
Enabling Program Analysis Through Deterministic Replay
and Optimistic Hybrid Analysis

by

David Devecsery

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(ComputerScience and Engineering)

in The University of Michigan
2017

Doctoral Committee:

Professor Peter M. Chen, Chair
Professor Jason Flinn
Professor Stéphane Lafortune
Associate Professor Satish Narayanasamy

David Devecsery

ddevec@umich.edu

ORCID iD: 0000-0001-7574-9321

c© David Devecsery 2017

TABLE OF CONTENTS

LIST OF FIGURES v

LIST OF TABLES vii

ABSTRACT viii

CHAPTER

I. Introduction . 1

1.1 Deterministic Record and Replay 2
1.2 Optimistic Hybrid Analysis . 4
1.3 Optimizing Rollbacks for Optimistic Hybrid Data-Race Detection . 5

II. Related Works . 7

2.1 Deterministic Record and Replay 7
2.1.1 Uses of Deterministic Replay 7
2.1.2 Prior Record and Replay Systems 8

2.2 Optimistic Hybrid Analysis . 11
2.2.1 Dynamic Analysis Uses 11
2.2.2 Analysis Optimization 14

2.3 Summary . 15

III. Eidetic Systems . 17

3.1 Motivation . 19
3.2 Design goals . 20
3.3 Design and implementation . 21

3.3.1 Record and replay . 21
3.3.2 Reducing storage utilization 23
3.3.3 Copy-on-RAW file cache 26
3.3.4 Cooperative replay . 27
3.3.5 Dependency graph . 28

ii

3.3.6 Intra-process queries 30
3.3.7 State queries . 30

3.4 Privacy . 31
3.5 Evaluation . 32

3.5.1 Storage overhead . 32
3.5.2 Benefits of compression 33
3.5.3 Performance overhead 34
3.5.4 Case studies . 38

3.6 Conclusions and future work . 43

IV. Optimistic Hybrid Analysis . 45

4.1 Introduction . 45
4.2 Design . 48

4.2.1 Likely Invariant Profiling 50
4.2.2 Predicated Static Analysis 51
4.2.3 Dynamic Analysis . 51

4.3 Static Analysis Background . 52
4.4 OptFT . 54

4.4.1 Analysis Overview . 55
4.4.2 Invariants . 55

4.5 OptSlice . 59
4.5.1 Static Analysis . 60
4.5.2 Invariants . 62

4.6 Evaluation . 63
4.6.1 Experimental Setup . 64
4.6.2 Dynamic Overhead Reduction 67
4.6.3 Predicated Static Analysis 72

4.7 Conclusion . 72

V. Bounded Rollback for Optimistic Hybrid Data-Race Detection 74

5.1 Recovery Region Detection . 78
5.1.1 Vector Clock Race Detection Background 79
5.1.2 Recovery Regions in Data-Race Detection 80

5.2 OptFT-BR . 82
5.2.1 Detecting Recovery Regions and Creating Checkpoints . 83
5.2.2 Handling Mis-Speculations 84

5.3 Evaluation . 85
5.3.1 Experimental Setup . 85
5.3.2 Dynamic Overhead . 86

5.4 Conclusion . 89

VI. Conclusion and Future Works . 90

iii

BIBLIOGRAPHY 93

iv

LIST OF FIGURES

Figure

3.1 Arnold performance overhead normalized to unmodified Linux. Error
bars are 95% confidence intervals. 36

3.2 Arnold’s scaling, normalized to unmodified Linux, on Splash2 bench-
marks. Error bars are 95% confidence intervals. 37

4.1 A sound static analysis not only considers all valid program states P,
but due to its sound over-approximation, it also considers a much larger
S. Using likely invariants, a predicated static analysis considers a much
smaller set of program states O that are commonly reached (dotted space
in P). 48

4.2 This figure shows how context-sensitive and context-insensitive analysis
parse a code segment to construct a DUG, as well as the reductions from
likely-unused call contexts . 53

4.3 An example of how lock instrumentation elision may cause missed happens-
before relations in the presence of custom synchronizations. The left hand
side catches custom synchronizations, but with the elision of locking in-
strumentation, the necessary happens before relation (represented by an
arrow) may be lost. 58

4.4 Normalized runtimes for OptFT. Baseline runtimes for each benchmark
are shown in parentheses. Tests right of the red line are proven race-free
by sound static race detection, but included here for completeness. 66

4.5 Normalized runtimes for OptSlice. Baseline runtimes for each bench-
mark are shown in parentheses. 67

4.6 Alias rates for points-to analyses, reported as a chance that a store may
alias with a load. 70

4.7 The static slice sizes, in number of instructions, as reported by a sound
and a predicated static slicer. Optimistic analysis shows order of magni-
tude improvements in slice size. 71

4.8 The effect different likely invariants have on slice size. Vim and nginx
switch to a context-sensitive analyses when adding likely-unrealized call-
context elimination. 73

v

5.1 Demonstration of how prior state can be missing after a mis-speculation
in an OHA analysis. In the “Traditional Hybrid” column, all information
is gathered. In the “Optimistic Hybrid” column statement 3 is assumed
to never be executed. The “OHA + Recovery” column experiences a
mis-speculation when “c” is true, and must re-execute statement 2 with a
conservative analysis to recover tainta for statement 3. 75

5.2 An illustration of vector clock propagation. Vector clocks for threads
(C1 and C2) are updated on synchronization operations. Lock operations
cause the thread’s vector clock to union with the lock’s vector clock (Ct
Sl). Memory accesses adjust the memory’s vector clock (Ma) based on
the vector clock of the accessing thread. 79

5.3 Normalized runtimes for OptFT. Baseline runtimes for each benchmark
are shown in parentheses. Tests right of the red line are proven race-free
by sound static race detection, but included here for completeness. 86

5.4 Expected rollback time for OptFT-BR versus OptFT. OptFT-BR dramat-
ically decreases rollback recovery times for many benchmarks. 87

5.5 CDF of expected rollback duration normalized to total execution time.
Rollbacks assumed to be evenly spaced over program duration. Xalan
is excluded, as no recovery regions are found in the benchmark, making
rollback results equivalent to OptFT. 88

vi

LIST OF TABLES

Table

3.1 Storage utilization during multi-week trial 32
3.2 Reduction in storage utilization via incremental application of optimizations 33
3.3 Summary of case studies . 40
4.1 Comparing FastTrack benchmark end-to-end analysis times for pure dy-

namic as well as traditional and optimistic hybrid analyses. Break-even
Time is the amount of baseline execution time at which optimistic anal-
ysis begins to use less computational resources (profiling + static + dy-
namic) than a traditional analysis. Optimistic Speedup is the ratio of run-
times for OptFT versus a traditional or hybrid FastTrack implementation. 69

4.2 Comparing slicing benchmark end-to-end analysis times for traditional
hybrid and optimistic hybrid analyses. Shown are a breakdown of of-
fline analysis costs for static points-to and slicing analyses and the most
accurate Analysis Type (AT), either Context-Sensitive (CS) or Context-
Insensitive (CI) that will run on a given benchmark. Break-even Time
is the minimum amount of baseline execution time where an optimistic
analysis uses less total computational resources (profiling + static + dy-
namic) than a traditional hybrid analysis. Dynamic Speedup is the ratio
of run-times for OptSlice versus a traditional hybrid implementation. . . 69

vii

ABSTRACT

As software continues to evolve, software systems increase in complexity. With soft-

ware systems composed of many distinct but interacting components, today’s system pro-

grammers, users, and administrators find themselves requiring automated ways to find,

understand, and handle system mis-behavior. Recent information breaches such as the

Equifax breach of 2017, and the Heartbleed vulnerability of 2014 show the need to under-

stand and debug prior states of computer systems.

In this thesis I focus on enabling practical entire-system retroactive analysis, allowing

programmers, users, and system administrators to diagnose and understand the impact of

these devastating mishaps. I focus primarly on two techniques. First, I discuss a novel

deterministic record and replay system which enables fast, practical recollection of entire

systems of computer state. Second, I discuss optimistic hybrid analysis, a novel optimiza-

tion method capable of dramatically accelerating retroactive program analysis.

Record and replay systems greatly aid in solving a variety of problems, such as fault

tolerance, forensic analysis, and information providence. These solutions, however, assume

ubiquitous recording of any application which may have a problem. Current record and

replay systems are forced to trade-off between disk space and replay speed. This trade-off

has historically made it impractical to both record and replay large histories of system-

level computation. I present Arnold, a novel record and replay system which efficiently

records years of computation on a commodity hard-drive, and can efficiently replay any

recorded information. Arnold combines caching with a unique process-group granularity

of recording to produce both small, and quickly recalled recordings. My experiments show

that under a desktop workload, Arnold could store 4 years of computation on a commodity

viii

4TB hard drive.

Dynamic analysis is used to retroactively identify and address many forms of system

mis-behaviors including: programming errors, data-races, private information leakage, and

memory errors. Unfortunately, the runtime overhead of dynamic analysis has precluded

its adoption in many instances. I present a new dynamic analysis methodology called

optimistic hybrid analysis (OHA). OHA uses knowledge of the past to predict program

behaviors in the future. These predictions, or likely invariants are speculatively assumed

true by a static analysis. This creates a static analysis which can be far more accurate than

its traditional counterpart. Once this predicated static analysis is created, it is speculatively

used to optimize a final dynamic analysis, creating a far more efficient dynamic analysis

than otherwise possible. I demonstrate the effectiveness of OHA by creating an optimistic

hybrid backward slicer, OptSlice, and optimistic data-race detector OptFT. OptSlice and

OptFT are just as accurate as their traditional hybrid counterparts, but run on average 8.3x

and 1.6x faster respectively.

In this thesis I demonstrate that Arnold’s ability to record and replay entire computer

systems, combined with optimistic hybrid analysis’s ability to quickly analyze prior com-

putation, enable a practical and useful entire system retroactive analysis that has been pre-

viously unrealized.

ix

CHAPTER I

Introduction

Today, software is ubiquitous, controlling and managing many important aspects of our

daily lives. It drives critical aspects of modern society, such as financial transactions, med-

ical devices, and transportation. The internet has become so ingrained into our daily lives

that in 2014 when Facebook experienced a brief outage multiple people called 911 [78].

Given the tasks we entrust to software, the importance of having reliable software systems

is critical. Beyond the potentially life-threatening consequences of software failures in sys-

tems such as airplanes, software failures can also have devastating fiscal effects. According

to a report by Gartner Group[99] the average cost of an hour of downtime for a financial

company exceeds six million US dollars.

As software continues to evolve, software systems increase in complexity. With soft-

ware systems composed of many distinct, but interacting components, today’s system pro-

grammers, users, and administrators find themselves requiring automated ways to find,

understand, and handle system mis-behaviors.

Unfortunately, as we have come to rely on software more, we have also demanded more

complexity from our software systems. Chou et al. [30] found that over a seven year time

period, the size of the Linux kernel source grew by a factor of 16. Jim Gray notes a 20%

growth per year in his classic software reliability study [51]. With this rapid growth in code

size, the complexities of maintaining, managing, and understanding how complex software

1

systems operate become impractical for software users, developers, and administrators. Li

et al. [70] state that over 80% of bugs they study come from programmers’ misunderstand-

ing how their code works in the larger system. Lu et al. [73] note that 74% of concurrency

bugs are incorrectly fixed on their first attempt, indicating programmers don’t understand

exactly how the code is actually operating.

Fortunately, today there are many techniques to automate the process of understand-

ing and detection of system mis-behaviors. In this thesis we explore two such techniques:

deterministic record and replay and dynamic program analysis. This thesis focuses on the

challenges of practically applying these techniques toward solving the problem of retroac-

tive analysis. Thus, the following statement summarizes my thesis:

Deterministic record/replay and optimistic hybrid analysis make retroactive pro-

gram analysis practical for entire computer systems.

We additionally observe deterministic record and replay, and dynamic analysis enjoy a

mutualistic relationship. Deterministic record and replay allows analysis to be run offline,

enabling many dynamic analyses which would otherwise be too expensive. Furthermore,

dynamic analyses can observe and constrain execution environments, making it possible to

record executions which would otherwise be too expensive.

1.1 Deterministic Record and Replay

There are many instances where computer systems can strongly benefit from knowledge

of the past. Debugging, system crashes, and security violations are common problems in

today’s complex systems. When these issues occur, users, programmers, and administrators

often wish to identify the problem, recover, and learn the consequences of the system mis-

behavior. Unfortunately, by the time an issue is discovered, the computation required to

fully understand the consequences of the issue is often discarded or overwritten. Today’s

debugging systems frequently employ ad-hoc methods to preserve a limited history, such

as logging, but these systems are limited to pre-determined sets of data, often inadequate to

2

diagnose serious problems. A more comprehensive solution is that of deterministic record

and replay.

Deterministic record and replay records an entire system’s execution, allowing any prior

state to be faithfully reproduced and analyzed. In many instances, deterministic record and

replay has been used to solve many complex problems such as crash consistency [22, 43],

forensic analysis [63, 64, 39], debugging [47, 67, 13, 11], and information providence [64].

Unfortunately, in order for solutions using a record and replay system to be adopted, it must

be practical to both record and replay any execution needing analysis.

While it is practical to record and replay small systems, or isolated executions, record-

ing the large computing environments used by many modern systems remains impractical.

Record and replay systems must select a granularity of recording, for instance recording

each process independently. This process-level record and replay system would record

each process on a system independently, allowing a user to replay any recorded process

in isolation. This results in a reasonable replay time, but recording processes in isolation

often consumes considerable disk space. Furthermore, tracing bugs through the system

becomes challenging, as the recording does not preserve inter-process communication de-

pendencies. Instead a record and replay system could choose to record at the granularity of

the entire system. This would resolve the inter-process communication, and disk problems,

but would do so at the cost of replaying the data. To get a single byte of information from

a single process the entire system would have to be replayed, resulting in large amounts of

wasted effort. This trade-off between recording space and replaying time has limited the

use of deterministic record and replay on large systems where both recording overhead and

replay time must both be reasonable.

We introduce the idea of eidetic systems. Eidetic systems are motivated by eidetic

visions; an eidetic vision is a vision so realistic and lifelike that it can be recalled as if it is

actually being re-lived. An eidetic system is similarly a computer system which can record

and replay any prior computation, just as if it were happening again. In this chapter we

3

discuss Arnold, the first practical eidetic system. Arnold is a novel record and replay system

which efficiently records and replays years of computation for an entire desktop system on

a commodity hard-drive. It combines caching with a unique process-group granularity of

recording to produce both small, and quickly recalled recordings. Our experiments show

that under a desktop workload, Arnold can store and recall 4 years of computation on a

commodity 4TB hard drive.

1.2 Optimistic Hybrid Analysis

Dynamic analysis is another tool which has often been used to solve issues relating

to system reliability and security. Dynamic analyses improve reliability by checking for

common program errors such as memory errors [87, 14, 60, 88], concurrency bugs [98, 42,

48, 74, 75], and many other common programming errors [27, 46]. Additionally, dynamic

analyses are used to help programmers debug and reason about programs though techniques

like program slicing [111, 105], and profiling [26, 81, 104]. Finally, dynamic analyses

have proven useful in aiding with security enforcement with tools such as dynamic taint

trackers [44, 63, 89, 33], and malware detection [20, 41].

Although these tools automatically identify many issues, their use is often precluded

by the unreasonable overhead associated with the analysis. Li et al. [70] note that of the

bugs they study which are not semantic bugs, the majority could be detected with a simple

dynamic memory checker. In order for these tools to be useful, they must be practical for

users to run.

The most optimized dynamic analyses today are hybrid static/dynamic analyses. These

analyses statically analyze a program’s source code to prove properties about an execu-

tion, then use these properties to optimize some runtime checks during dynamic analysis.

Conventionally hybrid analyses require sound static analysis to guarantee that any removed

checks do not sacrifice the soundness of the final result. Unfortunately, due to the conser-

vative nature of the static analysis, this is often still not enough to make dynamic analysis

4

practical to run ubiquitously.

In this thesis, we present a new dynamic analysis methodology called optimistic hy-

brid analysis (OHA). OHA uses knowledge of the past to predict program behaviors in the

future. These predictions, or likely invariants are speculatively assumed true by a static

analysis. This creates a static analysis which can be far more accurate than its traditional

counterpart. Once this predicated static analysis is created, it is speculatively used to opti-

mize a final dynamic analysis, much as is done in traditional hybrid analysis, creating a far

more efficient dynamic analysis than otherwise possible. We demonstrate the effectiveness

of OHA by creating an optimistic hybrid backward slicer, OptSlice and data-race detector,

OptFT. OptSlice and OptFT are just as accurate as a traditional dynamic backward slicer,

but runs on average 8.3x and 1.6x faster respectively.

1.3 Optimizing Rollbacks for Optimistic Hybrid Data-Race Detection

OHA suffers from poor worst-case performance, limiting its applicability to long-running

applications, or to production code. This high-overhead worst-case scenario stems from

OHA’s inability to bound rollbacks on likely invariant mis-speculation. In this work, we

focus on the challenges of identifying points within an execution an OHA can rollback to,

and we discuss methods to help enable this bounded rollback.

Unfortunately, bounding rollbacks generally is very challenging with many naive solu-

tions the overhead for bounding rollbacks approaching that of an unoptimized (traditional

hybrid) query. To overcome many of these challenges, we focus at an analysis specific

layer, leveraging properties of the analysis along with general techniques to bound the roll-

back of OHA.

This section introduces OptFT-BR, an extension of my optimistic hybrid data-race de-

tector, OptFT, which optimizes and reduces the duration OptFT must rollback on mis-

speculations. OptFT-BR uses three techniques to efficiently identify potential rollback

points. First, OptFT-BR is analysis specific, and leverages properties from data-race de-

5

tection to quickly identify program properties that enable rollback. Second, OptFT-BR

leverages a weaker form of rollback recovery we call analysis equivalence. Finally, OptFT-

BR identifies potential rollback and recovery segments we call recovery regions. Recovery

regions are segments of code over which an OHA will recover an equivalent analysis state

when executed. By identifying recovery regions for race-detection, OptFT-BR is able to

identify far more potential rollback locations than if it were to just look for individual

rollback points. Using these techniques, OptFT-BR shows considerably faster rollback re-

covery, than OptFT, with with very little effect to common-case performance.

6

CHAPTER II

Related Works

Throughout this thesis I build upon two powerful tools used in many systems today:

deterministic record and replay, and dynamic program analysis. In this chapter I discuss a

brief history of these techniques, as well as their uses.

2.1 Deterministic Record and Replay

The ultimate goal of a deterministic record and replay system is to allow a computer

system to recreate any state, such as memory and register states, present in a recorded exe-

cution. This is accomplished by logging all non-determinism entering the execution, such

that by re-running the same computation, with the same set of non-deterministic inputs,

computation produces the same outputs. The observation behind this technique is that the

vast majority of computation performed on a computer system is deterministic, with only a

few non-deterministic events which must be recorded. In this section I will briefly describe

the evolution of record and replay systems, along with a summary of their uses.

2.1.1 Uses of Deterministic Replay

Deterministic record and replay systems have been used to solve a diverse set of prob-

lems. In this section I will discuss some of the general problems solved by them in the

areas of debugging, security, and reliability.

7

Debugging Debugging is naturally aided by record and replay systems, as they provide

the ability to reliably reproduce a bug. Researchers, however, have also used deterministic

record and replay to iteratively recreate prior states, presenting the illusion of reverse ex-

ecution. This allows programmers to examine when prior state changed [47, 67]. Replay

has also been used to help debug configuration errors [13, 11].

Security Replay has also been applied to the realm of security. ReVirt uses virtual ma-

chine record and replay to log and audit system compromises [39]. Retro uses deterministic

record and replay to help recover from intrusions [64]. Systems such as POIROT use de-

terministic record and replay to minimize web-server security auditing times [63]. Record

and replay is also used to audit untrusted computation, for instance, game cheat detection

systems [62].

Reliability Finally, deterministic record and replay has been used in creating reliable

systems. Early virtual machine record and replay systems were used for virtual machine

replication [22]. Record and replay has also been used for rollback-recovery systems [43],

and to accelerate virtual machine migration [71].

2.1.2 Prior Record and Replay Systems

Due to their wide array of uses, many researchers have worked on and developed many

deterministic record and replay systems. Due to the breadth of depth of the field, it would

be impractical to cover all deterministic record/replay systems here. Instead I overview

these works, organized by the type of execution (e.g. single process vs entire machine) the

record and replay system was designed to handle.

2.1.2.1 Single Process Record/Replay

Single Thread The earliest record and replay systems focused on reproducing states

within individual processes for debugging [47]. These systems were typically focused at

8

recording and replaying a single-threaded process on a uni-core processor, recording any

non-deterministic input to that process.

Multi-Thread As multi-threaded programs became more prevalent, systems began fo-

cusing on the added challenging of capturing the non-determinism created by interacting

threads. Researchers resolved these problems by recording thread interaction for individual

processors either at the data granularity [91], or at the thread-interleaving level [103, 96],

and replaying on a uni-core.

Unlike uni-core processors, multi-core processor memory interleavings cannot easily

be summarized by thread schedules. With the onset of multi-core architectures, record/re-

play systems began to adopt a wide array of techniques to tackle the challenge of recording

and replaying programs with data-races between memory accesses. Multi-core record and

replay systems today adopt a wide array of techniques to record a single multi-threaded pro-

cess, such as memory access monitoring [68], relaxing replay constraints [9], using specu-

lation to emulate uni-core processors [107], and using static analysis to optimize memory

access recordings [69].

