu, De-Yu Shen, Chia-Lin Yang, Shun-Chih
Yu, and Cheng-Yuan Michael Wang. Nvm duet: uni-
fied working memory and persistent store architecture.
In Proceedings of the international conference on Ar-
chitectural Support for Programming Languages an
Operating Systems, 2014.

[70] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Oc-
topus: an rdma-enabled distributed persistent memory
file system. In 2017 USENIX Annual Technical Confer-
ence (USENIX ATC 17), pages 773–785, Santa Clara,
CA, 2017. USENIX Association.

[71] L. Luo, A. Sriraman, B. Fugate, S. Hu, G. Pokam, C. J.
Newburn, and J. Devietti. Laser: Light, accurate shar-
ing detection and repair. In 2016 IEEE International
Symposium on High Performance Computer Architec-
ture (HPCA), pages 261–273, March 2016.

[72] Virendra J. Marathe, Margo Seltzer, Steve Byan, and
Tim Harris. Persistent memcached: Bringing legacy
code to byte-addressable persistent memory. In 9th
USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 17), Santa Clara, CA, 2017.
USENIX Association.

[73] Amirsaman Memaripour, Anirudh Badam, Amar Phan-
ishayee, Yanqi Zhou, Ramnatthan Alagappan, Karin
Strauss, and Steven Swanson. Atomic in-place updates
for non-volatile main memories with kamino-tx. In
Proceedings of the Twelfth European Conference on
Computer Systems, EuroSys ’17, pages 499–512, New
York, NY, USA, 2017. ACM.

[74] Paul Menage. Memory resource controller, 2016.
http://elixir.free-electrons.com/linux/
latest/source/Documentation/cgroup-v1/
memory.txt.

[75] Justin Meza, Jichuan Chang, HanBin Yoon, Onur
Mutlu, and Parthasarathy Ranganathan. Enabling
efficient and scalable hybrid memories using fine-
granularity dram cache management. IEEE Comput.
Archit. Lett.

[76] Iulian Moraru, David G. Andersen, Michael Kaminsky,
Niraj Tolia, Parthasarathy Ranganathan, and Nathan
Binkert. Consistent, durable, and safe memory manage-
ment for byte-addressable non volatile main memory.
In Proceedings of the First ACM SIGOPS Conference
on Timely Results in Operating Systems, TRIOS ’13,
pages 1:1–1:17, New York, NY, USA, 2013. ACM.

[77] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M.
Swift, Haris Volos, and Kimberly Keeton. An analysis
of persistent memory use with whisper. In Proceed-
ings of the Twenty-Second International Conference

60 17th USENIX Conference on File and Storage Technologies USENIX Association

http://nvmw.eng.ucsd.edu/2017/assets/abstracts/1
http://nvmw.eng.ucsd.edu/2017/assets/abstracts/1
http://elixir.free-electrons.com/linux/latest/source/Documentation/cgroup-v1/memory.txt
http://elixir.free-electrons.com/linux/latest/source/Documentation/cgroup-v1/memory.txt
http://elixir.free-electrons.com/linux/latest/source/Documentation/cgroup-v1/memory.txt

on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’17, pages 135–148,
New York, NY, USA, 2017. ACM.

[78] Faisal Nawab, Dhruva Chakrabarti, Terence Kelly, and
Charles B. Morey III. Procrastination beats preven-
tion: Timely sufficient persistence for efficient crash
resilience. Technical Report HPL-2014-70, Hewlett-
Packard, December 2014.

[79] Simo Neuvonen, Antoni Wolski, Markku Manner,
and Vilho Raatikka. Telecom application trans-
action processing benchmark, 2011. http://
tatpbenchmark.sourceforge.net/.

[80] T. Nguyen and D. Wentzlaff. Picl: A software-
transparent, persistent cache log for nonvolatile main
memory. In 2018 51st Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO),
pages 507–519, Oct 2018.

