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Abstract
Dynamic analysis tools, such as those that detect data-races,

verify memory safety, and identify information flow, have be-

come a vital part of testing and debugging complex software

systems. While these tools are powerful, their slow speed

often limits how effectively they can be deployed in practice.

Hybrid analysis speeds up these tools by using static analysis

to decrease the work performed during dynamic analysis.

In this paper we argue that current hybrid analysis is need-

lessly hampered by an incorrect assumption that preserving

the soundness of dynamic analysis requires an underlying

sound static analysis. We observe that, even with unsound

static analysis, it is possible to achieve sound dynamic anal-

ysis for the executions which fall within the set of states

statically considered. This leads us to a new approach, called

optimistic hybrid analysis. We first profile a small set of exe-

cutions and generate a set of likely invariants that hold true

during most, but not necessarily all, executions. Next, we
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apply a much more precise, but unsound, static analysis that
assumes these invariants hold true. Finally, we run the result-

ing dynamic analysis speculatively while verifying whether

the assumed invariants hold true during that particular exe-

cution; if not, the program is reexecuted with a traditional

hybrid analysis.

Optimistic hybrid analysis is as precise and sound as tradi-

tional dynamic analysis, but is typically much faster because

(1) unsound static analysis can speed up dynamic analysis

much more than sound static analysis can and (2) verifi-

cations rarely fail. We apply optimistic hybrid analysis to

race detection and program slicing and achieve 1.8x over

a state-of-the-art race detector (FastTrack) optimized with

traditional hybrid analysis and 8.3x over a hybrid backward

slicer (Giri).

1 Introduction
Dynamic analysis tools, such as those that detect data-races [23,

46], verify memory safety [41, 42], and identify information

flow [16, 20, 31], have become a vital part of testing and

debugging complex software systems. However, their sub-

stantial runtime overhead (often an order of magnitude or

more) currently limits their effectiveness. This runtime over-

head requires that substantial compute resources be used to

support such analysis, and it hampers testing and debugging

by requiring developers to wait longer for analysis results.

These costs are amplified at scale. Many uses of dynamic

analysis are most effective when analyzing large and di-

verse sets of executions. For instance, nightly regression

tests should run always-on analyses, such as data-race de-

tection and memory safety checks, over large test suites. De-

bugging tools, such as slicing, have been shown to be more

informative when combining multiple executions, e.g. when

contrasting failing and successful executions [4, 25]. Forensic

analyses often analyze weeks, months, or even years of com-

putation [16, 31]. Any substantial reduction in dynamic anal-

ysis time makes these use cases cheaper to run and quicker

to finish, so performance has been a major research focus in

this area.

Hybrid analysis is a well-known method for speeding up

dynamic analysis tools. This method statically analyzes the

https://doi.org/10.1145/3173162.3177153
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program source code to prove properties about its execution.

It uses these properties to prune some runtime checks dur-

ing dynamic analysis [13, 14, 33, 41]. Conventionally, hybrid

analysis requires sound
1
(no false negatives) static analysis,

so as to guarantee that any removed checks do not com-

promise the accuracy of the subsequent dynamic analysis.

However, soundness comes at a cost: a lack of precision

(i.e., false positives) that substantially reduces the number of

checks that can be removed and limits the performance im-

provement for dynamic analysis tools such as race detectors

and slicers.

The key insight in this paper is that hybrid analysis
can benefit from carefully adding unsoundness to the
static analysis, and preserve the soundness of the fi-
nal dynamic analysis by executing the final dynamic
analysis speculatively. Allowing the static analysis to be
unsound can improve its precision and scalability (Figure 1),

allowing it to dramatically speed up dynamic analyses such

as race detection (even after accounting for the extra cost of

detecting and recovering from errors introduced by unsound

static analysis).

Optimistic hybrid analysis is a hybrid analysis based on

this insight. It combines unsound static analysis and specula-

tive execution to create a dynamic analysis that is as precise

and sound as traditional hybrid analysis, but is much faster.

Optimistic hybrid analysis consists of three phases. First, it

profiles a set of executions to derive optimistic assumptions

about program behavior; we call these assumptions likely
invariants. Second, it performs a static analysis that assumes

these likely invariants hold true, we call this predicated static
analysis. The assumptions enable a much more precise anal-

ysis, but require the runtime system to compensate when

they are violated. Finally, it speculatively runs the target

dynamic analysis, verifying that all likely invariants hold

during the analyzed execution. If so, both predicated static

analysis and the dynamic analysis are sound. In the rare

case where verification fails, optimistic hybrid analysis rolls

back and re-executes the program with a traditional hybrid

analysis.

We demonstrate the effectiveness of optimistic hybrid

analysis by applying it to two popular analyses on two dif-

ferent programming languages: OptFT, an optimistic hybrid

data-race detection tool built on top of a state-of-the-art dy-

namic race detector (FastTrack) [23] for Java, and OptSlice,

a optimistic hybrid backward slicer, built on the Giri dy-

namic slicer [45] for C. Our results show that OptFT provides

speedups of 3.5x compared to FastTrack, and 1.8x compared

to a hybrid-analysis-optimized version of FastTrack. Further,

OptSlice analyzes complex programs for which Giri cannot

run without exhausting computational resources, and it pro-

1
Following convention, we classify an analysis as sound even if it is only

“soundy” [34]. For example, most “sound” static analysis tools ignore some

difficult-to-model language features.

SP
O

Figure 1. Sound static analysis not only considers all valid

program states P, but due to sound over-approximation, it

also considers a much larger S. Using likely invariants, predi-
cated static analysis considers a much smaller set of program

states O that are commonly reached (dotted space in P).

vides speedups of 8.3x over a hybrid-analysis-optimized ver-

sion of Giri. We then show how predicated static analysis can

improve foundational static analyses, such as points-to anal-

ysis, indicating that optimistic hybrid analysis techniques

will benefit many more dynamic analyses.

The primary contributions of this paper are as follows:

• We present optimistic hybrid analysis, a method of

dramatically reducing runtimes of dynamic analysis

without sacrificing soundness by first optimizing with

a predicated static analysis and recovering from any

potential unsoundness through speculative execution.

• We identify properties fundamental to selecting effec-

tive likely invariants, and we identify several effective

likely invariants: unused call contexts, callee sets, un-

reachable code, guarding locks, singleton threads, and

no custom synchronizations.

• We demonstrate the power of optimistic hybrid anal-

ysis by applying the technique to data-race detection

and slicing analyses. We show optimistic hybrid anal-

ysis dramatically accelerates these analyses, without

changing the results of the analysis. To the best of

our knowledge, OptFT is currently the fastest dynamic

happens-before data-race detector for Java that is sound.