2.1.2.2 Entire Machine Record/Replay

The second most common record and replay granularity in literature is that of an entire

machine. This is typically preformed by recording all of the non-determinism, such as disk

inputs, network inputs and interrupt timings, through a virtual-machine manager (VMM),

or hypervisor, [22, 39] for uni-core processors. Unfortunately, memory access orderings on

multi-core processors are non-deterministic, and existing software-only multi-core record

and replay systems suffer significant overheads attempting to record them [40]. As software

only solutions for recording memory orderings on multi-processor systems are very expen-

sive, researchers have focused on a variety of hardware solutions [15, 112, 59, 82, 86, 108].

9

2.1.2.3 Other Record/Replay Granularities

Finally, researchers have looked at recording and replaying at other granularities within

software systems. Some researchers have recorded at sub-process levels, such as recording

within the Java Virtual Machine [8].

Researchers in the area of distributed systems have focused on recording and replay-

ing groups of communicating processes for fault-tolerance purposes [43]. These systems

record process groups by maintaining determinant logs of communication between collab-

orating processes, using replay to recover from selected checkpoints on system crashes.

2.1.2.4 Eidetic Systems

Prior systems have often focused first and foremost at recording some set of prior com-

putation, be it a process, or a whole machine. However, none of these systems evaluate

the trade-off between the recording granularity and the space and time it takes to recall

any individual program state. For instance, an entire machine record-replay system must

replay the entire virtual-machine’s state in order to recover a single byte of data within a

process. A process based recording can be replayed more efficiently (a single process in-

stead of all processes), however, it is fundamentally larger, as all inputs non-deterministic

to the process must be recorded. Even the distributed protocols, which record at a pro-

cess group granularity, only consider one granularity, only record a limited history of the

process, and use complex garbage collection algorithms to compensate for the space their

checkpoints and determinant logs consume. In this thesis I focus on a record and replay

system which aims to record large systems, with thousands of processes, yet still maintains

both reasonable recording disk-space and replay overhead.

10

2.2 Optimistic Hybrid Analysis

Dynamic analysis is the analysis of computer software that is performed by execut-

ing programs. It is among the most foundational, widely used, and powerful computing

techniques we employ today. Typically a dynamic analysis will add instrumentation to an

executing program, allowing the analysis code to analyze and determine specific properties

about a programs execution. For example a memory error checker may add bounds checks

before each array access. Unfortunately, the weakness of dynamic analysis is the over-

head introduced by the instrumentation required to analyze the program. In our memory

checking example, performing repeated bounds checks may be an unacceptable overhead,

causing some languages, like c, to forego this critical safety analysis. Throughout the re-

mainder of this section I will present an overview of how dynamic analysis has been used,

as well as common techniques used to accelerate dynamic analyses.

2.2.1 Dynamic Analysis Uses

As dynamic analysis is such a general technique, it would be impractical to discuss all

dynamic analyses in this section. Since the goal of this work is to improve the efficiency

of dynamic analysis, I will focus on some of the most popular analyses, whose use is often

limited due to the high overhead of instrumentation.

Common Programming Errors Many dynamic analyses aim to detect common pro-

gramming errors. They include memory error detectors [87, 14, 60, 88]. These systems

typically introduce runtime instrumentation around memory accesses to ensure they are

safe. This includes protections from use-after-free, double-free, buffer overflow, and null-

pointer dereferences. Other common runtime checkers include type checking [27, 58, 5].

These checkers ensure that the runtime system follows a valid typing system, lest object ac-

cesses may have unintended consequences. Additionally, programmers have used dynamic

analysis to both discover, and check program invariants [46]. These invariants can be either

11

verified by programmers, or dynamically checked on future runs to detect other errors.

Concurrency Bugs Concurrent shared-memory programs introduce an exponential num-

ber of program-state access interleavings not possible within a single-threaded application.

This explosion of states can make a programmer’s job of reasoning about, even relatively

simple seeming, applications unreasonable. To help handle dealing with this complexity,

programmers can employ dynamic concurrency tools.

Data-race detectors attempt to find any data races, or unordered memory operations,

at least one of which is a write, within a program. There are two primary detector types,

lockset [98, 42], and vector-clock based [48]. Vector-clock based detectors monitor all

synchonization and memory operations, verifying that no two memory accesses, at least

one of which is a write, are unordered. These detectors have no false positives, but often run

more slowly than their lockset based counterparts. Lockset detectors, instead of detecting

data-races directly, verify that shared variables are synchronized with a common locking

pattern. This detection method has several benefits, such as traditionally lower runtime

overhead and the ability to find possible races which don’t happen in the current execution,

but they can produce false positives.

Beyond data-race detection, others have looked at detecting atomicity violations [74,

75]. These are violations in which all memory accesses are properly ordered, but the order-

ing is not restrictive enough. This means that by re-ordering protected regions the program

will exhibit buggy behavior.

Program Understanding There are entire bodies of research devoted to how dynamic

analysis helps programmers understand how their programs operate [34]. In this section, I

will focus on two similar, information-flow based approaches, slicing and flowback analy-

sis.

Slicing was originally developed by Mark Weiser [111]. Slicing takes as input a mini-

mum set of program behaviors, and reduces the program into a minimal program required

12

to produce that behavior. This subset of the original program is more succinct than the

original, and often easier to understand. While Weiser discusses the notion of finding a

slice statically, there are many works which find slices dynamically [80, 6, 105]. Flowback

analysis is another similar analysis [16], which reports the entire dynamic program flow up

to a specified instruction. While both of these dynamic tools can greatly aid programmers

in understanding code and bug finding, they are not typically used in practice, largely due

to their very high overhead.

Security Dynamic analysis has long been applied to the realm of security. Beyond the

added security that comes from improved memory checking [35]. The security commu-

nity has developed and deployed several dynamic techniques to detect and mitigate many

dangerous behaviors.

Private information leakage has long been a primary security concern. The security

community has developed several techniques which observe the difference in dynamic ex-

ecutions to find and remove information leaks [113, 61]. Another approach for tracking

the flow of private information is dynamic information flow tracking, or DIFT. DIFT traces

how information flows though a program, the most common implementation of DIFT is

taint tracking [44, 63, 89, 33]. A taint tracking analysis attempts to determine if some set

of outputs is “tainted,” or causally affected, by some set of inputs. Unfortunately, taint

tracking has often proven to have prohibitive overheads, resulting in a relatively low adop-

tion in deployed systems.

Dynamic analysis systems have also been used to identify malicious applications, or

malware [20, 41]. These analyses typically observe the program’s API calls, attempting to

identify behavior which fits the profile of an attacker.

Optimization Dynamic analysis has even been used to optimize code. Profile-guided

optimization uses dynamic observations, or “semi-invariants” to create common-case fast-

paths though regions of code. In the instance the semi-invaraints do not hold, the execution

13

falls back to a slower execution path [26, 81, 104]. These optimizations have proven par-

ticularly effective when used within a JIT system [25].

2.2.2 Analysis Optimization

As the use of program analysis is often dictated by the overhead associated with the

analysis, and its accuracy. Dynamic analysis systems use a wide variety of techniques to

reduce their runtime overheads. In this effort we focus on optimization techniques which

combine static and dynamic program analysis to reduce the overhead of that analysis.

2.2.2.1 Sound Static Then Dynamic Analysis

One common approach to reduce the runtime overhead of dynamic analysis is that of

a traditional hybrid analysis. A traditional hybrid analysis first performs a sound static

analysis, and then uses the results of that analysis to prune dynamic checks. An excellent

example of this is CCured [87]. CCured uses type inference to remove the vast majority of

memory checks, only ultimately dynamically checking a few accesses for which the type

inference fails. This allows CCured to have nearly an order of magnitude lower runtime

overhead than systems which use strictly dynamic methods. Other examples of this include

race detection [42, 94, 29], hybrid type checking systems [58, 83], hybrid taint tracking

systems [28], and other memory safety soltuions [84].

2.2.2.2 Dynamic then Unsound Static

Unfortunately, as many static analyses are fundamentally unsolvable, they must operate

very conservatively, and approximate many program properties. These approximations

often lead to unacceptable imprecision, resulting in limited dynamic check reduction. To

get even lower overheads, researchers have attempted to approximate dynamic analyses by

first running a fast, but incomplete dynamic analysis, such as Daikon [45], to gather likely

invariants, and then feeding those results into a static analysis.

14

These analyses have been applied to enable reasoning about web-based frameworks [37,

38, 110], enable slicing of large complex programs [53, 80], to identify bugs in pro-

grams [97, 90], and to reconstruct program control properties [65]. Unfortunately, these

results lack both the soundness of a sound static analysis, and the precision of a precise

dynamic analysis.

2.2.2.3 Dynamic then Unsound Static then Unsound Dynamic

A few systems attempt to accelerate dynamic analysis with a three phase analysis, sim-

ilar to OHA. They learn likely invariants, then use these invariants in an unsound static

analysis to produce a faster final dynamic analysis, often for bug-finding purposes [55, 36].

However, these systems do not compensate for the unsoundness introduced by their un-

sound static analysis, so the final dynamic analysis is unsound. Conversely, OHA solves

the unsoundness introduced in the static phase with speculative execution, and a carefully

designed predicated static analysis.

Unfortunately, even after years of effort, many dynamic analyses are not employed due

to their runtime overhead. For example, most c programs are not checked for memory

safety at runtime. Some researchers even argue that for “safe” languages, such as Java,

more dynamic enforcement should be used, even at the cost of performance, to guarantee

sane application behaviors [79].

In this thesis I focus on improving the overhead associated with dynamic analysis. I

propose a new form of hybrid analysis called optimistic hybrid analysis, which combines

static analysis, dynamic analysis, and speculation in chapter IV.

2.3 Summary

Both deterministic record and replay, and dynamic analysis have proven to be powerful

tools in developing complex systems. Unfortunately, due to prohibitive overheads, there

are many scenarios today where there tools are not used. By reducing the overhead of these

15

tools, we can enable many critical dynamic guarantees over applications.

16

CHAPTER III

Eidetic Systems

Deterministic record and replay systems have long been valuable tools for solving a

variety of problems related to debugging, forensics, reliability, and more. One of the great

benefits of a record and replay system, is its ability to retroactively analyze any prior state,

without the need to predict which states are important before execution. However, in order

for this to be generally true, it must be practical for the record and replay system to be

capable of both recording and replaying all state on a system over a period of years.

Unfortunately, prior record and replay systems do not realize this vision; they present

either prohibitively large recording overheads, limiting the amount of information which

can be recorded, or excessive replaying overheads, removing the utility of the data once

recorded. In this work I argue for and describe a system capable of both recording and

recalling all computation on a computer system over a period of years. I call such a system

an eidetic system.

I describe an eidetic system called Arnold that provides the above properties for per-

sonal computers and workstations with reasonable storage requirements and runtime over-

heads. The key technologies that enable Arnold to provide the properties of an eidetic sys-

tem efficiently are deterministic record and replay [23], model-based compression, dedupli-

cated file recording, operating system tracking of information flow between processes [66],

and retrospective binary analysis of processes [31, 89].

17

Arnold uses deterministic record and replay to efficiently reproduce past computations.

Reproducing past computations enables Arnold to recall any state and to track the lineage

of that state within a replaying entity. Arnold uses numerous optimizations to reduce the

amount of data that must be recorded. As a result, the log data required for years of opera-

tion of a personal computer or workstation can fit on a commodity hard drive.

To avoid the need to replay the entire system to recover any state, Arnold divides the

system into units, called replay groups, that can be replayed independently. To track infor-

mation flow between replay groups, Arnold records dependency information for each com-

munication between replay groups, forming a dependency graph. In addition to enabling

information flow to be tracked across groups, the dependency graph also allows Arnold to

treat as a cache the log of data sent between groups. To conserve space, Arnold can discard

this data and regenerate it later by replaying the group that produced it, a technique I call

cooperative replay.

To analyze execution within a replay group, Arnold uses retrospective binary analysis,

in which it deterministically re-executes the process within the group and analyzes this

re-executed computation. This technique offers several benefits over a traditional on-line

analysis. First, it can retroactively run any query over the computation, even queries which

were not anticipated at the time of recording. Second, it moves the analysis overhead from

the original execution time to the time of the query. I will demonstrate the utility of this

technique by applying it towards lineage queries, in which Arnold tracks the relationship

between inputs and outputs.

I have run an experiment in which myself and my collaborators have run Arnold contin-

uously on our workstations for several weeks. Our results show that its storage requirements

for 4 or more years of operation could be satisfied by adding a $150 4TB hard drive. On

almost all benchmarks we ran, Arnold’s performance overhead is less than 8%. I also report

on several case studies in which I use Arnold to reproduce past state and trace lineage over

many applications and workflows.

18

3.1 Motivation

The vast majority of state produced by a typical computer is generated, consumed, then

lost forever. Lost state includes process address spaces, deleted files, interprocess commu-

nication, and input received from the network. With lost state comes lost value: users can-

not recover detailed information about past computations that would be useful for auditing,

forensics, debugging, error tracking, and many other purposes.

Prior approaches try to retain some of this information via a variety of techniques, such

as file backup, packet logging, and process checkpointing, but these approaches preserve

only the subset of information that someone anticipates may be useful. A more compre-

hensive approach is needed: one that preserves the values and lineage of all state that has

ever existed on the system. We call such a system an eidetic computer system.

An eidetic computer system can recall any past state that existed on that computer,

including all versions of all files, the memory and register state of processes, interprocess

communication, and network input. Further, an eidetic computer system can analyze the

history each byte of current and past state.

In this work I motivate the useage of eidetic systems by applying Arnold toards a se-

ries of lineage queries developed by Michael Chow [32]. Lineage describes how state was

derived. With such information, the user of an eidetic system can often infer why the data

was derived. For instance, a colleague might point out to a user that a citation in a paper

draft is incorrect. Using an Arnold with these lineage queries, the user could trace back

from the binary document through all the steps used to create that document and recreate

the browser screen displaying the Web page from which the data was derived. On seeing

that Web page, the user would realize that he cited the wrong paper from a conference ses-

sion. The user could then trace forward from that mistake and reveal all current documents

and data that reflect the mistake, as well as any external output (e.g., e-mail) containing

mistaken information.

Or consider an example in which someone runs a malicious application on a shared

19

computer. The malicious program exploits a privilege escalation vulnerability, gives itself

privileged access, and installs a backdoor for future access. A lineage query enabled eidetic

system could trace forward from the malicious program, trace through the privilege esca-

lation vulnerability, and determine that the malicious software installed a backdoor. The

system could then trace any future executions of the vulnerable program and determine if

the backdoor was ever used, and exactly what was done by the attacker during the vulnera-

ble window. In these and similar examples, recall and lineage are tightly coupled; they are

useful in isolation but more powerful when combined.

3.2 Design goals

The design of Arnold was guided by several goals. First, we wanted to support the

widest possible range of queries about user-level state and the history of that state. Arnold

reproduces and tracks state of all user-level processes at the level of the instruction set ar-

chitecture. We wanted to support queries about the history of a computation both within a

replay group (Section 3.3.6) and between replay groups (Section 3.3.5). We also wanted

to support queries not anticipated at the time of recording, which we accomplish via retro-

spective binary analysis (Section 3.3.6).

Second, we wanted to minimize the time and space overhead of recording, since we

intend for Arnold to continuously record computer usage. We wanted the time overhead of

recording to be low enough to support interactive workloads and the space overhead to be

small enough to record several years of execution of workstations and personal computers

on a commodity hard drive. We reduce the time overhead of recording through determin-

istic record and replay (Section 3.3.1) and retrospective binary analysis (Section 3.3.6).

We reduce space overhead through techniques such as model-based compression (Section

3.3.2), deduplicated file recording (Section 3.3.3), and cooperative replay (Section 3.3.4).

Third, we wanted to reduce the cost of answering queries by not requiring the reexe-

cution of processes unrelated to the state being queried. We accomplish this by dividing

20

the system into multiple replay groups, each of which can be replayed independently. To

preserve lineage between replay groups, we track the dependencies cause by inter-group

communication in a dependency graph (Section 3.3.5).

3.3 Design and implementation

3.3.1 Record and replay

Deterministic record and replay enables two important features of Arnold. First, it al-

lows Arnold to efficiently reproduce the complete architectural state (register and address

space) of user-level processes. Second, it allows Arnold to defer the work needed to track

lineage from the time of execution to the time of querying [31].

To enable reproduction of all architectural state, Arnold records and replays execution

at the level of processes. Our modified Linux kernel records all nondeterministic data that

enters a process: the order, return values, and memory addresses modified by a system call;

the timing and values of received signals; and the results of querying the system time.

Dealing with multiple threads/processes that write-share memory requires special care.

Record and replaying individual threads/processes would shrink the scope of replay needed

to answer a query, but this would require Arnold to record all nondeterministic reads of

shared memory. Instead, Arnold records all threads/processes that share memory as a sin-

gle replay group, then seeks to replay the interleavings of events from the replay group

deterministically.

To enable deterministic replay of a replay group, Arnold records all syn-

chronization operations and atomic hardware instructions (such as atomic inc, or

atomic dec and test). A modified version of libc logs the order and memory addresses

of synchronization operations between threads, including low-level atomic instructions and

high-level synchronization operations such as pthread lock. Such logging inserts an ad-

ditional two atomic instructions for each event logged (to order the start and end of the

21

operation). In the absence of data races, this information is sufficient to faithfully replay

the recorded execution of a replay group involving multiple threads or processes—each

replayed thread will execute the same sequence of instructions and system calls, observe

the same values read, and produce the same results as during recording [95].

In the presence of data races, the replayed execution may diverge from the recorded

one. We deal with programs with data races by identifying the races and adding additional

instrumentation to eliminate them on subsequent runs. Veeraraghavan et al. [106] observed

a synergy between deterministic replay and data race detection: if the only reason that a

replayed execution may diverge from a recorded execution is the presence of a data race,

then the replay system can act as a very efficient data-race detector. Arnold supports the

ability to instrument and observe the execution of replayed recordings (Section 3.3.6), and

we use this to run a standard vector-clock data race detector [93] when a replay divergence

is detected. This is guaranteed to detect at least the first pair of racing instructions (it may

also detect subsequent pairs). We then either statically instrument the code to record the

outcome of the data race, or dynamically instrument the binary when it runs to cause the

racing pair of instructions to trap to the kernel (via an INT 3 instruction), where we record

the order of the racing instructions. Static instrumentation is preferred since it is more

efficient, but dynamic instrumentation allows us to support applications for which we do

not have source code.

In practice, we have detected few data races that affect replay in the programs we run on

our workstations. It has been relatively simple for a small team of users to add the necessary

instrumentation to record these instances. Interestingly, many of the races we found were

already documented, for example by developers who ran ThreadSanitizer [101] or similar

tools. Since races are very infrequent, we suspect that it should usually be possible to search

through all possible interleavings of the racing instructions to find an interleaving that is

indistinguishable from the recorded execution [9, 92].

When a process executes the exec system call, Arnold creates a new replay group

22

(with a unique 64-bit identifier) consisting solely of that process. Arnold also saves a small

checkpoint for the new group, which allows replay to begin from the creation of that pro-

cess. The checkpoint consists of the arguments and environment variables passed to exec,

other nondeterministic information used during the system call (e.g., seeds used to random-

ize address spaces), and a reference to the file containing the executable image—the image

usually resides in a deduplicated file store described in Section 3.3.3.

Arnold creates new replay groups on exec rather than on fork because the initial ad-

dress space at exec is more amenable to deduplication than the address space at the time

of fork. It stores a split record that contains the unique identifier of the new replay group

in the log of the replay group that performed the exec. Infrequently, two replay groups

need to be merged (e.g., because they establish a write-shared memory segment). In such

instances, Arnold merges the processes from one group into the other and inserts a merge

record into their logs.

Arnold replays recorded execution on a per-group basis. It creates a new process from

the group’s checkpoint and deterministically reexecutes the process by supplying values

from the group’s log in lieu of performing any nondeterministic action. As additional

threads and processes are created within the replay group, Arnold also replays those en-

tities. Each process executes until it exits or the execution reaches a split record. Arnold

can replay multiple groups concurrently—this allows it to parallelize lineage queries that

span groups.

3.3.2 Reducing storage utilization

Arnold uses several optimizations to reduce the size of its replay logs. The first opti-

mization is model-based compression. The order and results of many of the system calls

and synchronization operations that Arnold logs are highly predictable. For instance, many

system calls usually return zero (success); the write system call usually returns the num-

ber of bytes in the input buffer; and pthread cond lock usually returns a value specifying

23

that the lock has been obtained. Arnold constructs a model for predictable operations and

records only instances in which the returned data differs from the model. Thus, the log size

used for each type of operation is proportional to the number of deviations, which can be

much less than the number of executed operations.

Some operations such as poll exhibit considerable locality in the data they return (e.g.,

the set of ready file descriptors is often the same from call to call within a short window).

For these operations, Arnold caches the most recent 8 values returned on both record and

replay and replaces the actual values in the log with a small cache index (when the value

hits in the cache) in order to save space. Arnold also uses model-based compression to

reduce the amount of ordering information in the log. It predicts that there are no ordering

constraints and no signals delivered between two successive logged operations, and records

only when the execution deviates from the model.

After applying model-based compression, we determined that the most significant

source of log usage on our systems was messages sent from the X server to applications. A

small fraction of this data comes from user events (button presses, mouse movements, etc.).

Most data consisted of responses to application requests. Since such responses included

nondeterministic data such as identifiers and window properties, the responses needed to

be recorded to faithfully replay each application.