[81] Ismail Oukid, Daniel Booss, Wolfgang Lehner, Peter
Bumbulis, and Thomas Willhalm. Sofort: A hybrid
scm-dram storage engine for fast data recovery. In
Proceedings of the Tenth International Workshop on
Data Management on New Hardware, DaMoN ’14,
2014.

[82] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou,
Yong Wang, and Yuanzheng Wang. Sdf: Software-
defined flash for web-scale internet storage systems.
In Proceedings of the 19th International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’14, pages 471–484,
New York, NY, USA, 2014. ACM.

[83] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch.
Memory persistency. In Proceedings of the 41st Inter-
national Symposium on Computer Architecture, 2014.

[84] S. Phadke and S. Narayanasamy. Mlp aware heteroge-
neous memory system. In 2011 Design, Automation
Test in Europe, pages 1–6, March 2011.

[85] Moinuddin K. Qureshi, Michele M. Franchescini, Vi-
jayalakshmi Srinivasan, Luis A. Lastras, Bulent Abali,
and John Karidis. Enhancing lifetime and security of
pcm-based main memory with start-gap wear level-
ing. In Proceedings of the International Symposium
on Microarchitecture, 2009.

[86] Moinuddin K. Qureshi, Andre Seznec, Luis A. Lastras,
and Michele M. Franchescini. Practical and secure pcm
systems by online detection of malicious write streams.
In Proceedings of the 17th International Symposium
on High Performance Computer Architecture, 2011.

[87] Moinuddin K Qureshi, Vijayalakshmi Srinivasan, and
Jude A Rivers. Scalable high performance main
memory system using phase-change memory technol-
ogy. ACM SIGARCH Computer Architecture News,
37(3):24–33, 2009.

[88] Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bian-
chini. Page placement in hybrid memory systems. In
Proceedings of the International Conference on Super-
computing, ICS ’11, 2011.

[89] Brandon Reagen, Paul Whatmough, Robert Adolf,
Saketh Rama, Hyunkwang Lee, Sae Kyu Lee,
José Miguel Hernández-Lobato, Gu-Yeon Wei, and
David Brooks. Minerva: Enabling low-power, highly-
accurate deep neural network accelerators. In Proceed-
ings of the 43rd International Symposium on Computer
Architecture, ISCA ’16, 2016.

[90] D. L. Schuff, B. S. Parsons, and V. S. Pai. Multicore-
aware reuse distance analysis. In 2010 IEEE Inter-
national Symposium on Parallel Distributed Process-
ing, Workshops and Phd Forum (IPDPSW), pages 1–8,
April 2010.

[91] Derek L. Schuff, Milind Kulkarni, and Vijay S. Pai.
Accelerating multicore reuse distance analysis with
sampling and parallelization. In Proceedings of the
19th International Conference on Parallel Architec-
tures and Compilation Techniques, PACT ’10, pages
53–64, New York, NY, USA, 2010. ACM.

[92] Nak Hee Seong, Dong Hyuk Woo, and Hsien-Hsin S.
Lee. Security refresh: Prevent malicious wear-out and
increase durability for phase-change memory with dy-
namically randomized address mapping. In Proceed-
ings of the 37th Annual International Symposium on
Computer Architecture, ISCA ’10, 2010.

[93] Nak Hee Seong, Dong Hyuk Woo, Vijayalakshmi Srini-
vasan, Jude A. Rivers, and Hsien-Hsin S. Lee. Safer:
Stuck-at-fault error recovery for memories. In Proceed-
ings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO ’43, 2010.

[94] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Ra-
jeev Balasubramonian, John Paul Strachan, Miao Hu,
R. Stanley Williams, and Vivek Srikumar. Isaac: A
convolutional neural network accelerator with in-situ
analog arithmetic in crossbars. In Proceedings of the
43rd International Symposium on Computer Architec-
ture, ISCA ’16, 2016.

[95] Seunghee Shin, Satish Kumar Tirukkovalluri, James
Tuck, and Yan Solihin. Proteus: A flexible and fast soft-
ware supported hardware logging approach for nvm.