2 Design
Optimistic hybrid analysis reduces the overhead of dynamic

analyses by combining a new form of unsound analysis,

known as predicated static analysis, with speculative exe-

cution. The use of speculative execution allows optimistic

hybrid analysis to provide correct results, even when en-

tering states not considered by predicated static analysis.

A predicated static analysis assumes dynamically-gathered

likely invariants hold true to reduce the state space it ex-

plores, creating a fundamentally more precise static analysis.

Figure 1 shows how the assumptions in a predicated static

analysis can dramatically reduce the state space considered.

A sound static analysis must make many overly-conservative



approximations that lead it to consider not just all possible

executions of a program (P), but also many impossible exe-

cutions (S).
Rather than paying the cost of this over-approximation, a

hybrid analysis can instead construct a static analysis based

only on the set of executions likely to actually be analyzed

dynamically. Speculative assumptions make the state space

(O) much smaller than not only S but also P, demonstrating

that by using a predicated static analysis, optimistic hybrid

analysis has the potential to optimize the common-case anal-

ysis more than even a perfect sound static analysis (whose

results are bounded by P). The set of states in P not in O
represent the set of states in which predicated static analysis

is unsound. Optimistic hybrid analysis uses speculation and

runtime support to handle when these states are encoun-

tered. As long as the set of states commonly experienced at

runtime (denoted by the dotted area) resides in O, optimistic

hybrid analysis rarely mis-speculates, resulting in an aver-

age runtime much faster than that of a traditional hybrid

analysis.

We apply these principles using our three-phase analysis.

First, we profile a set of executions of the target program

and generate optimistic assumptions from these executions

that might reduce the state space the static analysis needs to

explore. As these dynamically gathered assumptions are not

guaranteed to be true for all executions, we call them likely
invariants of the executions.

Second, we use these likely invariants to perform a predi-

cated static analysis on the program source. Leveraging the

likely invariants allows this static analysis to be far more

precise and scalable than traditional whole-program analysis,

ultimately allowing it to better optimize dynamic analyses.

Finally, we construct and run the final dynamic analy-

sis optimistically. Because predicated static analysis is not

sound, we insert extra checks in this optimistic dynamic

analysis to verify the likely invariants assumed hold true

for each analyzed execution. If the checks determine that

the likely invariants are in fact true for this execution, the

execution will produce a sound, precise, and relatively effi-

cient dynamic analysis. If the additional checks find that the

invariants do not hold, the analysis needs to compensate for

the unsoundness caused by predicated static analyses.

The rest of this section describes the three analysis steps,

and important design considerations.

2.1 Likely Invariant Profiling
A predicated static analysis is more precise and scalable than

traditional static analysis because it uses likely invariants to
reduce the program states it considers. Likely invariants are

learned though a dynamic profiling pass. We next discuss the

desirable properties of a likely invariant, and how optimistic

hybrid analysis learns the invariants by profiling executions.

Strong: By assuming the invariant, we should reduce the

state space searched by predicated static analyses. This is the

key property that enables invariants to help our static phase;

if the invariant does not reduce the state space considered

statically, the dynamic analyses will see no improvement.

Cheap: It should be inexpensive to check that a dynamic

execution obeys the likely invariants. For soundness, the final

dynamic analysis must check that each invariant holds dur-

ing an analyzed execution. The cost of such checks increase

the cost of the final dynamic analysis, so the net benefit of

optimistic hybrid analysis is the time saved by eliding dy-

namic runtime checks minus the cost of checking the likely

invariants. Note that the time spent in the profiling stage to

gather likely invariants is done exactly once, and is therefore

less important; only dynamically verifying the invariants

needs to be inexpensive.

Stable: A likely invariant should hold true in most or

all executions that will be analyzed dynamically. If not, the

system will declare a mis-speculation, and recovering from

such mis-speculations may be expensive for some analyses.

There is a trade-off between stability and strength of in-

variants. We find it sufficient to consider invariants that are

true for all profiled executions. However, we could aggres-

sively assume a property that is infrequently violated during

profiling as a likely invariant. This stronger, but less sta-

ble invariant may result in significant reduction in dynamic

checks, but increase the chance of invariant violations. If the

reduced checks outweigh the costs of additional invariant

violations this presents a beneficial trade-off.

2.2 Predicated Static Analysis
The second phase of optimistic hybrid analysis creates an

unsound static analysis used to elide runtime checks and

speed up the dynamic analysis. Traditional static analysis

can elide some runtime checks. However, to ensure sound-

ness, such static analysis conservatively analyzes not only

all states that may be reached in an execution, but also many

states that are not reachable in any legal execution. This

conservative analysis harms both accuracy and scalability

of static analysis.

A better approach would be for the static analysis to ex-

plore precisely the states that will be visited in dynamically

analyzed executions. A predicated static analysis tries to

achieve this goal by predicting these states through profil-

ing and characterizing constraints on the states as likely

invariants. By exploring only a constrained state space of

the program (the states predicted reachable in future exe-

cutions), predicated static analysis provides fundamentally

more precise analysis.

This reduction of state space also improves the scalability

of static analysis, which now need perform only a fraction

of the computation a traditional static analysis would. Static

analysis algorithms frequently trade-off accuracy for scalabil-

ity [27, 35, 50, 53]. In some instances this improved efficiency

allows the use of more sophisticated static analyses that are

more precise but often fail to scale to large programs.



2.3 Dynamic Analysis
The final phase of optimistic hybrid analysis produces a

sound, precise and relatively efficient dynamic analysis. Dy-

namic analysis is implemented by instrumenting a binary

with additional checks that verify a property such as data-

race freedom and then executing the instrumented binary

to see if the verification succeeds.

In our work, the instrumentation differs from traditional

dynamic analysis in two ways. First, we elide instrumenta-

tion for checks that static analysis has proven unnecessary;

this is done by hybrid analysis also, but we elide more in-

strumentation due to our unsound static analysis. Second,

we add checks that verify that all likely invariants hold true

during the execution and violation-handling code that is

executed when a verification fails.

To elide instrumentation, this phase consumes the set of

unneeded runtime checks from the predicated static analysis

phase. For instance, a data-race detector will instrument all

read/write memory accesses and synchronization operations.

The static analysis may prove that some of these read/write

or synchronization operations cannot contribute to any races,

allowing the instrumentation to be elided. Since the overhead

of dynamic analysis is roughly proportional to the amount

of instrumentation, eliding checks leads to a commensurate

improvement in dynamic analysis runtime.

The instrumentation also inserts the likely invariant checks.