We observed, however, that with the exception of actual user input, the behavior of

the X server is mostly deterministic. Arnold avoids logging most data from the X server

by using the X server to help regenerate data during replay. We insert a proxy between

applications and the X server that records only a small subset of the data sent from the

X server, such as identifiers and window properties generated nondeterministically by the

X server. During replay, the application again connects to an X server via the proxy. The

proxy translates the nondeterministic values, and the replay process generates GUI state

using the live X server, but on a separate display. The proxy also inserts the recorded user

events at the appropriate point in the stream. In combination with the proxy translation, the

24

X server produces the same sequence of responses during the replayed execution as during

recording. With deterministic X recording, Arnold can make the display of X windows

visible during replay. As we will describe, this is useful for showing users application

displays that correspond to the results of lineage queries and for allowing users to specify

queries by clicking on recreations of windows displaying data they observed in the past.

By recording only nondeterministic response values and user input, the proxy substantially

reduces the amount of information in the logs of GUI applications.

After applying the above optimizations, we noticed that time queries constituted a sub-

stantial portion of the remaining log size. To reduce the amount of nondeterminism that

needs to be logged, Arnold uses a semi-deterministic clock. The value returned by a semi-

deterministic clock is guaranteed to be less than the real-time clock for the system, and

within a specified delta. The default delta is 10ms; it may be overridden by applications

that need more accuracy. A replay group’s semi-deterministic clock is incremented deter-

ministically based on the number and type of logged operations (which is the same during

both recording and replay). When the time is queried, Arnold reads the actual real-time

clock. If the semi-deterministic clock is greater than or more than delta behind the real-time

clock, Arnold returns the real-time clock value, sets the semi-deterministic clock equal to

the real-time clock, and records the new value in the log. Thus, the amount of time query

data in the log is proportional to the number of such resets rather than the total number

of time queries; if Arnold usually predicts the clock value correctly, the amount of logged

time data can be quite small.

Arnold ensures that observed semi-deterministic clock values are externally consistent.

It is for this reason that the semi-deterministic clock must always be less than the real-time

clock. If a recorded process sends a message to a non-recorded process, the receiver will

always observe that the message arrived after it was sent. Further, if a recorded process

receives data from or sends data to an entity outside the replay group, the group’s semi-

deterministic clock is set to match the real-time clock. Thus, the observed clock values are

25

causally consistent both across all processes on the computer system and with respect to

external entities.

Finally, Arnold compresses all log data with gzip. This is very effective in compressing

some input, such as text. It also helps to compress applications that perform repetitive

operations with similar results.

3.3.3 Copy-on-RAW file cache

Arnold records the file data read by a process so that data can be redelivered to the

process during replay. Recording this data can take a substantial amount of log space, so

Arnold optimizes how the read file data is stored by deduplicating it. This works particu-

larly well when a file is read multiple times before being modified.

To deduplicate the read file data, Arnold saves a version of a file only on the first read

after the file is written. Subsequent reads log only a reference to the saved version, along

with the read offset and return code. We refer to this as copy-on-RAW (read-after-write)

recording.

If another process opens the file for writing while a reading process is running, the

reading process reverts back to recording the read values instead of the reference to the

stored version (several optimizations are possible here, such as recording the file version on

each read instead of open, or reexecuting reads and writes to files shared among processes

in the same replay group.)

Arnold also uses the copy-on-RAW store for file mmap operations by mapping the stored

file version into the process space on replay. If the mapped region is writable, Arnold cre-

ates a private temporary copy of the file version on replay; this allows the replayed process

to change the file contents without affecting other replayed processes that reference the

same file version.

Note that, with this design, the current version of all files is stored in the default file

system (ext4 on our Ubuntu workstations). We chose this operation for efficiency; record-

26

ing processes (the common usage case) go through the well-optimized file system and

receive the best performance. Copy-on-RAW population of the file store can proceed asyn-

chronously and not slow down the recording process too much unless large amounts of

data being read exert memory pressure. The cost of this implementation is some double-

buffering of current file data, which we could reduce in the future.

We were initially surprised because the size of Arnold’s file store grew more slowly than

expected on our workstations. On investigation, we realized this was due to an important

difference between Arnold’s file store and a versioning file system: Arnold’s file store does

not have to store data that is written but never read. Since Arnold is an eidetic system,

it can, of course, recreate this file data; however, it does so by replaying the process(es)

that produced the data rather than by retrieving the data from the file system. In contrast, a

versioning file system needs to store all file versions even if they are overwritten or deleted

without being read.

Since Arnold can reproduce any current or past file version via replay, it is the logs

of nondeterminism that are Arnold’s truly persistent store [43]. We can thus treat Arnold’s

copy-on-RAW file store as a cache. The copy-on-RAW file store (and, in fact, all file system

data) is simply a performance optimization that contains checkpoints of data that could be

produced by replay. This reasoning led us to develop cooperative replay.

3.3.4 Cooperative replay

We normally think of replay groups as independent entities: we log their nondetermin-

istic inputs during recording and reinsert these inputs during replay. Cooperative replay

provides another option, which is to use one replay group to regenerate the data read by an-

other. Cooperative replay allows us to treat the log of all interprocess communication (files,

pipes, etc.) as a cache, whose records can be evicted when the cache is full and recovered

when needed during replay.

27

Arnold uses cooperative replay to regenerate data read from files. During replay, if the

requested data exists in the file system (because it is the current version of the file) or in the

copy-on-RAW file cache, Arnold reads the data from one of those locations. If not, Arnold

regenerates the data by replaying the replay group(s) that produced the data. Arnold stores

information about the source of all file data in each read record—this includes the identifier

of the replay group(s) and the system call(s) executed by the group(s) that produced the file

data (Section 3.3.5). To regenerate the data, Arnold suspends the replay group requesting

the data, replays the producing replay group(s), repopulates any data evicted from the file

cache, and finally resumes the requesting replay group.

Cooperative replay may recurse in a depth-first manner. When replaying replay group

A, Arnold may need to replay another replay group B to regenerate file data read by re-

play group A, and this may trigger the replay of a third replay group C, and so forth. The

recursion will stop when a group can be replayed without depending on any other replay

group.

As data flows forward, it creates a directed acyclic graph. While no cycles exist between

nodes in the graph, Arnold may encounter a scenario where two replay groups depend on

outputs of each other. In this scenario Arnold will alternate replaying each group until all

dependencies are met.

3.3.5 Dependency graph

To support cooperative replay and track lineage across replay groups, Arnold maintains

a logical graph of the data-flow dependencies between groups, which we refer to as the

dependency graph. Nodes in the graph are <replay group id, system call id> tuples, where

the second part of the tuple uniquely identifies a particular system call executed by a process

in the replay group. Each edge in the graph is a bidirectional link between the system call

that produced data and the set of one or more system calls that consumed that data. Thus,

Arnold can determine the lineage of data across replay groups by tracing backward in

28

time through the dependency graph, and it can determine what downstream values were

influenced by particular data by tracing the lineage forward.

We first describe the operation of the dependency graph for file data. When a recorded

process writes to a file, Arnold records which bytes were modified, along with the <replay

group id, system call id> in a per-file B-tree indexed by the file offset. The root of each

per-file B-tree is in turn indexed in a B-tree of all files; we refer to this collection of B-trees

as the filemap. Arnold allocates a separate region on disk for the filemap; it reads pages

on demand into a kernel cache in physical memory and evicts pages using an LRU algo-

rithm. Pages are flushed asynchronously using the journal mechanisms of the underlying

file system (ext4 in our current implementation). Thus, the filemap contains the lineage

information for all current file data in the file system.

When a recorded process reads from a file, Arnold searches through the filemap to find

which system call(s) wrote the bytes being read. It copies the tuples out of the filemap

into the replay log of the reading process. Thus, the log contains sufficient data to answer

backward lineage queries (how was the data read by this process produced?). In order to

answer forward lineage queries, Arnold generates an index over the reverse linkages and

stores it in a sqlite database. A daemon process asynchronously generates the index by

incrementally scanning recent replay logs (replay is unnecessary because the data needed

to generate the index is in the logs).

Arnold uses a similar process to record the lineage of other forms of IPC. For pipes and

sockets, it keeps metadata for bytes written but not yet consumed in the kernel. For most

pipes and sockets, there is a single writing process and a single reading process, and bytes

are read in the order they are written. In this common case, Arnold reduces log size by only

logging the identifier of the writing replay group. On a query, Arnold identifies the system

call(s) that generated data by scanning the log of the writing record group. If there is more

than one reader or writer, Arnold tracks the reads and writes on the pipe or socket in the

same manner as for file system data.

29

Arnold also tracks lineage of the data passed from the parent process to the child process

during exec. This includes arguments, environment variables, and some miscellaneous data

used during the exec system call.

Arnold does not record the lineage of data passed among processes via shared memory.

Instead, Arnold tracks this lineage at query time by instrumenting the memory read and

write instructions as described in the next section.

3.3.6 Intra-process queries

Arnold uses Pin [76] binary instrumentation to analyze replayed executions and analyze

data within a replay group. We chose Pin because it is a flexible and well-documented tool;

however, Pin can be slow, partially because it dynamically, rather than statically, inserts

instrumentation into running binaries. Arnold avoids overhead during recording by only

using Pin and analyzing intra-process history during replay.

While analysis tools such as Pin are typically invisible to the program they instrument,

they are not transparent to the operating system: such tools insert new system calls, allocate

additional memory, catch signals, etc. Without special care, these extra actions to support

analysis will cause the replayed execution to diverge from the recorded execution. Arnold

uses techniques from X-ray [11] to compensate for the divergences caused by analysis;

for instance, it prevents Pin from allocating memory that will conflict with the replayed

execution and it identifies system calls generated by Pin and executes them live rather than

trying to supply nondeterministic values from the group’s log.

Arnold analyzes computation within a group by restoring the group’s checkpoint and

replaying the processes within the group with Pin dynamic analysis enabled.

3.3.7 State queries

Arnold can recover past file versions, transient process state, inputs, and output. If a

specified file version does not already exist in its cache, Arnold uses cooperative replay to

30

regenerate the contents of the file. Arnold reexecutes the specified replay group to regen-

erate both transient process state and output. Inputs (with the exception of file data) are

logged, so no reexecution is needed to retrieve them.

Arnold also provides an interactive state query to allow users to inspect GUI output.

During replay, X server output is displayed on the current screen, allowing the user to

observe the display as it was manipulated during recording. Via a separate console, the

user can fast forward to a particular output (i.e., the display is updated at replay speed

without the original think time, I/O delays, etc.) or pause the replay at a particular point in

the execution. By delaying a specified amount after each X output, Arnold can also display

a slow-motion execution.

3.4 Privacy

One concern with eidetic systems is the potential exposure of private data. Arnold’s log

can be used to recreate any state on the system and thus must be protected to the same or

greater degree that one would protect other private memory and file system state.

A related concern is preserving a user’s ability to exclude data from recording. For

example, Arnold as described here would preserve all state from a user’s “private” brows-

ing session. However, Arnold could provide the ability to remove sensitive portions of the

process graph by sanitizing and replacing portions of the log. For instance, Arnold could

remove sensitive information contained in a process’s address space by replacing that pro-

cess’s execution with a simple stub program that produces the same output.

A user who wants to remove sensitive information may actually benefit from Arnold’s

ability to track lineage. The user could identify the sensitive information or portions of

execution, then ask Arnold to identify points in the process graph that depend upon this

information. The user could then replace those parts of the graph with stubs that jump over

the sensitive portions. Of course, once data is removed from Arnold, all lineage information

and ability to query the execution are also lost.

31

User Days Groups Storage utilization (MB) per day

per day RAW
file cache

Logs Filemap Total

A 25 995 475 267 36 779
B 24 475 1095 936 339 2064
C 21 26122 869 350 690 1910
D 16 3339 1675 82 838 2594

Table 3.1: Storage utilization during multi-week trial

3.5 Evaluation

Our evaluation answers the following questions:

• What is Arnold’s performance overhead?

• What are Arnold’s storage requirements?

• Does Arnold enable useful queries?

3.5.1 Storage overhead

We first consider the storage overhead of running an eidetic system. To measure this

overhead, the authors of the paper continuously recorded activity on their workstations

for several weeks. The recorded activity included all user-level processes started from a

terminal or launched from the GUI. It did not include several system-level processes, such

as the X server (which is not recorded per the design in Section 3.3.2), processes that

directly manipulate the replay data (e.g., indexing tools), and the sshd server (since we

sometimes needed to log in without replay enabled for testing and maintenance). With the

above exceptions, the vast majority of user activity was recorded. No files were evicted

from the copy-on-RAW file cache since storage utilization was reasonable.

Table 3.1 summarizes the storage cost of our eidetic system. The third column shows the

average number of replay groups created per day; note that there may be many threads and

processes within a single group. The number of groups created varies widely depending

on workload; some users have a few long-running applications; others have workflows

32

(e.g., compilation) that create many short-lived groups. The next columns show average

storage utilization per day, broken down to show the individual storage utilization of the

copy-on-RAW file cache, the replay log storage, and the filemap. Process checkpoints are

included in the total but not shown separately, since they account for less than 2MB per day

of storage. Executables and shared libraries referenced by checkpoints are included in the

copy-on-RAW file cache.

While we cannot make comprehensive claims about storage utilization without a wider

user study, this preliminary data is very encouraging. All users require less than 2.6GB of

storage per day; a 4TB drive would suffice for 4–14 years.

Storage utilization (MB)
Firefox evince gedit gpaint spreadsheet presentation latex make

Baseline 4517.63 194.51 764.34 95.29 4362.49 455.10 20.05 86.69
Model-based compression 308.93 7.07 12.50 36.12 41.16 31.07 7.19 81.52
Copy-on-RAW file cache 283.37 2.63 8.41 34.77 22.63 23.83 0.25 6.13

X compression 173.74 2.61 8.29 1.08 22.55 15.94 0.25 6.13
Semi-deterministic time 127.72 2.11 6.51 0.94 19.23 15.39 0.29 6.12

Gzip 24.87 0.11 0.50 0.08 3.33 12.71 0.05 1.15
Compression ratio 182:1 1752:1 1530:1 1217:1 1311:1 36:1 393:1 75:1

Table 3.2: Reduction in storage utilization via incremental application of optimizations

3.5.2 Benefits of compression

Next, we quantify the benefits of Arnold’s storage optimizations. Table 3.2 shows re-

sults for several workloads. The Firefox workload measures a half-hour browsing session

consisting of 15 minutes of active browsing across 8 complex Web sites (e.g., Facebook and

stack overflow), followed by 15 minutes of idle usage with Gmail windows open (triggering

periodic JavaScript execution). The evince, gedit, gpaint, LibreOffice spreadsheet,

and LibreOffice presentation workloads use those applications intensely for 3 minutes.

The latex workload builds a prior OSDI paper, and the make workload builds the libelf-

0.8.9 library. In these and subsequent experiments, we ensure repeatable results by automat-

ing all GUI workloads with the Linux Desktop Testing Project library [1], which captures

and emulates GUI events.

33

The first row in the table shows storage usage when all nondeterministic inputs are

logged without any compression. The subsequent rows show the effect of cumulatively

applying model-based compression, copy-on-RAW file caching, the deterministic X proxy,

semi-deterministic time, and gzip compression. The final row shows the compression ratio

compared to baseline due to all of Arnold’s optimizations.

Arnold averages a 411:1 compression ratio compared to the baseline. For compari-

son, simply applying gzip to the baseline averages only a 6:1 compression ratio. At 36:1,

LibreOffice presentation sees the lowest compression ratio; this is due to the recording

of temporary files written and read by the application. In the future, Arnold could omit such

data since the files are never read by other replay groups and Arnold could regenerate the

file contents during replay.

3.5.3 Performance overhead

Next, we measure Arnold’s performance overhead during recording (i.e., the overhead

that would normally be experienced by a user). All tests were run on a computer running

Ubuntu 12.04LTS with an 8 core Xeon E5620 2.4GHz processor, 6GB memory, and a 1TB

7200RPM hard drive. We measured several terminal and GUI applications, and one server

workload (apache):

• kernel copy – cp -a of the 3.5.0 Linux source.

• cvs checkout – check out Arnold’s kernel source (589MB, 52730 files) from a repos-

itory accessible via a local, 1Gb local network connection.

• make – compile the libelf-0.8.9 library.

• latex – build a prior OSDI paper with latex/bibtex.

• apache – run the apache benchmark on an apache 2.2.22 server, configured with

mpm prefork with 256 workers, and a client connected via a 1Gb local network con-

nection (5000 requests for a 34KB page with 50 concurrent requests at a time.)

34

• gedit – open a 15,000 line C file and find/replace on a commonly occurring string.

• facebook – load the White House’s public Facebook page in Firefox version 23.0

(the completion time is measured by the onLoad event.)

• spreadsheet – Open a 704KB csv spreadsheet in LibreOffice 3.5 and convert it to

an xml document.

Figure 3.1 shows the performance of Arnold on a variety of desktop workloads, normal-

ized to the performance of an uninstrumented system. The middle bar for each workload

shows the performance during recording; this is the overhead the user will experience dur-

ing normal operation. The third bar shows the performance during recording when Arnold

uses a second hard drive for logging, which minimizes interference with normal file system

writes.

Arnold’s overall performance impact is small: overhead is under 12% with a single

disk for all but two workloads. The cvs checkout has approximately 100% overhead with

a single disk because it saves all checked-out data twice: once as nondeterministic network

input and again when cvs writes the data to the file system. Adding a second logging disk

reduces the overhead for cvs to 15%.

The higher overhead seen by kernel copy is caused by saving filemap entries. This

workload is disk-bound and creates many small files. For each file created, Arnold must

create a B-tree to record lineage data—this is effectively a worst-case for saving filemap

entries. A separate logging disk reduces the overhead to 1.7%.

The Facebook tests contained some outliers due to external network and servers. We

eliminated gross outliers (500% or more above the median) from our measurements (both

for baseline and for Arnold); doing so did not help Arnold disproportionately.

We also evaluate the scalability of Arnold on several Splash 2 benchmarks, shown in

Figure 3.2. While scalability was not a focus of our work, Arnold has low overhead for all

these benchmarks up to 8 threads. We attribute this to two factors. First, Arnold requires

35

 0

 0.5

 1

 1.5

 2

 2.5

kernel copy

cvs checkout

m
ake

latex
apache

facebook

spreadsheet

gedit

N
o

rm
a

liz
e

d
 R

u
n

ti
m

e

Baseline
Arnold
Arnold with 2nd Disk

Figure 3.1: Arnold performance overhead normalized to unmodified Linux. Error bars are 95%
confidence intervals.

programs to be race-free, so it only has to check and log inter-thread synchronization op-

erations rather than all shared-memory operations. Second, Arnold’s model-based com-

pression reduces the instrumentation overhead per synchronization operation to only two

atomic instructions in the common case.

In summary, Arnold adds modest overheads of less than 12% with a single disk on all

but 2 workloads over a wide range of desktop and interactive applications. Adding a second

hard drive reduces the overhead to under 8% on all but one workload. In practice, even on

single hard drive configurations, we noticed virtually no difference between our recorded

applications and non-recorded applications. In fact, we needed to add a utility to our shell

interface simply to determine whether recording was currently enabled or disabled.

36

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

fft raytrace

w
ater-nsquared

lu ocean

N
o

rm
a

liz
e

d
 R

u
n

ti
m

e

Benchmarks

1 thread
2 threads
4 threads
8 threads

Figure 3.2: Arnold’s scaling, normalized to unmodified Linux, on Splash2 benchmarks. Error bars
are 95% confidence intervals.

37

3.5.4 Case studies

Finally, we look at a series of case studies of lineage queries enabled by Arnold.

To show the effectiveness of Arnold on real queries, we evaluate a series of practical

lineage queries. These queries use Arnold’s PIN support to run an intra-process taint track-

ing system developed by Chow [32], and the inter-process lineage facilities enabled by

Arnold’s filemap. Queries are run in one of two directions, bacwards (how was this data

derived?) and forward (what did this state influence?).

There are many possible ways of defining lineage: one can say that an input influences

an output only if the output is derived from the input via a series of copies, or one can

consider other forms of data flow, or control flow, etc. Arnold evaluates several common

linkage functions (and applications may define their own):

• Copy. An input of an instruction influences an output only if the instruction copies

the value of the input to the output location (e.g., via a move instruction).

• Data flow. An input of an instruction influences an output if the instruction uses the

input to calculate the value of the output (e.g., via an add instruction).

• Index. An input influences an output if the input is used to calculate the output or if

the input is used as an index to load a value used to calculate the output (e.g., via an

array or lookup table index).

• Control flow. This includes, in addition to index and data flow influence, the in-

fluence propagated via control flow as tracked using the algorithms developed by

ConfAid [12].

3.5.4.1 Backward Query

Our first case study is a typical backward linage query. In this scenario, a colleague

points out to the user that he has cited the wrong paper in a conference submission. The

38

user runs a backward query to determine how the incorrect citation was produced and what

the correct citation should be.

We executed this query by opening a binary document with xdvi, scrolling to the bib-

liography, and clicking on a screen location to specify the incorrect citation as the starting

state for the query. We did not specify a linkage, so Arnold ran the query with multiple

linkage functions (the various linkage functions are analyzed in parallel via concurrent re-

play). For each step, Arnold chooses the most restrictive linkage function that produces

some result (shown below in parentheses).

The query returned the following results:

• The specified output of xdvi came from the input file “paper.dvi” (index linkage).

• The incorrect citation in “paper.dvi” was generated by latex with data coming from

the input file “paper.bbl” (data linkage).

• The data in “paper.bbl” was generated by bibtex with data from “full.bib” (copy

linkage).

• The data in “full.bib” was generated by vim with data from the terminal device (copy

linkage).

• A human linkage (comparrison between data output-to and received-from users) re-

veals a fuzzy substring match between data coming from the terminal and Firefox

output.