USENIX Association 17th USENIX Conference on File and Storage Technologies 61

http://tatpbenchmark.sourceforge.net/
http://tatpbenchmark.sourceforge.net/

In Proceedings of the 50th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO-50
’17, pages 178–190, New York, NY, USA, 2017. ACM.

[96] Peter Snyder. tmpfs: A virtual memory file system. In
In Proceedings of the Autumn 1990 European UNIX
Users’ Group Conference, pages 241–248, 1990.

[97] V. Srinivasan, Brian Bulkowski, Wei-Ling Chu, Sunil
Sayyaparaju, Andrew Gooding, Rajkumar Iyer, Ashish
Shinde, and Thomas Lopatic. Aerospike: Architecture
of a real-time operational dbms. Proc. VLDB Endow.,
9(13):1389–1400, September 2016.

[98] Transaction Processing Performance Council (TPC).
Tpc benchmark C, 2010. http://www.tpc.org/
tpc_documents_current_versions/pdf/tpc-
c_v5-11.pdf.

[99] Shivaram Venkataraman, Niraj Tolia, Parthasarathy
Ranganathan, and Roy H. Campbell. Consistent
and durable data structures for non-volatile byte-
addressable memory. In Proceedings of the USENIX
Conference on File and Storage Technologies, Febru-
ary 2011.

[100] Haris Volos, Sanketh Nalli, Sankarlingam Panneersel-
vam, Venkatanathan Varadarajan, Prashant Saxena, and
Michael M. Swift. Aerie: Flexible file-system inter-
faces to storage-class memory. In Proceedings of the
Ninth European Conference on Computer Systems, Eu-
roSys ’14, 2014.

[101] Haris Volos, Andres Jaan Tack, and Michael M. Swift
E. Mnemosyne: Leightweight persistent memory. In
Proceedings of the 16th International Conference on
Architectural Support for Programming Languages and
Operating Systems, 2011.

[102] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad,
and Nohhyun Park. Cache modeling and optimization
using miniature simulations. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages 487–
498, Santa Clara, CA, 2017. USENIX Association.

[103] Carl A. Waldspurger, Nohhyun Park, Alexander Garth-
waite, and Irfan Ahmad. Efficient MRC construction
with SHARDS. In 13th USENIX Conference on File
and Storage Technologies (FAST 15), pages 95–110,
Santa Clara, CA, 2015. USENIX Association.

[104] Tianzheng Wang and Ryan Johnson. Scalable logging
through emerging non-volatile memory. Proceedings
of the VLDB Endowment, 7(10):865–876, June 2014.

[105] Xiaojian Wu and A. L. Narasimha Reddy. Scmfs: a file
system for storage class memory. In In Proceedings
of the International Conference for High Performance
Computing, 2011.

[106] Cong Xu, Dimin Niu, Naveen Muralimanohar, Rajeev
Balasubramonian, Tao Zhang, Shimeng Yu, and Yuan
Xie. Overcoming the challenges of crossbar resistive
memory architectures. In In Proceedings of the Inter-
national Symposium on High Performance Computer
Architecture, 2015.

[107] Jian Xu and Steven Swanson. Nova: A log-structured
file system for hybrid volatile/non-volatile main mem-
ories. In Proceedings of the 14th Usenix Conference
on File and Storage Technologies, FAST’16, 2016.

[108] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha
Gangadharaiah, Amit Borase, Tamires Brito Da Silva,
Steven Swanson, and Andy Rudoff. Nova-fortis: A
fault-tolerant non-volatile main memory file system.
In Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP ’17, pages 478–496, New
York, NY, USA, 2017. ACM.

[109] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao
Tong, Swaminathan Sundararaman, Andrew A. Chien,
and Haryadi S. Gunawi. Tiny-tail flash: Near-perfect
elimination of garbage collection tail latencies in
NAND ssds. In 15th USENIX Conference on File and
Storage Technologies (FAST 17), pages 15–28, Santa
Clara, CA, 2017. USENIX Association.