By design, these invariants are cheap to check, so this code is

generally low-overhead and simple. For example, checking

likely unused code requires adding an invariant violation

call at the beginning of each assumed-unused basic block.

This call initiates rollback and re-execution if the check fails.

Roll-back is necessary as predicated static analysis may

optimize away prior metadata updates needed for sound ex-

ecution once an invariant is violated. Figure 2 shows how

a metadata update for variable a on line 2 is elided by op-

timistic hybrid analysis because of the likely-unused code

(LUC) invariant on line 4. If the invariant fails, then the meta-

data required to do the race check on line 5 is missing, and

will be recovered by rolling-back and executing line 2 with

conservative analysis.

We currently handle invariant violations with a catch-all

approach: roll-back the entire execution and re-analyze it

with traditional (non-optimistic) hybrid analysis. As we tar-

get retroactive analysis, this approach is practical for several

reasons. First, with sufficient profiling invariant violations

will be rare enough that even this simple approach has min-

imal impact on overall analysis time. Second, restarting a

deterministic replay, and guaranteeing equivalent execution

is trivial with record/replay systems, which are commonly

used in retroactive analyses. If the cost of rollback became

an issue or full record/replay systems were impractical, we

could reduce the costs of rollbacks through more profiling

or explore cheaper rollback mechanisms, such as partial roll-

back or partial re-analysis.

One appealing approach to reducing the cost of invariant

mis-speculation is to recover by rolling back to a predicated

static analysis analysis that doesn’t assume the invariant just

violated. However, doing so generally would require an anal-

ysis for each possible set of invariant violations (O(2
n
) where

n is number of invariants), far too many static analyses to

reasonably run. It may be possible to reduce this number by

grouping invariants, but since we do not experience signifi-

cant slowdowns with our sound analysis recovery method,

we do not explore this approach further.

3 Static Analysis Background
OptFT and OptSlice are built using several data-flow analy-

ses, such as backward slicing, points-to, and may-happen-in-

parallel. Data-flow analysis approximate how some property

propagates though a program. To construct this approxi-

mation, a data-flow analysis builds a conservative model

of information flow through the program, usually using a

definition-use graph (DUG). The DUG is a directed graph

that creates a node per definition (def) analyzed. For example,

a slicing DUG would have a node per instruction, while a

points-to analysis would have nodes for pointer definitions.

Edges represent information flow in the program between

defs and the defs defined by uses. For example, an assign-

ment operation in a points-to analysis creates an edge from

the node representing the assignment’s source operand to

the node representing its destination. Once the DUG is con-

structed, the analysis propagates information through the

graph until a closure is reached. To create optimistic versions

of these data-flow analyses, we leverage likely invariants

to reduce the number of paths through which information

flows in the DUG.

There are manymodeling decisions that an analysis makes

when constructing the DUG. One critical choice is that of

context-sensitivity. A call-site context-sensitive analysis log-

ically distinguishes different call-stacks, allowing more pre-

cise analysis. A context-insensitive analysis tracks informa-

tion flow between function calls, but does not distinguish

between different invocations of the same function.

Logically, a context-insensitive analysis simplifies and ap-

proximates a program by assuming a function will always

behave the same way, irrespective of calling context. To cre-

ate this abstraction, context-insensitive analyses construct

what we call local DUGs for each function by analyzing the

function independently and creating a single set of nodes in

the graph per function. The analysis DUG is then constructed

by connecting the nodes of the local DUGs at inter-function

communication points (e.g. calls and returns).

A context-sensitive analysis differs from a context-insensitive

analysis by distinguishing all possible calling contexts of

all functions, even those which will never likely occur in
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2. a = 7;
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Figure 2. Example of how OptFT can require rollback on invariant violation. When the likely-unused code (LUC) invariant is

violated on rollback, the execution must rollback and re-execute line 2 to gather the metadata required for the check on line 5.

main() {
1:    a = my_malloc();
2:    b = my_malloc();}

my_malloc() {
if (!g_init)

3:        return do_init();
4:     return malloc(…);}

do_init() {
g_init = true;

5:     // Long initialization code}

11 21

31 41 32 42

1

3 4

2
11 21

31 41 32 42

Context-SensitiveContext-Insensitive Context-Sensitive
+ Likely-Unused Call Contexts

Source Code Def-Use Graph (DUG)

5152515

Figure 3. Demonstration of how context-sensitive and context-insensitive analysis parse a code segment to construct a DUG,

as well as the reductions from likely-unused call contexts

practice. To create this abstraction, the DUG of the analysis

replicates the nodes defined by a function each time a new

calling-context is discovered during the DUG construction.

One simple method of creating such a DUG is through what

is known as a bottom-up construction phase, in which the

analysis begins at main, and for each call in main it creates

a clone of the nodes and edges of the local DUG for the

callee function. It then connects the arguments and return

values to the call-site being processed. If that callee function

has any call-sites, the callee is then processed in the same

bottom-up manner. This recurses until all callees have been

processed, resulting in a context-sensitive DUG representing

the program. The context-sensitive expression of the DUG is

much larger than that of a context-insensitive analysis, but

it also allows for more precise analysis.

Figure 3 illustrates the differences between DUGs con-

structed by a context-sensitive and insensitive analysis. Nodes

3, 4, and 5 are replicated for each call tomy_malloc (), allow-
ing the analysis to distinguish between the different call-

contexts, but replicating the large do_init () function.
Context-sensitive analyses tend to be precise, but not fully

scalable, while context-insensitive analyses are more scalable

at the cost of accuracy. We build both context-sensitive and

insensitive variants of several predicated static analyses.

4 OptFT
To show the effectiveness of optimistic hybrid analysis, we

design and implement two sample analyses: OptFT, an op-

timistic variant of the FastTrack race detector for Java, and

OptSlice, an optimistic dynamic slicer for C programs. This

section describes OptFT and Section 5 describes OptSlice.

OptFT is a dynamic data-race detection tool that provides

results equivalent to the FastTrack race detector [23]. Fast-

Track instruments load, store, and synchronization opera-

tions to keep vector clocks tracking the ordering among

memory operations. These vector clocks are used to identify

unordered read and write operations, or data-races.

OptFT uses the Chord analysis framework for static analy-

sis and profiling, building onChord’s default context-insensitive

static data-race detector [40]. For dynamic analysis we use

the RoadRunner [24] analysis framework, optimizing their

default FastTrack implementation [23].

4.1 Analysis Overview
The Chord static data-race detector is a context-insensitive,

lockset-based detector. The analysis depends on two funda-

mental data-flow analyses, a may-happen-in-parallel (MHP)

analysis, which determines if memory accesses may hap-

pen in parallel, and a points-to analysis, which identifies the



memory locations to which each pointer in the program may

point.

