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Abstract
Applications commonly perform repeated computations

that are mostly, but not exactly, similar. If a subsequent com-
putation were identical to the original, the operating system
could improve performance via memoization, i.e., capturing
the differences in program state caused by the computation
and applying the differences in lieu of re-executing the com-
putation. However, opportunities for generic memoization
are limited by a myriad of differences that arise during ex-
ecution, e.g., timestamps differ and communication yields
non-deterministic responses. Such difference cause memo-
ization to produce incorrect state.

ShortCut generically accelerates mostly-deterministic com-
putation by partial memoization. It creates a program, called
a slice, that modifies the state diff to account for variation
in a subsequent computation. ShortCut learns which inputs,
data flows and control flows are likely, and makes assump-
tions about possible values for each during slice generation.
Assuming only likely values rather than allowing all possi-
ble values makes complex slice generation feasible and slice
execution much faster. Slices are self-verifying; they include
predicates that verify all assumptions made during a sub-
sequent execution. When these verifications succeed, the
slice is guaranteed to produce a correct modification. If a
verification fails, ShortCut transparently rolls back the slice
execution and runs the non-memoized computation. Users
see no difference between normal, memoized, and rolled-
back execution.
ACM Reference Format:
Xianzheng Dou, Peter M. Chen, and Jason Flinn. 2019. ShortCut:
Accelerating Mostly-Deterministic Code Regions. In ACM SIGOPS
27th Symposium on Operating Systems Principles (SOSP ’19), October
27–30, 2019, Huntsville, ON, Canada. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3341301.3359659

1 Introduction
Applications often perform repeated computations that

are mostly, but not exactly, similar. For example, Web servers
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perform many of the same actions when serving similar dy-
namic content, parallel stages in data pipelines have similar
behavior, and application startup code does similar initializa-
tion. These mostly-similar computations consume resources,
increase latency, and decrease throughput.

Systems currently use generic approaches such as memo-
ization and starting from a checkpoint to accelerate identical,
deterministic computation. Unfortunately, most code regions
of reasonable size are neither identical nor deterministic, e.g.,
due to reading the time, external communication, differing
thread schedules, etc.
Lacking generic options, application writers hand-craft

custom optimizations such as pre-loading class files, pre-
compiling headers, or running fast-paths for common ex-
ecutions. While such optimizations are often required for
reasonable performance, application-specific solutions are
time-consuming to develop, and the resulting code is of-
ten complex, buggy, and hard to maintain. Similar to how
programmers prefer generic compiler optimizations to hand-
crafted code optimizations, generic performance optimiza-
tions are preferable to hand-crafted solutions.
ShortCut is an OS-level solution that uses partial memo-

ization to generically accelerate mostly-deterministic code
regions without requiring application modification or source
code. A region may be any contiguous sequence of instruc-
tions executed by an application. For each accelerated region,
ShortCut transparently captures a diff by observing a refer-
ence execution of the region. A diff is the changes made to
memory and register values and the system calls executed.
ShortCut generates a program that modifies the diff to ac-
count for non-determinism and variant inputs that arise in
subsequent executions of the region. This program, termed
an executable slice [53, 57], consists of the instructions in the
region that depend on any input that may change; typically,
the slice executes many fewer instructions than the original
execution.
To accelerate a subsequent execution, ShortCut runs the

slice with the correct inputs, modifies the diff, and applies
the modified diff to the execution. The computation is accel-
erated, and the program and kernel state at the end of the
region are identical to what would have been generated by
running the original execution.

ShortCut introduces a novel combination of three program-
ming language and operating system techniques to make
partial memoization feasible for complex applications: dy-
namic slicing [3], predicated analysis [19], and transparent
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rollback-recovery [23]. In addition, ShortCut uses determin-
istic record-and-replay to move time-consuming program
analysis off of the critical path [7].
Several insights underpin the design of ShortCut. First,

current approaches to slicing (which are used for debugging,
etc.) construct slices that produce correct results for all pos-
sible inputs and code paths. This leads to large slices that
produce minimal benefits. Further, generating such slices
requires complex static analysis that does not scale to the
large code regions (i.e., billions of instructions) that we tar-
get. Instead, ShortCut introduces the idea of predicated slices
that embed a set of assumptions about how inputs, paths,
and memory accesses may differ. Predicated slices are self-
verifying: they check predicates as they run to verify all
assumptions. If all predicates succeed, the slice is guaranteed
to produce a correct modification. If a predicate fails, memo-
ization is not used. Predicates substantially reduce slice size
and make slice execution faster; they also let slice generation
use static, rather than dynamic, analysis, which is essential
to scaling analysis to large, complex code regions.
Second, ShortCut uses rollback-recovery to allow predi-

cates to be verified as the slice executes rather than before
execution begins. If a slice execution externalizes state by,
e.g, making a system call or communicating with another
process, the application is in an undefined state when a pred-
icate fails. ShortCut restores the program state to the values
at the beginning of slice execution, then runs the original
(non-memoized) execution. It guides the restarted execution
to make the same external actions as the slice and suppresses
duplicate external effects, e.g., system calls [22].
ShortCut must observe several executions to learn, e.g.,

which initial values are likely to vary andwhich control paths
are likely to be taken. An obvious approach to generating
these observations is profiling a large set of sample runs.
However, our third insight is that incremental refinement, in
which ShortCut learns from failed memoization attempts is
a much better approach. In a profile set, different executions
exhibit internal non-determinism; the different executions
have different thread schedules, read data in different-sized
chunks, etc. The internal non-determinism causes cascading
divergences in data and control flow that makes comparing
two executions exceedingly difficult.
Instead, ShortCut starts with a single reference execution.

It accelerates subsequent executions by running a slice that
mostly eliminates such internal non-determinism: e.g., it
follows the same thread schedule and reads data in the same-
sized chunks from the network when feasible. If a predicate
fails, ShortCut learns from failure by refining the slice, e.g.,
by allowing more inputs to vary or more paths to be taken,
so that subsequent executions are more likely to succeed.
The program regions that benefit from ShortCut share

several characteristics. First, they have at least several mil-
liseconds of user-level CPU usage, which allows the benefit
realized from partial memoization to exceed the fixed costs

of loading and running a slice. Second, they are mostly deter-
ministic, which means that the region is often executed with
similar inputs and the control flowwithin the region does not
diverge substantially from execution to execution. Our eval-
uation shows that application startup and request processing
loops are good candidates for ShortCut optimization.
This paper makes several contributions:
• It articulates the goal of generic, system-level partial mem-
oization.
• It introduces predicated slices as a method for accelerating
mostly-deterministic code regions.
• It shows how predication and dynamic analysis let slices
scale to code regions of unprecedented size and complex-
ity.
• It shows how transparent recovery allows predicate eval-
uation at any point in slice execution.
• It proposes incremental refinement as a more effective
alternative to profiling for generating slices.
We have applied ShortCut to a wide variety of applications

with significant regions of mostly-similar computation1. In
our benchmarks, ShortCut speeds up Web/PHP throughput
by 392–493%, package compilation by 43–54%, and startup
of user-facing applications (GNU Emacs, GIMP, Java/HDFS
and a custom constraint solver) by a factor of 6–76. Further,
predicates need not always succeed. In fact, across all bench-
marks, predicates must succeed only 3–28% of the time for
ShortCut to improve average performance.
2 Overview
In this section, we summarize ShortCut’s design and mo-

tivate our implementation choices.
As a starting point, consider how the OS could support

generic memoization of completely deterministic computa-
tion. Given a computation to memoize (which we call the ref-
erence execution), the OS could observe program state (regis-
ter and memory values) modified by the computation. When
the same computation occurs later, instead of actually per-
forming the computation, the system applies the state diff to
the program and jumps to the end of the memoized region.

