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Abstract
Cloud-based storage provides reliability and ease-of-

management. Unfortunately, it can also incur significant
costs for both storing and communicating data, even after
using techniques such as chunk-based deduplication and
delta compression. The current trend of providing access
to past versions of data exacerbates both costs.

In this paper, we show that deterministic recomputa-
tion of data can substantially reduce the cost of cloud
storage. Borrowing a well-known dualism from the fault-
tolerance community, we note that any data can be equiv-
alently represented by a log of the nondeterministic in-
puts needed to produce that data. We design a file sys-
tem, called Knockoff, that selectively substitutes nonde-
terministic inputs for file data to reduce communication
and storage costs. Knockoff compresses both data and
computation logs: it uses chunk-based deduplication for
file data and delta compression for logs of nondetermin-
ism. In two studies, Knockoff reduces the average cost
of sending files to the cloud without versioning by 21%
and 24%; the relative benefit increases as versions are
retained more frequently.

1 Introduction

Two trends in storage systems are conspiring to increase
the cost of storing and retrieving data. First, due to
compelling ease-of-management, cost-effectiveness, and
reliability benefits, businesses and consumers are stor-
ing more of their data at cloud-based storage providers.
However, writing and reading data from remote sites can
incur significant costs for network communication.

Second, customers are increasingly expecting and de-
pending on the ability to access multiple versions of their
data. Local storage solutions such as Apple’s Time Ma-
chine [3] retain multiple versions of users’ data and make
it easy to access this data. Cloud storage providers have
followed suit; for example, Google Drive [18], Microsoft

OneDrive [25], and DropBox [14] all store and allow
users to access old versions of their files.

Past versions have many uses; e.g., recovery of lost or
overwritten data, reproduction of the process by which
data was created, auditing, and forensic troubleshooting.
The benefit of versioning increases as more versions are
retained. For instance, if versions are retained every time
a file is closed, the user is usually guaranteed a snap-
shot of file data with each save operation or when the
application terminates. However, many applications save
data only on termination; in such cases, all intermedi-
ate data created during application usage are unavailable
for recovery and analysis. Saving data on every file sys-
tem modification produces more frequent checkpoints,
but cannot recover transient state in memory that never
is written to the file system and, importantly, does not
capture modifications to memory-mapped files. In the ex-
treme, a user should be able to reproduce any past state
in the file system or in application memory, a property
we call eidetic versioning.

The cost of versioning also depends on the frequency
at which versions are retained. For instance, retaining a
version on every file modification incurs greater storage
cost than retaining a version on every close, and the client
will consume more bandwidth by sending a greater num-
ber of versions to cloud storage. Versioning policies must
balance these benefits and costs. Many current systems
choose infrequent versioning as a result.

In this paper, we seek to substantially reduce the cost
of communicating file data between clients and servers;
we also seek to reduce the cost of keeping multiple
versions of data. Our work reduces resource usage and
user costs for existing versioning policies. It also enables
finer-grained versioning, e.g. eidetic versioning, that is
infeasible in current distributed storage architectures.

To accomplish these goals, we leverage an unconven-
tional method for communicating and storing file data.
In lieu of the actual file data, we selectively represent
a file as a log of the nondeterminism needed to recom-



pute the data (e.g., system call results, thread scheduling,
and external data read by a process). With such a log, a
file server can deterministically replay the computation
to recreate the data in the file. Representing state as a log
of nondeterminism is well known in the fault-tolerance
community [16]; however, logs of nondeterminism are
often quite large, and applying this idea requires that the
logs for a computation be smaller than the output files
produced. To address this problem, we apply recent ideas
for reducing the size of individual logs [13], and we also
use delta compression to reduce the collective size of
logs of similar executions.

Representing data as a log of nondeterminism leads to
several benefits in a distributed file system. First, it sub-
stitutes (re-)computation for communication and stor-
age, and this can reduce total cost because computa-
tion in cloud systems is less costly than communication
and storage. Second, it can reduce the number of bytes
sent over the network when the log of nondeterminism is
smaller than the data produced by the recorded compu-
tation. For the same reason, it can reduce the number of
bytes stored by the cloud storage provider. Finally, rep-
resenting data as a log of nondeterminism can support a
wider range of versioning frequencies than prior meth-
ods.

This paper describes the design and implementation
of a distributed file system, Knockoff, that selectively re-
places file data with a log of the nondeterminism needed
to produce that data for both communication with cloud
servers and storage in the cloud. Knockoff supports sev-
eral frequencies of versioning: no versioning at all, ver-
sion on file close, version on every write system call, and
version on every store instruction (for mapped files).

The contributions of this paper are:
• We provide the first general-purpose solution for

operation shipping in a distributed file system by
leveraging deterministic record and replay.

• We show how compression can be applied to com-
putation as well as to storage by using delta com-
pression to reduce the size of the logs of nondeter-
minism that represent such computation.

• We quantify the costs and benefits of general-
purpose operation shipping in a distributed file sys-
tem over actual file system usage.

We evaluate Knockoff by performing a multi-user
study for a software development scenario and a 20-
day, single-user longitudinal study. Without versioning,
Knockoff reduced the average cost of sending files to the
cloud in these studies by 24% and 21%, respectively. The
benefit of using Knockoff increases as versions are re-
tained with greater frequency. The cost of this approach
is the performance overhead of recording executions (7-
8% in our evaluation) and a greater delay in retrieving
past versions (up to 60 seconds for our default settings).

2 Background and related work

Knockoff is based on the principle that one can repre-
sent data generated by computation either by value or by
the log of inputs needed to reproduce the computation.
We call this the principle of equivalence (between values
and computation); it has been observed and used in many
settings; e.g., fault tolerance [16], state machine replica-
tion [37], data center storage management [20], and state
synchronization [19].

