
Abstract: One of the fundamental limits to high-perfor-
mance, high-reliability file systems is memory’s vulnerabil-
ity to system crashes. Because memory is viewed as unsafe,
systems periodically write data back to disk. The extra disk
traffic lowers performance, and the delay period before data
is safe lowers reliability. The goal of the Rio (RAM I/O) file
cache is to make ordinary main memory safe for persistent
storage by enabling memory to survive operating system
crashes. Reliable memory enables a system to achieve the
best of both worlds: reliability equivalent to a write-through
file cache, where every write is instantly safe, and perfor-
mance equivalent to a pure write-back cache, with no reli-
ability-induced writes to disk. To achieve reliability, we
protect memory during a crash and restore it during a reboot
(a “warm” reboot). Extensive crash tests show that even
without protection, warm reboot enables memory to achieve
reliability close to that of a write-through file system. Add-
ing protection makes memory evensafer than a write-
through file system while adding essentially no overhead.
By eliminating reliability-induced disk writes, Rio performs
4-22 times as fast as a write-through file system, 2-14 times
as fast as a standard Unix file system, and 1-3 times as fast
as an optimized system that risks losing 30 seconds of data
and metadata.

1 Introduction
A modern storage hierarchy combines random-access

memory, magnetic disk, and possibly optical disk or mag-
netic tape to try to keep pace with rapid advances in proces-
sor performance. I/O devices such as disks and tapes are
considered reliable places to store long-term data such as
files. However, random-access memory is viewed as an
unreliable place to store permanent data (files) because it is
vulnerable to power outages and operating system crashes.

Memory’s vulnerability to power outages is easy to
understand and fix. A $119 uninterruptible power supply
can keep a system running long enough to dump memory to

disk in the event of a power outage [APC96], or one can use
non-volatile memory such as Flash RAM [Wu94]. We do
not consider power outages further in this paper.

Memory’s vulnerability to OS crashes is more chal-
lenging. Most people would feel nervous if their system
crashed while the sole copy of important data was in mem-
ory, even if the power stayed on [Tanenbaum95,
Silberschatz94, Hennessy90]. Consequently, file systems
periodically write data to disk, and transaction processing
applications view transactions as committed only when data
is written to disk. The goal of the Rio file cache is to enable
memory to survive operating system crashes without writ-
ing data to disk.

Memory’s perceived unreliability forces a tradeoff
between performance and reliability. Applications requiring
high reliability, such as transaction processing, write data
synchronously through to disk, but this limits throughput to
that of disk. While optimizations such as logging and group
commit can increase effective disk throughput
[Rosenblum92, Hagmann87, DeWitt84], disk throughput is
still far slower than memory throughput.

Most Unix file systems mitigate the performance lost
in synchronous, reliability-induced writes byasynchro-
nously writing data to disk. This allows a greater degree of
overlap between CPU time and I/O time. Unfortunately,
asynchronous writes make no firm guarantees about when
the data is safe on disk; the exact moment depends on the
disk queue length and disk speed. Users have learned to live
with the fact that their data may not be safe on disk when a
write or close finishes, and applications that require more
safety, such as editors, explicitly flush the file to disk with
an fsync call.

Some file systems improve performance further by
delaying some writes to disk in the hopes of the data being
deleted or overwritten [Ousterhout85]. This delay is often
set to 30 seconds, which risks the loss of data written within
30 seconds of a crash. Unfortunately, 1/3 to 2/3 of newly
written data lives longer than 30 seconds [Baker91,
Hartman93], so a large fraction of writes must eventually be
written through to disk under this policy. File systems differ
in how much data is delayed. For example, BSD 4.4 only
delays partially written blocks, and then only until the file is
closed. Systems that delay more types of data and have
longer delay periods are better able to decrease disk traffic
but risk losing more data.

Applications that desire maximum performance use a
pure write-back scheme where data is written to disk only
when the memory is full. This can only be done by applica-
tions for which reliability is not an issue, such as compilers
that write temporary files.

The Rio File Cache: Surviving Operating System Crashes
Peter M. Chen, Wee Teck Ng, Subhachandra Chandra, Christopher Aycock, Gurushankar Rajamani, David Lowell

Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science

University of Michigan
rio@eecs.umich.edu

This research was supported in part by NSF grant MIP-
9521386, Digital Equipment Corporation, and the University of
Michigan. Peter Chen was also supported by an NSF CAREER
and Research Initiation Award (MIP-9624869 and MIP-
9409229).

1996 International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS)

The goal of the Rio (RAM I/O) file cache is to achieve
theperformance of main memory with the reliability of disk:
write-back performance with write-through reliability. We
achieve memory performance by eliminating all reliability-
induced writes to disk [McKusick90, Ohta90]. We achieve
write-through reliability by protecting memory during a
crash and restoring it during a reboot (a “warm” reboot).
Extensive crash tests show that even without protection,
warm reboot enables memory to achieve reliability close to
that of a write-through file system. Adding protection makes
memory evensafer than a write-through file system while
adding essentially no overhead. By eliminating reliability-
induced writes to disk, Rio performs 4-22 times as fast as a
write-through file system, 2-14 times as fast as a standard,
delayed-write file system, and 1-3 times as fast as an opti-
mized system that risks losing 30 seconds of data and meta-
data.

2 Design and Implementation of a Reliable File
Cache

This section describes how we modify an existing
operating system to enable the files in memory (the file
cache) to survive crashes.