There are two correctness requirements. First, the inputs
to the memoized computation must be the same in the ref-
erence and subsequent executions; these include the initial
values of all memory and registers read by the computa-
tion. The system could verify that any input seen during
the reference execution is the same during the subsequent
execution. If any of these verifications (called predicates)
fail, the system simply runs the normal execution. Second,
the memoized region must be deterministic, e.g., the region
could be single-threaded and make no system calls. In prac-
tice, these restrictions are onerous, and the applicability of
generic memoization to general-purpose computation is lim-
ited.

1The source code is available at github.com/shortcut-sosp19/shortcut
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The goal of ShortCut is to substantially broaden the appli-
cability of memoization by applying it to not just identical
regions of computation, but also to regions that are mostly
similar. To support partial memoization, we wish to allow
some of the inputs to the computation to differ between the
reference and subsequent executions, and we wish to handle
the non-determinism that arises.
Given a set of inputs that are expected to differ in subse-

quent executions, ShortCut produces a forward executable
slice during memoization. This is a small program that in-
cludes only the computation in the memoized region that
depends on those inputs. On a subsequent execution, after
applying the diff to the program state, it runs the slice to mod-
ify the state with the values that would have been derived
by running the computation with the new inputs.

As an example, consider a reference execution that, along
with many other actions, reads the time of day, stores the
value at memory location A, adds 100ms to the value, and
stores the sum in memory location B. Generic memoization
would be incorrect for this execution since the values at A
and B would reflect the time the reference execution ran, not
the time the subsequent execution actually ran. ShortCut
produces a slice that only reads the time and modifies the
program state at A and B with the correct values when each
subsequent execution runs.

Unfortunately, producing such a slice can be very complex
for large, general-purpose code regions. It is typically infea-
sible to produce a slice that correctly handles all possible
executions that depend on any divergent input. For exam-
ple, the difference in input values may affect the control
flow or the order of thread execution. Inputs may be used as
indexes into arrays so that the memory locations accessed
vary. Values derived from divergent inputs may be passed to
subsequent system calls in the memoized regions, and those
system calls may produce different outputs as a result. The
common approach to generating such slices, static analysis,
simply does not scale to the size of regions ShortCut targets
(billions of instructions) or work effectively on complex bi-
nary executables (a requirement if memoization is to be done
generically by the OS).
One insight guiding the ShortCut design is that the slice

does not need to handle all possible subsequent executions
if it can be self-verifying, i.e., if it can embed predicates that
verify whether or not it will produce a correct modification
for a subsequent execution. For example, rather than pro-
duce a slice that handles all possible control flows, ShortCut
produces a slice that is correct for a few, common control
flows, and it inserts predicates in the slice to verify that the
slice follows one of those control flows.
At first glance, all such verifications must be performed

before the slice executes because the failure of a verification
while executing the slice would leave the program in an
undefined state. This requirement would be too onerous. For
example, consider a control flow predicate that tests whether

register eax has a value less than 10. It is trivial to evaluate
this predicate at the branch point during slice execution
(i.e., add a jump to a predicate failure routine if eax >= 10).
However, evaluating this predicate before the slice begins
is potentially intractable. The branch may be millions of
instructions in the future, eax could depend on thousands
of distinct instructions, and the chain of dependencies could
be complex, involving aliasing, etc. Essentially, evaluating
the predicate could require executing many of the preceding
instructions in the slice anyway.

The second key insight guiding the ShortCut design is that
rollback-recovery allows verification during slice execution.
Rollback-recovery [23] is generic system support for restor-
ing the program to an earlier state: this includes restoring
all internal modifications (e.g., memory and register values),
and suppressing duplicate external actions (e.g., system calls)
made by the recovered execution.

If a verification fails during slice execution, ShortCut rolls
the execution back to the start of the memoized region, then
re-executes the full (non-memoized) execution. External ob-
servers (e.g., users and other processes) do not see any dif-
ference other than performance between a non-memoized
execution, one accelerated using ShortCut, and one in which
a verification fails, the slice is rolled back, and a full execution
is performed.
Importantly, self-verifying slices and rollback-recovery

allow ShortCut to use dynamic analysis, rather than static
analysis, to generate slices. Dynamic analysis can derive a
slice by observing a small set of executions as they run. As
our results show, it can easily scale to code regions of billions
of instructions and does not require source-code availability.

Generating a slice requires ShortCut to determine a set of
inputs to the computation that are likely to vary in subse-
quent executions. Our initial approach to determining this set
was to profile several executions and observe how they differ.
Unfortunately, this approach worked poorly because these
executions often had considerable internal non-determinism,
e.g., they followed different thread schedules or read data
from the network in different-sized chunks. In other words,
natural internal non-determinism caused both data flow and
control flow to diverge too much to compare executions.

Instead, ShortCut uses incremental refinement, in which it
learns from its mistakes, to generate slices. Initially, it gen-
erates a slice based on a single reference execution. Only
inputs that will clearly differ in subsequent executions (e.g.,
the time of day or process identifier) are allowed to vary;
all other inputs are verified to be the same as the reference
execution. If a verification fails during a subsequent execu-
tion, ShortCut refines the slice, e.g., by allowing inputs that
led to the failure to vary during slice generation. Thus, if all
verifications pass, the computation is accelerated. If a verifi-
cation fails, the failure result provides profile data that allows
ShortCut to generate better slices in the future. Importantly,
because the slice is created to be similar to the reference
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execution, many sources of internal non-determinism are
eliminated: e.g., the slice and the reference execution follow
the same thread schedule and read data from the network
in the same-sized chunks. Because natural variation due to
internal non-determinism is greatly reduced, ShortCut is able
to learn much more from failed slices generated during incre-
mental refinement than it would from naturally-occurring
executions in a profile set.
The last problem we faced in the design of ShortCut was

how to hide the overhead of slice generation from users of
the system. ShortCut uses deterministic record-and-replay
to move slice generation out of the critical path. It records a
reference execution using standard record-and-replay tech-
niques [21] and then produces the slice by dynamically instru-
menting a replay of that execution. Importantly, ShortCut
can substantially reduce the cost of recording during sub-
sequent executions (i.e., when executing a slice) because it
records only the small set of non-deterministic inputs that dif-
fer between the slice execution and the reference execution
rather than all non-deterministic inputs. These differences,
combined with a replay log of the reference execution, allow
ShortCut to reproduce the failed execution for subsequent
dynamic analysis.

3 Implementation
We next describe the four major components of ShortCut:

slice generation, slice execution, transparent recovery, and
incremental slice refinement.

Slice generation, described in Section 3.1 dynamically an-
alyzes a reference execution to partially memoize a region
of computation. The outputs of slice generation are a state
diff that specifies the memory and register values to change,
and a slice that modifies the diff and makes system calls to
modify state external to the process.

ShortCut uses Pin [40] to execute programs called Pintools
that observe and modify the state of an x86 application as
it executes. The slice generation Pintool adds logic to each
x86 instruction that observes its inputs and outputs, e.g., to
determine which instructions depend on inputs that may
change in subsequent executions so that these instructions
can be included in the generated slice.
Dynamic binary instrumentation has high overhead, but

it supports the complex operations we need for slice genera-
tion. To hide overhead, ShortCut uses deterministic replay
to decouple analysis and the original application execution.
When an application executes, it uses Arnold [20] to record
the non-deterministic inputs to the application. Arnold can
later replay the application on demand with Pin instrumen-
tation; Arnold guarantees that the instrumented execution
will execute the same instructions and have the same data
values as the original execution for race-free programs. It
also detects races that occur.