• The output displayed by Firefox came from a conference Web site (data linkage).

• The query also reports four false positives: a latex format file, a font file, libc.so

and libXt.so.

Using Arnold, the user fast-forwards a Firefox replay to the point indicated by the

query result. On viewing the recreated GUI, he realizes that the paper that he meant to cite

was the next paper in the session after the incorrect citation.

39

Case Study Record Time Replay Time Replay & Pin Query Time
Case Study 1: Backward Query 96.1s 2.2s 70.0s 209.5s
Case Study 2: Forward Query 30.3s 1.6s 80.4s 110.7s

Case Study 3: Forward Heartbleed Query 114.1s 0.1s 6.9s 19.7s
Case Study 3: Backward Heartbleed Query 230.3s 0.4s 139.5s 235.1s

Table 3.3: Summary of case studies

As shown in the first row in Table 3.3, the query takes 209 seconds to execute, whereas

the cumulative execution time of the recorded processes was only 96 seconds. Replay of

the processes with zero instrumentation takes only 2 seconds because all user think time

and most I/O delays are eliminated or replaced with a sequential disk read from the log.

Simply attaching Pin to the replayed processes and inserting a very minimal instrumenta-

tion tool (which counts the number of system calls executed) increases the replay time to

70 seconds—this is the lower bound for any Pin tool on this workload.

The time it takes Arnold to perform the queries in table 3.3 is dominated by the Pin tool

instrumentation and analysis, and not the actual replay system. Consequently, Arnold’s

query times are dictated by the number of instructions analyzed and the amount of taint

information in the address space.

This query demonstrates that Arnold can successfully follow a long chain of applica-

tions to trace the lineage of data back to external inputs. The chain contains both binary

and text data, as well as several types of linkages (intra-process, file, and human). Note that

simply searching over inputs and outputs cannot reveal this whole chain (e.g., incoming

Web data is encrypted, text input to vim includes backspaces and various keyboard macros,

etc.) Lineage queries, however, can uncover linkages to such inputs because they directly

observe the transformation of bytes in the process address space.

3.5.4.2 Forward Query

The second case study is a typical forward query. Our user now wishes to determine

what other data and output has been affected by the faulty citation.

40

We executed this query by specifying the starting state as the incorrect citation in

“full.bib.” We also specified the index linkage function.

The forward query returns a list of external outputs and current files that the incorrect

citation affected. Some key points of the result are:

• All subsequent versions of “full.bib” contain the incorrect citation. This is a shared

bibliography file that is used to generate citations in several other papers on the user’s

computer. The forward query tracks the incorrect citation through the entire paper

compilation process (e.g., though bibtex, latex, dvips, and ps2pdf).

• The query flags all files produced during the paper compilation process that include

the specified citation (e.g., “paper.bbl”, “paper.dvi”, “paper.ps”, and “paper.pdf.”)

• The query does not return false positives. The user also has several papers that use the

bibliography file “full.bib”, but those papers do not cite the incorrect citation. Even

though “full.bib” is read when those papers are compiled, Arnold correctly reports

that no output file is affected by the incorrect citation.

• The query shows that the user had copied and pasted the incorrect citation from

“full.bib” to another file, “paper.bib”, using vim. The query also returns subsequent

compilations and output files of those compilations that reference the incorrect cita-

tion in “paper.bib”.

• The query detects that the user ran a python script to produce a file with more succinct

version of the citations, “small.bib”, from “full.bib”. It detects the incorrect citation

in “small.bib” and in paper compilations that reference the incorrect citation from

that file.

• The query detects that the user e-mailed a paper with the incorrect citation. This

shows up as a network output of sendmail.

• The query returned no false positives.

41

The second row of Table 3.3 shows that the forward query required 111 seconds to ex-

ecute, whereas simply replaying all processes with the simple Pin tool require 80 seconds.

Thus, the relative overhead of the forward query instrumentation, is (as expected) much

less than that for a backward query.

3.5.4.3 Heartbleed

Our third case study is motivated by the 2014 Heartbleed attack. One reason this attack

caused such concern is that service providers were unable to determine what (if any) data

was leaked. We show how Arnold is able to help an administrator determine whether sen-

sitive data was leaked from a low-volume Web server, which hosts and stores a key-value

database.

First, the administrator runs a forward query to see if the server’s private key was leaked.

This query requires a custom definition of output, so she creates a Pin tool. Heartbleed

exploited a missing bounds check, so the Pin tool simply emulates the missing bounds

check when the target instruction is reached and flags as output any data in excess of what

the bounds check would have rejected. Her forward query specifies a starting state of the

private key file, an output definition of only those bytes returned by the Pin tool, and the

index linkage function.

We emulated this scenario by recording 100 GET and POST requests to Nginx 1.4.7

with OpenSSL version 1.0.1f (run times scale roughly linearly with the number of re-

quests). This query took 20 seconds to perform and returned no outputs, showing that the

private key was not leaked). We confirmed the correctness of this result manually.

Next, the administrator asks: was any data leaked, and if so what data? We constructed

a backward query to answer that question. We used the custom Pin tool to define as starting

state any data incorrectly sent due to the Heartbleed exploit and specified the index linkage.

The backward query determined that:

• The Web server, Nginx, serviced a heartbeat request that leaked process memory.

42

• The leaked bytes came from a UNIX socket written by FastCGI, which is responsible

for dynamic Web content.

• FastCGI received these bytes from a pipe written by a python script that it spawned.

• The script read the bytes from a database file.

• The bytes read from the database file came from POST requests that inserted those

key-value pairs. This is determined by following the bytes back through a python

script, FastCGI, and Nginx.

In summary, Arnold reveals both the leaked content and the origin of that data. Further

queries could reveal the specific users who had their content leaked (e.g., by using a Pin

tool to extract the userid from the connections that wrote the leaked data). The total query

time was 235 seconds, roughly double the cost of replay and Pin instrumentation alone.

This case study shows the value of not limiting a priori the types of lineage that an

eidetic system can track. For example, prior tools for intrusion recovery focus on inter-

process lineage but cannot track intra-process lineage [66, 50, 64]. Upon learning of the

vulnerability, the user can write new tools that detect data flows she had not anticipated

at the time the system was being recorded, then use these tools on executions that were

recorded before the tools existed.

3.6 Conclusions and future work

Arnold is a prototype of an eidetic system, targeted at personal computers and worksta-

tions. Arnold can recall any past user-level state, and it can trace the history of any byte in

a current or prior state. This paper shows that the overheads of providing such functionality

are reasonable: our results shows that adding a commodity hard drive can satisfy 4 or more

years of storage needs with most runtime overheads under 8%. We have made the source

code for Arnold available at https://github.com/endplay/omniplay.

43

Our case studies show the power of an eidetic system by recovering past state and

tracing the lineage of data through a wide variety of applications and user interactions. The

precision of combining operating system tracing of inter-process information flow with

retrospective analysis of intra-process information flow yields accurate and informative

query results.

44

CHAPTER IV

Optimistic Hybrid Analysis

4.1 Introduction

Dynamic analysis tools, such as those that detect data-races [98, 48], verify memory

safety [87, 88], and identify information flow [44, 63], have become a vital part of testing

and debugging complex software systems. However, their substantial runtime overhead

(often an order of magnitude or more) currently limits their effectiveness. This runtime

overhead requires that substantial compute resources be used to support such analysis, and

it hampers testing and debugging by requiring developers to wait longer for analysis results.

These costs are amplified at scale. Many uses of dynamic analysis are most effective

when analyzing large and diverse sets of executions. For instance, nightly regression tests

should run always-on analyses, such as data-race detection and memory safety checks,

over large test suites. Debugging tools, such as slicing, have been shown to be more infor-

mative when combining multiple executions, e.g. when contrasting failing and successful

executions [52, 7]. Forensic analyses often analyze weeks, months, or even years of prior

computation [63]. Any substantial reduction in dynamic analysis time would make these

use cases cheaper to run and quicker to finish, so performance has been a major research

focus in this area.

Hybrid analysis is a well-known method for speeding up dynamic analysis tools.

This method statically analyzes the program source code to prove properties about its

45

execution. It uses these properties to prune some runtime checks during dynamic analy-

sis [69, 87, 28, 29]. Conventionally, hybrid analysis requires sound 1 (no false negatives)

static analysis, so as to guarantee that any removed checks do not compromise the accu-

racy of the subsequent dynamic analysis. However, soundness comes at a cost: a lack of

precision (i.e., false positives) that substantially reduces the number of checks that can be

removed and limits the performance improvement for dynamic analysis tools such as race

detectors and slicers.

The key insight in this work is that hybrid analysis can benefit from carefully adding

unsoundness to the static analysis, and preserve the soundness of the final dynamic

analysis by executing the final dynamic analysis speculatively. Allowing the static anal-

ysis to be unsound can improve its precision and scalability (Figure 4.1), allowing it to

dramatically speed up dynamic analyses such as race detection (even after accounting for

the extra cost of detecting and recovering from errors introduced by unsound static analy-

sis).

Optimistic hybrid analysis is a hybrid analysis based on this insight. It combines un-

sound static analysis and speculative execution to create a dynamic analysis that is as pre-

cise and sound as traditional hybrid analysis, but is much faster. Optimistic hybrid analysis

consists of three phases. First, it profiles a set of executions to derive optimistic assumptions

about program behavior; we call these assumptions likely invariants. Second, it performs a

static analysis that assumes these likely invariants hold true, we call this predicated static

analysis. The assumptions enable a much more precise analysis, but require the runtime

system to compensate when they are violated. Finally, it speculatively runs the target dy-

namic analysis, verifying that all likely invariants hold during the execution being analyzed.

If so, both predicated static analysis and the dynamic analysis are sound. In the rare case

where verification fails, optimistic hybrid analysis rolls back and re-executes the program

with a traditional hybrid analysis.

1Following convention, we classify an analysis as sound even if it is only “soundy” [72]. For example,
most “sound” static analysis tools ignore some difficult-to-model language features.

46

We demonstrate the effectiveness of optimistic hybrid analysis by applying it to two

popular analyses on two different programming languages: OptFT, an optimistic hybrid

data-race detection tool built on top of a state-of-the-art dynamic race detector (Fast-

Track) [48] for Java, and OptSlice, a optimistic hybrid backward slicer, built on top of

the Giri dynamic slicer [97] for C. Our results show that OptFT provides speedups of 2.9x

compared to FastTrack, and 1.6x compared to a hybrid-analysis-optimized version of Fast-

Track. Further, OptSlice analyzes complex programs for which Giri cannot run without ex-

hausting computational resources, and it provides speedups of 8.3x over a hybrid-analysis-

optimized version of Giri. We then show how predicated static analysis can improve foun-

dational static analyses, such as points-to analysis, indicating that optimistic hybrid analysis

techniques will benefit many more dynamic analyses.

The primary contributions of this chapter are as follows:

• We present optimistic hybrid analysis, a method of dramatically reducing runtimes of

dynamic analysis without sacrificing soundness by first optimizing with a predicated

static analysis and recovering from any potential unsoundness through speculative

execution.

• We identify properties fundamental to selecting effective likely invariants, and we

identify several effective likely invariants: unused call contexts, callee sets, unreach-

able code, guarding locks, singleton threads, and no custom synchronizations.

• We demonstrate the power of optimistic hybrid analysis by applying the technique to

data-race detection and slicing analyses. We show optimistic hybrid analysis dramat-

ically accelerates these analyses, without changing the results of the analysis. To the

best of our knowledge, OptFT is currently the fastest dynamic happens-before data-

race detector for Java that is sound.

47

SP
O

Figure 4.1: A sound static analysis not only considers all valid program states P, but due to its sound
over-approximation, it also considers a much larger S. Using likely invariants, a predicated static
analysis considers a much smaller set of program states O that are commonly reached (dotted space
in P).

4.2 Design

Optimistic hybrid analysis reduces the overhead of dynamic analyses by combining a

new form of unsound analysis, known as predicated static analysis, with speculative execu-

tion. The use of speculative execution allows optimistic hybrid analysis to provide correct

results, even when entering states not considered by predicated static analysis. A predicated

static analysis assumes dynamically-gathered likely invariants hold true to reduce the state

space it must explore, creating a fundamentally more precise static analysis.

Figure 4.1 shows how the assumptions in a predicated static analysis can dramati-

cally reduce the state space considered. A sound static analysis must make many overly-

conservative approximations that lead it to consider not just all possible executions of a

program (P), but also many impossible executions (S).

Rather than paying the cost of this over-approximation, a hybrid analysis can instead

construct a static analysis based only on the set of executions likely to actually be analyzed

48

dynamically. Speculative assumptions make the state space (O) much smaller than not only

S but also P, demonstrating that by using a predicated static analysis, optimistic hybrid

analysis has the potential to optimize the common-case analysis more than even a perfect

sound static analysis (whose results are bounded by P). The set of states in P not in O

represent the set of states in which predicated static analysis is unsound. Optimistic hybrid

analysis uses speculation and runtime support to handle when these states are encountered.

As long as the set of states commonly experienced at runtime (denoted by the dotted area

in P) resides in O, optimistic hybrid analysis rarely mis-speculates, resulting in an average

runtime much faster than that of a traditional hybrid analysis.

We apply these principles using our three-phase analysis. First, we profile a set of ex-

ecutions of the target program and generate optimistic assumptions from these executions

that might reduce the state space the static analysis needs to explore. As these dynamically

gathered assumptions are not guaranteed to be true for all executions, we call them likely

invariants of the executions.

Second, we use these likely invariants to perform a predicated static analysis on the

program source. Leveraging the likely invariants allows this static analysis to be far more

precise and scalable than traditional whole-program analysis, ultimately allowing it to bet-

ter optimize dynamic analyses.

Finally, we construct and run the final dynamic analysis optimistically. Because predi-

cated static analysis is not sound, we insert extra checks in this optimistic dynamic analysis

to verify the likely invariants assumed hold true for each analyzed execution. If the checks

determine that the likely invariants are in fact true for this execution, the execution will

produce a sound, precise, and relatively efficient dynamic analysis. If the additional checks

find that the invariants do not hold, the analysis needs to compensate for the unsoundness

caused by predicated static analyses.

The rest of this section describes the three analysis steps, and important design consid-

erations.

49

4.2.1 Likely Invariant Profiling

A predicated static analysis is more precise and scalable than traditional static analysis

because it uses likely invariants to reduce the program states it considers. Likely invariants

are learned though a dynamic profiling pass. We next discuss the desirable properties of

a likely invariant, and how optimistic hybrid analysis learns the invariants by profiling

executions.

Strong: By assuming the invariant, we should reduce the state space searched by pred-

icated static analyses. This is the key property that enables invariants to help our static

phase; if the invariant does not reduce the state space considered statically, the dynamic

analyses will see no improvement.

Cheap: It should be inexpensive to check that a dynamic execution obeys the likely

invariants. For soundness, the final dynamic analysis must check that each invariant holds

during an analyzed execution. The cost of such checks increase the cost of the final dy-

namic analysis, so the net benefit of optimistic hybrid analysis is the time saved by eliding

dynamic runtime checks minus the cost of checking the likely invariants. Note that the time

spent in the profiling stage to gather likely invariants is done exactly once, and is therefore

less important; only the checks verifying the invariants need to be inexpensive.

Stable: A likely invariant should hold true in most or all executions that will be ana-

lyzed dynamically. If not, the system will declare a mis-speculation, and recovering from

such mis-speculations may be expensive for some analyses.

There is a trade-off between stability and strength of invariants. We find it sufficient to

consider invariants that are true for all profiled executions. However, we could aggressively

assume a property that is infrequently violated during profiling as a likely invariant. This

stronger, but less stable invariant may result in significant reduction in dynamic checks,

but increase the chance of invariant violations. If the reduced checks outweigh the costs of

additional invariant violations this presents a beneficial trade-off.

50

4.2.2 Predicated Static Analysis

The second phase of optimistic hybrid analysis creates an unsound static analysis used

to elide runtime checks and speed up the dynamic analysis. Traditional static analysis can

elide some runtime checks. However, to ensure soundness, such static analysis conserva-

tively analyzes not only all states that may be reached in an execution, but also many states

that are not reachable in any legal execution. This conservative analysis harms both accu-

racy and scalability of static analysis.

A better approach would be for the static analysis to explore precisely the states that

will be visited in dynamically analyzed executions. A predicated static analysis tries to

achieve this goal by predicting these states through profiling and characterizing constraints

on the states as likely invariants. By exploring only a constrained state space of the program

(the states predicted reachable in future executions), predicated static analysis provides a

fundamentally more precise analysis.

This reduction of state space also improves the scalability of static analysis, which

now need perform only a fraction of the computation a traditional static analysis would.

Static analysis algorithms frequently trade-off accuracy for scalability [54, 109, 114, 77].

In some instances this improved efficiency allows the use of sophisticated whole-program

static analyses that are traditionally more precise but often fail to scale to large programs.

4.2.3 Dynamic Analysis

The final phase of optimistic hybrid analysis produces a sound, precise and relatively

efficient dynamic analysis. Dynamic analysis is implemented by instrumenting a binary

with additional checks that verify a property such as data-race freedom and then executing

the instrumented binary to see if the verification succeeds.

In our work, the instrumentation differs from traditional dynamic analysis in two ways.

First, we elide instrumentation for checks that static analysis has proven unnecessary; this

is done by hybrid analysis also, but we elide more instrumentation due to our unsound static

51

analysis. Second, we add checks that verify that all likely invariants hold true during the

execution and violation-handling code that is executed when a verification fails.

To elide instrumentation, this phase consumes the set of unneeded runtime checks

from the predicated static analysis phase. For instance, a data-race detector will instru-

ment all read/write memory accesses and synchronization operations. The static analysis

may prove that some of these read/write or synchronization operations cannot contribute

to any races, allowing the instrumentation to be elided. Since the overhead of dynamic

analysis is roughly proportional to the amount of instrumentation, eliding checks leads to a

commensurate improvement in dynamic analysis runtime.

The instrumentation also inserts the likely invariant checks. By design, these invariants

are cheap to check, so this code is generally low-overhead and simple. For example, check-

ing likely unused basic blocks requires adding an invariant violation call at the beginning of

each assumed-unused basic block. This call initiates rollback and re-execution if the check

fails.

We currently handle invariant violations with a catch-all approach: roll back the entire

execution and re-analyze it with traditional (non-optimistic) hybrid analysis. We find that

invariant violations are so rare that even this simple approach has minimal impact on overall

analysis time. If the cost of rollback became an issue, we could reduce the frequency of

rollbacks through more profiling or explore cheaper rollback mechanisms, such as partial

roll-back or partial re-analysis.

4.3 Static Analysis Background

OptFT and OptSlice are built using several data-flow analyses, such as backward

slicing, points-to, and may-happen-in-parallel. Data-flow analysis approximate how some

property propagates though a program. To construct this approximation, a data-flow anal-

ysis builds a conservative model of information flow through the program, usually using

a definition-use graph (DUG). The DUG is a directed graph that creates a node per def-

52

main() {
1: a = my_malloc();
2: b = my_malloc();}

my_malloc() {
if (!g_init)

3: return do_init();
4: return malloc(…);}

do_init() {
g_init = true;

5: // Long initialization code}

11 21

31 41 32 42

1

3 4

2
11 21

31 41 32 42

Context-SensitiveContext-Insensitive Context-Sensitive
+ Likely-Unused Call Contexts

Source Code Def-Use Graph (DUG)

5152515

Figure 4.2: This figure shows how context-sensitive and context-insensitive analysis parse a code
segment to construct a DUG, as well as the reductions from likely-unused call contexts

inition (def) analyzed. For example, a slicing DUG would have a node per instruction,

while a points-to analysis would have nodes for pointer definitions. Edges represent infor-

mation flow in the program between defs and the defs defined by uses. For example, an

assignment operation in a points-to analysis creates an edge from the node representing the

assignment’s source operand to the node representing its destination. Once the DUG is con-

structed, the analysis propagates information through the graph until a closure is reached.

To create optimistic versions of these data-flow analyses, we leverage likely invariants to

reduce the number of paths through which information flows in the DUG.

There are many modeling decisions that an analysis must make when constructing the

DUG. One critical choice is that of context-sensitivity. A call-site context-sensitive analy-

sis logically distinguishes different call-stacks, allowing more precise analysis. A context-

insensitive analysis tracks information flow between function calls, but does not distinguish

between different invocations of a function.

Logically, a context-insensitive analysis simplifies and approximates a program by as-

suming a function will always behave the same way, irrespective of calling context. To

create this abstraction, context-insensitive analyses construct what we call local DUGs for

each function by analyzing the function independently and creating a single set of nodes in

the graph per function. The analysis DUG is then constructed by connecting the nodes of

the local DUGs at inter-function communication points (e.g. calls and returns).

A context-sensitive analysis differs from a context-insensitive analysis by distinguish-

53

ing all possible calling contexts of all functions, even those which will never likely occur

in practice. To create this abstraction, the DUG of the analysis replicates the nodes defined

by a function each time a new calling-context is discovered during the DUG construction.

One simple method of creating such a DUG is through what is known as a bottom-up con-

struction phase, in which the analysis begins at main, and for each call in main it creates

a clone of the nodes and edges of the local DUG for the callee function. It then connects

the arguments and return values to the call-site being processed. If that callee function has

any call-sites, the callee is then processed in the same bottom-up manner. This recurses

until all callees have been processed, resulting in a context-sensitive DUG representing

the program. The context-sensitive expression of the DUG is much larger than that of a

context-insensitive analysis, but it also allows for more precise analysis.

Figure 4.2 illustrates the differences between DUGs constructed by a context-sensitive

and insensitive analysis. Nodes 3, 4, and 5 are replicated for each call to my malloc(),

allowing the analysis to distinguish between the different call-contexts, but replicating the

large do init() function.

