
The Rio File Cache:

Surviving Operating System Crashes

Peter M. Chen, Wee Teck Ng,
Subhachandra Chandra, Christopher Aycock,

Gurushankar Rajamani, David Lowell

Computer Science and Engineering Division
Electrical Engineering and Computer Science

University of Michigan



Problem: Memory Unsafe for Files

Limits effectiveness of file cache [Baker91]

Forces trade-off between reliability and performance

1 10 100 1K 10K 100K 1M

Delay (seconds)

0

20

40

60

80

100

%
 B

yt
es

 D
el

et
ed

best best

write-through write-backdelayed write

reliability performance
e.g. TP e.g. mfs



What Makes Memory Unreliable?

Vulnerable to power loss

fix with UPS (battery) or Flash RAM

Vulnerable to software errors/system crashes

“Ordinary RAM memory...is wiped out when...a
machine crashes” [Tanenbaum95]

“Volatile storage does not usually survive system
crashes” [Silberschatz94]

“ ...safe from some software errors that write over
main memory” [Hennessy/Patterson96]

Disk vs. memory interface

writes to diskmust go through complex protocol,
error checking

any kernel store can write files in memory



Rio: A Reliable File Cache

Remove reliability-induced writes to disk (sync,
fsync, bwrite, bawrite)

Platform: DEC Alpha (128 MB memory), Digital
Unix V3.0

reboot

protect memory restore memory
during crash during reboot



Protect Memory by Controlling Access

Start with VM’s write protection

file cache pages normally kept write-protected

unauthorized writes trigger exception

file cache routines unprotect page before writing,
reprotect and verify page after writing

But physical addresses can bypass VM

Force all addresses through VM

extra address map translates physical addresses

disable writes to file cache pages

low overhead



Warm Reboot

Assuming file cache is preserved during crash, how
to easily restore during reboot?

What additional data to maintain before crash?

could use existing kernel data structures, but must
protect each structure

registry of essential info: physical memory
address, device number, disk address, inode,
file offset

Sync data/metadata to disk when reboot begins



Crashing the Operating System

Fault models: goal is wide variety and realism

Fault Type Example of Programming Error
destination registernumFreePages = count(freePageHeadPtr)
source register numPages =physicalMemorySize/pageSize
delete branch if while (...) {body}
delete random inst. for (i=0; i<10; i++,j++) {body}
initialization function () {int i=0; ...}
pointer ptr = ptr->next->next;

allocation
ptr = malloc(); use ptr; use ptr;free(ptr);

copy overrun for (i=0; i<sizeUsed; i++) {a[i] = b[i]};
off-by-one for (i=0; i < <= size; i++)
synchronization getWriteLock; write(); freeWriteLock;



Reliability Results

Fault Type Disk-Based
Rio without
Protection

Rio with
Protection

kernel text 2 1
kernel heap
kernel stack 1 1
destination register
source register 2
delete branch 1 1 1
delete random inst. 1
initialization 1
pointer 1
allocation
copy overrun 4
off-by-one 1 2 1
synchronization

Total
7 of 650
(1.1%)

10 of 650
(1.5%)

4 of 650
(0.6%)

MTTF With
Crash Every 2

Months
15 years 11 years 27 years



cp+
rm

S
det

A
ndrew

0 5 10 15

U
F

S

MFS
UFS-delay

AdvFS

UFS write-through-on-close

UFS write-through-on-write

Rio with protection

Rio without protection S
peedup R

elative to U
F

S



Conclusions

Rio makes memory as safe as disk

Benefits

reliability: all writes immediately and
synchronously permanent

performance: no reliability-induced writes to disk

rio.eecs.umich.edu

running Rio file system with protection

stores our home directories, Rio source tree, mail