Slice execution is described in Section 3.2. When the appli-
cation reaches the start of thememoized region, it traps to the

OS, which applies the state diff and then loads and runs the
slice. Predicate failures during slice execution makes a sys-
tem call to initiate transparent recovery. The last instruction
in the slice makes a system call that lets the OS unmap the
slice, perform final cleanup, and set the instruction pointer
to the end of the memoized region.
During transparent recovery, described in Section 3.3,

ShortCut generates a synthetic execution, which is a replay
log that produces the normal (non-memoized) execution of
the region with the inputs seen by the rolled-back slice exe-
cution. It starts a new process replaying from the application
state at the beginning of slice execution; the replay generates
the correct memory and register state at the point the predi-
cate failed. ShortCut swaps this memory state with that of
the failed slice (which has the correct kernel state). ShortCut
then resumes normal application execution with the original
process and throws away the process used for recovery.
Incremental slice refinement, described in Section 3.4, al-

lows ShortCut to learn from failure by broadening the slice
to account for divergences that led a validation to fail when
running the slice. Incremental slice refinement may specify
which inputs are expected to diverge, which control flow
paths are expected, and which memory addresses are ex-
pected to be accessed by relative loads and stores. These ex-
pected divergences are used by the slice generator to produce
a new slice, e.g., one that would have not failed the observed
predicate. Incremental refinement requires dynamic analysis,
so it is implemented as a Pintool. ShortCut uses Arnold to
execute the analysis offline.

3.1 Slice generation

Slice generation is an offline process that instruments a
deterministic replay of a reference execution to produce one
slice and one state diff associated with that slice. The start
of the region to memoize is specified manually: this is either
the first instruction after loading the executable or a specific
system call made by the reference execution. The end of the
region can also be specified manually (as a specific system
call), or determined automatically by incremental refinement
when a divergence occurs that is too large to handle.

Slice generation optionally takes as input a set of expected
divergences, which are inputs, control flow paths, and mem-
ory accesses that are expected to differ in subsequent execu-
tions. The set of divergences is generated through incremen-
tal refinement, so it is initially empty when the reference
execution is first analyzed.

ShortCut generates the diff by replaying the reference exe-
cution to the end of the region and recording the values that
it writes to memory and registers. Note that simply compar-
ing start and end memory and register values is insufficient,
e.g., if the region writes a 1 to a location that happens to
already contain a 1, that location would be omitted from
the diff; which would lead to a missing modification if the
location contains 2 during a subsequent execution. However,

573



ShortCut: Accelerating Mostly-Deterministic Code Regions SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

1 // initially: x=1, y=2, z=3, A=[0,1,2,...]
2 v = x;
3 w = y + z;
4 rc = write(x);
5 t = time();
6 if (t > y)
7 write(checks out'');
8 else
9 BigFunction();
10 b = A[y];
11 c = A[w];

(a) Reference execution

1 // only z might differ
2 check(x=1);
3 check(y=2); w = 2 + z;
4 rc = write(1); check(rc=4);
5 t = time();
6 check(t > 2);
7 write(checks out'');
8
9
10
11 check(5<=w<=6); A[5]=5; A[6]=6; c=A[w];

(b) Slice execution

1 {z}
2 {z}
3 {w,z}
4 {w,z}
5 {t,w,z}
6 {t,w,z}
7 {t,w,z}
8 {t,w,z}
9 {t,w,z}
10 {t,w,z}
11 {c,t,w,z}

(c) Taint set

1 {}
2 {v=1}
3 {v=1}
4 {v=1,rc=4}
5 {v=1,rc=4}
6 {v=1,rc=4}
7 {v=1,rc=4}
8 {v=1,rc=4}
9 {v=1,rc=4}
10 {b=2,v=1,rc=4}
11 {b=2,v=1,rc=4}

(d) State diff
Figure 1. Slice and diff generation example. The first column shows the reference execution and the second the resulting slice. The
third column shows how the taint set changes over time and the last shows how locations are added to the state diff. Assume that
incremental refinement has revealed that w is likely to be 5 or 6.

as an optimization, if the region starts at the beginning of
the program execution, ShortCut simply uses a checkpoint
taken at the end of the region at the diff, which is correct
because there are no pre-existing values.
ShortCut generates the slice by replaying the reference

executionwith a Pintool that implements a taint tracking [42]
algorithm that identifies which locations (memory addresses,
registers, and CPU flags) could potentially have different
values in a subsequent execution, assuming all predicates up
to that point have succeeded. ShortCut tracks taint at byte
granularity by analyzing individual x86 instructions.
The generated slice is an x86 assembly program that is

linked with libc and a support library to produce executable
code. In general, the slice includes each system call made by
the reference execution, so executing the slice will have the
exact same effect on the kernel and external applications as
executing the non-memoized version of the region.
The first two columns in Figure 1 shows a sample region

to be memoized and the resulting slice (for clarity, we show
pseudocode instead of x86 assembler code). The third column
shows the taint set (i.e., the locations that depend on inputs
that may vary). The final column shows the state diff (i.e., the
locations changed by the reference execution); in the figure,
we show only the locations that will not be modified by slice
execution.

3.1.1 Slice inputs

Inputs to the memoized reference execution may come
from: (1) initial memory and register values, (2) the registers
and memory modified by system calls, (3) non-deterministic
x86 instructions such as rdtsc, and (4) shared memory mod-
ified by other applications.
Each input is either predicated or tainted. A predicated

input is always accompanied by a predicate in the slice that
checks that the value of the input during subsequent execu-
tions is the same as that seen during the reference execution.
Predication of initial memory and registers is done when the
dynamic analysis first observes an instruction reading that
location. In Figure 1, line 2 inserts a predicate that checks if
x is equal to 1 (the value read by the reference execution). If

a predicate check fails, the slice jumps to code that initiates
transparent recovery (not shown).
Tainting an input means that the input may contain any

value during subsequent executions. Initially, z is tainted
because it is expected to differ based on previous incremental
refinement results. Subsequently, the slice generator will
include any instructions that depend on z in the slice, and it
will taint any values that depend on a tainted value, such as
w on line 3.

As an optimization, if the slice begins at application start,
ShortCut only taints or predicates arguments and environ-
ment variables. It also predicates that the executable image
has not changed to ascertain that other initial inputs are the
same as those seen for the reference execution.

Registers and memory locations modified by system calls
are also tainted or predicated. Some system call results are
inherently non-deterministic: e.g., t returned by time in line
5 or file access times returned by fstat, etc. ShortCut always
taints such results. Otherwise, it only taints the system call
result if different values are expected based on incremental
refinement. In line 4, the return code fromwrite is not tainted
(e.g., because it has not differed during previous executions).
ShortCut taints memory buffers modified by system calls on
a byte-by-byte basis, while all bytes in numeric values are
tainted together. Values read from shared memory or modi-
fied by non-deterministic x86 instructions such as rdtsc are
always tainted.

System calls such as recv non-deterministically return dif-
ferent numbers of bytes (e.g., depending on how much data
has been received from the network). ShortCut handles this
non-determinism in two ways. First, the ShortCut profiler
may observe the system call returning different numbers of
bytes and allow it to return any number of bytes up to a max-
imum of n bytes during slice execution. In this case, the first
n bytes in the memory buffer populated by the system call
are tainted, even if the system call returns less than n bytes.
Second, ShortCut rewrites the inputs to the system call be-
fore passing them to the kernel so that no more than n bytes
are returned. The kernel will buffer any excess bytes and, e.g.,
provide them on the next recv call. Our evaluation shows
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that this approach works will for TCP and similar stream
protocols (e.g., for communication between GUI applications
and the X server).
3.1.2 Taint tracking for x86 instructions
The slice generator inspects each x86 instruction during

the reference execution, and performs three tasks. First, if
the instruction has at least one tainted input, it is included in
the slice; if no inputs are tainted, the instruction is omitted
and the next two steps are skipped (e.g., line 2 is omitted
from the slice because x is not tainted)
Second, the slice generator rewrites the instruction and

replaces any non-tainted inputs with constants equal to the
value of the input at the beginning of the instruction in the
reference execution. For example, line 3 is included in the
slice because z is tainted, and the untainted y is replaced
with the constant 2 in the resulting instruction.