The projects most related to ours use the principle of
equivalence for the same purpose, namely to reduce com-
munication overhead between clients and servers in a dis-
tributed file system. Lee et al. first applied this principle
in the Coda File System [22, 23] and coined the term
operation shipping. Clients log and send user operations
(e.g., shell commands) to a server surrogate that replays
the operations to regenerate the data. Chang et al. extend
this idea to log and send user activity, such as keyboard
and mouse inputs [10].

Although the basic idea of operation shipping is pow-
erful, prior system logged and shipped very restricted
types of nondeterminism and thus could not guarantee
that the state received through the log matched the orig-
inal state. Neither a log of shell commands nor a log
of user activity are sufficient to reproduce the compu-
tation of general-purpose programs. Researchers recog-
nized this shortcoming and mitigated it by supplement-
ing the replayed computation with forward error correc-
tion and compensating actions, using hashes to detect re-
maining differences and revert back to value shipping.
Unfortunately, the shift to multiprocessors and multi-
threaded programs means that many programs are non-
deterministic in ways not handled in these prior systems.
Further, because these prior systems handled a very lim-
ited set of nondeterministic inputs, they required iden-
tical environments on the recording and replaying side,
which is unrealistic in many client-server settings.

Knockoff applies the same basic principle of equiva-
lence, but it uses a comprehensive log of nondeterminism
to provide equivalence for all race-free programs (and
many programs with occasional data races). This enables
Knockoff to use operation shipping in more settings, and
it also makes possible the first realistic evaluation of op-
eration shipping for such settings (earlier studies unre-
alistically assumed that programs were deterministic).
Knockoff also applies operation shipping to versioning
file systems. We find that the gains of operation shipping
are larger when multiple versions are saved, and indis-
pensable when versions are saved at eidetic granularity.

Adams et al. identify recomputation as a way to re-
duce storage [1], but do not implement or evaluate any
system based on this observation. Other systems use re-
computation to reduce storage in restricted environments



Log entry Values
1 open rc=3
2 mmap file=<id,version>
3 pthread lock
4 open rc=4
5 read rc=<size>, file=<id,version>
6 gettimeofday rc=0, time=<timestamp>
7 open rc=5
8 write rc=<size>
9 pthread unlock

Figure 1: Sample log of nondeterminism

in which the computation is guaranteed to be determinis-
tic. Nectar [20] applies this idea to DryadLINQ applica-
tions, which are both deterministic and functional. BAD-
FS [6] uses re-computation in lieu of replicating data;
users must specify explicit dependencies and the compu-
tation must be deterministic to produce the same data.

Besides reproducing data, logging has been used in
file systems to track the provenance of files [29, 41] and
guide when new versions should be saved [28]. More
generally, redo logging [26] provides transactional prop-
erties in the presence of failures.

Many prior systems deduplicate file data to reduce
communication and storage [12, 21, 31, 38, 40, 43].
LBFS [31] uses chunk-based deduplication in which Ra-
bin fingerprinting divides a file into chunks, a hash value
is computed for each chunk, and a client and server use
the hash values to avoid communicating chunks already
seen by the other party. Knockoff uses LBFS-style dedu-
plication when transferring data by value.

Versioning file systems [24, 30, 36, 39, 44] retain past
state at a specific granularity such as on every file close
or on every modification. Cloud storage providers such
as DropBox [14] and Google Drive [18] currently allow
users to retain past versions of file data. Knockoff makes
versioning file systems more efficient by reducing stor-
age and computation costs. It also supports versioning at
finer granularities than these prior systems.

3 Motivating example

We start with a motivating example that illustrates why a
log of nondeterminism for an execution may require sig-
nificantly less storage than the data produced by the exe-
cution. Consider a simple application that reads in a data
file, computes a statistical transformation over that data,
and writes a timestamped summary to an output file. The
output data may be many megabytes in size. However,
the program itself can be reproduced given a small log
of determinism, as shown in Figure 1 (for clarity, the log
has been simplified).

The log records the results of system calls (e.g., open)

and synchronization operation (e.g., pthread lock).
The first entry in Figure 1 records the file descriptor cho-
sen by the operating system during the original execu-
tion. Parameters to the open call do not need to be logged
since they will be reproduced during a deterministic re-
execution. The second entry records the mapping of the
executable; replaying this entry will cause the exact ver-
sion used during recording to be mapped to the same
place in the replaying process address space. Lines 4 and
5 read data from the input file, line 6 records the original
timestamp, and lines 7 and 8 write the transformation to
the output file. Note that data read from the file system is
not in the log since Knockoff can reproduce the desired
version on demand. Also, the data written to the output
file need not be logged since it will be reproduced exactly
as a result of replaying the execution.

With compression, a log for this sample application
can be only a few hundred bytes in size, as contrasted
with the megabytes of data that the execution produces.
The output data is reproduced by starting from the same
initial state, re-executing the computation, and supplying
values from the log for each nondeterministic operation.

4 Design considerations

Recent work on deterministic replay [2, 13, 15, 32, 35,
42] now makes it possible to use operation shipping to
build a general-purpose distributed file system for re-
alistic environments and workloads. Our goals are to
build such a system, identify synergies between opera-
tion shipping and versioning file systems, and demon-
strate how operation shipping can reduce communication
and storage costs for realistic workloads.

4.1 Deterministic record and replay
To use operation shipping for realistic workloads

and environments, we need a general-purpose deter-
ministic record and replay system. The record/replay
system should support unmodified applications and
work for multithreaded programs. To work in realis-
tic client/server configurations, the record/replay system
should allow recorded executions to be replayed in en-
vironments that differ from the one on which they were
recorded. Finally, to enable operation shipping to be used
for some (but not all) processes, the system should record
each application individually and allow each to be re-
played individually on the server.

Knockoff uses the Arnold system [13], which meets
these requirements. Arnold uses a modified Linux ker-
nel to record the execution of Linux processes. It records
all nondeterministic data that enters a process, including
the results of system calls (such as user and network in-
put), the timing of signals, and real-time clock queries.
Because it supplies recorded values on replay rather than



re-executing system calls that interact with external de-
pendencies, Arnold can trivially record an application on
one computer and replay it on another. The only require-
ments are that both computers run the Arnold kernel and
have the same processor architecture (x86).