Context-sensitive analyses tend to be precise, but not fully scalable, while context-

insensitive analyses are more scalable at the cost of accuracy. We build both context-

sensitive and insensitive variants of several predicated static analyses.

4.4 OptFT

To show the effectiveness of optimistic hybrid analysis, we design and implement two

sample analyses: OptFT, an optimistic variant of the FastTrack race detector for Java, and

OptSlice, an optimistic dynamic slicer for C programs. This section describes OptFT and

Section 4.5 describes OptSlice.

OptFT is a dynamic data-race detection tool that provides results equivalent to the Fast-

Track race detector [48]. FastTrack instruments load, store, and synchronization operations

to keep vector clocks tracking the ordering among memory operations. These vector clocks

54

are used to identify unordered read and write operations, or data-races.

OptFT uses the Chord analysis framework for static analysis and profiling, building

on Chord’s default context-insensitive static data-race detector [85]. For dynamic analy-

sis we use the RoadRunner [49] analysis framework, optimizing their default FastTrack

implementation [48].

4.4.1 Analysis Overview

The Chord static data-race detector is a context-insensitive, lockset-based detector. The

analysis depends on two fundamental data-flow analyses, a may-happen-in-parallel (MHP)

analysis, which determines if memory accesses may happen in parallel, and a points-to

analysis, which identifies the memory locations to which each pointer in the program may

point.

The analysis first runs its static MHP analysis to determine which sets of loads and

stores could dynamically happen in parallel. Once those sets are known, the analysis com-

bines this information with a points-to analysis to construct pairs of potentially racy mem-

ory accesses which may alias and happen in parallel. Finally, the analysis uses its points-to

analysis to identify the lockset guarding each memory access, and it uses these to exclude

pairs of loads and stores guarded by the same lock from its set of potentially racing ac-

cesses.

To optimize the dynamic analysis, OptFT elides instrumentation around any loads or

stores that predicated static analysis identifies as not racing. The analysis also elides instru-

mentation around some lock/unlock operations, as we discuss in Section 4.4.2.4.

4.4.2 Invariants

OptFT is optimized with four likely invariants.

55

4.4.2.1 Likely Unreachable Code

The first, and simplest, invariant OptFT assumes is likely-unreachable code. We define

a basic block within the source code that is unlikely to be visited in a future execution as a

likely unreachable code block. This invariant is learned by a basic block counting profiling

pass. Any block not visited in the profile is likely unreachable.

This invariant easily satisfies the three criteria of good likely invariants. First, it is

strong; the invariant reduces the state space our data-flow analyses considers by pruning

nodes defined by likely unused code and any edges incident upon them from our analysis

DUGs. This reduction in connectivity within the DUG can greatly reduce the amount infor-

mation that propagates within the analysis. Second, the invariant is virtually free to check

at runtime, requiring only a mis-speculation call at the beginning of the likely-unused code.

Finally, we observe that unused code blocks are typically stable across executions.

4.4.2.2 Likely Guarding Locks

Chord’s race detector’s final phase prunes potentially racy accesses by identifying alias-

ing locksets. Unfortunately, this optimization is unsound. To soundly identify if two lock-

sites guard a load or store, Chord needs to prove that the two sites must hold the same lock

when executing. However, the alias analysis Chord uses only identifies may alias relations.

To get sound results from Chord we must either forego this lock-based pruning or use a

(typically unscalable and inaccurate) must alias analysis. In the past, hybrid analyses that

use Chord have opted to remove this pruning phase to retain soundness [100].

Likely guarding locks attempt to overcome Chord’s may-alias lockset issue by dynami-

cally identifying must-alias lock pairs. The analysis profiles the objects locked at each lock

site. If it can identify that two sites always lock the same object, it assumes a must-alias

invariant for the lock pairs.

The invariant is strong. By assuming the invariant, the Chord race detection algorithm

can add in some of the lockset-based pruning discarded due to its weaker may alias analysis.

56

Additionally, the invariant is cheap to check at runtime. The dynamic analysis need only

instrument the assumed aliasing lock-sites and verify the sites are locking the same object,

a check far less expensive than the lock operation itself. Finally, executions do not vary the

objects locked frequently, so this invariant remains stable across executions.

4.4.2.3 Likely Singleton Thread

Likely singleton thread invariants aid Chord’s MHP analysis. If a thread start location

creates only a single instance of a thread, all memory accesses within that thread are or-

dered. If the start location spawns multiple threads (e.g. its executed within a loop), then

the memory accesses in different threads associated with that start location may race. We

call this single-thread start call a singleton-thread instance.

The knowledge of singleton-thread instances is easy to gather dynamically by monitor-

ing thread start sites. On the other hand, statically reasoning about this information is hard,

requiring understanding of complex program properties such as loop bounds, reflection,

and even possible user inputs. The likely singleton thread invariant eliminates the need for

this static reasoning by finding thread start locations called exactly once during profiled

executions; this allows the static MHP analysis to prune many memory access pairs for

singleton thread instances that it would otherwise miss.

The invariant easily meets the properties of a good likely invariant. First, the invariant

can greatly aid the MHP analysis, which is foundational to our race detector. Second, the

invariant is inexpensive to check, only requiring monitoring of predicted singleton thread

start locations. Finally, the invariant is generally stable across runs.

4.4.2.4 No Custom Synchronizations

Ideally, static analysis would enable OptFT to elide instrumentation for lock and unlock

operations. However, the possibility of custom synchronizations stops a sound analysis

from enabling this optimization. Figure 4.3 shows how eliding lock/unlock instrumentation,

57

Thread 1
x = 5
ftWrite(x)
lock(a)
ftInstrLock(a)
b = True

1: ftInstrUnlock(a)
unlock(a)

2:

Thread 2

lock(a)
ftInstrLock(a)
while(!b) { }
ftInstrUnlock(a)
unlock(a)

// False Race
y = x
ftRead(x)

Thread 1
x = 5
ftWrite(x)
lock(a)
ftInstrLock(a)
b = True

1: ftInstrUnlock(a)
unlock(a)

2:

Thread 2

lock(a)
ftInstrLock(a)
while(!b) { }
ftInstrUnlock(a)
unlock(a)

// No race by:
// 1 -> 2
y = x
ftRead(x)

Traditional FastTrack w/ Lock Instr. Elision

Figure 4.3: An example of how lock instrumentation elision may cause missed happens-before
relations in the presence of custom synchronizations. The left hand side catches custom synchro-
nizations, but with the elision of locking instrumentation, the necessary happens before relation
(represented by an arrow) may be lost.

58

even when there are no racy accesses within the critical section, can cause a false race

report. This problem is caused by custom synchronization (e.g. waiting on b in Figure 4.3).

To enable elision of lock and unlock instrumentation, we propose the no custom syn-

chronization invariant. Using this invariant, OptFT optimistically elides lock/unlock sites

whose critical sections do not contain any read or write checks. To profile this invariant, we

observe if this elision causes the dynamic race detector to report false races. If so, we return

the synchronization instrumentation to nearby locks until the false races are removed.

The drawback to this approach is that race reports must be considered as potential

mis-speculations. This could be an undue burden if analysis frequently reports data-races;

however, if a program has frequent data-races, there is little need for a highly optimized

race detector.

This invariant is highly useful. First, it helps the static analysis eliminate work by re-

ducing the instrumentation around locks. Second, it is easy to check, as our race detector

already detects races. Finally, custom synchronizations rarely change between executions,

so the invariant is stable.

4.5 OptSlice

OptSlice is our optimistic dynamic backward slicing tool. A backward slice is the set

of program statements that may affect a target (or slice point) such as a data value at some

point in the program execution. Program slices are important debugging tools, as they sim-

plify complex programs and help developers locate the sources (i.e., root causes) of errors

more easily. Backward slicing is particularly powerful when analyzing multiple executions

to find differences between failing and non-failing executions [52, 7].

OptSlice optimizes the Giri dynamic slicer [97] with an optimistic variant of Weiser’s

classic static slicing algorithm [111]. OptSlice collects data-flow slices. Data-flow slices do

not consider control dependencies and are often used when control dependencies cause a

slicer to output so much information the slice is no longer useful.

59

4.5.1 Static Analysis

OptSlice uses a backward slicing analysis that builds on the results of a separate points-

to analysis; we next describe these two analyses.

4.5.1.1 Backward Slicing

The static slicer used by OptSlice first constructs a DUG of the program. We have

implemented two versions of this algorithm: a context-sensitive and a context-insensitive

variant. The DUG contains a node for every instruction in the program and edges repre-

senting the reverse information flow through the program (i.e., from any defs which use

instructions to the defs providing those uses). The slicing analysis resolves indirect def-use

edges (e.g., loads and stores) by using a points-to analysis to determine aliases. As slicing

is a flow-sensitive analysis, when resolving these indirect edges, the slicer only considers

stores in basic blocks that may precede the load being analyzed according to the program’s

control-flow graph.

Once the DUG is constructed, our static analysis computes the conservative slice by

calculating the closure of the graph, starting from any user-defined slice endpoints. The

final slice is composed of any instructions whose defs are represented by the nodes within

this closure.

Our optimistic backward slicer implements several optimizations. First, it lazily con-

structs the DUG, creating nodes only when required. Second, it uses binary decision dia-

grams (BDDs) [21] to keep track of the visited node set. This is similar to how BDDs are

used to track points-to sets [17].

4.5.1.2 Points-To

Our Andersen’s-based points-to analysis [10] constructs a DUG with a node for each

statement in the program that defines a pointer. Edges represent the information flow de-

fined by pointer uses. Unlike the slicing DUG, not all nodes and edges can be resolved at

60

graph creation time. These nodes and edges are dynamically added as points-to sets are

discovered during the next analysis phase.

After constructing the DUG, the analysis associates an empty points-to set with each

node and initializes the points-to sets of any nodes which define a pointer location (e.g.

malloc calls). The algorithm then propagates points-to information according to the edges

defined by the graph. Additionally, the algorithm may add edges to the graph as indirect

def-use pairs are discovered; e.g., if a load-source and store-destination are found to alias,

the analysis will make an edge between the two nodes. After all information has finished

propagating through the DUG, each node has its conservative set of potential pointers.

Indirect function calls are handled in a special manner. For context-insensitive analyses,

when the pointer used in an indirect function call is resolved, the arguments and return

values are connected to the existing nodes for the resolved function(s) in the graph. Context-

sensitive analyses, however, require distinct information pathways for different static call

stacks. In a context-sensitive analysis, nodes may have to be added to the graph. When

an indirect function call is resolved in a context-sensitive analysis, the analysis scans the

call stack to check for recursive calls. If the new callee creates a recursive call, the call

is connected to the prior nodes in the DUG representing that callee. If the function call is

not recursive, a new set of nodes must be added for the call in the same manner as for the

bottom-up DUG construction phase.

The analysis is complete once the graph reaches transitive closure. Each def’s points-to

set is the union of the points-to sets of all nodes in the graph representing that def.

Our algorithm also provides heap cloning and structure-field sensitivity. It also includes

several well-known optimizations, including offline graph optimizations (HVN/HRU) [57],

online cycle detection (LCD and HCD) [56], and using BDDs to track points-to sets [17].

While these optimizations contribute dramatically to both the scalability and accuracy of

the analysis, they do not impact how we apply likely invariants, so we do not discuss them

further.

61

4.5.2 Invariants

OptSlice uses several general invariants, aimed at increasing overall analysis accuracy.

After the invariants are profiled, we use them to reduce the set of states our static analysis

considers. Below, we discuss how each invariant affects DUG construction.

4.5.2.1 Likely Unreachable Code

OptSlice uses likely unreachable code identically to OptFT.

4.5.2.2 Likely Callee Sets

Our points-to analysis’s indirect function call resolution process can lead to consider-

able slowdowns, increased memory consumption, and analysis inaccuracies. If the analysis

is unable to resolve the destination pointer of an indirect call to a function, it may have

to conservatively assume that the callee may be any function in the program, connecting

the call-site arguments of this function to all functions. On its own, this is a major source

of inaccuracy. It also can lead to propagating inaccuracies if a function argument is used

later as an indirect call. This issue is compounded in context-sensitive analyses, where the

nodes in the local DUGs for all functions are replicated, potentially dramatically increas-

ing the analysis time. This problem occurs in programs like Perl (Perl is an interpreter that

has a generic variable structure type that holds all types of variables, including ints, floats,

structures, and function pointers).

Likely callee sets are the dynamically-gathered likely destinations of indirect function

calls. This invariant helps resolve many of the inaccuracies and inefficiencies that unknown

indirect calls can add to our points-to analysis. The invariant is easily profiled by monitoring

the values of all function pointers in the program.

This invariant converts all indirect calls in the DUG to direct calls to the assumed callee

functions. The invariant is relatively inexpensive to check at runtime, requiring only a rela-

tively small (usually singleton) set inclusion check on a function pointer update (a relatively

62

rare operation). Most indirect function calls have very small sets of destinations, and they

don’t vary from execution to execution, making this invariant stable across executions.

4.5.2.3 Likely Unused Call Contexts

Context-sensitive analyses can suffer significant scalability problems due to excessive

local DUG cloning, as discussed in Section 4.3. Likely callee set invariants minimize local

DUG cloning by stopping the context-sensitive analysis from cloning DUGs for call con-

texts, or call stacks, that are unlikely to occur. This invariant is profiled by creating a caller

stack for each thread. This caller stack is then used by the context sensitive analysis to limit

local DUG cloning around unrealized call chains. This effect is demonstrated in Figure 4.2,

removing the likely-unrealized second call to do init().

Likely unused call contexts easily meet two of the criteria for good likely invariants.

First, they are strong, as they can dramatically reduce the size of the DUG and, ultimately,

the amount of space the data-flow analysis explores. Second, the invariant tends to be stable

across executions.

Cheap checking of Likely unused call contexts is a slightly more complex matter. Log-

ically, the check needs to ensure that unused call contexts are never reached, requiring a

call-stack set inclusion check at many call-sites. We found that a naive implementation of

this functionality was too inefficient for some programs. To accelerate it, we use a Bloom

filter to elide the majority of our relatively expensive set inclusion tests. We find that this

methodology makes the dynamic cost of the invariant check acceptable.

4.6 Evaluation

In this section, we show that optimistic hybrid analysis can dramatically accelerate

dynamic analyses by evaluating our two sample analyses, OptFT and OptSlice, over a wide

range of applications.

63

4.6.1 Experimental Setup

4.6.1.1 OptFT

We evaluate the effectiveness of OptFT on the Dacapo [18] and JavaGrande [102]

benchmark suites. Our test suite is composed of all multi-threaded benchmarks from these

suites which are compatible with our underlying Chord [85], and RoadRunner [49] frame-

works.

Optimistic hybrid analysis requires considerable profiling, more than the single pro-

file set provided by these benchmark suites. To test these applications we construct large

profiling and testing sets for each benchmark. For several benchmarks we use large, readily-

available input sets:

• lusearch – Search novels from Project Gutenberg [3].

• pmd – Run the pmd source code analysis tool across source files in our benchmarks.

• montecarlo – Analyze 10 years of S&P 500 stock data.

• batik – Render svg files from svgcuts.com [4].

• xalan – Convert xhtml versions of pydoc 2.7 Web pages to XSL-FO files.

• luindex – Index novels from Project Gutenberg [3].

The remainder of our benchmarks (sunflow, raytracer, sor, moldyn, lufact, crypt, series,

and sparse) benchmarks do not have large, freely available input sets, so we generated

large sets by sweeping parameters across the input sets (e.g. input size, number of threads,

pseudo-random seed).

To profile OptFT, we generate two sets of 64 inputs for each test. One set is our candi-

date profiling runs; the other is our testing corpus.

We run OptFT as a programmer would use the tool on a large set of regression tests.

We first profile increasing numbers of profiling executions, until the number of learned

dynamic invariants stabilize. Then, we run OptFT over all tests in our testing set. We run

all data race detection experiments using 8 cores of an Intel Xeon E5-2687W v3 3.1 GHz

64

processor.

4.6.1.2 OptSlice

OptSlice is implemented in the LLVM-3.1 compiler infrastructure. We accelerate the

Giri dynamic backward slicer [97]. We evaluate the effectiveness of our analysis over a

suite of common desktop and server applications.

Our test suite workloads consist of:

• nginx – Serve a clone of the pydoc 2.7 documentation, and load random pages.

• redis – Redis-benchmark application with varying data-size, client, and number of

requests.

• perl – The SPEC2006 diffmail application with different inbox configurations.

• vim – Problem solutions from vimgolf.com [2].

• sphinx – Process a large database of voice samples.

• go – Randomly predict the next best move from random points in an archive of pro-

fessionally played go games.

• zlib – Compress files with a gzip-like utility. Input files are sampled from our sphinx

input files.

Much as we did for OptFT, we generate profile and testing sets (512 files each for redis,

zlib, sphinx, perl, and nginx; 2048 for go and vim). We profile each program, growing the

input set until the number of dynamic invariants stabilizes. We then test on our testing set

of inputs. This methodology is consistent with how we imagine OptSlice may be used for

debugging, such as when comparing good and failing executions of a program.

We select static slices from several random locations within our benchmarks, using

the most accurate static analysis that will complete on that benchmark without exhausting

available computational resources.

Once we have gathered our set of slices, we generate dynamic slicing instrumentation.

65

 0

 5

 10

 15

 20

 25

 30

 35

 40

FastTrack

H
ybrid FT

O
ptFT

FastTrack

H
ybrid FT

O
ptFT

FastTrack

H
ybrid FT

O
ptFT

FastTrack

H
ybrid FT

O
ptFT

FastTrack

H
ybrid FT

O
ptFT

FastTrack

H
ybrid FT

O
ptFT

FastTrack

H
ybrid FT

O
ptFT

FastTrack

H
ybrid FT

O
ptFT

FastTrack

H
ybrid FT

O
ptFT

FastTrack

H
ybrid FT

O
ptFT

FastTrack

H
ybrid FT

O
ptFT

FastTrack

H
ybrid FT

O
ptFT

FastTrack

H
ybrid FT

O
ptFT

FastTrack

H
ybrid FT

O
ptFT

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

3
5
.5

9
.7

1
.4

1
5
.2

9
.4

3
.8

Framework Overhead
Invariant Checks
FastTrack Checks
Rollbacks

1
3
.3

6
.5

2
.1

6
.4

3
.7

3
.0

1
4
.2

5
.4

4
.8 6

.7
5
.7

4
.8

7
.4

4
.2

4
.1

1
.1

1
.0

1
.0

4
.4

2
.9 3
.1

1
.8

1
.8

5
1
.9

1
0
.4

1
.3

1
.3

1
.1

1
.1

1
.1

1
5
.7

1
.1

1
.1

1
8
.5

1
.2

1
.2

sor
(1.1s)

sparse
(2.2s)

series
(24.1s)

crypt
(0.65s)

lufact
(0.38s)

montecarlo
(1.0s)

xalan
(1.8s)

batik
(0.59s)

luindex
(0.17s)

sunflow
(1.7s)

pmd
(.24s)

lusearch
(2.2s)

moldyn
(0.22s)

raytracer
(0.92s)

Figure 4.4: Normalized runtimes for OptFT. Baseline runtimes for each benchmark are shown in
parentheses. Tests right of the red line are proven race-free by sound static race detection, but in-
cluded here for completeness.

To determine statistical significance between good and bad runs of a program, a developer

would start at a suspect instruction and calculate the backward slice over many executions

(both failing and successful). We therefore select non-trivial endpoints for calculating such

slices and calculate the slice from each endpoint for each execution in the testing set. We

define a non-trivial endpoint to be an instruction with a sound static slice containing at

least 500 instructions. We use non-trivial endpoints because they tend to be far more time

consuming to compute slices (there is little use optimizing a trivial analysis), and they are

common; on average, 55% of the endpoints from our sound static slicer are non-trivial.

We slice each endpoint with the most accurate predicated static slicer that will run on

that program. Once we have our predicated static slices, we optimize our dynamic instru-

mentation, and dynamically slice all tests in our testing set with our dynamic slicer. We

repeat this process until we have analyzed five different program endpoints; this provides

a sufficient sample set of endpoints to gain confidence in OptSlice’s ability to optimize

slicing for a general program point.

All experiments are run using a single core of our Xeon processor, and each may use

up to 16 GB of RAM. Table 4.2 gives an overview of our benchmarks, their relative sizes,

static analysis times, and which static analysis we use.

66

 0

 50

 100

 150

 200

 250

 300

 350

 400

Trad. H
ybrid

O
ptSlice

Trad. H
ybrid

O
ptSlice

Trad. H
ybrid

O
ptSlice

Trad. H
ybrid

O
ptSlice

Trad. H
ybrid

O
ptSlice

Trad. H
ybrid

O
ptSlice

Trad. H
ybrid

O
ptSlice

N
o

rm
a

liz
e

d
 R

u
n

ti
m

e

3
3

9

2
5

.8

1
7

4
.2

1
2

3
.8

3
2

.8

3
.3 8
.9

2
.3

9
3

.3

1
4

.4

Baseline Execution
Invariant Checks
Slicing Instrumentation
Rollbacks

1
.2

1
.0

8
1

.2

1
.0

zlib
(0.19s)

nginx
(0.34s)

go
(0.95s)

sphinx
(1.72s)

vim
(0.11s)

perl
(0.79s)

redis
(0.19s)

Figure 4.5: Normalized runtimes for OptSlice. Baseline runtimes for each benchmark are shown in
parentheses.