An untainted value will not differ during subsequent exe-
cutions since it does not depend on any input that is allowed
to vary (a prior predicate would have failed if an input it
depends on had varied). Note that non-tainted locations are
not guaranteed to have correct values during slice execution,
so replacement with constant values is necessary.

Third, the slice generator taints all outputs of the instruc-
tion that depend on the tainted inputs. So,w is tainted after
line 3.

ShortCut tracks taint for almost all x86 instructions, includ-
ing floating point instructions, x86 SSE instructions, repeat
string instructions, etc. The slice generator verifies complete-
ness by ensuring that taint tracking is implemented for all
instructions with a tainted input in the sliced region.
3.1.3 System calls
System calls are a special case: logically, any system call

in the reference execution is added to the slice whether or
not its inputs are tainted. This ensures that slice execution
has the same external effects, including changes to kernel
state, that non-memoized execution would have.

If a system call input is tainted, the slice uses the memory
or register value from slice execution (this location holds
the same value that would have been calculated by the non-
memoized execution). Otherwise, the slice generator replaces
the system call parameter with a constant (e.g., as in line
4). Since tainting is done at byte granularity, the decision
about whether to replace with a constant is also done at byte
granularity. This allows, for example, the output of a string
that contains some unmodified values and some modified
values such as the current time or process identifier.
3.1.4 Data flow divergences
Most x86 instructions that access memory can use base

and index registers to specify a relative offset for the address
accessed. For instance, consider the code in Figure 2. Line
1 sets register eax and line 2 uses it as the base register for
a memory load at effective address 0x12345678. Since the
inputs to line 1 are not tainted, it will will not be included in

the slice. Line 2 will be in the slice, but the contents of eax
are undefined since line 1 was omitted. Therefore, the slice
generator rewrites line 2 as shown in the second column,
specifying the load address as a constant.
If a base or index register is tainted, the effective address

calculated for subsequent executions may differ from that
calculated by the reference execution. This is potentially
incorrect since the slice may not have a correct value at
that effective address. By default, the slice generator inserts
a predicate prior to the load or store that checks that any
tainted base or index register has the same value as during
the reference execution. In line 3, the slice checks that the
value loaded into ebx is 0x1111 (the value seen during the
reference execution).

Since tainting means that a register’s contents might vary
during subsequent executions, and we have predicated that
it should not vary from what have been observed, taints
can be safely removed from the base and index registers
afterwards; this important optimization reduces the number
of subsequent predicates and simplifies the slice. For example,
line 4 in Figure 2 does not need a predicate.
What if the memory address commonly varies from exe-

cution to execution? ShortCut detects variation during in-
cremental refinement and allows a data flow divergence by
specifying the instruction where divergence occurs, as well
as a set or range of effective addresses that will be allowed.
When the slice generator encounters a specified instruc-

tion that reads memory, it first adds a predicate that checks
the actual effective address is in the specified set or range.
Next, it adds instructions that ensure each allowed address
has a correct value. Tainted addresses already have correct
values but untainted addresses must be set to the current
value at that location in the reference execution. As an op-
timization, initialization is omitted in cases where the slice
generator can guarantee that the untainted location already
has the correct value. Finally, the slice generator adds the
original instruction to the slice. It taints the outputs of this in-
struction since they may differ depending on which memory
address is read.

For example, line 11 in Figure 1 has a tainted array index.
Assume that incremental refinement has revealed thatw is
likely 5 or 6. The slice inserts a predicate for this assumption,
initializes memory with values seen in the reference execu-
tion (the example assumes these locations are untainted), and
performs the read. c is tainted because its value will depend
on which location was read, even though neither location
was tainted. In contrast, line 10 does not result in any slice
code since the base, index, and memory location read are
untainted.

Divergent writes are handled similarly. The slice generator
adds a predicate to check that the store address falls within
the specified set or range, and it ensures that all potential
store addresses have correct values prior to executing the

575



ShortCut: Accelerating Mostly-Deterministic Code Regions SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

1 mov eax, 0x12345678
2 mov ebx, DWORD PTR [eax]
3 mov ecx, DWORD PTR [ebx]
4 mov edx, DWORD PTR [ebx+0x4]

(a) Reference execution

1
2 mov ebx, DWORD PTR [0x12345678]
3 cmp ebx, 0x1111; jne fail
4

(b) Slice execution
Figure 2. Base register example. The first column shows the reference execution and the second the resulting slice.

instruction. After the instruction, all locations in the target
range or set are tainted.

3.1.5 Control flow divergences

Initially, the slice generator inserts predicates to ensure
that the slice follows the same control flow as the reference
execution. At each branch or jump, it checks if the inputs
to the instruction are tainted; e.g., it checks if any flag read
by an x86 conditional branch is tainted. If all inputs are
untainted, the control flow instruction is omitted from the
slice as the same branch will be taken in all subsequent
executions (because the prior predicates have succeeded). If
an input is tainted, the slice generator inserts a predicate
that ensures that the branch outcome is the same in the
reference and subsequent executions. For example, line 6 in
Figure 1 checks that the branch condition is true given one
tainted input t and one untainted input y. The slice omits
the branch as well as all instructions not on the path taken
by the reference execution.

If incremental refinement observes that multiple paths are
taken, it may specify a control flow divergence by giving
one or more alternate paths of execution. For each such
divergence, it specifies the instruction where divergence may
occur, the instruction where the divergence ends (called the
merge point), and allowed paths from the divergence point
to the merge point.
Given a divergence, the slice generator adds alternate

paths to the slice that differ from the one taken by the refer-
ence execution. It speculatively executes each alternate path
from the conditional instruction to the merge point, adding
code for each path to the slice. It then rolls back execution to
the conditional instruction and executes the path taken by
the reference execution. It inserts conditional instruction(s)
in the slice to take the appropriate path based on the value
of the tainted inputs during subsequent executions.
The slice generator tracks the set of locations modified

along any path. At themerge point, it taints all such locations,
and it inserts code at the end of each path to copy correct
values into any previously untainted locations. Values in
these locations can differ due to the implicit flow caused by
executions taking different paths [59].
ShortCut limits control flow complexity by disallowing

alternate paths that include a system call or synchronization
instruction and allowing no more than 512 basic blocks in
any alternate path. Such paths are not included in the slice,
and ShortCut checks that they are not taken by subsequent
executions.

3.1.6 Multithreading and signals

Arnold replay is equivalent to executing the replayed pro-
gram on a single core with all context switches between
threads occurring at system calls and synchronization op-
erations [20]. There exists a total, deterministic order over
all replayed instructions that is equivalent to the original
multicore execution if the program is race-free [47]. Since
alternate paths cannot span system calls or synchronization
operations, the slice has the same sequential ordering over
such operations as the replay of the reference execution.
Due to this property, slice generation safely replaces all

synchronization such as pthread mutexes and low level locks
with code that explicitly switches between threads when a
slice instruction in one thread is followed by one in another
thread. Peregrine [18] used a similar technique to support
deterministic multithreading and noted substantial perfor-
mance benefit.

After slice execution, mutexes and other synchronization
objects may have incorrect values, so the slice generator
appends code to the slice to perform compensating actions.
For example, a thread that is holding a lock at the end of the
region acquires the lock.