Arnold enables deterministic replay of multi-threaded
programs by recording all synchronization operations
(e.g., pthread lock and atomic hardware instructions).
Arnold can detect programs with data races, but it does
not guarantee that the replay of such programs will match
their recorded execution. Arnold does guarantee that a re-
play is always repeatable (i.e., deterministic with respect
to other replays), even for racy programs.

4.2 Files: values or operations?
Knockoff can represent a file in one of two ways: as

normal file data (by value) or as a log of the nondetermin-
ism needed to recreate the file (by operation). Which of
these representations is more cost-effective depends on
the characteristics of the program that generated the file
data, as well as the relative costs of computation, com-
munication, and storage. Files that are large and gen-
erated by programs that are mostly deterministic (e.g.,
photo-editing software) are best represented by opera-
tion. In contrast, files that are small and generated by pro-
grams that use a lot of nondeterministic data (e.g,. cryp-
tographic key generation) are best represented by value.

At any time, Knockoff can use deterministic replay to
convert a file that is represented by operation into a repre-
sentation by value (but not vice versa). To do so, Knock-
off loads and re-executes the original program, then feeds
in the log of nondeterminism that was recorded in the
original execution. Note that file data read by system
calls from Knockoff are not included in the log. In-
stead, these log entries refer to the file and version that
was read, and Arnold’s replay system reads this data
from Knockoff. Usually, application binaries, dynamic
libraries, configuration files, and the like are stored in
Knockoff, so the server replay sees the same application
files as existed on the client during the original record-
ing. If a binary or library is not stored in Knockoff, the
file data are included by value in the log of nondeter-
minism and provided on replay. Replay of previously
recorded applications may require retention of past file
versions. Alternatively, we can regenerate these past ver-
sions through additional recursive replays of the applica-
tions that produced the data.

Whenever Knockoff represents a file by operation, it
must first verify that Arnold’s replay faithfully recon-
structs the file data because Arnold does not guarantee
that programs with data races replay exactly as recorded.
Knockoff uses a SHA-512 hash for each file to verify
that the replay correctly generated the original data. Be-
cause replay in Arnold is repeatable, a run that produces

matching data in the first replay is guaranteed to pro-
duce matching data in all subsequent replays. If the re-
play does not produce matching data, Knockoff switches
to representing the file by value.

Knockoff chooses between these two representations
when it ships files between clients and servers and when
it stores files on the server. To guide its choice, Knockoff
measures the computation time used to create each file
and the size of each file.

5 Implementation

Knockoff is a client-server distributed file system in
which the server is hosted in the cloud. The server stores
the current version of all files, and it optionally stores
past versions of all files according to a user-selected ver-
sioning policy. Knockoff clients have a local disk cache
that stores current and (optionally) past file versions.

Knockoff implements Coda-style weak file consis-
tency [27]. Clients propagate file system updates asyn-
chronously to the server. Clients register a callback with
the server when they cache the current version of a file,
and the server breaks the callback by sending a client a
message when another client modifies the file.

Knockoff associates a version vector [33] with each
file to identify specific versions and detect conflicting up-
dates. Knockoff assigns clients a unique identifier; every
time a client performs a system call that modifies a file
(e.g., write), it increments an integer in the version vec-
tor associated with its identifier. Thus, every past version
of a file has a unique version vector that can be used to
name and retrieve that version. The server detects con-
flicting updates by comparing the version vector for each
update and determining that neither one dominates the
other. If a conflict occurs, the server retains both ver-
sions, and the user manually resolves the conflict.

Knockoff clients record almost all user-level process
executions (excluding some servers such as the X server
and sshd) and the kernel generates a log of nondetermin-
ism for each such execution. Logs of nondeterminism are
stored in a log cache on the client and may also be sent to
the server and stored in a database there. The server has
a replay engine that allows it to regenerate file data from
such logs.

5.1 Versioning
Knockoff supports versioning policies on a per-file-

system basis. Users select one of the following:
• No versioning. Knockoff retains only the current

version of all files. For durability, a client sends a
modified file to the server on close. After the first
close, Knockoff waits up to 10 seconds to send the
file modifications to the server (this delay allows
coalescing of multiple updates that occur closely



together in time [27]). Upon receiving file modifi-
cations, the server overwrites the previous version
of the file and breaks any callbacks held by other
clients. The server retains multiple versions only in
the case of conflicting updates.

• Version on close. Knockoff retains all past ver-
sions at close granularity; for past versions, Knock-
off may store the actual data or the logs required to
regenerate the data. On receiving a file modifica-
tion, the server retains the previous version instead
of overwriting it. Clients may ask for a version by
specifying its unique version vector.

• Version on write. Knockoff retains all past ver-
sions at write granularity. Every system call that
modifies a file creates a new version, and Knock-
off can reproduce all such versions.

• Eidetic. Knockoff retains all past versions at in-
struction granularity. It can reproduce any compu-
tation or file data and determine the provenance of
data via Arnold. The server stores all application
logs. Clients may ask for a specific version of a file
by specifying a version vector and an instruction
count that specifies when to stop the replay (so as
to recover a specific state for a mapped file).

5.2 Architecture
Figure 2 shows Knockoff’s storage architecture. The

client runs a FUSE[17] user-level file system daemon.

5.2.1 Clients
The Knockoff client stores file system data in four

persistent caches to hide network latency. Whole file ver-
sions are stored in the version cache; this cache may hold
multiple versions of the same file simultaneously. Each
file in Knockoff is given a unique integer fileid, so a par-
ticular version of a file can be retrieved from the cache
by specifying both a fileid and a version vector. The ver-
sion cache tracks which versions it stores are the current
version of a file. It sets callbacks for such entries; if the
server breaks a callback (because another client has up-
dated the file), the version is retained in the cache, but its
designation as the current version is removed.