The analysis first runs its static MHP analysis to determine

which sets of loads and stores could dynamically happen in

parallel. Once those sets are known, the analysis combines

this information with a points-to analysis to construct pairs

of potentially racy memory accesses which may alias and

happen in parallel. Finally, the analysis uses its points-to

analysis to identify the lockset guarding eachmemory access,

and it uses these to exclude pairs of loads and stores guarded

by the same lock from its set of potentially racing accesses.

To optimize the dynamic analysis, OptFT elides instru-

mentation around any loads or stores that predicated static

analysis identifies as not racing. The analysis also elides in-

strumentation around some lock/unlock operations, as we

discuss in Section 4.2.4.

4.2 Invariants
OptFT is optimized with four likely invariants. OptFT first

gathers the invaraints with a set of per-invariant profiling

passes, and stores the invariant set for each profiling execu-

tion in a text file. This text file maps invariant sites to sets

of invariant data (e.g. a basic block to how many times its

visited, or an indirect callsite to the functions it may call).

Then, after all profiles are run, the individual run’s invariant

sets are merged, (by intersecting the sets of invariants, to

find invariants that hold true for all runs) to gather the in-

variant set for all of the profiling experiments. The individual

invariants gathered and used by OptFT are:

4.2.1 Likely Unreachable Code
The first, and simplest, invariant OptFT assumes is likely-

unreachable code. We define a basic block within the pro-

gram that is unlikely to be visited in an execution as a likely
unreachable code (LUC) block. To profile LUC, OptFT profiles

the inverse, that is used basic blocks. OptFT runs a basic

block counting profiling pass, which instruments each basic

block to create a count of times it was visited. OptFT uses this

information to create a mapping of basic blocks to execution

counts. The inverse of profiled blocks (set of basic blocks not

in our visited basic block set) is our likely unvisited set.

This invariant easily satisfies the three criteria of good

likely invariants. First, it is strong; the invariant reduces

the state space our data-flow analyses considers by pruning

nodes defined by likely unused code and any edges incident

upon them from our analysis DUGs. This reduction in con-

nectivity within the DUG can greatly reduce the amount

information that propagates within the analysis. Second, the

invariant is virtually free to check at runtime, requiring only

a mis-speculation call at the beginning of the likely-unused

code. Finally, we observe that unused code blocks are typi-

cally stable across executions.

4.2.2 Likely Guarding Locks
Chord’s race detector’s final phase prunes potentially racy

accesses by identifying aliasing locksets. Unfortunately, this

optimization is unsound. To soundly identify if two locksites

guard a load or store, Chord needs to prove that the two sites

must hold the same lock when executing. However, the alias

analysis Chord uses only identifies may alias relations. To

get sound results from Chord we must either forego this lock-

based pruning or use a (typically unscalable and inaccurate)

must analysis. In the past, hybrid analyses that use Chord

have opted to remove this pruning phase for soundness [47].

Likely guarding locks attempt to overcome Chord’s may-

alias lockset issue by dynamically identifying must-alias lock

pairs. The profiling pass instruments each lock site and tracks

the objects locked, creating a set of dynamic objects locked at

each lock site. If it identifies that two sites always only lock

the same dynamic object, it assumes a must-alias invariant

for the lock pairs. The output of this profiling execution is

a set of these “must-alias” relations, these pairs can then be

directly consumed by chord’s lockset pruning pass.

The invariant is strong. By assuming the invariant, the

Chord race detection algorithm can add in some of the lockset-

based pruning discarded due to its weakermay alias analysis.

Additionally, the invariant is cheap to check at runtime. The

dynamic analysis need only instrument the assumed aliasing

lock-sites and verify the sites are locking the same object,

a check far less expensive than the lock operation itself. Fi-

nally, executions do not vary the objects locked frequently,

so this invariant remains stable across executions.

4.2.3 Likely Singleton Thread
Likely singleton thread invariants aid Chord’s MHP analysis.

If a thread start location creates only a single instance of a

thread, all memory accesses within that thread are ordered.

If the start location spawns multiple threads (e.g. its executed

within a loop), then the memory accesses in different threads

associated with that start location may race. We call this

single-thread start call a singleton-thread instance.

The knowledge of singleton-thread instances is easy to

gather dynamically by monitoring thread start sites. On the

other hand, statically reasoning about this information is

hard, requiring understanding of complex program prop-

erties such as loop bounds, reflection, and even possible

user inputs. The likely singleton thread invariant eliminates

the need for this static reasoning by dynamically identify-

ing singleton-thread sites. When profiling for this invariant,

OptFT instruments each thread creation site, identifying and

outputting the set of threads created exactly once. This set

of singleton-threads allows the static MHP analysis to prune

many memory access pairs for singleton thread instances

that it would otherwise miss.

The invariant easily meets the properties of a good likely

invariant. First, the invariant can greatly aid the MHP analy-



Thread 1
x = 5
ftWrite(x)
lock(a)
ftInstrLock(a)
b = True

1: ftInstrUnlock(a)
unlock(a)

2:

Thread 2

lock(a)
ftInstrLock(a)
while(!b) { }
ftInstrUnlock(a)
unlock(a)

// False Race
y = x
ftRead(x)

Thread 1
x = 5
ftWrite(x)
lock(a)
ftInstrLock(a)
b = True

1: ftInstrUnlock(a)
unlock(a)   

2:

Thread 2

lock(a)
ftInstrLock(a)
while(!b) { }
ftInstrUnlock(a)
unlock(a)

// No race by:
//   1 -> 2
y = x
ftRead(x)

Traditional FastTrack w/ Lock Instr. Elision

Figure 4. An example of how lock instrumentation elision

may causemissed happens-before relations in the presence of

custom synchronizations. The left hand side catches custom

synchronizations, but with the elision of locking instrumen-

tation, the necessary happens before relation (represented

by an arrow) may be lost.

sis, which is foundational to our race detector. Second, the

invariant is inexpensive to check, only requiring monitor-

ing of predicted singleton thread start locations. Finally, the

invariant is generally stable across runs.

4.2.4 No Custom Synchronizations
Ideally, static analysis would enable OptFT to elide instru-

mentation for lock and unlock operations. However, the pos-

sibility of custom synchronizations stops a sound analysis

from enabling this optimization. Figure 4 shows how eliding

lock/unlock instrumentation, even when there are no racy

accesses within the critical section, can cause a false race

report. This problem is caused by custom synchronization

(e.g. waiting on b in Figure 4).