When feasible, slice execution delivers signals at the same
point in the slice execution as the signal was originally de-
livered in the reference execution. If the signal arrives early,
the kernel buffers the signal until the slice reaches the de-
sired point in its execution. If the signal arrives late, the slice
pauses for a few milliseconds to see if the signal will arrive.
If ShortCut cannot deliver the signal at the desired point in
the slice execution, it initiates transparent recovery.

3.1.7 Outputs

The slice produces correct outputs at the end of the region
for all tainted memory addresses and registers. However,
some locations may have been modified by slice execution
and then became untainted. For example, a variable could
first be assigned a tainted value and then subsequently set
to zero. The first instruction would be in the slice, but the
second instruction would be omitted. The slice writes the
correct final value to each such location at the end of its
execution.
If the reference execution writes to shared memory, the

slice generator inserts an instruction that writes to that loca-
tion even if the instruction inputs are untainted; in this case,
the value written is a constant equal to the value written by
the reference execution.
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3.2 Running a slice

ShortCut runs a slice when the program reaches the first
instruction in the memoized region. It evaluates any initial
predicates. For example, if the slice starts at the beginning
of the program, it validates that any untainted argument
or environment variable are the same as in the reference
execution. This is equivalent to running the slice only if a
subset of the arguments and environment variables match.
Similarly, if the slice starts at the beginning of a function,
it validates all memory and register dependencies of the
function, such as input arguments, global variables and static
variables used by the function. If any initial validation fails,
ShortCut lets the execution proceed normally. If all succeed,
ShortCut first applies the diff by modifying memory and
register values. Then, it executes a system call to have the
kernel load the slice into a free location in the application
address space (i.e., one that was never mapped during the
reference execution). The kernel allocates a stack and sets
the instruction pointer to the first instruction in the slice
before returning.

Since the slice executes all system calls made by the refer-
ence execution, it makes the same modifications to kernel
state and communicates the same way with external pro-
cesses as would a normal execution of the memoized region.

On successful completion, the slice executes a system call
to return control to the kernel. The kernel removes the slice
and stack from the address space, and it restarts each appli-
cation thread. The application runs normally from this point
without further kernel support.

3.3 Transparent recovery

If a predicate verification fails during slice execution, the
slice executes a system call to ask the kernel to initiate trans-
parent recovery. Predicates may fail at any point during slice
execution, but ShortCut cannot restart execution from any
arbitrary point because the address space of the slice has
only a small portion of the correct values that would exist
during a normal execution.
A simple, but flawed, design would be for ShortCut to

restart the application from the beginning of the region. Un-
fortunately, the slice will execute system calls that externalize
output, e.g., write to files or communicate with other pro-
cesses. A simple restart would create inconsistent external
state, such as file modifications and ghost UI windows.
Rollback-recovery [23] using deterministic replay seems

promising. With this technique, the kernel rolls back appli-
cation state to a prior point, then replays the execution that
fails, supplying the same non-deterministic inputs (called the
replay log) seen by the failed execution and suppressing dupli-
cate output produced by the replayed execution (in this case,
the system calls made by the replayed process). Rollback-
recovery can recreate the memory state at any point in a
failed execution.

However, which execution do we replay? The reference
execution has different inputs than those seen by the slice: re-
playing it will produce applicationmemory inconsistent with
state externalized by the slice. The slice execution is incom-
plete: replaying it will reproduce the same partial memory
state we already have.

ShortCut’s solution is to create a synthetic execution by con-
structing a new replay log that includes all non-deterministic
inputs that would have been recorded by Arnold running
the normal execution with the inputs seen by the slice. The
simplest method to generate this log would be to have the
slice record all of its non-deterministic inputs as it executes.
However, since the replay log of the slice is expected to

be very similar to that of the reference execution, ShortCut
optimizes recording by having the slice record only instances
where the input it sees is different from that of the reference
execution. If needed, ShortCut patches the reference execu-
tion’s replay log with the recorded differences to produce the
replay log that would have been recorded by the slice. Since
recording overhead depends substantially on the amount of
data recorded and because this optimization greatly reduces
the size of data that needs to be recorded, this optimization
significantly reduces recording overhead during slice execu-
tion in the common case where all predicates succeed.

As a further optimization, the slice is generated with code
that writes any input that differs from that seen by the refer-
ence execution to a memory buffer. The buffer is only flushed
to disk when full.
On predicate failure, the kernel invokes a user-level dae-

mon to construct a synthetic replay log by patching the
reference execution log with the buffered input values writ-
ten by the failed slice. The kernel creates a new process and
replays the synthetic log to the point where the predicate
failed. Arnold replay suppresses all system calls made by the
synthetic execution except those that affect process state,
such as memory mapping and thread creation. This means
that the replayed execution makes the same system calls with
the same inputs provided by the original slice execution, but
those system calls are not executed by the kernel. For exam-
ple, if the slice sent a message to a remote server, then the
replayed execution will try to send the same message, but
the kernel will not actually send it. If the slice received the
response, the replayed execution is supplied with the same
response seen by slice execution in lieu of performing the
receiving system call.
Note that the correct memory state for the application is

now associated with the synthetic replay process, and the
correct kernel state is associated with the slice process that
failed. So, the kernel simply swaps the address space and
registers of the two processes. The original slice process is
allowed to execute from this point, and the application runs
normally since it has correct state. The process used for the
synthetic execution is destroyed.
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From the perspective of the user or any external observer,
there is no difference between normal execution, partially-
memoized execution, and an execution that recovers from a
failed predicate, except that partially-memoized execution
is much faster and a recovered execution is slightly slower
than normal execution.

3.4 Incremental slice refinement

ShortCut uses additional executions of the memoized re-
gion to refine the initial slice generated by the reference
execution. For example, initially ShortCut may expect z to
be 3 in 1a for all executions, so line 11 inserts a predicate
that simply checks ifw is 5 asw depends on z. However, if a
subsequent execution reveals that z could also be 4, during
the refinement process, the predicate in line 11 evolves to a
range check forw . Refinement is based on dynamic analysis
performed offline by running a Pintool to instrument previ-
ously recorded executions. Thus, users see no performance
impact from refinement when running applications.
Recall that ShortCut allows three types of divergences

when generating a slice: input, data flow, and control flow.
Refinement is the process of deciding which divergences
should be allowed for subsequent executions of the slice.
Since refinement uses the past to predict the future, it will
have both false positives and false negatives. ShortCut toler-
ates both types of errors because slices are self-verifying.

A false negative is failing to include a divergence needed
by a future execution; this leads to predicate failure and
transparent recovery. Performance is slightly slower than
without memoization, but observable behavior is identical.
Incremental refinement learns from such failures. A false
positive includes a divergence that is never needed. This
leads to larger and more complicated slices, but has little
effect on performance.

To support refinement, ShortCut initially generates a diver-
gence log for the reference execution. A Pintool dynamically
instruments the replayed execution and generates a com-
pressed log of all program inputs, relative memory accesses,
and branches and jumps that can change control flow.
To refine the slice based on an additional recorded exe-

cution, ShortCut replays that execution and generates its
divergence log. It compares the new log with that of the
reference execution and identifies any differences in inputs,
data flow, or control flow. It uniquely identifies an instruc-
tion that caused a divergence by the instruction address, a
per-thread identifier, number of system calls made by that
thread since the beginning of the region, and number of ba-
sic blocks executed by that thread since the last system call.
The latter two fields are specified for the reference execution
(e.g., since the number of basic blocks may change for a given
instruction if two executions follow different control flow
paths).