The chunk cache stores the chunks generated by
chunk-based deduplication for each file in the version
cache; thus the version cache contains only pointers to
chunks in the chunk cache. Knockoff divides each entry
in the database into chunks using the LBFS chunk-based
deduplication algorithm [31] and calculates the SHA-512
hash of each such chunk. The chunk database is indexed
by these hash values.

Directory data is stored in a separate Berkeley DB [7]
directory cache. Knockoff clients implement an in-
memory index over this data to speed up path lookups.
The log cache stores logs of nondeterminism generated

Server

Client
Another
Client

Directory cache

Chunk cacheVersion cache

Log cache

Directory DB

Chunk DBVersion DB

Log DB

Version graph

Callbacks

Figure 2: Architecture overview

by recording application execution.
All client caches are managed via LRU eviction, with

preference given to retaining current versions over past
versions. Chunks are removed from the chunk cache
when they are no longer used by any version in the ver-
sion cache. Modified values are pinned in the caches until
they have been persisted to the server.
5.2.2 Server

The server maintains analogs of these client stores.
The server’s version DB stores the current version of ev-
ery file and, depending on the the versioning policy, past
file versions. The chunk DB stores chunk data for all files
in the version DB, indexed by the chunk SHA-512 hash
values. The directory DB stores all directory information
for Knockoff, and the log DB stores logs of nondetermin-
ism recorded by clients.

If the versioning policy is eidetic, the log DB stores
every application log recorded by any Knockoff client. If
the versioning policy is version on write, every past
file version is either stored in the version DB, or the logs
necessary to reproduce that version are stored in the log
DB. If the versioning policy is version on close, this
invariant holds only for versions that correspond to file
closes. If the versioning policy is no versioning, only
the current versions of file and directory data are stored.

The server also maintains callbacks set by clients for
each file. If a client updates a file, the server uses these
to determine which clients to notify of the update.

Finally, the server maintains the version graph which
relates file versions with the computation that produced
the data. Nodes in the graph are either recorded logs of
nondeterminism (representing a particular execution) or
file versions. Each edge represents a range of file data
that was written by one recording and either read by an-
other recording or part of a file version. An index allows
Knockoff to quickly find a particular file version by fileid
and version vector. If a version is not present in the ver-



sion DB, the version graph allows Knockoff to determine
which logs need to be replayed to regenerate the data.

5.3 Writing data
Knockoff is designed to reduce cloud storage costs. A

large part of these costs is communication. For example,
AT&T [4] and Comcast [11] currently charge up to $10
for every 50 GB of data communication, whereas Ama-
zon currently charges $0.052 per hour for an instance
with 2 vCPUs and 4 GB of memory [5]. This means that
Knockoff can reduce costs if it can use 1 second of cloud
computation to save 76 KB of communication.

We first describe how Knockoff handles writes for
its no versioning policy, and then generalize to other
policies. Like Arnold, Knockoff records application exe-
cution in a replay group that logs the nondeterminism of
related processes. When an application closes a file, the
Knockoff client checks the file’s version vector to deter-
mine whether it was modified. If so, Knockoff starts a 10-
second timer that allows the application to make further
modifications. When the timer expires, Knockoff starts a
transaction in which all outstanding modifications to any
file by that application are sent to the server. If the appli-
cation terminates, Knockoff starts the transaction imme-
diately.

To propagate modifications to the server, Knockoff
first calculates the cost of sending and replaying the log
of nondeterminism given a pre-defined cost of commu-
nication (costcomm) and computation (costcomp):

costlog = sizelog ∗ costcomm + timereplay ∗ costcomp (1)

sizelog is determined by compressing the log of nonde-
terminism for the application that wrote the file and mea-
suring its size directly. Because Knockoff does not cur-
rently support checkpointing, each log must be replayed
from application start.

To estimate timereplay, Knockoff modifies Arnold to
store the user CPU time consumed so far by the recorded
application with each log entry that modifies file data.
This is a very good estimate for the time needed to re-
play the log on the client [34]. To estimate server replay
time, Arnold multiplies this value by a conversion factor
to reflect the relative CPU speeds of the client and server.

Knockoff calculates the cost of sending file data as:

costdata = sizechunks ∗ costcomm (2)

Knockoff implements the chunk-based deduplication
algorithm used by LBFS to reduce the cost of transmit-
ting file data. It breaks all modified files into chunks,
hashes each chunk, and sends the hashes to the server.
The server responds with the set of hashes it has stored.
sizechunks is the size of any chunks unknown to the server
that would need to be transmitted; Knockoff uses gzip
compression to reduce bytes transmitted for such chunks.

If costlog < costdata, Knockoff sends the log to the
server. The server makes a copy of the modified files and
assigns them new version vectors. It then spawns a replay
process that consumes the log and replays the applica-
tion. When the replay process executes a system call that
modifies a target file, it updates the new version in the
cache directly. Once the replay reaches a file close op-
eration, the new cache version is complete and marked
as available to be read. The server deletes the old ver-
sion for the no versioning policy. The replay process
is paused at this point rather than terminated because the
client may ship more log data to the server to regenerate
additional file modifications made by the same applica-
tion. The server only terminates a replay process when
the client notifies it that the application that is being re-
played has terminated.

In rare cases, more than one application may write to
a file simultaneously. The Knockoff server replays these
logs concurrently and ensures that writes are ordered cor-
rectly according to the version vectors.

Replay is guaranteed to produce the same data if the
application being replayed is free of data races. Data-
race freedom can be guaranteed for some programs (e.g.,
single-threaded ones) but not for complex applications.
Knockoff therefore ships a SHA-512 hash of each mod-
ified file to the server with the log. The Knockoff server
verifies this hash on close. If verification fails, it asks the
client to ship the file data. Note that such races are rare
with Arnold since the replay system itself acts as an effi-
cient data-race detector [13].