4.6.2 Dynamic Overhead Reduction

Figure 4.4 shows how optimistic hybrid analysis improves performance for race detec-

tion. Although we show all benchmarks for completeness, 5 benchmarks (those to the right

of the vertical line in Figure 4.4) are quite simple and can be statically proven to be race-

free. Thus, there is no need for either traditional hybrid analysis or our optimistic hybrid

analysis in these cases. For the remaining 9 benchmarks, OptFT shows average speedups of

2.9x versus traditional FastTrack, and 1.6x versus hybrid FastTrack. Impressively, for the

first four benchmarks analyzed, the costs of OptFT approach those of the underlying Road-

Runner instrumentation framework; this presents a near-optimal reduction in work due to

the OptFT algorithm.

There are three remaining benchmarks for which OptFT sees limited speedups: batik,

sunflow and montecarlo. Batik experiences a significant number of likely-invariant checks,

which could probably be reduced with more cautious invariant selection. Montecarlo and

67

sunflow both make considerable use of fork-join and barrier based parallelism. Conse-

quently, the lockset based Chord detector is algorithmically unequipped to optimize their

memory operations, even with optimistic invariants. A static analysis algorithm better

equipped to deal with barrier based parallelism would likely see more profound speedups

from optimistic hybrid analysis.

Figure 4.4 shows that the additional invariant checking and mis-speculation overheads

associated with OptFT are negligible for nearly all benchmarks, with moldyn and batik

being the only benchmarks to experience notable mis-speculation or invariant checking

overhead. Overall, invariant checking overheads have little effect on the runtime of our

race detector, averaging 7.8% relative to a baseline execution. Additionally roll-backs are

infrequent and cause little overhead, ranging from 0.0% to 20.3% and averaging 6.2%.

Figure 4.5 shows the online overheads for OptSlice versus a traditional hybrid slicer.

We do not compare to purely dynamic Giri, as it exhausts system resources even on modest

executions. OptSlice dramatically reduces the runtime of dynamic slicing, with speedups

ranging from 1.2x to 78.5x, with an average speedup of 8.3x. Our worst absolute speedups

are from perl and nginx. Perl’s state is divided largely into two subsets, the interpreter

state and the script state. Without knowledge of the script running in the interpreter, static

analysis cannot precisely determine how information flows through the script state. Perl

scripts would be better analyzed at the script level. Nginx is largely I/O bound, but OptSlice

decreases its overhead from 20% to a statistically insignificant overhead. This reduction is

relatively significant, even though it is not absolutely large.

We also look at the invariant-checking and mis-speculation costs of OptSlice. The over-

heads of ensuring executions do not violate likely-invariants are generally inconsequential,

showing no measurable runtime overhead for zlib, go, nginx, and vim. Perl and sphinx

have overheads of 26% and 127% respectively, largely due to likely-unrealized call-context

checking. These overheads are low enough for optimistic hybrid analysis to improve slicing

performance, but could be optimized further if lower overheads are needed [19]. Overall

68

Testname Trad. Hybrid Opt. Hybrid Break-even w/ respect to Opt. Speedup w/ respect to
Static Time Profile Static Time Hybrid FT Trad. FT Hybrid FT Trad. FT

lusearch 1m 15s 1m 12s 1m 47s 24s 16s 3.0x 6.3x
pmd 1m 25s 20s 2m 36s 2m 19s 51s 1.2x 2.1x
raytracer 31s 4m 17s 54s 33s 9s 7.2x 26.2x
moldyn 29s 10m 38s 46s 1m 58s 1m 0s 2.4x 4.0x
sunflow 3m 0s 11m 55s 3m 45s 20m 57s 1m 40s 1.1x 2.9x
montecarlo 59s 55s 52s – 1m 23s 0.95x 1.4x
batik 3m 25s 2m 28s 7m 50s 114m 1s 3m 7s 1.0x 1.8x
xalan 55s 51s 1m 26s 361m 2s 59m 57s 1.0x 1.0x
luindex 1m 7s 1m 8s 1m 56s 2m 10s 1m 35s 1.2x 1.4x

Table 4.1: Comparing FastTrack benchmark end-to-end analysis times for pure dynamic as well as
traditional and optimistic hybrid analyses. Break-even Time is the amount of baseline execution
time at which optimistic analysis begins to use less computational resources (profiling + static +
dynamic) than a traditional analysis. Optimistic Speedup is the ratio of runtimes for OptFT versus a
traditional or hybrid FastTrack implementation.

Testname Traditional Optimistic Break- Dynamic
(LOC) Points-to Slice Profiling Points-to Slice even Speedup

AT Time AT Time Time AT Time AT Time Time
nginx (119K) CI 17s CI 24m 33s 1m 4s CS 8s CS 3s 0s 1.2x
redis (80K) CI 1m 46s CI 170m 46s 1m 4s CI 6s CS 48s 0s 13.1x
perl (128K) CI 24s CS 55m 0s 10m 29s CS 160m 33s CS 9m 11s 2m 29s 1.4x
vim (306K) CI 27s CI 77m 55s 11m 8s CS 1m 20s CS 21s 0s 9.9x
sphinx (13K) CS 7s CS 1s 11m 24s CS 6s CS 0.2s 1m 44s 3.9x
go (158K) CI 6s CI 59s 133m 54s CI 8s CI 9s 1m 41s 6.5x
zlib (21K) CS 14s CS 33s 1m 59s CS 5s CS 0.4s 1s 81.2x

Table 4.2: Comparing slicing benchmark end-to-end analysis times for traditional hybrid and opti-
mistic hybrid analyses. Shown are a breakdown of offline analysis costs for static points-to and slic-
ing analyses and the most accurate Analysis Type (AT), either Context-Sensitive (CS) or Context-
Insensitive (CI) that will run on a given benchmark. Break-even Time is the minimum amount of
baseline execution time where an optimistic analysis uses less total computational resources (profil-
ing + static + dynamic) than a traditional hybrid analysis. Dynamic Speedup is the ratio of run-times
for OptSlice versus a traditional hybrid implementation.

mis-speculation rates are low for all benchmarks, with go and vim being the only bench-

marks to see even modest overheads.

So far, we have looked at speedups of using optimistic hybrid analysis when the profil-

ing and static analysis costs are inconsequential. This is typical when static analysis can be

done offline (e.g., after code is released but before the first bug is reported), or for very large

analysis bases, such as analyzing months or years of prior executions in forensic queries.

We next look at how much execution time must be analyzed for the dynamic savings of an

optimistic hybrid analysis to overcome its analysis and profiling startup costs for smaller

execution bases, which might occur when running nightly regression tests or when using

69

 0

 0.2

 0.4

 0.6

 0.8

 1

zlib
sphinx

go nginx

perl
vim

redis

A
lia

s
in

g
 P

o
in

te
r

R
a
te

Base Static

0
.1

0
9
1

0
.0

0
3
6

0
.0

0
2
3

0
.6

4
0
1

0
.3

4
4
1

0
.1

2
2
6

0
.0

3
0
2

Optimistic Static

0
.0

3
2
5

0
.0

0
3
5

0
.0

0
2
3

0
.3

1
5
6

0
.2

5
8
4

0
.0

0
2
4

0
.0

2
3
6

Figure 4.6: Alias rates for points-to analyses, reported as a chance that a store may alias with a load.

delta debugging for moderate sets of inputs immediately after recompilation.

Table 4.1 shows break-even times for benchmarks not statically proven race-free.

OptFT begins to out-perform both traditional and hybrid FastTrack within a few minutes of

test time for most benchmarks. There are exceptions, such as montecarlo, sunflow, batik,

and xalan, for which OptFT does not speed up dynamics analysis and therefore should not

be used.

OptSlice shows a similar breakdown in Table 4.2, which compares OptSlice to a tradi-

tional hybrid slicer. This chart shows similar static analysis and profiling times as OptFT;

however, due to the both the larger dynamic speedup of OptSlice and the reduction in static

analysis state provided by our likely invariants, the break-even times are generally much

lower. In three cases (vim, redis, and nginx), it is on average better to run a hybrid slicer

when analyzing any execution length. In all cases, with under 3 minutes of execution time

analyzed, OptSlice will save work versus a traditional hybrid analysis.

70

 1

 10

 100

 1000

 10000

 100000

 1e+06

zlib
sphinx

go nginx

perl
vim

redis

S
lic

e
 S

iz
e

 (
In

s
tr

u
c
ti
o

n
s
)

Base Static
Optimistic Static

Figure 4.7: The static slice sizes, in number of instructions, as reported by a sound and a predicated
static slicer. Optimistic analysis shows order of magnitude improvements in slice size.

71

4.6.3 Predicated Static Analysis

We next evaluate the effects of predicated static analysis on our C-based points-to and

slicing analyses. Both are general-purpose analyses with many applications. In fact, points-

to analysis is foundational to most complex static analyses; any improvement to points-

to analysis will have wide ranging effect on the many analyses that depend on points-to

analysis.

Figure 4.6 shows how a predicated static analysis significantly increases the accuracy

of an alias analysis. Alias rates are measured as the probability that any given load can alias

with any given store. For fairness, both baseline and optimistic analyses consider only the

set of loads and stores present in the optimistic analysis (this is a subset of the baseline

set due to state reduction caused by likely invariants). Figure 4.7 shows the reduction in

overall slice sizes, with optimistic analysis providing one to two orders of magnitude in

slice reduction.

We next break down how the likely invariants individually benefit static analyses. Fig-

ure 4.8 measures static slice size when running a sound static analysis and incrementally

adds each likely invariant for three tests: vim, nginx, and zlib. The introduction of the

likely-unrealized call-context invariant allows vim and nginx to scale to context-sensitive

slicing and points-to analysis, causing a large reduction in slice sizes.

4.7 Conclusion

We argue that the traditional application of a sound static analysis to accelerate dynamic

analysis is suboptimal. To this end, we introduce the concept of optimistic hybrid analysis,

an analysis methodology that combines unsound static analysis and speculative execution

to dramatically accelerate dynamic analysis without the loss of soundness. We show that

optimistic hybrid analysis dramatically accelerates two dynamic analyses: program slicing

and dynamic race detection.

72

 1

 10

 100

 1000

 10000

 100000

 1e+06

zlib
nginx

vim

S
lic

e
 S

iz
e

 (
In

s
tr

u
c
ti
o

n
s
)

Base Static
 + Likely-Unreachable Code
 + Likely Callee Sets
 + Likely-Unrealized Call-Contexts

Figure 4.8: The effect different likely invariants have on slice size. Vim and nginx switch to a
context-sensitive analyses when adding likely-unrealized call-context elimination.

73

CHAPTER V

Bounded Rollback for Optimistic Hybrid Data-Race

Detection

Dynamic analysis tools, such as data race detectors [98, 48], information flow tools [44,

63], and memory safety detectors [87, 88], are essential to maintaining reliable software

systems. Unfortunately, many of these tools introduce significant runtime overheads, some

tools introducing one to two orders of magnitude runtime overhead. These prohibitive over-

heads often limit the adoption of dynamic analyses in practice, even when the dynamic

analysis is otherwise highly desirable.

Optimistic Hybrid Analysis, or OHA (described in Chapter IV), is a promising tech-

nique that dramatically reduces the common case overhead of dynamic analysis. It reduces

these overheads by speculating about properties of future executions and using those specu-

lations to aid in analysis optimization. First, it dynamically profiles the application, learning

common properties, or likely invariants about the application. Second, these likely invari-

ants are assumed to be true by an otherwise sound static analysis known as a predicated

static analysis. Finally, the results of the predicated static analysis are used to speculatively

optimize the final dynamic analysis. If the likely invariants hold true during the final exe-

cution, the predicated static analysis will be sound, and the results of the dynamic analysis

will be correct.

However, OHA is optimized based on predicated static analysis, an unsound analy-

74

foo () {
1. r = x; taintr = taintx

2. a = y; tainta = tainty

if (c) {

3. r += y;
taintr = taintr U tainty

}

return r; }

foo () {
1. r = x; taintr = taintx

2. a = y; // taint elided
if (c) {

LUC_Check();
3. r += y;

// taint elided
}

return r; }

Traditional Hybrid Optimistic Hybrid

foo () {
1. r = x; taintr = taintx

2. a = y; // taint elided
if (c) {

LUC_Check(); // Failed
3. r += y;

taintr = ???
}

return r; }

OHA + Recovery?

Figure 5.1: Demonstration of how prior state can be missing after a mis-speculation in an OHA
analysis. In the “Traditional Hybrid” column, all information is gathered. In the “Optimistic Hybrid”
column statement 3 is assumed to never be executed. The “OHA + Recovery” column experiences
a mis-speculation when “c” is true, and must re-execute statement 2 with a conservative analysis to
recover tainta for statement 3.

sis. When a likely invariant fails, the predicated static analysis is no longer sound for the

execution, and the prior instrumentation elisions caused by the predicated static analysis

may have removed dynamic analysis state required for future analysis checks. Figure 5.1

demonstrates how after an invariant violation an OHA can require past state. In the exam-

ple, the “Optimistic Hybrid” column elides instrumentation around statement 2, as the taint

is never used under the assumption that “c” is false. However, when “c” is dynamically set

to be true, the taint data from statement 2 is missing when its needed by statement 3. To

recover this state, once a likely invariant violation is detected OHA rolls back execution.

Since the elisions caused by predicated static analysis may effect arbitrary past analysis

state computations, OHA conservatively rolls back to the beginning of the execution.

In the worst case, rollbacks cause OHA to be more costly than a traditional hybrid

analysis (dynamic analysis optimized with sound static analysis), and may introduce ex-

treme and unpredictable latency spikes within live or long-running applications. Consider

a web-server running an optimistic hybrid taint-tracking analysis. Web-servers frequently

run for weeks, months, or years at a time without restart. In the instance of an invariant

violation, the web-server would have to re-execute the entire computation, with a slow,

75

conservative analysis, potentially adding an order of magnitude to computation time. If the

web-server were running for one month, a rollback could add 10 months of latency, an

entirely unacceptable scenario. This high-overhead, high-latency worst-case scenario pro-

hibits the adoption of OHA in many production systems or on long running applications,

where these worst-case scenarios are relevant.

In this chapter we focus on minimizing the amount of recovery time an OHA must

experience in the instance of rollback. We focus on why it is challenging to identify safe

rollback points within an OHA, as well as techniques which help alleviate this problem.

Finally, we apply these techniques, as well as observations specific to data-race detection,

to create an optimistic hybrid data-race detector OptFT-BR.

To understand the challenges of identifying safe rollback points for an OHA, consider

the problem of trying to find rollback points on an OHA. A conceptually simple way to

identify a safe rollback point is to find a point in the execution where the dynamic analysis

state during an OHA is identical (all bits are equal) to the state that would be gathered dur-

ing a conservative analysis. However, there is no known way to generally monitor this state

efficiently. One solution would be for an OHA to dynamically check to see when its state

deviates from a conservative analysis, however this would introduce the same overhead as

a traditional hybrid analysis, the exact work an OHA is attempting to avoid. An alternative

solution is for OHA to guarantee its dynamic state wont diverge from a traditional analysis

by design, however this isn’t practical for many analyses.

Additionally, to limit rollback, OHA must solve the issue of analysis state divergence.

Once the conservative analysis state diverges from the analysis state of an optimistic anal-

ysis, the two states are unlikely to re-converge. Furthermore, as the execution continues the

divergences are likely to propagate through the analysis, making it unlikely the two analy-

ses will ever reach an identical state. For these reasons, a naive approach to identifying safe

and frequent rollback points within a program is insufficient for OHA.

To efficiently identify rollbacks, for an OHA, we leverage three techniques to solve the

76

problems of identifying analysis state equivalence, and analysis state divergence.

First, we leverage analysis specificity. By leveraging specificity we can use analysis

specific properties to identify analysis states guaranteed to produce equivalent results, re-

moving the need to run a fully conservative analysis just to determine a rollback point.

Second, we observe that the desired property of an OHA is that it produce results equiv-

alent to that of a traditional analysis. This restriction is much softer than that of requiring

identical analysis states at rollback, especially when combined with analysis specific ob-

servations. For many analyses, we can identify analysis states which are guaranteed to

produce equivalent results, although they themselves are not precisely equal. For example,

in data-race detection we can observe that if all threads in an application synchronize (e.g.

a barrier), then any memory access after the synchronization cannot race with memory

accesses before the synchronization. This means the synchronization point is an excellent

checkpoint candidate for rollback as it provides logical analysis equivalence, even though

restoring that checkpoint is unlikely to result in identical analysis state.

Finally, we observe that by recreating some analysis states through bounded re-

execution, we can greatly increase the number of safe rollback points. Points of equiva-

lent analysis state, while more common than identical analysis state are still not ubiquitous

throughout the executions of many programs. By re-executing a bounded amount of com-

putation on rollback, we can recreate analysis states otherwise missed by OHA, increasing

the number of potential rollback locations. We call this re-execution region a recovery re-

gion. Recovery regions are regions of execution, that when executed with a conservative

analysis guarantee the analysis state at the end of the region is equivalent to that of a tradi-

tional hybrid analysis.

Recovery regions have the advantage of allowing analysis state recovery to occur over

a range of execution states. The consequence of this is that it is much more likely to find

recovery regions in most applications than individual checkpoints, reducing the analysis

state divergence problem. Consider data-race detection. For a checkpoint to exist without

77

recovery regions there would have to be a single point in the program where all memory

accesses before that point could not race with any memory accesses after. Outside of a bar-

rier operation for all threads, this is unlikely to occur. On the other hand, recovery regions

for data-race detection are relatively common, as we discuss later in this chapter.

In this paper we present OptFT-BR, an optimistic variant of the FastTrack race detector

which supports limiting mis-speculation rollback by identifying recovery regions. OptFT-

BR takes advantage of three properties that help it solve the problem of partial execution

rollback. First, it uses recovery regions to greatly increase the number of places it can safely

rollback to during an execution. Second, OptFT-BR leverages state equivalence flexibility

from the relaxed equivalent results constraint, and, finally, it leverages analysis specific

properties to help identify recovery regions.

Throughout the remainder of this chapter we present and discuss OptFT-BR, an op-

timistic hybrid data-race detection that bounds rollbacks by identifying rollback recovery

regions within executions. Overall OptFT-BR is highly effective at optimizing data-race de-

tection, showing on average 50% speedups over traditional hybrid analysis, while reducing

expected rollback duration of OptFT by on average 67.6%.

5.1 Recovery Region Detection

Recovery regions are the key property of programs which enable OptFT-BR to iden-

tify rollback points within executions. Throughout this section we discuss how OptFT-BR

leverages analysis specificity, and analysis state equivalence to identify recovery regions for

data-race detection. We first overview sufficient background on happens-before data-race

detection, and then discuss the properties of recovery regions and how they are dynamically

identified.

78

ℂ1 = <0,0>

ℂ1 = <1,0>

ℂ1 = <2,0>

ℂ1 = <2,1>

ℂ2 = <0,0>

ℂ2 = <0,1>

ℂ2 = <1,1>

ℂ2 = <1,2>

𝕄a = <0,0>

𝕄a = <1,0>

𝕄a = <1,1>

𝕄a = <2,2>

𝕊l = <0,0>

𝕊l = <0,0>

𝕊l = <1,0>

𝕊l = <1,1>

T1

a = 1
create(T2)
lock(l)
a++
unlock (l)

…

lock(l)
print(a)
…

T2

lock(l)
a++
unlock (l)

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:

Figure 5.2: An illustration of vector clock propagation. Vector clocks for threads (C1 and C2) are
updated on synchronization operations. Lock operations cause the thread’s vector clock to union
with the lock’s vector clock (Ct Sl). Memory accesses adjust the memory’s vector clock (Ma)
based on the vector clock of the accessing thread.

5.1.1 Vector Clock Race Detection Background

Before discussing how we create bounded rollback for data-race detection, we first

review the basics of vector-clock race detection. Vector clocks maintain a partially ordered

clock, mapping each thread in the system to that thread’s logical time. Vector clocks are

used to keep partial ordering of events and define three operations: v (happens before), t

(join), and inct(V) (increment).

V (t) ∈ N

V1 vV2 ⇐⇒ ∀t. V1(t)≤V2(t)

V1tV2 = λ t. max(V1(t),V2(t))

incu(V) = λ t. i f t = u then V (t)+1 else V (t)

(5.1)

In a standard vector clock based race detector, each thread t keeps a vector clock (Ct)

where for each thread u the vector clock element Ct(u) denotes the last operation in u that

happened before the current state in t. Additionally the algorithm maintains vector clocks

79

for each synchronization object (e.g. lock). These clocks are updated on synchronization

operations to communicate happens-before relations between threads. E.g. a lock l will

have a vector clock associated with it Sl . When l is locked, the locking thread’s vector clock

Ct is ordered by the lock (Sl tCt) as shown in Figure 5.2 statements 6 and 9. Additionally

on unlock the thread’s vector clock is incremented (inct(Ct)), and the lock’s vector clock

is updated to order future locking operations by the last thread that locked it (Sl tCt) as

shown in Figure 5.2 statements 5 and 8.

All memory locations (m) have two vector clocks, a read (Mr) and write (Mw) vec-

tor clock. When a memory location is read from or written to, the data-race detector first

checks to ensure that the current memory location access is ordered with respect to its

prior accesses (Mr or w v Ct), and then updates the variable’s read or write vector clock to

represent the latest ordering information for that memory access (Ct tMr or w).

5.1.2 Recovery Regions in Data-Race Detection

Finding recovery regions for data-race detection is on its surface a challenging prob-

lem, but it can be greatly aided by our analysis specificity and equivalent analysis state

optimizations. Without these optimizations, the analysis must identify when all memory

address’ vector clocks (M) are identical between an optimistic and traditional hybrid anal-

ysis. This would require monitoring accesses of both an optimistic and traditional hybrid

analysis over all memory addresses, an operation more expensive than the original Fast-

Track algorithm!