To enable elision of lock and unlock instrumentation, we

propose the no custom synchronization invariant. Using

this invariant, OptFT optimistically elides instrumentation

around lock/unlock operations whose critical sections do not

contain any read or write checks. To profile this invariant,

we run the dynamic detector with lock/unlock operations

not guarding any dynamic read/write checks elided. If this

elision causes the dynamic race detector to report false races

(false races are detected by comparing the output with that

of a sound race detector), we know that an elided lock is

guarding a custom synchronization. If so, we return the

lock/unlock instrumentation to the offending locks until the

false races are removed.

The drawback to this approach is that race reports must

be considered as potential mis-speculations. This could be

an undue burden if analysis frequently reports data-races;

however, if a program has frequent data-races, there is little

need for a highly optimized race detector.

This invariant is highly useful. First, it helps the static

analysis eliminate work by reducing the instrumentation

around locks. Second, it is easy to check, our race detector

already detects races. Finally, custom synchronizations rarely

change between executions, so it is stable.

5 OptSlice
OptSlice is our optimistic dynamic backward slicing tool. A

backward slice is the set of program statements that may

affect a target (or slice point) Program slices are important

debugging tools, as they simplify complex programs and

help developers locate the sources (i.e., root causes) of errors

more easily. Backward slicing is particularly powerful when

analyzing multiple executions to find differences between

failing and non-failing executions [4, 25].

OptSlice optimizes the Giri dynamic slicer [45] with an op-

timistic variant ofWeiser’s classic static slicing algorithm [52].

OptSlice collects data-flow slices. Data-flow slices do not con-

sider control dependencies and are often used when control

dependencies cause a slicer to output so much information

the slice is no longer useful.

5.1 Static Analysis
OptSlice uses a backward slicing analysis that builds on the

results of a separate points-to analysis; we next describe

these two analyses.

5.1.1 Backward Slicing
The static slicer used by OptSlice first constructs a DUG of

the program.We have implemented two versions of this algo-

rithm: a context-sensitive and a context-insensitive variant.

The DUG contains a node for every instruction in the pro-

gram and edges representing the reverse information flow

through the program (i.e., from any defs which use instruc-

tions to the defs providing those uses). The slicing analysis

resolves indirect def-use edges (e.g., loads and stores) by us-

ing a points-to analysis to determine aliases. As slicing is a

flow-sensitive analysis, when resolving these indirect edges,

the slicer only considers stores in basic blocks that may pre-

cede the load being analyzed according to the program’s

control-flow graph.

Once the DUG is constructed, our static analysis computes

the conservative slice by calculating the closure of the graph,

starting from any user-defined slice endpoints. The final slice

is composed of any instructions whose defs are represented

by the nodes within this closure.

Our optimistic backward slicer implements several opti-

mizations. First, it lazily constructs the DUG, creating nodes

only when required. Second, it uses binary decision diagrams

(BDDs) [9] to keep track of the visited node set. This is similar

to how BDDs are used to track points-to sets [6].



5.1.2 Points-To
Our Andersen’s-based points-to analysis [5] constructs a

DUG with a node for each statement in the program that

defines a pointer. Edges represent the information flow by

pointer uses. Unlike the slicing DUG, not all nodes and edges

can be resolved at graph creation time. These nodes and

edges are dynamically added as points-to sets are discovered

during the next analysis phase.

After constructing the DUG, the analysis associates an

empty points-to set with each node and initializes the points-

to sets of any nodes which define a pointer location (e.g.

malloc calls). The algorithm then propagates points-to in-

formation along the edges defined by the graph. Addition-

ally, the algorithm may add edges to the graph as indirect

def-use pairs are discovered; e.g., if a load-source and store-

destination are found to alias, the analysis makes an edge

between the two nodes. After all information has finished

propagating through the DUG, each node has its conserva-

tive set of potential pointers.

Indirect function calls are handled in a special manner. For

context-insensitive analyses, a pointer used in an indirect

function call is resolved, the arguments and return values are

connected to the existing nodes for the resolved function(s)

in the graph. Context-sensitive analyses, however, require

distinct information pathways for different static call stacks.

In a context-sensitive analysis, nodes may have to be added

to the graph. When an indirect function call is resolved in a

context-sensitive analysis, the analysis scans the call stack to

check for recursive calls. If the new callee creates a recursive

call, the call is connected to the prior nodes in the DUG

representing that callee. If the function call is not recursive,

a new set of nodes must be added for the call in the same

manner as for the bottom-up DUG construction phase.

The analysis is complete once the graph reaches transitive

closure. Each def’s points-to set is the union of the points-to

sets of all nodes representing that def.

Our algorithm uses heap cloning and is structure-field

sensitive. We also use several well-known optimizations, in-

cluding offline graph optimizations (HVN/HRU) [30], and

cycle detection (LCD and HCD) [29], and BDDs to track

points-to sets [6]. These optimizations contribute to the scal-

ability and accuracy of the analysis, but they do not impact

how we apply likely invariants, so we do not discuss them

further.

5.2 Invariants
OptSlice uses several general invariants, aimed at increasing

overall analysis accuracy. After the invariants are profiled,

we use them to reduce the set of states our static analysis

considers. As with OptFT, OptSlice first gathers the invari-

ants by profiling individual executions, storing them in a text

file, and then intersects or unions the sets (depending on the

invariant) of invariants together to gather its final set. Below,

we discuss how each invariant affects DUG construction.

5.2.1 Likely Unreachable Code
OptSlice uses likely unreachable code identically to OptFT.

5.2.2 Likely Callee Sets
Our points-to analysis’s indirect function call resolution pro-

cess can lead to considerable slowdowns, increased memory

consumption, and analysis inaccuracies. If the analysis is un-

able to resolve the destination pointer of an indirect function

call, it may have to conservatively assume that the callee

may be any function in the program, connecting the call-site

arguments of this function to all functions. On its own, this

is a major source of inaccuracy. It also can lead to propagat-

ing inaccuracies if a function argument is used later as an

indirect call. This issue is compounded in context-sensitive

analyses, where the nodes in the local DUGs for all functions

are replicated, dramatically increasing the analysis time. This

problem is particularly impactful in programs like Perl (Perl

is an interpreter that has a generic variable structure type

that holds all types of variables, including ints, floats, struc-

tures, and function pointers).

Likely callee sets are the dynamically-gathered likely des-

tinations of indirect function calls. The profiling pass instru-

ments each indirect callsite, and identifies and maintains the

mapping from callsite to dynamically observed callee desti-

nation. This invariant helps resolve many of the inaccuracies

and inefficiencies that unknown indirect calls can add to our

points-to analysis. Because likely callee-sets is a reachable

invariant (as opposed to unreachable invariants unreach-

able code, and unused call contexts), individual profile run’s

results are unioned together instead of intersected.