If costdata < costlog, then Knockoff could reduce the
cost of the current transaction by sending the unique
chunks to the server. However, for long running appli-
cations, it may be the case that sending and replaying the
log collected so far would help reduce the cost of future
file modifications that have yet to be seen (because the
cost of replaying from this point is less than replaying
from the beginning of the program). Knockoff predicts
this by looking at a history of costdata/costlog ratios for
the application. If sending logs has been historically ben-
eficial and current application behavior is similar (the ra-
tios differ by less than 40%) to past executions, it sends
the log. Otherwise, it sends the unique data chunks.

For long running applications, Knockoff may use
multiple transactions to send modified files to the server.
If the client has previously chosen to ship the log to the
server, sizelog is the portion of the log that excludes what
has already been sent to the server, and timereplay is the
additional user CPU time consumed by the recorded ap-
plication after the log prefix, scaled for the difference in
client and server CPU speed.

Other versioning policies work similarly. For the
version on close policy, Knockoff sends not only the
current version of a modified file but also all versions that



existed at any file close during the period covered by the
transaction. The cost of sending the log is identical to the
no versioning case, but the previous versions may in-
troduce new data chunks not yet seen by the server and
thereby increase the cost of sending the file data.

For the version on write policy, the transaction
includes all versions created by any system call that mod-
ified a file. Since chunk-based deduplication works better
across larger modification sizes, Knockoff tries to coa-
lesce modifications to the same file within a transaction
as long as one modification does not overwrite data from
a previous one. The transaction metadata describes how
to reconstruct individual versions.

For the eidetic policy, Knockoff always sends the
application log to the server since it is needed to repro-
duce past computations and mapped file state. The server
usually updates the current version of files by replaying
the log. However, if the computation cost of log replay
is greater than the communication cost of fetching the
modified file chunks from the server, the server asks the
client for the file data instead of replaying the log.

5.4 Storing data
Knockoff may store file data on the server either by

value (as normal file data) or by operation (as the log of
nondeterminism required to recompute that data). If the
log of nondeterminism is smaller than the file data it pro-
duces, then storing the file by operation saves space and
money. However, storing files by operation delays future
reads of that data, since Knockoff will need to replay the
original computation that produced the data. In general,
this implies that Knockoff should only store file data by
operation if the data is very cold; i.e., if the probability
of reading the data in the future is low.

Knockoff currently implements a simple policy to de-
cide how to store data at the server. It always stores the
current version of every file by value so that its read per-
formance for current file data is the same as that of a tra-
ditional file system. Knockoff may store past versions by
operation if the storage requirements for storing the data
by log are less than those of storing the data by value.
However, Knockoff also has a configuration parameter
that sets a maximum materialization delay, which is the
time to reconstruct any version stored by operation. The
default materialization delay is 60 seconds.

For the eidetic policy, the materialization delay ap-
plies to all versions created via a file system call such as
write. We could also apply this bound to intermediate
file states for mapped files, but this would require us to
implement checkpoints of application state so as to limit
the time needed to produce intermediate states.

With the eidetic policy, Knockoff retains all logs
of nondeterminism since they are needed to reproduce
past computation and transient process state. This is suf-

ficient to recompute any file version. However, the re-
computation time is unbounded due to recursive depen-
dencies. For instance, producing a past file version may
require replaying a recorded computation. That computa-
tion may have read file data from Knockoff, so Knockoff
must also reproduce those file versions via replay of other
applications. This continues recursively until Knockoff
encounters no more past versions to reproduce.

To limit the time to reproduce past versions, Knockoff
selectively stores some past versions by value. It uses the
server’s version graph to decide which versions to store
by value. The version graph shows the relationships be-
tween file versions and logs of nondeterminism. File ver-
sions and replay logs form the vertexes of the graph.

A version node in the graph contains a list of all the
file byte ranges in that version that were written by dis-
tinct system calls. For each range, the node stores the
log and the specific system call within the log that wrote
the data. Replaying all such logs up to the specified sys-
tem calls would be sufficient to recompute that particu-
lar version. However, recomputation is not necessary for
byte ranges that already exist in the version DB. All byte
ranges are present if the version represented by the node
is itself in the version DB. Otherwise, a particular byte
range may still be in the version DB because another ver-
sion of the same file is stored by value and the range was
not overwritten between the two versions.

Knockoff inserts an edge from a version node to a log
node if the log contains a system call that wrote a byte
range not in the version DB. Each edge has weight equal
to the time to recompute all such byte ranges.

A log node contains similar information for each of its
system calls that read data from a Knockoff file. For each
read, it lists all file byte ranges that were written by dis-
tinct system calls; this contains the log and system call
of the writing application. Replaying these logs would
be sufficient to recompute all file system data read by the
log node in question. Knockoff inserts an edge from one
log node to another if the latter log wrote at least one byte
range read by the former log that is not currently avail-
able in the version DB. As above, the weight of each edge
is the predicted time to recompute all such byte ranges.
If there is a cycle in the graph, two or more logs must be
replayed concurrently to regenerate file data; Knockoff
coalesces these cycles into a single node.

The time to recompute a version is given by the
longest path rooted at the graph node for that version.
Calculating the longest path for each version requires
visiting each node at most once. If any path exceeds
the specified materialization delay, Knockoff replays the
latest log in the path, regenerates its file versions, and
stores them by value. It repeats this process until no paths
exceed the materialization delay. This greedy algorithm
works well in our evaluation; if warranted in the future,



we could draw on more complex algorithms [8] to min-
imize storage costs while not exceeding the maximum
materialization delay.

Currently, Knockoff recalculates the version graph
and runs the above algorithm nightly. Note that file modi-
fications and queries of past state between batch updates
may have created new versions of past files in the ver-
sion DB. These new versions are temporarily excluded
from the batch computation. If Knockoff determines that
they are not needed, they are removed from the version
DB to save space. Otherwise, they are retained instead of
recomputing them from logs of nondeterminism.

The version on write and version on close

policies store data in similar fashion. The major differ-
ence is that these policies can discard logs to save stor-
age space. Thus, for any log, if the size of the data pro-
duced by that log is less than the size of the log, Knock-
off replays the log (if necessary) to recompute the data,
then deletes the log. Discarded logs are removed from
the version graph and the file versions produced by those
logs are pinned in the version DB (they can never be
deleted without violating the versioning policy since it
is no longer possible to recompute their data).