Refinement records these divergences in a file that is used
as input by the slice generator. For inputs, it specifies the

bytes that differed. For data flow, it specifies the set of ef-
fective addresses accessed by the relative load or store. For
control flow, it specifies the diverging instruction, the merge
point (where the paths join), and all basic blocks along each
observed path. If a path is too complex (i.e., if it contains a
system call, synchronization instruction, or more than 512
basic blocks), refinement does not specify the divergence.
Optionally, it can automatically end the memoized region
when a too-complex control flow divergence occurs.

The final step canonicalizes the divergences. Based on
common observations across several executions, ShortCut
may anticipate future divergences that are similar to the
ones it has actually observed. For data flow divergences, if all
accesses fall into a tight range of addresses, canonicalization
specifies the anticipated divergence as a range bounded by
the minimum and maximum address observed. For control
flow divergences, if a given static branch or jump instruction
causes divergence at more than one point in the execution,
canonicalization asserts that any instance where that instruc-
tion has tainted inputs may diverge.
Canonicalization has a fundamental tension. Assuming

fewer divergences generates smaller slices that run faster but
have more predicate failures. Assuming more divergences
generates larger and slower slices that fail less often. Our
heuristics that resolve this tension affect performance but
not correctness since self-verifying slices tolerate both false
positives and false negatives.

ShortCut retains the replay log diff for any slice execution
that led to transparent recovery. It processes these in batch
when spare CPU cycles are available. The current slice is used
until offline refinement completes. After creating a new list
of canonicalized divergences, it re-runs the slice generator.
Finally, it discards the replay and divergence logs for any
additional executions since it only needs to retain the much
smaller list of actual divergences.
Initially, we tried to generate slices by gathering a large

set of profiled runs. We found this worked poorly because
naturally-occurring executions have a great deal of inter-
nal non-determinism, e.g., different thread schedules or dif-
ferent timing for reading asynchronous input. This non-
determinism made it difficult to compare two executions.
Incremental refinement largely eliminates this internal non-
determinism since the slice is gently guided to use the same
thread schedule as the reference execution, read asynchro-
nous input in the same-sized chunks, etc.

Still, ShortCut can tolerate some variance. For example, a
synthetic execution is only guaranteed to be correct up to
the failure point. Executing after the failure point is a form
of mutable replay [56]. Since we have not directly observed
inputs past this point in slice execution, we are forced to
use values from the reference execution (or inferred values
consistent with what we saw earlier). After the failure point,
an execution using such values may be one that could not
occur.
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ShortCut could simply use only the portion of the execu-
tion prior to failure for profiling. Yet, the code regions after
failure often contain useful information with additional data
and control flow divergences (divergences are often corre-
lated). Rather than throw this valuable data away, ShortCut
uses it because its self-verifying slices tolerate both false neg-
atives and false positives. Incremental refinement continues
to use a synthetic execution past the failure point until it
reaches a too-complex control flow divergence.

4 Limitations
Experiences with our sample applications have revealed

patterns that can prevent ShortCut from generating an effec-
tive slice. The X server sends all replies and window events
over the same socket. The order of message arrival is oc-
casionally non-deterministic. Slices automatically detect X
message reordering and compensate by delaying out-of-order
message arrival. While we verified that reordering is correct
per the X protocol [43], it is not correct for every protocol.
Thus, supporting reordering requires some manual interven-
tion to determine correctness.
Different memory allocation request sizes across execu-

tions can lead to different pointer values, which causes Short-
Cut to include more instructions in the slice. The increase
in slice size tends to be limited because of natural padding
by the allocator (e.g., to implement a buddy system and in-
crease cache alignment) and because differing pointer values
affect data flow more than control flow. To make allocations
more consistent, we are currently adding an optimization
that pads allocations based on the maximum size seen in
previous executions.
Similarly, ShortCut must terminate memoization when a

program starts to receive asynchronous, non-deterministic
inputs such as unexpected incoming requests or UI events,
due to our restrictions on complex control flow divergences.
The initial purpose of these restrictions is to simplify the
ShortCut code, but this may inherently limit region slice
size for some applications. For example, we were trying to
accelerate log processing pipelines running as serverless
computation [8, 9, 25], but soon discovered that for a realis-
tic benchmark, the input logs varies significantly and thus
resulted in complicated control flow divergences that could
not be handled under our current restrictions. With more
effort, we could handle more complex divergences, but there
is some practical limit to complexity that we would reach.
Slice generation and refinement is several orders of mag-

nitude slower than normal execution due to the overhead
of dynamic instrumentation. We ameliorate this cost by per-
forming dynamic analysis offline with deterministic record
and replay. For background tasks, this cost implies that we
should memoize a computation only if we expect it to be
repeated several hundred times in the future. For user-facing
tasks such as memoizing application startup, this ratio can
be much lower since we are using computer time to save

the much more valuable user time. Optimizing slice genera-
tion will help both use cases; a promising avenue is parallel
information flow tracking [46].
ShortCut introduces the potential for information leak-

age through new side channels. For instance, the slice itself
reveals information about the reference execution and sub-
sequent executions. Such channels may make it infeasible to
share slices across trust domains, e.g, among different users.
ShortCut slices currently use the same ASLR layout as the
reference execution. We plan to have the slice take the (ran-
dom) memory layout as an input parameter and issue relative
reads/writes based on the information, which would allow
each slice execution to have a different memory layout.

5 Evaluation
Our evaluation answers the following questions:
• How much does ShortCut accelerate applications with
mostly-deterministic code regions?
• What is the cost of recovery if predicate verification fails
during slice execution?
• How often must predictions be correct?
5.1 Experimental Setup

Web experiments were run with a 4-core server VM with
4 GB of memory, running nginx web server 1.4.7 with PHP
7.0.31. Two identical client VMs run Apache Bench (ab)
against the Web server, loading 20,000 pages. There are 8
client threads in total, while the server has 4 threads. All VMs
were hosted on a machine with 2 16-core Xeon E5-2687W
processors and 256 GB of DRAM. All other experiments were
run directly (without virtualization) on a workstation with
a 4-core Xeon E5620 processor and 6 GB of DRAM. We ran
each experiment 10 times. We report mean values with 95%
confidence intervals.

We verified the correctness of all slices executed through
byte-by-byte comparison of the resulting address space and
registers. To verify a slice, we execute it and checkpoint ap-
plication memory and registers. Then, we apply the diff of
non-deterministic operations (see Section 3.3) to the replay
log of the reference execution, replay that log to generate
a full (non-memoized) execution with the same inputs seen
by the slice, and checkpoint the resulting address space and
registers. Comparing checkpoints showed no differences in
values, meaning that the memoized and non-memoized exe-
cutions produced identical results. We verified that system
calls executed were equivalent. Finally, we verified that ap-
plications behaved as normal after both slice execution and
transparent recovery.
5.2 Identifying regions for partial memoization
Our current process for identifying regions to memoize

requires us to manually specify the start and end of the sliced
region. In the future, we hope to create an automated tool
to select regions automatically. For this paper, however, we
used the following process to identify slices regions:
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First, we identified where each slice should begin. For
most benchmarks, this was simply the start of program exe-
cution. For the Web/PHP benchmarks, the slice starts when
the php_execute_script function is called (i.e., the most
intuitive point to start a region when we hope to memoize
PHP execution).
Next, we set the end of the slice to the point where the

control flow diverged beyond what ShortCut allowed (e.g.,
the divergent path contains a system call or too many basic
blocks), i.e., we selected the maximum slice size that worked
for the entire profile set. This is a heuristic. As our results will
indicate, longer slices that work for most but not all entries
in the profile set might be better; shorter slices that are more
general could also work well. However, the results do show
that this simple heuristic produces reasonable slices.