This invariant converts all indirect calls in the DUG to

direct calls to the assumed callee functions. The invariant is

relatively inexpensive to check at runtime, requiring only a

relatively small (usually singleton) set inclusion check on a

function pointer update (a relatively rare operation). Most

indirect function calls have very small sets of destinations,

and they don’t vary from execution to execution, making

this invariant stable across executions.

5.2.3 Likely Unused Call Contexts
Context-sensitive analyses can suffer significant scalabil-

ity problems due to excessive local DUG cloning, as dis-

cussed in Section 3. Likely callee set invariants minimize

local DUG cloning by stopping the context-sensitive analy-

sis from cloning DUGs for call contexts, or call stacks, that

are unlikely to occur. This invariant is profiled by logically

constructing the call stack for each thread. The profiling

pass instruments each callsite and appends the destination

to a thread-local “call-stack”. If the newly created callstack

is unique, it is added to a set of observed callstacks. Once

the profile has completed, the set of all observed callstacks is



written out. This caller stack is then used by the context sen-

sitive analysis to limit local DUG cloning around unrealized

call chains. This effect is demonstrated in Figure 3, removing

the likely-unrealized second call to do_init ().
Likely unused call contexts meet two of the criteria for

good likely invariants. First, they are strong, as they can

dramatically reduce the size of the DUG and the amount of

space the data-flow analysis explores. Second, the invariant

tends to be stable across executions.

Cheap checking of likely unused call contexts is a slightly

more complex matter. Logically, the check needs to ensure

that unused call contexts are never reached, requiring a call-

stack set inclusion check at many call-sites. We found that a

naive implementation of this functionality was too inefficient

for some programs. To accelerate it, we use a Bloom filter to

elide the majority of our relatively expensive set inclusion

tests. We find that this methodology makes the dynamic cost

of the invariant check acceptable.

6 Evaluation
In this section, we show that optimistic hybrid analysis can

dramatically accelerate dynamic analyses by evaluating our

two sample analyses, OptFT and OptSlice, over a wide range

of applications.

6.1 Experimental Setup
6.1.1 OptFT
We evaluate the effectiveness of OptFT on the Dacapo [7]

and JavaGrande [48] benchmark suites. Our test suite is com-

posed of all multi-threaded benchmarks from these suites

which are compatible with our underlying Chord [40], and

RoadRunner [24] frameworks.

Optimistic hybrid analysis requires considerable profiling,

more than the single profile set provided by these benchmark

suites. To test these applications we construct large profiling

and testing sets for each benchmark. For several benchmarks

we use large, readily-available input sets:

• lusearch – Search novels from Project Gutenberg [2].

• pmd – Run the pmd source code analysis tool across

source files in our benchmarks.

• montecarlo – Analyze 10 years of S&P 500 stock data.

• batik – Render svg files from svgcuts.com [3].

• xalan – Convert xhtml versions of pydoc 2.7 Web

pages to XSL-FO files.

• luindex – Index novels from Project Gutenberg [2].

The remainder of our benchmarks (sunflow, raytracer, sor,

moldyn, lufact, crypt, series, and sparse) benchmarks do not

have large, freely available input sets, so we generated large

sets by sweeping parameters across the input sets (e.g. input

size, number of threads, pseudo-random seed).

To profile OptFT, we generate two sets of 64 inputs for

each test. One set is our candidate profiling runs; the other

is our testing corpus.

We run OptFT as a programmer would on a large set

of regression tests. We first profile increasing numbers of

profiling executions, until the number of learned dynamic

invariants stabilize. Then, we run OptFT over all tests in our

testing set. We run all data race detection experiments using

8 cores of an Intel Xeon E5-2687W v3 3.1 GHz processor.

6.1.2 OptSlice
OptSlice is implemented in the LLVM-3.1 compiler infrastruc-

ture. We accelerate the Giri dynamic backward slicer [45].

We evaluate the effectiveness of our analysis over a suite of

common desktop and server applications.

Our test suite workloads consist of:

• nginx – Serve a clone of the pydoc 2.7 documentation,

and load random pages.

• redis – Redis-benchmark application with varying

data-size, client, and number of requests.

• perl – The SPEC2006 diffmail application with differ-

ent inbox configurations.

• vim – Problem solutions from vimgolf.com [1].

• sphinx – Process a large database of voice samples.

• go – Predict the next best move from random points

in an archive of professional go games.

• zlib – Compress files with a gzip-like utility. Input files

are sampled from our sphinx input files.

For perl we analyze the SPEC2006 diffmail application.

This represents the scenario of optimizing the interpreter to

run a repeated analysis over a single script (e.g. running a

single web content-generation script repeatedly on different

requests), not the scenario of a single interpreter being run

over many different perl programs.

Much as we did for OptFT, we generate profile and testing

sets (512 files each for redis, zlib, sphinx, perl, and nginx;

2048 for go and vim). We profile each program, growing the

input set until the number of dynamic invariants stabilizes.

We then test on our testing set of inputs. This methodology

is consistent with how we imagine OptSlice may be used

for debugging, such as when comparing good and failing

executions of a program.

We select static slices from several random locationswithin

our benchmarks, using the most accurate static analysis that

will complete on that benchmark without exhausting avail-

able computational resources.

Once we have gathered our set of slices, we generate dy-

namic slicing instrumentation. To determine statistical signif-

icance between good and bad runs of a program, a developer

would start at a suspect instruction and calculate the back-

ward slice over many executions (both failing and successful).

We therefore select non-trivial endpoints for calculating such

slices and calculate the slice from each endpoint for each



execution in the testing set. We define a non-trivial endpoint

to be an instruction with a sound static slice containing at

least 500 instructions. We use non-trivial endpoints because

they tend to be far more time consuming to compute slices

(there is little use optimizing a trivial analysis), and they are

common; on average, 55% of the endpoints from our sound

static slicer are non-trivial.

We slice each endpoint with the most accurate predicated

static slicer that will run on that program. Once we have our

predicated static slices, we optimize our dynamic instrumen-

tation, and dynamically slice all tests in our testing set with

our dynamic slicer. We repeat this process until we analyze

five different program endpoints; this provides a sufficient

set of endpoints to gain confidence in OptSlice’s ability to

optimize slicing for a general program point.

All experiments are run using a single core of our Xeon

processor, and each is allocated 16 GB of RAM. Table 2 gives

an overview of our benchmarks, their relative sizes, static

analysis times, and which static analysis we use.