5.5 Reading data
By default, any application that reads data from

Knockoff receives the current version of the file. The
client first checks its version cache to see if it has stored
the current version of the file locally. If the version
is present, Knockoff reads the requested data from the
cache. It also appends a record to the reading applica-
tion’s log of nondeterminism that specifies the fileid, the
version vector, and the logid and system call of the ap-
plication that wrote the data it just read. The latter two
values are obtained from Arnold’s filemap [13].

If the version is not present, Knockoff fetches it from
the server and caches it. Knockoff caches whole file ver-
sions, and clients fetch versions from the server by value.
A client sends a request that specifies the fileid. The
server responds with the current version vector and a list
of hashes for each chunk comprising the file. The server
also sends the filemap for the version. The client speci-
fies which chunks it does not have cached, and the server
sends that data to the client. The server sets a callback
on the file. The client inserts the version into its version
cache, marks it as the current version, and places the ver-
sion’s chunks into its chunk cache.

Applications may also read past versions of files by
specifying a version vector. If a requested version is in
the server’s version DB, it is shipped by value as above.
If it is not present, it must be recomputed by replaying
one or more logs. We next describe this process.

In its version graph, the server maintains an index
over all versions; this allows it to quickly find the par-

ticular version node being requested. The version node
reveals the distinct byte ranges that were written by dif-
ferent system calls. If a range is in the version DB, it is
used directly. Otherwise, the server must replay the log
of the application that wrote the range to regenerate the
data. For each such log, it determines the longest pre-
fix that has to be replayed; this is the last system call in
the log that wrote any range being read. Knockoff exam-
ines each such log prefix to determine if replaying the
log requires file data that is not in the version cache. If
so, it recursively visits the log(s) that wrote the needed
data. Note that Knockoff’s materialization delay bounds
the amount of computation needed to produce any ver-
sion. Knockoff then replays the visited logs to regenerate
the desired version. It places this version in its version
database and ships it to the client as described above.

5.6 Optimization: Log compression
While implementing Knockoff, we saw the effective-

ness of chunk-based deduplication in reducing commu-
nication and storage costs. This led us to wonder: can we
apply the same compression techniques to logs of non-
determinism that current file systems apply to file data?

Intuitively, log compression should be able to iden-
tify similar regions of nondeterministic data across exe-
cutions of the same application. For example, application
startup regions should be very similar because the appli-
cation will open and load the same libraries, send similar
messages to the X server to initialize windows, open sim-
ilar configuration files, and so on.

We first attempted to apply chunk-based deduplica-
tion directly to log data. This worked reasonably well.
However, after examining the logs we generated in more
detail, we realized that the similarities between logs are
often different from similarities between files. Similar
files tend to have large contiguous chunks that are the
same, whereas similar logs often lack such regions. In-
stead, most of the bytes within two log regions might be
the same, but there exist in each region a smattering of
values such as timestamps that differ. So, even very sim-
ilar log chunks hash to different values.

Therefore, we turned to delta encoding. Knockoff first
identifies a reference log that it expects to be similar
to the current log. It then generates a binary patch via
xdelta [45] that encodes the difference between the cur-
rent log and the reference log. Given both the reference
log and the patch, Knockoff can reconstruct the original
values in the log.

When an application generates a log, the client and
server identify a reference log. The client queries the log
cache to find all prior logs for the same executable that
it has stored locally. For each log, the log cache stores
the arguments to the application, the size of the nondeter-
ministic data, the running time of the application, and the



user-level CPU time. The client orders the cached logs by
similarity across these metrics; if the application has not
yet completed execution by the time the log is shipped,
only the arguments are used to determine similarity since
the other parameters are not yet known. Arguments are
compared using cosine string similarity.

The client orders logs by similarity and sends the list
to the server. The server responds with the most similar
log that it has stored in its log DB. This step is omitted for
the eidetic policy since the server stores all logs. The
client then generates an xdelta patch and uses its size as
sizelog in the algorithm described in Section 5.3.

When the server receives a compressed log, it stores
it in compressed form in the log DB. It also adds a de-
pendency on the reference log. Before a reference log
can be pruned for the version on close or version
on write policies, the server must first uncompress any
log that depends on that log. The server uses the delta
size when deciding whether to retain the log or the data
in these policies. It currently does not take into account
the cost of uncompressing logs when a reference log is
purged because it assumes that logs can be recompressed
effectively using different reference logs.

6 Evaluation

Our evaluation answers the following questions:
• How much does Knockoff reduce bandwidth usage

compared to current cloud storage solutions?
• How much does Knockoff reduce communication

and storage costs?
• What is Knockoff’s performance overhead?
• How effective is log compression?

6.1 Experimental setup
All experiments for measuring communication and

storage costs were run on two virtual machines (one for
the client and one for the server). Both virtual machines
were hosted on computers with a 4 core Intel i7-3770
CPU, 16GB memory, and two 7200 RPM hard drives.
For accuracy, performance results were measured with a
physical machine as the client with a 4 core Xeon E5620
processor, 6 GB memory, and a 7200 RPM hard drive.
All platforms run the Ubuntu 12.04LTS Linux kernel.

Due to a lack of representative file system benchmarks
that also include the computation to generate the data, we
use two methods to evaluate Knockoff. First, we study
users performing a software development task to mea-
sure how Knockoff benefits different people. Second, we
measure Knockoff while an author of this paper runs the
system on the author’s primary computer for 20 days.
This allows us to study the storage costs of multiple ver-
sions generated over a longer time period.

20-day study User study
Disk read (MB) 5473 2583
Disk write (MB) 6706 4339
File open count 261523 418594

Number of executions 3803 1146
Number of programs 75 63

Table 1: Workload characteristics

During these studies, we use Knockoff’s eidetic

policy, which allows us to regenerate all file system reads
and writes by replaying Arnold logs. We use these logs
to measure the bandwidth and storage costs of running
Knockoff over the same workload with other policies.