To alleviate this burden, we leverage the notion of state equivalence. OptFT-BR only

needs to guarantee that it provides identical analysis results as a traditional data-race detec-

tor. These results are provided by the happens before check on memory addresses (MvCt).

If we can guarantee all accesses either have equivalent memory address vector clocks, or

will not produce a race after recovering from rollback, then we can guarantee OptFT-BR

provides equivalent results to a traditional hybrid race detector.

80

Fortunately, data-race detection has a key property that enables OptFT-BR to detect this

efficiently. Once thread t1 synchronizes with t2 (Ct2 v Ct1), all memory access to t1 cannot

race with t2. This can be further extended. If t2 additionally synchronizes with t1 then,

any operations that happen before the first synchronization between t1 and t2 cannot race.

Logically, if all threads synchronize with each other, then no memory accesses before the

beginning of their synchronization can race with any memory afterwards. Synchronizations

like this are unlikely to happen at a single point in execution, so we leverage the idea of an

recovery region to allow a more general form of recovery.

If we define our recovery region to be the region of execution between a set of synchro-

nization operations that synchronizes all threads, this leaves us with a logically equivalent

analysis state at the end of the recovery region. Any accesses before the region begins are

guaranteed race free, and the re-executing the region during rollback will reconstruct vector

clock states for memory accesses during the recovery region.

This definition of recovery regions is more formally specified by the vector clocks of the

threads in the program. At any given time during the program execution (rb), there exists a

vector clock R such that if all thread’s vector clocks are ordered after R (∀t. Ct v R) then

all memory accesses before rb are ordered with respect to R (MvR). The intuition behind

this is that every memory access’s vector clock (M) is by definition ordered with respect

to the last thread to access that memory (M v Ct). Ct by definition happens before R, so

transitively M v R. Finding R at any point in program time is trivial, by taking the union

all vector clocks for all threads. For example, in Figure 5.2 at statement 2, R is < 1,1 >,

and at statement 8 R is < 2,2 >.

More concisely:

81

R=
⊔
t
Ct

∀m.Mv Ct

∀t. Ct v R

∀m.Mv R

(5.2)

Once all thread’s vector clocks have advanced so they are ordered after R, then any

memory accesses before rb can no longer contribute to program data races. We say rb is the

recovery region’s beginning, and we refer to the point in time when all thread’s are ordered

after R (Rv Ct) as the recovery region’s end.

Additionally, when the recovery region is re-rexecuted on rollback, any memory ac-

cesses during the recovery region will update the vector clocks for that memory region

(MtCt). The result is that after rolling back and replaying the recovery region, OptFT-BR

guarantees that any accesses before the recovery region do not effect the data-race detec-

tor output after the recovery region, and any accesses during the recovery region will have

identical state to that of a conservative analysis. With these guarantees OptFT-BR provides

equivalent data-race detector results to a fully conservative analysis.

5.2 OptFT-BR

OptFT-BR implements our optimistic hybrid FastTrack algorithm, with partial-rollback

support. It builds on-top of OptFT, described in Chapter IV, and uses the data-race specific

recovery regions discussed in Section 5.1 to enable partial rollback. This section discusses

some of the challenges and design decisions of building OptFT-BR.

OptFT-BR is built entirely at the Java bytecode layer, using the ASM5 Java byte-

code library [24] for instrumentation, and the Chord analysis framework for static anal-

ysis [85]. OptFT-BR uses slightly modified versions of the instrumentation passes from

82

FastTrack [48] to provide race detection instrumentation.

To support partial rollback, OptFT-BR runs a slightly modified variant of OptFT, al-

tering some behaviors which make rollbacks challenging. OptFT-BR also detects rollback

recovery regions, creates rollback points, and on mis-speculation properly handles rollback

behaviors. We now explain each of these components in more detail.

5.2.1 Detecting Recovery Regions and Creating Checkpoints

OptFT-BR monitors for completed recovery regions by first identifying R at the recov-

ery region’s beginning. R is constructed by unioning all thread’s vector clocks, as shown in

equation 5.2. On each synchronization operation, OptFT-BR checks if the thread is ordered

by R (R v Ct). Once R is found to happen before all threads, OptFT-BR knows that the

recovery region’s beginning (rb) is a safe rollback point.

As OptFT-BR monitors every synchronization operation to detect recovery region ends,

it must disable the no custom synchronization likely invariant used by OptFT. No custom

synchronizations assumes that all synchronization is done through specified synchroniza-

tion functions. This assumption allows it to skip monitoring locks around operations which

do not protect any potentially racy accesses. As OptFT-BR must maintain accurate thread

vector clocks for recovery region detection, we disable this optimization. Overall this opti-

mization has a relatively small impact on final runtime performance.

As described in Section 5.1, potential recovery regions exist at all points in the pro-

gram’s execution. However, recovery regions are only candidates for rollback once the

recovery region has completed (∀t. R v Ct), and monitoring a recovery region requires

a vector-clock comparison on each synchronization operation, a relatively expensive op-

eration. Further, to enable rollback, a checkpoint must be taken at the beginning of any

recovery region OptFT-BR may rollback to, potentially resulting in high overheads for the

many available recovery regions. These costs make it impractical for OptFT-BR to monitor

all possible recovery regions in the execution.

83

Since considering all recovery regions is impractical, OptFT-BR only considers one

recovery region at a time. At the beginning of the program, OptFT-BR checkpoints the pro-

gram state, and constructs a vector clock representing the recovery region (R), and moni-

tors every synchronization call, waiting for the recovery region to end. Once the recovery

region end is detected, OptFT-BR creates a new recovery region vector clock (R) by union-

ing all thread’s vector clocks, and repeats the checking process. When a rollback is needed,

OptFT-BR reloads the checkpoint from the last completed recovery region, switches the

analysis to run a conservative dynamic race detector, and replays any inputs until the exe-

cution reaches the point of invariant violation, at which point it begins to run on live inputs.

In some cases (e.g. single threaded execution), recovery regions are created very rapidly,

so OptFT-BR also rate-limits recovery region creation to once every 2 seconds to remove

excessive check-pointing overheads. As rollbacks are very rare, the benefits in performance

from monitoring fewer recovery regions likely greatly outweigh costs in rollback overhead.

5.2.2 Handling Mis-Speculations

OptFT-BR handles mis-speculations by rolling back to the beginning of the last com-

pleted recovery region, and resuming the program after that point. It uses a deterministic

record and replay system to guarantee the rolled-back execution reaches the same state of

the original execution after rollback.

Upon rollback OptFT-BR must transition from its fast-path optimistic hybrid anal-

ysis checks to slow-path conservative analysis checks. Ideally, this would be done by

re-instrumenting the code at mis-speculation time to provide slow-path checks. As mis-

speculations are rare, the one-time re-instrumentation cost could introduce a near mini-

mum runtime overhead. Unfortunately, the Java Virtual Machine (JVM) does not support

live function bytecode re-instrumentation. To work around this limitation, OptFT-BR stati-

cally creates two versions of each function, a slow-path version, and fast-path version. If a

rollback occurs, it switches the execution to the exact same point in the slow-path codebase.

84

Due to the limitations of the JVM, this slow-path switch is more complex and costly

than ideal. Ideally, the JVM would allow seamless transitions between slow-path functions

and the fast-path code; however, such a transition would require the mis-speculation byte-

code ensure all returns went to slow-path functions, requiring the bytecode to modify the

return address from each function call on the callstack. As the JVM disallows this behav-

ior, OptFT-BR instead creates an additional copy of the slowpath code at the end of each

fast-path function, and on return from each function call the fast-path checks to see if it

must branch to slow-path code. This adds the cost of a global variable check and (highly

predictable) conditional jump at the end of each function call on the fast-path. This over-

head is generally acceptable, however there are some function call patterns which can cause

OptFT-BR’s slow-path switching code to cause considerable overheads.

After these modifications, OptFT-BR constructs an optimistic hybrid race detector with

partial rollback support, and results equivalent to those of the FastTrack race detector.

5.3 Evaluation

In this section we show that OptFT-BR successfully bounds rollbacks for optimistic

hybrid data-race detection for many applications, while still providing performance im-

provements comparable to OptFT in rollback-free executions.

5.3.1 Experimental Setup

To evaluate the overhead of OptFT-BR we run the same benchmark suite as we did

in Chapter IV for OptFT. This benchmark suite consists of all of the benchmarks from

the JavaGrande and Dacapo benchmark suites which are multi-threaded, and work with

our underlying frameworks (chord and RoadRunner). We also use the same training and

testing sets used by the original OptFT work.

We begin by learning likely invariants for use in OptFT-BR. We incrementally run tests

in our training set until additional training runs provide no new invariants. We then apply

85

 0

 2

 4

 6

 8

 10

 12

 14

H
ybrid FT

Sysnam
e

O
ptFT

H
ybrid FT

Sysnam
e

O
ptFT

H
ybrid FT

Sysnam
e

O
ptFT

H
ybrid FT

Sysnam
e

O
ptFT

H
ybrid FT

Sysnam
e

O
ptFT

H
ybrid FT

Sysnam
e

O
ptFT

H
ybrid FT

Sysnam
e

O
ptFT

H
ybrid FT

Sysnam
e

O
ptFT

H
ybrid FT

Sysnam
e

O
ptFT

H
ybrid FT

Sysnam
e

O
ptFT

H
ybrid FT

Sysnam
e

O
ptFT

H
ybrid FT

Sysnam
e

O
ptFT

H
ybrid FT

Sysnam
e

O
ptFT

H
ybrid FT

Sysnam
e

O
ptFT

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

Race Checks
+ MisSpec. Checks
+ SlowPath Code
+ Frontier Detection
+ Checkpointing

1
2
.0

3
.7

1
.0

6
.4

2
.2

2
.0

7
.3

2
.9

2
.3

1
.1 1
.2

1
.1

5
.2

6
.6

4
.5

2
.8

1
.5

1
.0 1

.5
1
.2

1
.1

1
.0

1
.0

1
.0

2
.8

2
.8

2
.7

1
.2 1
.4

1
.2

1
.1

1
.1

1
.1

1
.0 1
.1

1
.0

1
.0 1
.1

1
.0 1
.1

1
.1

1
.1

sor
(1.1s)

sparse
(2.2s)

series
(24.1s)

crypt
(0.65s)

lufact
(0.38s)

montecarlo
(1.0s)

xalan
(1.8s)

batik
(0.59s)

luindex
(0.17s)

sunflow
(1.7s)

pmd
(.24s)

lusearch
(2.2s)

moldyn
(0.22s)

raytracer
(0.92s)

Figure 5.3: Normalized runtimes for OptFT. Baseline runtimes for each benchmark are shown in
parentheses. Tests right of the red line are proven race-free by sound static race detection, but in-
cluded here for completeness.

these invariants towards optimistic hybrid analysis.

Once the optimistic hybrid analysis is constructed, we run all of the testing inputs over

the analysis bytecode. All experiments are conducted using 8 cores of an Intel Xeon E5-

2687W v3 3.1 GHz processor.

The major difference between the setup of OptFT’s evaluation and OptFT-BR’s is that

OptFT-BR uses a static bytecode instrumentation library, where the vanilla RoadRunner

framework used by OptFT uses dynamic instrumentation. This switch to static tooling elim-

inates the start-up and framework overheads reported by OptFT.

5.3.2 Dynamic Overhead

Figure 5.3 shows the overall runtime overhead of OptFT-BR in comparison with a tradi-

tional dynamic analysis, traditional hybrid analysis, and OptFT. Overall OptFT-BR shows

considerable speedups versus a conservative hybrid analysis with average speedups of 50%.

While, OptFT-BR adds a non-trivial overhead (40.7%) to OptFT, it provides bounded roll-

back recovery, making it much more suitable for analyzing long-running executions, or

production scenarios. We also note that most of this overhead is caused by inefficiencies

in the implementation of the slow-path transition code-paths (explained in Section 5.2.2),

and is consequently not fundamental to OptFT-BR. If these inefficiencies were resolved,

86

 0

 0.2

 0.4

 0.6

 0.8

 1

lusearch

m
oldyn

luindex

pm
d

batik
sunflow

m
ontecarlo

raytracer

xalan

N
o
rm

a
liz

e
d
 R

o
llb

a
c
k
 R

e
g
io

n
 D

u
ra

ti
o
n

Benchmarks

OptFT-RB

0
.0

1

0
.0

5

0
.0

6

0
.1

7

0
.2

9

0
.4

6

0
.4

8

0
.4

7

0
.5

OptFT

0
.5

0
.5

0
.5

0
.5

0
.5

0
.5

0
.5

0
.5

0
.5

Figure 5.4: Expected rollback time for OptFT-BR versus OptFT. OptFT-BR dramatically decreases
rollback recovery times for many benchmarks.

for example with JVM level instrumentation, OptFT-BR should expect overheads closer to

10%.

The second component of OptFT-BR we evaluate is the frequency, duration, and ex-

pected effect of rollback bounds. We begin by looking at the expected amount of execution

an analysis will rollback on mis-speculation. Figure 5.4 shows the expected rollback du-

ration of a rollback with OptFT-BR versus a rollback with OptFT. OptFT-BR shows an

average reduction in rollback time of 67.6%. While this reduction is significant, the results

are largely bimodal. Several benchmarks, such as lusearch, moldyn, and luindex are sig-

nificantly aided with OptFT-BR, while several benchmarks, such as raytracer and xalan do

not show frequent enough recovery regions for OptFT-BR to significantly reduce rollback

duration.

Figure 5.5 gives a visual breakdown of the CDF of expected average rollback durations

87

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
e

rc
e

n
ta

g
e

 o
f

R
o

llb
a

c
k
s

Normalized Rollback Duration

(a) lusearch

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
e

rc
e

n
ta

g
e

 o
f

R
o

llb
a

c
k
s

Normalized Rollback Duration

(b) moldyn

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
e

rc
e

n
ta

g
e

 o
f

R
o

lb
a

c
k
s

Normalized Rollback Duration

(c) luindex

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
e

rc
e

n
ta

g
e

 o
f

R
o

lb
a

c
k
s

Normalized Rollback Duration

(d) pmd

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
e

rc
e

n
ta

g
e

 o
f

R
o

lb
a

c
k
s

Normalized Rollback Duration

(e) batik

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
e

rc
e

n
ta

g
e

 o
f

R
o

lb
a

c
k
s

Normalized Rollback Duration

(f) sunflow

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
e

rc
e

n
ta

g
e

 o
f

R
o

lb
a

c
k
s

Normalized Rollback Duration

(g) montecarlo

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
e

rc
e

n
ta

g
e

 o
f

R
o

llb
a

c
k
s

Normalized Rollback Duration

(h) raytracer

Figure 5.5: CDF of expected rollback duration normalized to total execution time. Rollbacks as-
sumed to be evenly spaced over program duration. Xalan is excluded, as no recovery regions are
found in the benchmark, making rollback results equivalent to OptFT.

88

for each benchmark measured with OptFT-BR. These graphs show the maximum potential

rollback duration, represented by the point with the highest “x” axis point for each bench-

mark. These graphs additionally demonstrate a breakdown of recovery region frequency

and duration, outlining how different benchmarks discover recovery regions, and how ef-

fective OptFT-BR is at reducing rollbacks.

5.4 Conclusion

This chapter has identified discussed and identified the challenges constructing an OHA

which bounds rollback duration on mis-speculation. Although this is a challenging problem

to solve for generic analyses, recovery regions, along with analysis-specific observations

make rollback practical and effective for data-race detection. Using these optimizations I

have presented OptFT-BR, demonstrating that bounded rollbacks are possible, at least for

data-race detection. I believe some of these techniques can be applied to create OHAs with

bounded rollback for other analyses.

89

CHAPTER VI

Conclusion and Future Works

In this thesis I have presented eidetic systems, and optimistic hybrid analyses. These

two systems together make it practical to run retrospective analysis over entire computer

systems. Eidetic systems, such as Arnold, make information recall and query over the entire

history of a single machine practical. Optimistic hybrid analyses, like OptFT and OptSlice,

dramatically reduce the burden of these retroactive analyses through a novel method of

analysis optimization. Together these techniques allow entire system’s worth of data to be

efficiently gathered and queried.

While these systems are both useful and powerful as described, they are also both po-

tential platforms to enable further research. Optimistic hybrid analysis in particular has

many open problems, and possible applications. My current implementations of optimistic

hybrid analysis are limited by their inconsistent execution times. Rollbacks, and slow-path

code analyses cause OHA to provide only average-case speedups, and in the worst case can

add significant overhead.

Future work in the area of optimistic hybrid analysis includes addressing these worst-

case performance overheads. Worst-case overheads in OHA stem from its rollback mech-

anism. In chapter V I discussed how bounding rollbacks was challenging, and OptFT-BS,

one system that opportunistically bounds rollbacks, however OptFT-BS is opportunistic in

its rollback bounding, and is still unable to provide a guaranteed bounds for rollbacks. I

90

would like to explore which analyses can have bounded rollbacks, or how an application

can be modified to guarantee bounded rollback points exist within an OHA. In the same

vein, with some restrictions to static analysis, it may be possible to construct OHA’s which

do not require any rollback on mis-speculation.

Even with the rollback problem solved, OHA suffers from unpredictable performance.

Currently, OHAs are either in fast-path, or a conservative slow-path execution. I would

like to explore methods of creating a more gradual degradation of performance for likely

invariant mis-speculations within an OHA, for instance by creating multiple rollback paths

depending on which invariants fail.

I have also only begun exploring the uses of optimistic hybrid analysis. While it has

shown to have great benefit on slicing and data-race detection analyses, I believe OHA

could dramatically benefit many other useful analyses. Consider taint-tracking. Taint-

tracking is used heavily today for security and forensic queries [44, 11], but often creates

unacceptable overheads. An optimistic hybrid taint-tracking algorithm could greatly benefit

these overheads. Furthermore, OHA could apply very well to enforcing safety properties of

programs, such as region serializability, or RS. RS is considered the gold-standard of mem-

ory models [79], but too expensive to enforce generally. The expense in enforcing RS is that

of avoiding memory conflicts, caused by data-race detection. OHA has already been shown

to significantly reduce data-race detection. However, as RS only requires conflict freedom,

and not general data-race freedom, an optimistic hybrid RS enforcement algorithm could

likely mitigate nearly all mis-speculation recovery costs, making it highly practical.

This thesis has shown how eidetic systems and optimistic hybrid analysis make it practi-

cal to retroactively analyze entire systems of computations. These two systems additionally

demonstrate a mutualistic relationship. I now argue retroactive dynamic program analyses,

also work to further enable eidetic systems to record and replay systems efficiently. Eidetic

systems, such as Arnold, require programs to be free of data-race bugs in order to efficiently

record programs. Retroactive analyses, such as OptFT present an efficient way to ensure all

91

executions of a program are data-race free. By recording executions for later analysis eide-

tic systems enable dynamic retroactive analyses to identify and help programmers reduce

the bugs which make eidetic systems less efficient.

By applying these techniques to today’s problems, and building upon them in the future

we can greatly reduce the burdens of users, programmers, and system administrators in

constructing, maintaining, and understanding complex software systems.

92

BIBLIOGRAPHY

93

BIBLIOGRAPHY

[1] Linux Desktop Testing Project. http://ldtp.freedesktop.org.

[2] VimGolf. http://vimgolf.com, 2016. Accessed: 2016-07-31.

[3] Project Gutenbveg. (n.d.). http://www.gutenberg.org, 2017. Accessed: 2017-
04-12.

[4] SvgCuts. http://svgcuts.com, 2017. Accessed: 2017-07-28.

[5] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically-
typed language. In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’89, pages 213–227, New York, NY,
USA, 1989. ACM.

[6] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. In Proceedings
of the ACM SIGPLAN 1990 Conference on Programming Language Design and
Implementation, pages 246–256, 1990.

[7] Hiralal Agrawal, Joseph R Horgan, Saul London, and W Eric Wong. Fault localiza-
tion using execution slices and dataflow tests. In Software Reliability Engineering,
1995. Proceedings., Sixth International Symposium on, pages 143–151. IEEE, 1995.

[8] Bowen Alpern, Ton Ngo, Jong-Deok Choi, and Manu Sridharan. Dejavu: determin-
istic java replay debugger for jalapeno java virtual machine. In Addendum to the
2000 proceedings of the conference on Object-oriented programming, systems, lan-
guages, and applications (Addendum), pages 165–166, New York, NY, USA, 2000.

[9] Gautam Altekar and Ion Stoica. ODR: Output-deterministic replay for multicore
debugging. In Proceedings of the 22nd ACM Symposium on Operating Systems
Principles, pages 193–206, October 2009.

[10] Lars Ole Andersen. Program analysis and specialization for the c programming
language. In PhD thesis, DIKU, University of Copenhagen, 1994.

[11] Mona Attariyan, Michael Chow, and Jason Flinn. X-ray: Automating root-cause di-
agnosis of performance anomalies in production software. In Proceedings of the 10th
Symposium on Operating Systems Design and Implementation, Hollywood, CA, Oc-
tober 2012.

94

[12] Mona Attariyan and Jason Flinn. Automating configuration troubleshooting with dy-
namic information flow analysis. In Proceedings of the 9th Symposium on Operating
Systems Design and Implementation, Vancouver, BC, October 2010.

[13] Mona Attariyan and Jason Flinn. Automating configuration troubleshooting with
confaid. USENIX ;login, 36(1), February 2011.

[14] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection of all
pointer and array access errors. SIGPLAN Not., 29(6):290–301, June 1994.

[15] D. F. Bacon and S. C. Goldstein. Hardware assisted replay of multiprocessor pro-
grams. In Proceedings of the 1991 ACM/ONR Workshop on Parallel and Distributed
Debugging, pages 194–206. ACM Press, 1991.