6.2 Dynamic Overhead Reduction
Figure 5 shows how optimistic hybrid analysis improves per-

formance for race detection. Although we show all bench-

marks for completeness, 5 benchmarks (those to the right

of the vertical line in Figure 5) are quite simple and can be

statically proven to be race-free. Thus, there is no need for

any dynamic race analysis in these cases. For the remaining

9 benchmarks, OptFT shows average speedups of 3.5x versus

traditional FastTrack, and 1.8x versus hybrid FastTrack. Im-

pressively, for many of the benchmarks analyzed, the costs of

OptFT approach those of the underlying RoadRunner instru-

mentation framework; this presents a near-optimal reduction

in work due to the OptFT algorithm.

There are two remaining benchmarks for which OptFT

sees limited speedups: sunflow and montecarlo. These bench-

marks both make considerable use of fork-join and barrier

based parallelism. Consequently, the lockset based Chord de-

tector is algorithmically unequipped to optimize their mem-

ory operations, even with optimistic invariants. A static anal-

ysis algorithm better equipped to deal with barrier based

parallelism would likely see more profound speedups from

optimistic hybrid analysis.

Figure 5 additionally shows that the invariant checking

and mis-speculation overheads associated with OptFT are

negligible for nearly all benchmarks. Overall, invariant check-

ing overheads have little effect on the runtime of our race

detector, averaging 4.3% relative to a baseline execution. Ad-

ditionally roll-backs are infrequent and cause little overhead,

ranging from 0.0% to 21.9% and averaging 5.7%.

Figure 6 shows the online overheads for OptSlice versus

a traditional hybrid slicer. We do not compare to purely dy-

namic Giri, as it exhausts system resources even on modest

executions. OptSlice dramatically reduces the runtime of dy-

namic slicing, with speedups ranging from 1.2x to 78.5x, with

an average speedup of 8.3x. Our worst absolute speedups are

from perl and nginx. Perl’s state is divided largely into two

subsets, the interpreter state and the script state. Without

knowledge of the script running in the interpreter, static

analysis cannot precisely determine how information flows

through the script state. Perl scripts would be better analyzed

at the script level. Nginx is largely I/O bound, but OptSlice

decreases its overhead from 20% to a statistically insignifi-

cant overhead. This reduction is relatively significant, even

though it is not absolutely large.

We also look at the invariant-checking andmis-speculation

costs of OptSlice. The overheads of ensuring executions do

not violate likely-invariants are generally inconsequential,

showing no measurable overhead for zlib, go, nginx, and vim.

Perl and sphinx have overheads of 26% and 127% respectively,

largely due to likely-unrealized call-context checking. These

overheads are low enough for optimistic hybrid analysis to

improve slicing performance, but could be optimized further

if lower overheads are needed [8]. Overall mis-speculation

rates are low for all benchmarks, with go and vim being the

only benchmarks to see even modest overheads.

So far, we have looked at speedups of using optimistic

hybrid analysis when the profiling and static analysis costs

are inconsequential. This is typical when static analysis can

be done offline (e.g., after code is released but before the first

bug is reported), or for very large analysis bases, such as

analyzing months or years of prior executions in forensic

queries. We next look at how much execution time must be

analyzed for the dynamic savings of an optimistic hybrid

analysis to overcome its analysis and profiling startup costs

for smaller execution bases, which might occur when run-

ning nightly regression tests or when using delta debugging

for moderate sets of inputs immediately after recompilation.

Table 1 shows break-even times for benchmarks not stat-

ically proven race-free. OptFT begins to out-perform both

traditional and hybrid FastTrack within a few minutes of

test time for most benchmarks. There are exceptions, such

as montecarlo, sunflow, batik, and xalan, for which OptFT

does not speed up dynamic analysis and therefore should

not be used.

OptSlice shows a similar breakdown in Table 2, which

compares OptSlice to a traditional hybrid slicer. This chart

shows similar static analysis and profiling times as OptFT;

however, due to the both the larger dynamic speedup of Opt-

Slice and the reduction in static analysis state from the likely

invariants, the break-even times are generally much lower.

In three cases (vim, redis, and nginx), it is on average better

to run a hybrid slicer when analyzing any execution length.

In all cases, with under 3 minutes of execution time analyzed,

OptSlice saves work versus traditional hybrid analysis.

We now analyze how profiling effects the trade-off be-

tween accuracy and correctness of predicated static analysis

for a given execution. Figures 7 and 8 show the trade-offs

between profiling, mis-speculation rate and static slice size
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Figure 5. Normalized runtimes for OptFT. Baseline runtimes for each benchmark are shown in parentheses. Tests right of the

red line are proven race-free by sound static race detection, but included here for completeness.

Testname Trad. Hybrid Opt. Hybrid Break-even w/ respect to Opt. Speedup w/ respect to

Static Time Profile Static Time Hybrid FT Trad. FT Hybrid FT Trad. FT

lusearch 1m 15s 1m 12s 1m 47s 24s 16s 3.0x 6.3x

pmd 1m 6s 20s 2m 17s 2m 0s 1m 34s 1.3x 1.6x

raytracer 31s 14m 52s 49s 1m 39s 30s 3.6x 9.8x

moldyn 29s 51m 46s 49s 7m 53s 3m 29s 3.5x 6.7x

sunflow 3m 0s 22m 40s 4m 10s 58m 55s 2m 37s 1.1x 2.6x

montecarlo 59s 1m 36s 51s – 2m 25s 0.99x 1.3x

batik 3m 25s 15m 15s 10m 9s 60m 57s 2m 26s 1.2x 7.6x

xalan 55s 51s 1m 26s 363m 44s 60m 23s 1.0x 1.0x

luindex 1m 7s 17m 22s 1m 57s 1m 59s 1m 28s 3.6x 4.8x

Table 1. Comparing FastTrack benchmark end-to-end analysis times for pure dynamic as well as traditional and optimistic

hybrid analyses. Break-even Time is the amount of baseline execution time at which optimistic analysis begins to use less

computational resources (profiling + static + dynamic) than a traditional analysis. Optimistic Speedup is the ratio of runtimes

for OptFT versus a traditional or hybrid FastTrack implementation.