We implement two baseline file systems for compari-
son. The first uses the LBFS algorithm for chunk-based
deduplication to implement all versioning policies except
eidetic; this is representative of current cloud storage
solutions such as DropBox. The second uses delta com-
pression to implement no versioning and version

on close; this is representative of git [9] and other
version control systems. Delta compression performed
poorly for version on write because our implemen-
tation did not detect when bytes were inserted in the mid-
dle of a file; we therefore omit these results.

6.2 User study
We recruited 8 graduate students to study Knockoff

for a software development workload. We asked them to
write software to perform several simple tasks, e.g., con-
verting a CSV file to a JSON file; each participant could
spend up to an hour solving the problem. We did not
dictate how the problem should be solved. Participants
used various Linux utilities, text editors, IDEs, and pro-
gramming languages. They used Web browsers to visit
different Web sites such as Google and StackOverflow,
as well as sites unrelated to the assignment (e.g., Face-
book and CNN News). One of the 8 participants was un-
able to complete the programming assignment and quit
right away. We show results for the 7 participants who at-
tempted the tasks; 4 of these finished successfully within
the hour. The second column of Table 1 shows aggregate
characteristics of this recorded workload.

Figure 4 summarizes the results by aggregating the
bytes sent to the server by Knockoff and the baseline
file systems across all 7 users; this represents approx-
imately 7 hours of software development activity. Al-
though we are targeting versioning file systems, Knock-
off is surprisingly effective in reducing bytes sent over
the network for non-versioning file systems. Compared
to chunk-based deduplication, Knockoff reduces com-
munication by 24%. Compared to delta compression, it
reduces communication by 32%. Note that the baselines
are already very effective in reducing bandwidth; without
compression, this workload requires 1.9 GB of commu-
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Figure 3: Bytes sent to the server for each individual user study participant (A-G). We compare Knockoff with two
baselines across all relevant versioning policies.
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Figure 4: Total bytes sent to the server across all user
study participants. We compare Knockoff with two base-
lines across all relevant versioning policies.

nication, so delta compression is achieving a 86% reduc-
tion in network bandwidth, and chunk-based deduplica-
tion is achieving a 87% reduction.

Results for version on close are similar to no

versioning for two reasons: (1) the 10-second delay
in transmitting data limits the amount of file closes that
can be coalesced, and (2) file closes that occur within
a few seconds of one another often save very simi-
lar data, so deduplication is very effective in reducing
communication for both the baseline and Knockoff. For
the version on write policy, Knockoff reduces bytes
sent by 47% compared to chunk-based deduplication.
Knockoff is very effective in reducing the additional cost
of retaining fine-grained versions in this study; in fact,
version on write with Knockoff use less bandwidth
than no versioning with the baselines.

Figure 3 shows results for each individual study par-
ticipant (labeled A-G in each graph). The most notice-
able result is that the effectiveness of Knockoff varies
tremendously across users. For participant C, Knock-
off achieves a 97% reduction in bandwidth for the
no versioning policy and a 95% reduction for the

version on write policy compared to chunk-based
deduplication. On the other hand, for participant F, the
corresponding reductions are 2% and 17%. Participant C
used more command line tools and repeated tasks than
other participants. Participant F browsed Web sites more
often. Unfortunately, Knockoff mispredicted whether to
ship by log or value for browsing sessions and missed
several opportunities for bandwidth reduction. Running
a longer study might have allowed Knockoff to better
model behavior and make better predictions for this user.

6.3 Bandwidth savings
To assess longer-term impacts of running Knockoff,

one author ran Knockoff on his primary computer for 20
days. The usage was not continuous, as the author was
simultaneously developing the system and fixing bugs.
When in use, all user-level applications were recorded,
and almost all data was stored in Knockoff. There were
a few exceptions that included system directories, main-
tenance operations, and the execution of user-level dae-
mons like the X server. Knockoff was initially populated
by mirroring the current data in the computer’s file sys-
tem at the beginning of the trial; copying this data into
Knockoff is excluded from our results. The first col-
umn of Table 1 shows aggregate characteristics of this
recorded workload.

Figure 6 compares the bytes sent to the server by
Knockoff with those sent by the baseline file systems.
For the no versioning policy, Knockoff reduced bytes
sent by 21% compared to chunk-based deduplication and
by 39% compared to delta compression. Note that these
compression techniques already reduce bytes sent by
84% and 79%, respectively, when compared to using no
compression at all. For the version on write policy,
Knockoff reduced bytes sent by 21% compared to chunk-
based deduplication. In this experiment, Knockoff’s im-
plementation of fine-grained versioning policies is com-
petitive with chunk-based deduplication without version-
ing, sending 21% more bytes to the cloud for version
on write and 96% more for eidetic. This is a very
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Figure 5: Relative reduction in bytes sent to the server for the 20-day study
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Figure 6: Bytes sent to the server for the 20-day study.
We compare Knockoff with two baselines across all rel-
evant versioning policies.

encouraging result as it argues that retention of past state
at fine granularity can be economically feasible.

To further explore these results, we manually classi-
fied the logs collected during the trial by application type.
Figure 5 shows the reduction in bytes sent to the cloud for
each type relative to chunk-based deduplication. Knock-
off helps little for text editing because the log of nonde-
terminism is almost always larger than the data file pro-
duced by the editor. All other application types show ro-
bust reductions in bytes sent, with the savings being the
greatest for Linux command line utilities.

6.4 Storage savings
We next examine how Knockoff impacts storage costs

for the 20-day study. Storage costs typically depend on
the amount of data stored; e.g., AWS currently charges
$0.045 per GB-month [5]. Since Knockoff stores all
current versions by value, we compare and report the
amount of storage consumed by all file systems to store
past versions. The Knockoff materialization delay limit
for past versions is set to its default of 60 seconds.