[16] R. M. Balzer. Exdams: Extendable debugging and monitoring system. In Pro-
ceedings of the May 14-16, 1969, Spring Joint Computer Conference, AFIPS ’69
(Spring), pages 567–580, New York, NY, USA, 1969. ACM.

[17] Marc Berndl, Ondrej Lhoták, Feng Qian, Laurie Hendren, and Navindra Umanee.
Points-to analysis using bdds. In ACM SIGPLAN Notices, volume 38, pages 103–
114. ACM, 2003.

[18] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dinck-
lage, and B. Wiedermann. The DaCapo benchmarks: Java benchmarking develop-
ment and analysis. In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-Oriented Programing, Systems, Languages, and Applications,
pages 169–190, New York, NY, USA, October 2006. ACM Press.

[19] Michael D Bond and Kathryn S McKinley. Probabilistic calling context. In ACM
SIGPLAN Notices, volume 42, pages 97–112. ACM, 2007.

[20] Abhijit Bose, Xin Hu, Kang G. Shin, and Taejoon Park. Behavioral detection of
malware on mobile handsets. In Proceedings of the 6th International Conference on
Mobile Systems, Applications and Services, Breckenridge, CO, June 2008.

[21] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient implementation
of a bdd package. In Proceedings of the 27th ACM/IEEE Design Automation Con-
ference, DAC ’90, pages 40–45, New York, NY, USA, 1990. ACM.

[22] Thomas C. Bressoud and Fred B. Schneider. Hypervisor-based fault-tolerance. In
Proceedings of the 15th ACM Symposium on Operating Systems Principles, pages
1–11, Copper Mountain, CO, December 1995.

[23] Thomas C. Bressoud and Fred B. Schneider. Hypervisor-based fault tolerance. ACM
Transactions on Computer Systems, 14(1):80–107, February 1996.

95

[24] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. Asm: a code manipulation
tool to implement adaptable systems. Adaptable and extensible component systems,
30(19), 2002.

[25] Michael G Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael Hind,
Vivek Sarkar, Mauricio J Serrano, Vugranam C Sreedhar, Harini Srinivasan, and
John Whaley. The jalapeno dynamic optimizing compiler for java. In Proceedings
of the ACM 1999 conference on Java Grande, pages 129–141. ACM, 1999.

[26] Brad Calder, Peter Feller, and Alan Eustace. Value profiling. In Proceedings of the
30th Annual ACM/IEEE International Symposium on Microarchitecture, MICRO
30, pages 259–269, Washington, DC, USA, 1997. IEEE Computer Society.

[27] Robert Cartwright and Mike Fagan. Soft typing. SIGPLAN Not., 26(6):278–292,
May 1991.

[28] Walter Chang, Brandon Streiff, and Calvin Lin. Efficient and extensible security
enforcement using dynamic data flow analysis. In Proceedings of the 15th ACM
Conference on Computer and Communications Security, CCS ’08, pages 39–50,
New York, NY, USA, 2008. ACM.

[29] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek Sarkar,
and Manu Sridharan. Efficient and precise datarace detection for multithreaded
object-oriented programs. In Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, Berlin, Germany, June 2002.

[30] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler. An
empirical study of operating systems errors. In Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles, SOSP ’01, pages 73–88, New York,
NY, USA, 2001. ACM.

[31] Jim Chow, Tal Garfinkel, and Peter M. Chen. Decoupling dynamic program analysis
from execution in virtual environments. In Proceedings of the 2008 USENIX Annual
Technical Conference, pages 1–14, June 2008.

[32] Michael Chow. Scaling Causality Analysis for Production Systems. PhD thesis,
2016.

[33] James Clause, Wanchun Li, and Alessandro Orso. Dytan: A generic dynamic taint
analysis framework. In In Proceedings of the International Symposium on Software
Testing and Analysis, pages 196–206, July 2007.

[34] Bas Cornelissen, Andy Zaidman, Arie van Deursen, Leon Moonen, and Rainer
Koschke. A systematic survey of program comprehension through dynamic anal-
ysis. IEEE Trans. Softw. Eng., 35(5):684–702, September 2009.

[35] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole, Peat
Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. Stackguard: Au-
tomatic adaptive detection and prevention of buffer-overflow attacks. In Proceedings

96

of the 7th Conference on USENIX Security Symposium - Volume 7, SSYM’98, pages
5–5, Berkeley, CA, USA, 1998. USENIX Association.

[36] Christoph Csallner, Yannis Smaragdakis, and Tao Xie. Dsd-crasher: A hybrid anal-
ysis tool for bug finding. ACM Trans. Softw. Eng. Methodol., 17(2):8:1–8:37, May
2008.

[37] Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. Blended analysis for perfor-
mance understanding of framework-based applications. In Proceedings of the 2007
International Symposium on Software Testing and Analysis, ISSTA ’07, pages 118–
128, New York, NY, USA, 2007. ACM.

[38] Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. A scalable technique for char-
acterizing the usage of temporaries in framework-intensive java applications. In
Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, SIGSOFT ’08/FSE-16, pages 59–70, New York, NY, USA,
2008. ACM.

[39] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M.
Chen. ReVirt: Enabling intrusion analysis through virtual-machine logging and re-
play. In Proceedings of the 5th Symposium on Operating Systems Design and Im-
plementation, pages 211–224, Boston, MA, December 2002.

[40] George W. Dunlap, Dominic G. Lucchetti, Michael Fetterman, and Peter M. Chen.
Execution replay on multiprocessor virtual machines. In Proceedings of the 2008
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments (VEE), pages 121–130, March 2008.

[41] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. A survey
on automated dynamic malware-analysis techniques and tools. ACM Comput. Surv.,
44(2):6:1–6:42, March 2008.

[42] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A race and transaction-aware Java
runtime. In Proceedings of the ACM SIGPLAN 2007 Conference on Programming
Language Design and Implementation, pages 245–255, 2007.

[43] E. N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A survey of
rollback-recovery protocols in message-passing systems. ACM Computing Surveys,
34(3):375–408, September 2002.

[44] William Enck, Peter Gilbert, Byung gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick
McDaniel, and Anmol N. Sheth. TaintDroid: An information-flow tracking system
for realtime privacy monitoring on smartphones. In Proceedings of the 9th Sympo-
sium on Operating Systems Design and Implementation, Vancouver, BC, October
2010.

[45] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dy-
namically discovering likely program invariants to support program evolution. In

97

Proceedings of the 21st International Conference on Software Engineering, ICSE
’99, pages 213–224, New York, NY, USA, 1999. ACM.

[46] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. The daikon system for dynamic
detection of likely invariants. Sci. Comput. Program., 69(1-3):35–45, December
2007.

[47] Stuart I. Feldman and Channing B. Brown. IGOR: A system for program debugging
via reversible execution. In PADD ’88: Proceedings of the 1988 ACM SIGPLAN and
SIGOPS Workshop on Parallel and Distributed Debugging, pages 112–123, 1988.

[48] Cormac Flanagan and Stephen Freund. FastTrack: Efficient and precise dynamic
race detection. In Proceedings of the ACM SIGPLAN 2009 Conference on Program-
ming Language Design and Implementation, pages 121–133, Dublin, Ireland, June
2009.

[49] Cormac Flanagan and Stephen N. Freund. The roadrunner dynamic analysis frame-
work for concurrent programs. In Proceedings of the 9th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, PASTE ’10,
pages 1–8, New York, NY, USA, 2010. ACM.

[50] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and Eyal de Lara. The Taser
intrusion recovery system. In Proceedings of the 2005 Symposium on Operating
Systems Principles, October 2005.

[51] Jim Gray. Why do computer stop and what can be done about it? Technical Report
85.7, Tandem Corp., June 1985.

[52] Neelam Gupta, Haifeng He, Xiangyu Zhang, and Rajiv Gupta. Locating faulty code
using failure-inducing chops. In Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, pages 263–272. ACM, 2005.

[53] Rajiv Gupta, Mary Lou Soffa, and John Howard. Hybrid slicing: Integrating
dynamic information with static analysis. ACM Trans. Softw. Eng. Methodol.,
6(4):370–397, October 1997.

[54] Samuel Z. Guyer and Calvin Lin. Client-driven pointer analysis. In Proceedings
of the 10th International Conference on Static Analysis, SAS’03, pages 214–236,
Berlin, Heidelberg, 2003. Springer-Verlag.

[55] Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using auto-
matic anomaly detection. In Proceedings of the 24th International Conference on
Software Engineering, pages 291–301, May 2002.

[56] Ben Hardekopf and Calvin Lin. The ant and the grasshopper: fast and accurate
pointer analysis for millions of lines of code. In ACM SIGPLAN Notices, volume 42,
pages 290–299. ACM, 2007.

98

[57] Ben Hardekopf and Calvin Lin. Exploiting pointer and location equivalence to opti-
mize pointer analysis. In International Static Analysis Symposium, pages 265–280.
Springer, 2007.

[58] Fritz Henglein. Global tagging optimization by type inference. SIGPLAN Lisp
Pointers, V(1):205–215, January 1992.

[59] Derek R. Hower and Mark D. Hill. Rerun: Exploiting episodes for lightweight mem-
ory race recording. In Proceedings of the 35th International Symposium on Com-
puter Architecture, pages 265–276, June 2008.

[60] Richard W M Jones, Paul H J Kelly, Most C, and Uncaught Errors. Backwards-
compatible bounds checking for arrays and pointers in c programs. In in Distributed
Enterprise Applications. HP Labs Tech Report, pages 255–283, 1997.

[61] Jaeyeon Jung, Anmol Sheth, Ben Greenstein, David Wetherall, Gabriel Maganis,
and Tadayoshi Kohno. Privacy oracle: A system for finding application leaks with
black box differential testing. In Proceedings of the 15th ACM Conference on Com-
puter and Communications Security, CCS ’08, pages 279–288, New York, NY, USA,
2008. ACM.

[62] Edward Kaiser, Wu-chang Feng, and Travis Schluessler. Fides: Remote anomaly-
based cheat detection using client emulation. In Proceedings of the 16th ACM Con-
ference on Computer and Communications Security, CCS ’09, pages 269–279, New
York, NY, USA, 2009. ACM.

[63] Taesoo Kim, Ramesh Chandra, and Nickolai Zeldovich. Efficient patch-based au-
diting for Web application vulnerabilities. In Proceedings of the 10th Symposium on
Operating Systems Design and Implementation, Hollywood, CA, October 2012.

[64] Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. Intrusion recov-
ery using selective re-execution. In Proceedings of the 9th Symposium on Operating
Systems Design and Implementation, Vancouver, BC, October 2010.

[65] Johannes Kinder and Dmitry Kravchenko. Alternating control flow reconstruction.
In Proceedings of the 13th International Conference on Verification, Model Check-
ing, and Abstract Interpretation, VMCAI’12, pages 267–282, Berlin, Heidelberg,
2012. Springer-Verlag.

[66] Samuel T. King and Peter M. Chen. Backtracking intrusions. In Proceedings of
the 19th ACM Symposium on Operating Systems Principles, pages 223–236, Bolton
Landing, NY, October 2003.

[67] Samuel T. King, George W. Dunlap, and Peter M. Chen. Debugging operating sys-
tems with time-traveling virtual machines. Technical Report CSE-TR-495-04, Uni-
versity of Michigan, August 2004.

99

[68] O. Laadan, R. Baratto, D. Phung, S. Potter, and J. Nieh. DejaView: A personal
virtual computer recorder. In Proceedings of the 21st ACM Symposium on Operating
Systems Principles, pages 279–292, Stevenson, WA, Oct 2007.

[69] Dongyoon Lee, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. Chimera:
Hybrid program analysis for determinism. In Proceedings of the ACM SIGPLAN
2012 Conference on Programming Language Design and Implementation, Beijing,
China, June 2012.

[70] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxiang
Zhai. Have things changed now?: An empirical study of bug characteristics in mod-
ern open source software. In Proceedings of the 1st Workshop on Architectural and
System Support for Improving Software Dependability, ASID ’06, pages 25–33, New
York, NY, USA, 2006. ACM.

[71] Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu, and Chen Yu. Live migration of virtual
machine based on full system trace and replay. In Proceedings of the 18th ACM
International Symposium on High Performance Distributed Computing, HPDC ’09,
pages 101–110, New York, NY, USA, 2009. ACM.

[72] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J. Nelson
Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders Møller,
and Dimitrios Vardoulakis. In defense of soundiness: A manifesto. Commun. ACM,
58(2):44–46, January 2015.

[73] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes —
a comprehensive study on real world concurrency bug characteristics. In Proceed-
ings of the 13th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 329–339, 2008.

[74] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. AVIO: Detecting atomicity
violations via access interleaving invariants. In Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 37–48, 2006.

[75] Brandon Lucia, Joseph Devietti, Karin Strauss, and Luis Ceze. Atom-aid: Detecting
and surviving atomicity violations. In Proceedings of the 35th International Sympo-
sium on Computer Architecture, pages 277–288, Beijing, China, 2008.

[76] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumentation. In Proceedings
of the ACM SIGPLAN 2005 Conference on Programming Language Design and Im-
plementation, pages 190–200, Chicago, IL, June 2005.

[77] Ravi Mangal, Xin Zhang, Aditya V. Nori, and Mayur Naik. A user-guided approach
to program analysis. In Proceedings of the 2015 10th Joint Meeting on Foundations

100

of Software Engineering, ESEC/FSE 2015, pages 462–473, New York, NY, USA,
2015. ACM.

[78] JP Mangalindan. Facebook users dial 911 over so-
cial network outage. http://fortune.com/2014/08/01/

facebook-users-dial-911-over-social-network-outage/, August 2014.

[79] Daniel Marino, Todd Millstein, Madanlal Musuvathi, Satish Narayanasamy, and Ab-
hayendra Singh. The Silently Shifting Semicolon. In Thomas Ball, Rastislav Bodik,
Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett, editors, 1st Sum-
mit on Advances in Programming Languages (SNAPL 2015), volume 32 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 177–189, Dagstuhl, Ger-
many, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[80] Markus Mock, Darren C. Atkinson, Craig Chambers, and Susan J. Eggers. Improv-
ing program slicing with dynamic points-to data. In Proceedings of the 10th ACM
SIGSOFT Symposium on Foundations of Software Engineering, SIGSOFT ’02/FSE-
10, pages 71–80, New York, NY, USA, 2002. ACM.

[81] Markus Mock, Manuvir Das, Craig Chambers, and Susan J Eggers. Dynamic points-
to sets: A comparison with static analyses and potential applications in program un-
derstanding and optimization. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering, pages 66–72.
ACM, 2001.

[82] Pablo Montesinos, Luis Ceze, and Josep Torrellas. DeLorean: Recording and de-
terministically replaying shared-memory multiprocessor execution efficiently. In
Proceedings of the 35th International Symposium on Computer Architecture, pages
289–300, June 2008.

[83] Andrew C. Myers. JFlow: Practical mostly-static information flow control. In Pro-
ceedings of the ACM SIGPLAN 1999 Conference on Programming Language Design
and Implementation, pages 228–241, San Antonio, TX, January 1999.

[84] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic. Cets:
Compiler enforced temporal safety for c. SIGPLAN Not., 45(8):31–40, June 2010.

[85] Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for java.
In Proceedings of the 27th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’06, pages 308–319, New York, NY, USA, 2006.
ACM.

[86] Satish Narayanasamy, Cristiano Pereira, and Brad Calder. Recording shared memory
dependencies using Strata. In Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems, pages
229–240, October 2006.

101

[87] George C. Necula, Scott McPeak, and Westley Weimer. Ccured: Type-safe
retrofitting of legacy code. SIGPLAN Not., 37(1):128–139, January 2002.

[88] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In Proceedings of the ACM SIGPLAN 2007 Con-
ference on Programming Language Design and Implementation, San Diego, CA,
June 2007.

[89] James Newsome and Dawn Song. Dynamic taint analysis: Automatic detection,
analysis, and signature generation of exploit attacks on commodity software. In Pro-
ceedings of the 12th Annual Network and Distributed System Security Symposium,
February 2005.

[90] Jeremy W. Nimmer and Michael D. Ernst. Invariant inference for static checking:. In
Proceedings of the 10th ACM SIGSOFT Symposium on Foundations of Software En-
gineering, SIGSOFT ’02/FSE-10, pages 11–20, New York, NY, USA, 2002. ACM.

[91] Douglas Z. Pan and Mark A. Linton. Supporting reverse execution for parallel pro-
grams. SIGPLAN Not., 24(1):124–129, November 1988.

[92] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini Kaushik, Kyu H.
Lee, and Shan Lu. PRES: Probabilistic replay with execution sketching on mul-
tiprocessors. In Proceedings of the 22nd ACM Symposium on Operating Systems
Principles, pages 177–191, October 2009.

[93] Eli Pozniansky and Assaf Schuster. Efficient on-the-fly data race detection in multi-
threaded C++ programs. In PPOPP03, pages 179–190, San Diego, CA, June 2003.

[94] Dustin Rhodes, Cormac Flanagan, and Stephen N. Freund. Bigfoot: Static check
placement for dynamic race detection. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2017,
pages 141–156, New York, NY, USA, 2017. ACM.

[95] Michiel Ronsse and Koen De Bosschere. RecPlay: A fully integrated practical
record/replay system. ACM Transactions on Computer Systems, 17(2):133–152,
May 1999.

[96] Mark Russinovich and Bryce Cogswell. Replay for concurrent non-deterministic
shared-memory applications. In Proceedings of the ACM SIGPLAN 1996 Confer-
ence on Programming Language Design and Implementation, pages 258–266, 1996.

[97] Swarup Kumar Sahoo, John Criswell, Chase Geigle, and Vikram Adve. Using
likely invariants for automated software fault localization. ACM SIGPLAN Notices,
48(4):139–152, 2013.

[98] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas An-
derson. Eraser: A dynamic data race detector for multithreaded programs. ACM
Transactions on Computer Systems, 15(4):391–411, November 1997.

102

[99] Donna Scott. Assessing the costs of application downtime. Technical report, 1998.

[100] Aritra Sengupta, Swarnendu Biswas, Minjia Zhang, Michael D Bond, and Milind
Kulkarni. Hybrid static–dynamic analysis for statically bounded region serializabil-
ity. In ACM SIGPLAN Notices, volume 50, pages 561–575. ACM, 2015.

[101] Konstantin Serebryany and Timur Iskhodzhanov. ThreadSanitizer: Data race detec-
tion in practice. In Proceedings of the Workshop on Binary Instrumentation and
Applications, December 2009.

[102] L. A. Smith, J. M. Bull, and J. Obdrzálek. A parallel java grande benchmark suite. In
Proceedings of the 2001 ACM/IEEE Conference on Supercomputing, SC ’01, pages
8–8, New York, NY, USA, 2001. ACM.

[103] Sudarshan Srinivasan, Christopher Andrews, Srikanth Kandula, and Yuanyuan
Zhou. Flashback: A light-weight extension for rollback and deterministic replay for
software debugging. In Proceedings of the 2004 USENIX Annual Technical Confer-
ence, pages 29–44, Boston, MA, June 2004.

[104] J. Gregory Steffan and Todd C. Mowry. The potential for using thread-level data
speculation to facilitate automatic parallelization. In Proceedings of the 25th Inter-
national Symposium on Computer Architecture, pages 2–13, February 1998.

[105] Frank Tip. A survey of program slicing techniques. Technical report, Amsterdam,
The Netherlands, The Netherlands, 1994.

[106] Kaushik Veeraraghavan, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. De-
tecting and surviving data races using complementary schedules. In Proceedings
of the 23rd ACM Symposium on Operating Systems Principles, Cascais, Portugal,
October 2011.

[107] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica Ouyang, Peter M.
Chen, Jason Flinn, and Satish Narayanasamy. DoublePlay: Parallelizing sequential
logging and replay. In Proceedings of the 16th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, Long Beach,
CA, March 2011.

[108] Evangelos Vlachos, Michelle L. Goodstein, Michael A. Kozuch, Shimin Chen,
Babak Falsafi, Phillip B. Gibbons, and Todd C. Mowry. ParaLog: Enabling and
accelerating online parallel monitoring of multithreaded applications. In Proceed-
ings of the 15th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 271–284, Pittsburgh, PA, March 2010.

[109] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. Relay: static race detection on mil-
lions of lines of code. In Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on The foun-
dations of software engineering, pages 205–214, Dubrovnik, Croatia, 2007.

103

[110] Shiyi Wei and Barbara G. Ryder. Practical blended taint analysis for javascript. In
Proceedings of the 2013 International Symposium on Software Testing and Analysis,
ISSTA 2013, pages 336–346, New York, NY, USA, 2013. ACM.

[111] Mark Weiser. Program slicing. In Proceedings of the 5th International Conference
on Software Engineering, ICSE ’81, pages 439–449, Piscataway, NJ, USA, 1981.
IEEE Press.

[112] Min Xu, Rastislav Bodik, and Mark D. Hill. A “flight data recorder” for enabling
full-system multiprocessor deterministic replay. In Proceedings of the 30th Interna-
tional Symposium on Computer Architecture, pages 122–135, June 2003.

[113] Aydan R. Yumerefendi, Benjamin Mickle, and Landon P. Cox. TightLip: Keep-
ing applications from spilling the beans. In Proceedings of the 4th USENIX Sym-
posium on Networked Systems Design and Implementation, pages 159–172, Cam-
bridge, MA, April 2007.

[114] Jianwen Zhu. Towards scalable flow and context sensitive pointer analysis. In Design
Automation Conference, 2005. Proceedings. 42nd, pages 831–836, June 2005.

104