Testname Traditional Optimistic Break- Dynamic

(LOC) Points-to Slice Profiling Points-to Slice even Speedup

AT Time AT Time Time AT Time AT Time Time

nginx (119K) CI 17s CI 24m 33s 1m 4s CS 8s CS 3s 0s 1.2x

redis (80K) CI 1m 46s CI 170m 46s 1m 4s CI 6s CS 48s 0s 13.1x

perl (128K) CI 24s CS 55m 0s 10m 29s CS 160m 33s CS 9m 11s 2m 29s 1.4x

vim (306K) CI 27s CI 77m 55s 11m 8s CS 1m 20s CS 21s 0s 9.9x

sphinx (13K) CS 7s CS 1s 11m 24s CS 6s CS 0.2s 1m 44s 3.9x

go (158K) CI 6s CI 59s 133m 54s CI 8s CI 9s 1m 41s 6.5x

zlib (21K) CS 14s CS 33s 1m 59s CS 5s CS 0.4s 1s 81.2x

Table 2. Comparing slicing benchmark end-to-end analysis times for traditional hybrid and optimistic hybrid analyses. Shown

are a breakdown of offline analysis costs for static points-to and slicing analyses and the most accurate Analysis Type (AT),

either Context-Sensitive (CS) or Context-Insensitive (CI) that will run on a given benchmark. Break-even Time is the minimum

amount of baseline execution time where an optimistic analysis uses less total computational resources (profiling + static +

dynamic) than a traditional hybrid analysis. Dynamic Speedup is the ratio of run-times for OptSlice versus traditional hybrid.
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rates for OptSlice benchmarks.
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Figure 8. The effect of profiling on static slice sizes.

for OptSlice. Figure 7 shows that most benchmarks converge

to a nearly 0% mis-speculation rate very quickly, with the

exceptions being vim and go, which explore very large states

and consequently require more profiling. Figure 8 shows

that for most applications slice size remains consistent, even

as more profiling samples are added. The major exception

to this is go, which explores a very large state-space result-

ing in different slice sizes as more profiling input is added.

Not all experiments show monotonically increasing slice

sizes. This is caused by the variations between profiling runs
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Figure 9. Alias rates for points-to analyses, reported as a

chance that a store may alias with a load.
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Figure 10. Static slice sizes, in number of instructions, as

reported by a sound and a predicated static slicer.
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Figure 11. The effect of different likely invariants on slice

size. Vim and nginx begin using context-sensitive analyses

when adding likely-unrealized call-contexts.

of the experiments. Go is particularly notable for this, as

it uses timeouts to bound its execution time, resulting in

inconsistent code paths and profiled invariant sets.

6.3 Predicated Static Analysis
We next evaluate the effects of predicated static analysis on

our C-based points-to and slicing analyses. Both are general-

purpose analyses with many applications. In fact, alias anal-



ysis is foundational to most complex static analyses; any

improvement to it will have wide ranging effect on the many

analyses that depend on it.

Figure 9 shows how a predicated static analysis signifi-

cantly increases the accuracy of an alias analysis. Alias rates

are measured as the probability that any given load can alias

with any given store. For fairness, both baseline and opti-

mistic analyses consider only the set of loads and stores

present in the optimistic analysis (this is a subset of the base-

line set due to state reduction caused by likely invariants).

Figure 10 shows the reduction in overall slice sizes, with op-

timistic analysis providing one to two orders of magnitude

in slice reduction.

We next break down how the likely invariants individually

benefit static analyses. Figure 11 measures static slice size

when running a sound static analysis and incrementally adds

each likely invariant for three tests: vim, nginx, and zlib. The

introduction of the likely-unrealized call-context invariant

allows vim and nginx to scale to context-sensitive slicing and

points-to analysis, causing a large reduction in slice sizes.

7 Related Work
Optimistic hybrid analysis deliberately inserts unsoundness

in its static analysis without sacrificing the accuracy of dy-

namic analysis. Our work builds on the considerable prior

work done to combine static and dynamic analysis [21]. We

classify this prior work according to the order of these anal-

yses and their soundness properties.

Sound static then dynamic. Traditional hybrid analy-

ses use sound static analysis to accelerate some form of dy-

namic analysis [13, 14, 19, 38, 39, 41, 44]. The requirement of

soundness limits the precision and scalability of static anal-

ysis, ultimately resulting in a suboptimal dynamic analysis.

Optimistic hybrid analysis uses unsound static analysis to

optimize dynamic analysis, resulting in considerably faster

analyses (Figures 5 and 6).

Dynamic then (unsound) static. Some static analyses

use dynamic tools, such as Daikon [22], to gather information

about a program’s behaviors, then use this information to

guide static analysis [17, 18, 26, 32, 36, 43, 45, 51]. Like pred-

icated static analysis, these systems sacrifice the soundness

of their static analysis by including dynamic invariants, but

unlike optimistic hybrid analysis, they do not compensate

for the resulting unsoundness in a later stage. In addition,

because these invariants are never checked at runtime, they

are chosen without regard for the cost of invariant checking.

We propose and use invariants, such as likely unused call

contexts, that reduce the state space of the analysis but still

meet the criteria of cheapness and stability (2.1).

Dynamic thenunsound static thenunsounddynamic.
A few systems learn likely invariants, then use these invari-

ants in an unsound static analysis to produce a faster final dy-

namic analysis [15, 28]. However, these systems do not com-

pensate for the unsoundness introduced by their unsound

static analysis, so the final dynamic analysis is unsound. Con-

versely, optimistic hybrid analysis solves the unsoundness

introduced in the static phase with speculative execution,

and a carefully designed predicated static analysis.

In other related works, Lee et al. propose a deterministic

replay system which leverages profiling, static analysis, and

dynamic analysis[33]. Their system, however, uses profiling

to aid in applying a sound static analysis. They could likely

apply optimistic hybrid analysis techniques to leverage un-

sound static analysis for greater performance improvements.

Data-race detection is an important problem that many re-

searchers have tried to accelerate, including with hybrid anal-

ysis [14, 19, 33, 44]. These techniques all rely on sound static

analysis to retain dynamic accuracy, and could be further

improved with the application of optimistic hybrid analysis.

Work on profile-guided optimizations [11, 37, 49], includ-

ing those used in just-in-time compilers [10, 12], learn likely

invariants though profiling and use them for optimizing a

given program. Our work on optimistic hybrid analysis dif-

fers in two ways. First, profile-guided optimizations have fo-

cused on local analyses and optimizations (e.g., loop-invariant

code motion). In contrast, we use likely invariants in whole-

program analyses (e.g., pointer aliasing), allowingwide-ranging

effects to the code. We identify likely invariants that enable

us to perform several scalable and precise whole program
context-sensitive static analyses, which are effective in re-

ducing dynamic analysis overhead. Second, optimistic hybrid

analysis is aimed at speculatively optimizing analysis code,

whereas profile-guided optimizations is aimed at optimizing

the original executable.

8 Conclusion
We argue that the traditional application of a sound static

analysis to accelerate dynamic analysis is suboptimal. To

this end, we introduce the concept of optimistic hybrid anal-

ysis, an analysis methodology that combines unsound static

analysis and speculative execution to dramatically accelerate

dynamic analysis without the loss of soundness. We show

that optimistic hybrid analysis dramatically accelerates two

dynamic analyses: program slicing and data-race detection.
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