Figure 7 shows the cost of storing versions of past
state normalized to the chunk-based deduplication base-
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Figure 7: Relative storage costs for different versioning
policies for the 20-day study.

line. Compared to this baseline, Knockoff reduces stor-
age utilization by 19% and 23% for the version on

close and version on write policies, respectively.
Storage utilization increases as the version granular-

ity gets smaller. However, with Knockoff, storing every
write is only 21% more costly than the baseline system
versioning on close, and eidetic storage is only 134%
more costly. Thus, even versioning at eidetic granularity
can be economically feasible if the storage system stores
some past versions by operation rather than by value.

Figure 8 shows how changing the materialization de-
lay impacts the relative storage cost. The values to the
far right represent an infinite materialization delay, and
thus show the minimum cost possible through varying
this parameter.

6.5 Communication cost savings
We next measure the cost savings achieved by Knock-

off. Sending file data to the server by operation reduces
network usage, but it requires server-side computation to
regenerate file data. We assess this tradeoff using cur-
rent rates charged by popular Internet and cloud ser-
vice providers. For network, we use a range of possible
values. Popular broadband ISPs (AT&T [4] and Com-



Price($ per GB)

Knockoff savings
No version Version on close Version on write

20-day study User study 20-day study User study 20-day study User study
4G network 4.50 21.0% 21.8% 21.2% 21.7% 22.9% 46.3%

Expensive ISP 0.20 20.3% 18.4% 20.5% 18.5% 22.0% 43.3%
Cheap ISP 0.05 18.1% 13.8% 18.2% 14.5% 19.2% 34.9%

Hypothetical ISP 0.005 8.2% 4.9% 8.4% 5.8% 8.2% 11.5%
Table 2: Relative cost savings from using Knockoff for different versioning policies. We show costs for a typical 4G
cellular network, an expensive current ISP, a cheap current ISP, and a hypothetical ISP that is an order of magnitude
cheaper than the cheap current ISP.
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Figure 9: We compare Knockoff’s actual bandwidth sav-
ings with those it could achieve with an oracle that per-
fectly predicts whether to ship by value or by operation.

cast [11]) currently charge a base ($50 per month) and an
incremental charge ($10 for every 50 GB of data beyond
a monthly data cap between 150GB and 1TB). Thus, we
consider 2 price points: $0.05/GB and $0.20/GB. We also
consider a typical 4G network, which has much higher
cost ($4.50/GB or more), and a hypothetical cheap ISP
($0.005/GB) that is an order of magnitude lower than
current providers. Cloud computation cost depends on
the capabilities of the instance. AWS currently charges
$0.052 per hour for an instance with 2 vCPUs and 4 GB

of memory [5]. This is the cheapest instance sufficient to
replay all of our logs, so we use this cost for our study.

Table 2 compares the monetary cost of sending data
to the server for Knockoff and chunk-based deduplica-
tion (the best of the two baselines). For high network
cost (4G), the cost savings of using Knockoff are es-
sentially identical to the bandwidth savings. As network
cost decreases, Knockoff’s cost benefit diminishes. How-
ever, even for the hypothetical cheap ISP, Knockoff still
achieves a healthy 4.9-11.5% reduction in dollar cost.

The reason why monetary cost savings aligns closely
with network bandwidth savings for most network types
is that the current tradeoff between communication and
network costs is very favorable for operation shipping.
Replaying applications is proportional to user-level CPU
time because it eliminates user think-time and most I/O
delays. When applications do not fit this profile, e.g., they
have a lot of computation or large logs of nondetermin-
ism, Knockoff usually ships the data by value.

6.6 Effectiveness of prediction
For long-running programs, Knockoff must predict

whether it will be better to ship the output of that pro-
gram by value or by operation. Mispredictions increase
the bytes sent to the server. To measure this cost, we cal-
culated the bytes that would be sent for our studies if an
oracle were to perfectly predict which method Knockoff
should use. As the results in Figure 9 show, better pre-
dictions could reduce network communication, but the
potential improvement is not especially large.

6.7 Performance
We next examine Knockoff’s performance overhead

as perceived by its user. We measured this overhead
by compiling libelf-0.8.9 with all source files, executa-
bles, and compilation outputs stored in Knockoff. We re-
port the mean time to compile across 8 trials. Note that
Knockoff sends data to the server asynchronously, and
the server also replays logs asynchronously. As a base-
line, we use a FUSE file system that simply forwards all
file system operations to a local ext4 file system.

Figure 10 shows the results of our experiment. The
first bar shows the baseline file system. The next bar
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Figure 10: Performance overhead building libelf-0.8.9

shows the relative performance when we use Arnold to
record the compilation with data stored in the baseline
file system. This shows that the isolated cost of using de-
terministic record and replay is 2%. We then show rela-
tive performance when using Knockoff with its different
versioning policies. The average performance overhead
for using Knockoff ranges from 7% to 8%; the relative
costs of different policies are equivalent within exper-
imental error as shown by the overlapping 95% confi-
dence intervals.

6.8 Log compression
Finally, we examine the benefit of using delta com-

pression on logs of nondeterminism. Across all logs,
delta compression reduces the bytes needed to store those
logs by 42%. In comparison, chunk-based deduplication
reduces the size of the logs by only 33%.

We find it interesting that chunk-based deduplication
is more effective for compressing file data, whereas delta
compression is more effective for compressing nonde-
terminism in the computation that produced that data.
It is possible that restructuring the logs to make them
more amenable to either delta compression or chunk-
based deduplication could lead to further savings.

7 Conclusion

Operation shipping has long been recognized as a
promising technique for reducing the cost of distributed
storage. However, using operation shipping in practice
has required onerous restrictions about application de-
terminism or standardization of computing platforms,
and these assumptions make operation shipping unsuit-
able for general-purpose file systems. Knockoff lever-
ages recent advances in deterministic record and replay
to lift those restrictions. It can represent, communicate,
and store file data as logs of nondeterminism. This saves
network communication and reduces storage utilization,

leading to cost savings. In the future, we hope to extend
the ideas in Knockoff to other uses; one promising target
is reducing cross-data-center communication.
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