5.3 Web/PHP server workloads

We use two workloads to measure how effectively Short-
Cut accelerates PHP-based dynamic content generation in
Web servers. This code region is mostly deterministic since
it generates similar content for similar requests, and thus
can benefit from ShortCut. The first accelerates the genera-
tion of the HotCRP user index page that displays conference
name, papers submitted, etc. Our disjoint test and training
sets change inputs that include the author name, email ad-
dress, author, paper id, paper title, decision, and PDF link;
the training set had 4 Web pages, and the test set had 84.
Other system inputs such as the current time vary naturally.
For this benchmark, we found that our initial profile set

did not produce a good slice: the slice was too short and
the time saved by running a slice was outweighed by fixed
performance costs, e.g., for starting the slice. ShortCut’s taint
tracking tool can identify the specific inputs that led to a di-
vergence. Thus, we looked at the first divergence for the slice,
identified which input caused the divergence, and created
different profile sets for each value of this input. This tool
identified the paper count as the key input, so we divided
our original profile set into n profile sets, each with the same
number of papers.
Intuitively, the number of papers has a much larger ef-

fect on HotCRP control flow than the other parameters, and
ShortCut currently tolerates a lot more divergence in data
flow than it tolerates in control flow. For instance, if a loop
takes a different number of iterations and includes a system
call, then ShortCut cannot currently handle that divergence.

The second workload accelerates the generation of Medi-
aWiki pages with disjoint test and training sets that vary the
logged-in user, as well as system variables such as the current
time; the training set had 2 Web pages and the training set
had 89. Since Wiki content is mostly static, MediaWiki has a
custom cache for popular pages; however, the PHP scripts
that access this cache introduce computational overhead that
ShortCut accelerates. The benchmark is short enough that

HotCRP MediaWiki

baseline ShortCut baseline ShortCut

Throughput (requests/sec) 111.4 437.2 38.9 191.8
Median latency (ms) 70 17 204 41
99% tail latency (ms) 92 40 236 63

Table 1. Throughput and latency for Web workloads
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Figure 3. Speedup for Web/PHP. Comparing the first two bars
in each dataset shows the performance benefit of ShortCut mem-
oization. The last two bars show performance when a predicate
fails.

garbage collection is not triggered. Our reported baseline re-
sults use the custom content cache, while the slices generated
by ShortCut effectively replace such caching.
As shown in Table 1, ShortCut speeds up Web server

throughput by 392% and 493% for HotCRP and MediaWiki,
respectively (as measured by ab). Median latency improves
by over a factor of 4 in both cases, and 99% tail latency is
improved by 230% for HotCRP and 375% for MediaWiki.

To show how this speedup is achieved, Figure 3 compares
the time to execute the memoized region, which roughly cor-
responds to PHP engine execution. Comparing the first two
columns shows that ShortCut partial memoization speeds
up the region by 459% for HotCRP and 496% for MediaWiki.
The next two columns show PHP execution time when we
artificially cause the first and last predicate in the slice to fail
(we refer to these scenarios as early failure and late failure,
respectively). With early failure, little work is rolled back
during transparent recovery. The cost of late failure is often
higher because more work is discarded (but not always due
to prefetching benefits of slice execution).

Failing early increases average latency by 30% for HotCRP
and 24% for MediaWiki. Failing late increases average latency
by 29% for HotCRP and 31% for MediaWiki. As the shadings
within the bars show, early failure leads to considerable time
re-executing the remainder of the region after recovery, while
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Figure 4. Speedup for compilation benchmark. Comparing
the first two bars in each dataset shows the performance benefit
of ShortCut memoization. The last two bars show performance
when a predicate fails.

late failure leads to more time spent in transparent recovery.
The reason that early failure does not reduce slice execution
time very much compared to successful memoization for
this application is that applying the diff dominates total slice
execution time, and this work is always done before the first
predicate is verified. The diff could potentially be applied
incrementally as the slice runs, which would be a nice future
optimization for early failure.

Since the performance impact of predicate failure is much
less than the improvement seen from predicate success, pred-
icates need not succeed very often to improve average per-
formance. ShortCut breaks even on average performance
if predicates succeed only 23–28% of the time for the two
scenarios under both the early and late failure scenarios. If
predicates succeed more often than this, ShortCut improves
average performance. This is a reasonable expectation based
on our experiments, since predicates succeed for all 20,000
requests in the throughput test.

For server workloads, we can also consider another break-
even point: how many page loads are needed to offset the
computational time to generate the slice? For HotCRP, the
index pagemust be loaded 2809 times to break even. ForMedi-
aWiki, a page must be loaded 2236 times to break even. These
results are encouraging: even moderately popular pages ex-
ceed these values.

5.4 Compilation

Developers spend considerable time waiting for code to
compile, especially when iteratively making many small
changes and testing. Make files, ccache [14], etc. elide work
when all inputs to a compilation are exactly the same, but
not when inputs are only mostly similar.

We use ShortCut to memoize gcc compilation of the libelf-
0.8.9 and openssh-6.1p1 libraries. Our training sets make
various changes to source files throughout the C files so
that the memoized region for each file ends shortly after the
headers are compiled; this results in a slice for each C file.
These memoized code regions are mostly deterministic and
thus can benefit from ShortCut. Our test set executes a find-
and-replace on a variable name that causes recompilation of
34 out of 53 C files in libelf and 136 of 198 C files in openssh.

Figure 4 compares the time to rebuild the library packages
with and without ShortCut (this time includes compilation,
linking, and all other steps required to build each library).
Memoization speeds up libelf build by 54% and openssh build
by 43%. The memoized regions execute 10–18 times faster
than the non-memoized regions, so benchmark performance
is mostly gated by the ratio of computation used to compile
the initial header block to that used for the remainder of each
file.
The last two bars in each dataset in Figure 4 show build

time when the first and last predicate fails for all recompiled
files. Early failure leads to a 1–3% slowdown compared to
unmemoized execution, while late failure causes a 3–6% slow-
down. Because the performance benefit of memoization is
high and the cost of predicate failure is low, only an average
5–8% of compilations need to see all predicates succeed for
ShortCut to show performance benefits for early failure, and
10–14% must succeed to reach the break-even point for late
failures.
Finally, we compare ShortCut to a custom optimization,

gcc’s precompiled headers [24]. Use of precompiled headers
only speeds up package build by 20% for libelf and 26% for
openssh. In other words, ShortCut achieves an additional 27%
and 13% speedup compared to this hand-crafted optimization,
respectively. One reason that ShortCut outperforms precom-
piled headers is that “only one precompiled header can be
used in a particular compilation [24]”; this is a good exam-
ple of how the complexity of implementing optimizations
can limit their effectiveness. On the other hand, precom-
piled headers can be more general (e.g., for libraries used by
multiple applications), and they are faster to generate than
ShortCut slices.

5.5 Interactive application startup

An application often behaves similarly each time it starts;
e.g., it reads the same configuration and interacts in standard
ways with the OS to acquire resources. Therefore, application
startups are good candidates for ShortCut to accelerate. We
consider 4 interactive applications, chosen for variety:
• GNU Emacs: Emacs startup is slow when a file has com-
plex formatting. Our benchmark invokes Emacs to repeat-
edly edit a complex 1.3MB HTML file (a Yahoo baseball
statistics page). Our disjoint test and training sets modify
pitcher data near the end of the file (in the last 10% of
bytes).
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Figure 5. Speedup for application startup. The top segment
of each bar shows the time to execute the startup region; for
xword and HDFS, the bottom segments shows the time to finish
running the application to completion.