[110] Doe Hyun Yoon, Naveen Muralimanohar, Jichuan
Chang, Parthasarathy Ranganathan, Norman P. Jouppi,
and Mattan Erez. Free-p: Protecting non-volatile mem-
ory against both hard and soft errors. In Proceedings of
the 2011 IEEE 17th International Symposium on High
Performance Computer Architecture, HPCA ’11, 2011.

[111] H. C. Yu, K. C. Lin, K. F. Lin, C. Y. Huang, Y. D.
Chih, T. C. Ong, J. Chang, S. Natarajan, and L. C. Tran.
Cycling endurance optimization scheme for 1mb stt-
mram in 40nm technology. In 2013 IEEE International
Solid-State Circuits Conference Digest of Technical
Papers, pages 224–225, Feb 2013.

[112] Lunkai Zhang, Brian Neely, Diana Franklin, Dmitri
Strukov, Yuan Xie, and Frederic T. Chong. Mel-
low writes: Extending lifetime in resistive memories
through selective slow write backs. In Proceedings
of the 43rd International Symposium on Computer Ar-
chitecture, ISCA ’16, pages 519–531, Piscataway, NJ,
USA, 2016. IEEE Press.

[113] Michael Zhang and Krste Asanovic. Highly-
associative caches for low-power processors. In Kool
Chips Workshop, MICRO, volume 33, 2000.

[114] Wangyuan Zhang and Tao Li. Exploring phase
change memory and 3d die-stacking for power/ther-
mal friendly, fast and durable memory architectures.

62 17th USENIX Conference on File and Storage Technologies USENIX Association

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5-11.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5-11.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5-11.pdf

In Proceedings of the International Conference on Par-
allel Architectures and Compilation Techniques, PACT
’09, 2009.

[115] Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. De-
indirection for flash-based ssds with nameless writes.
In Proceedings of the 10th USENIX Conference on
File and Storage Technologies, FAST’12, pages 1–1,
Berkeley, CA, USA, 2012. USENIX Association.

[116] Yiying Zhang, Jian Yang, Amirsaman Memaripour,
and Steven Swanson. Mojim: A reliable and highly-
available non-volatile memory system. In Proceedings
of the Twentieth International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’15, pages 3–18, New York,
NY, USA, 2015. ACM.

[117] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and
Norman P. Jouppi. Kiln: Closing the performance gap
between systems with and without persistence support.

In Proceedings of 46th International Symposium on
Microarchitecure, 2013.

[118] Miao Zhou, Yu Du, Bruce Childers, Rami Melhem,
and Daniel Mossé. Writeback-aware partitioning and
replacement for last-level caches in phase change main
memory systems. ACM Trans. Archit. Code Optim.

[119] Ping Zhou, Bo Zhao, Jun Yang, and Yutao Zhang. A
durable and energy efficient main memory using phase
change memory technology. In Proceedings of the 36th
International Symposium on Computer Architecture,
2009.

[120] Yanqi Zhou, Ramnatthan Alagappan, Amirsaman
Memaripour, A Badam, and D Wentzlaff. Hnvm: Hy-
brid nvm enabled datacenter design and optimization.
Microsoft, Microsoft Research, Tech. Rep. MSR-TR-
2017-8, 2017.

USENIX Association 17th USENIX Conference on File and Storage Technologies 63

	Introduction
	Background and Motivation
	Persistent Memories (PMs)
	Wear-aware virtual memory system

	Kevlar
	Wear leveling
	Wear Estimation
	Wear Reduction
	Page migration

	Implementation
	Methodology
	Emulating persistent memory
	System configuration
	Benchmarks
	Capacity Expansion Workloads
	Persistent Workloads

	Evaluation
	Modeling Wear Estimation
	PM Lifetime
	Memory Overhead
	Performance Overhead

	Related work
	Wear-reduction mechanisms
	Wear-leveling mechanisms

	Conclusion