• GIMP: Complex GUI applications like GIMP are slow to
start due to reading configuration data, opening X win-
dows, etc. Our disjoint test and training sets start GIMP
repeatedly from the launch menu.
• HDFS: Java startup is slowed by loading class files. We
run the benchmark of Lion et al. [37], in which the HDFS
file utility is used to read file contents. Our disjoint test
and training sets read different files approximately 10MB
in size from HDFS.
• xword: Custom data pipelines used by small communities
often include minimally-optimized tools. As an example,
we use a crossword generator developed by an author
and used for commercial crossword construction. This
constraint solver finds a maximum-value placement of
words from a large list in a specified grid of black and
white squares. Startup is slow because the tool initializes
complex data structures. Typically, hundreds or thousands
of grid patterns are tried to find the best solution andmany
grids are quickly discarded. Our disjoint test and training
sets use different patterns grids (which change frequently)
and a common wordlist (which changes infrequently).
For HDFS and xword, we report the time for the applica-

tion to complete. For Emacs and GIMP, we report the time
until the user can interact with the application.

Figure 5 shows ShortCut speeds up startup of the 4 appli-
cations by a factor of 6–76; the average startup is over 27
times faster. GIMP shows the least acceleration because the
memoized region interacts with external processes such as
the X server and the window manager. While the region is
accelerated, these other processes are not, so the slice often

waits for these other processes to respond. Xword achieves
the greatest acceleration because it makes relatively few sys-
tem calls. ShortCut speeds up user-level computation but
not kernel computation since the slice makes essentially the
same system calls as the non-memoized region.
Failure and transparent recovery is not substantially

slower than normal startup. The average increase in startup
time after an early failure is only 1%; the average increase af-
ter a late failure is 7%. GIMP has the largest overhead because
its slice takes longest to execute; if it fails late, substantial
work is redone. The break-even point (i.e., how often all
predicates must pass for ShortCut to improve startup per-
formance) is only 3% for Emacs, 6% for xword, 9% for HDFS,
and 22% for GIMP.
5.6 Application and slice characteristics

Table 2 provides detailed characteristics of each slice and
memoized region. For compilation, we aggregate results for
all memoized C files. The first two rows in the table show the
size of the memoized region in the reference execution (i.e.,
the number of dynamic x86 instructions executed). These
large regions range from hundreds of millions to billions of
instructions. The generated slices are much smaller, execut-
ing on average 0.2% of the user-level x86 instructions.

The next two rows shows the wall-clock time required to
execute the memoized region of the reference execution and
the time required to generate the corresponding slice. Slice
generation generally takes several minutes.
Slices verify a large number of predicates during execu-

tion, with input predicates being the most common, partially
because they are verified on a per-byte basis. The applica-
tions exhibit considerable variance in the number of index,
control flow, and input divergences supported by the slice.
Although some applications like GIMP have many control
flow predicates to verify that the slice execution follows the
same general control flow as the reference execution, there
are few actual control flow divergences in the sliced regions.
On average, only 2% of the bytes in a diff are modified by a
slice; yet, such modifications are typically several megabytes
in size. As a result, none of our benchmarks produce correct
results with generic memoization.

6 Related Work
ShortCut builds on prior work in four related areas: mem-

oization, incremental computation, program slicing, and re-
play recovery. Memoization stores the results of a repeated
computation and returns the stored result in lieu of perform-
ing the same computation. iThreads [10] supports parallel
incremental computation by memoizing sub-computations
between synchronization calls. Nectar [26] memoizes deter-
ministic LINQ programs and enables incremental computa-
tion in the data center. One use of lightweight contexts [38]
is memoizing generic PHP startup. Memoization has also
been applied at the level of individual functions [27, 30] and
new programming models have been proposed to support
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Web/PHP Compilation Interactive application startup
HotCRP MediaWiki libelf OpenSSH Emacs xword HDFS GIMP

Region instructions (millions) 141 379 4547 23166 7440 1156 4354 2951
Slice instructions (millions) 0.33 0.72 7 42 19 2 11 29
Reference execution time (s) 0.042 0.11 4.4 27.5 2.1 0.45 2 1.2
Slice generation time (s) 118 246 775 1655 584 94 461 665
Index predicates 573 1014 4594 745 808731 2894 193871 161829
Control flow predicates 2802 25016 126 22517 1346457 209077 900754 2733256
Input predicates (bytes) 120284 728594 3790436 20554303 380699 130084 2051889 1514187
Index divergences 216 329 0 0 84 1324 9 628
Control flow divergences 23 33 0 0 280 401 824 0
Input divergences (bytes) 55082 222918 579792 5544406 75450 1497 404619 229488
Diff size (MB) 4.4 10.9 285 1186 25 680 814 225
Number of slices 1 1 68 272 1 1 21 13
Slice size (MB) 0.47 1.6 12 14 55 5 31 95
Locations modified (MB) 0.6 0.7 3.3 15.6 0.3 6.3 5.4 9.7

Table 2. Detailed statistics for each application.

memoization [39, 52, 54]. These prior results all require per-
region input equality and determinism; i.e., the memoized
computation must be the same for a region each time. In
contrast, ShortCut operates on mostly-deterministic regions
that differ across executions, and this lets ShortCut’s regions
scale to billions of dynamic instructions.
Adaptive and incremental computation are well-studied

topics in the programming language community. Like Short-
Cut, adaptive programming can provide a partial memoiza-
tion capability by only re-executing the portion of compu-
tation affected by changed inputs. However, these are not
generic, systems-level approaches: they either propose new
programming languages, models, or libraries [1, 2, 12, 13,
29, 35] and/or work only for functional programming lan-
guages [15, 45]. Program specialization is a program transfor-
mation technique that generates a specific implementation
for a program fragment dedicated to a known context or
input. It has been used for both functional [5, 17] and imper-
ative languages [6, 16, 49]. Program specialization usually
requires source code and may also require users to describe
specialization opportunities via a declarative language or
specify invariants in the source code [16]. ShortCut can be
viewed as a form of adaptive computation or program spe-
cialization, but it can potentially be applied to any executable
and operates at instruction level. Its combination of slicing
and checkpointing avoids the need for source code changes
and reduces the burden of users, and, vitally, predication
and transparent recovery make slice generation tractable
and greatly reduce slice size. ShortCut partial memoization
scales to unprecedented region size compared to all of these
prior approaches.

Delta execution, which deduplicates similar computation,
has been used for server validation and auditing [32, 33, 51,
55]. One can regard ShortCut as deduplicating a reference
computation with unknown, future computations, whereas
delta execution deduplicates known, past computations.

There have been many efforts to accelerate application
startup in Linux [31, 36], Windows [41, 50], Windows
phones [58], and Android [34, 44]. These approaches do not
eliminate user-level computation, but they provide comple-
mentary benefits such as ensuring that binaries and libraries
remain in memory or are loaded quickly. Other efforts accel-
erate startup through application-specific approaches such
as JVM Warm-Up [37] or gcc’s precompiled headers [24].
Application-specific efforts can have similar benefits as Short-
Cut but introduce considerable complexity; e.g., precompiled
headers have many restrictions such as using only one such
header per compilation written in the same language as
source and having no C token preceding the header. In con-
trast, ShortCut’s generic support requires no application
modification or source code changes.
Program slicing is a classic technique [3, 53, 57] that has

been applied to fault localization [4, 28] and generating likely
invariants [48]. ShortCut proposes checkpoint modification
as a novel application, and it generates usable slices over
very large and complex code regions. Rollback recovery [23]
and deterministic replay [11, 21] are other classic techniques
used by ShortCut. ShortCut builds on Arnold [20] replay but
differs from this prior work by introducing the notion of
synthetic executions.

7 Conclusion
ShortCut improves application performance through par-

tial memoization of mostly-deterministic code regions. It
modifies a generic diff with the actual values seen during
subsequent executions. Predication makes slicing regions
with billions of dynamic instructions feasible, and rollback
recovery via synthetic executions makes predication correct.
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