We use DEC Alpha workstations (DEC 3000/600)
running Digital Unix V3.0 (OSF/1), a monolithic kernel
based on Mach 2.5. Digital Unix stores file data in two dis-
tinct buffers in memory. Directories, symbolic links, inodes,
and superblocks are stored in the traditional Unix buffer
cache [Leffler89], while regular files are stored in the Uni-
fied Buffer Cache (UBC). The buffer cache is stored in
wired virtual memory and is usually only a few megabytes.
To conserve TLB slots, the UBC is not mapped into the ker-
nel’s virtual address space; instead it is accessed using phys-
ical addresses. The virtual memory system and UBC
dynamically trade off pages depending on system workload.
For the I/O-intensive workloads we use in this paper, the
UBC uses 80 MB of the 128 MB on each computer.

2.1 Protection
The first step in enabling the file cache to survive a

crash is to ensure that the system does not accidentally over-
write the file cache while it is crashing. The reason most
people view battery-backed memory as vulnerable during a
crash yet view disk as protected is theinterface used to
access the two storage media. The interface used to access
disks is explicit and complex. Writing to disk uses device
drivers that form I/O control blocks and write to I/O regis-
ters. Calls to the device driver are checked for errors, and
procedures that do not use the device driver are unlikely to
accidentally mimic the complex actions performed by the
device driver. In contrast, the interface used to access mem-
ory is simple—any store instruction by any kernel proce-
dure can easily change any data in memory simply by using
the wrong address. It is hence relatively easy for many sim-
ple software errors (such as de-referencing an uninitialized
pointer) to accidentally corrupt the contents of memory
[Baker92a].

The main issue in protection is how to control accesses
to the file cache. We want to make it unlikely that non-file-
cache procedures will accidentally corrupt the file cache,

essentially making the file cache a protected module within
the monolithic kernel. To accomplish this, we use ideas
from existing protection techniques such as virtual memory
[Sullivan91a] and sandboxing [Wahbe93].

At first glance, the virtual memory protection of a sys-
tem seems ideally suited to protect the file cache from unau-
thorized stores [Copeland89, Sullivan91a]. By turning off
the write-permission bits in the page table for file cache
pages, the system will cause most unauthorized stores to
encounter a protection violation. File cache procedures must
enable the write-permission bit in the page table before
writing a page and disable writes afterwards. The only time
a file cache page is vulnerable to an unauthorized store is
while it is being written, and disks have the same vulnera-
bility, because a disk sector being written during a system
crash can be corrupted. File cache procedures can check for
corruption during this window by verifying the data after
the write. Or the file cache procedures can create a shadow
copy in memory and implement atomic writes.

Unfortunately, many systems allow certain kernel
accesses to bypass the virtual memory protection mecha-
nism and directly access physical memory [Kane92,
Sites92]. For example, addresses in the DEC Alpha proces-
sor with the two most significant bits equal to10 bypass the
TLB; these are calledKSEG addresses. This is especially
significant on the DEC Alpha because the bulk of the file
cache (the UBC) is accessed using physical addresses. We
have implemented two different methods to protect against
these physical addresses.

Our current method disables the ability of the proces-
sor to bypass the TLB, that is, all addresses are mapped
through the TLB. This can be done on the Alpha 21064,
Intel x86, Sparc, PowerPC, and possibly other CPUs. On the
Alpha 21064, a bit in the ABOX CPU control register can
be set to map all KSEG addresses through the TLB. The
page tables must be expanded to map these KSEG addresses
to their corresponding physical address so the kernel can
still access data such as page tables and the UBC. While
issuing a KSEG address accesses the same memory location
as before, this method enables the system to write-protect
file cache pages. Disabling KSEG addresses in this manner
adds essentially no overhead (Section 4).

A second method calledcode patching can be used for
processors that cannot prevent physical addresses from
bypassing the TLB. Code patching modifies the kernel
object code by inserting a check before every kernel store
[Wahbe93]. If the address is a physical address, the inserted
code checks to make sure the address is not in the file cache,
or that the file cache has explicitly registered the address as
writable. Even after a number of optimizations to reduce the
number of checks, the performance of code patching is 20-
50% slower than with our current protection method
[Chen96]. Hence code patching should be used only when
the processor cannot be configured to map all addresses
through the TLB.

Kernels that use memory-mapping to cache files must
be modified to map the file read-only. Kernel procedures
that write to the memory-mapped file must be modified as
above to first enable writes to memory. Digital Unix does

not use memory-mapping in the kernel. User memory-
mapped files require no changes to the kernel because these
files are not mapped into the kernel address space and hence
the kernel cannot corrupt them.

This scheme protects memory solely from kernel
crashes. Naturally, a faulty user program can still corrupt
any file to which it has write access.

2.2 Warm Reboot
The second step in enabling the file cache to survive a

crash is to do awarm reboot. When the system is rebooted,
it must read the file cache contents that were present in
physical memory before the crash and update the file system
with this data. Because system crashes are infrequent, our
first priority in designing the warm reboot is ease of imple-
mentation, rather than reboot speed.

Two issues arise when doing a warm reboot: 1) what
additional data the system maintains during normal opera-
tion, and 2) when in the reboot process the system restores
the file cache contents.

Maintaining additional data during normal operation
makes it easier to find, identify, and restore the file cache
contents in memory during the warm reboot. Without addi-
tional data, the system would need to analyze a series of
data structures, such as internal file cache lists and page
tables, and all these intermediate data structures would need
to be protected. Instead of understanding and protecting all
intermediate data structures, we keep and protect a separate
area of memory, which we call theregistry, that contains all
information needed to find, identify, and restore files in
memory. For each buffer in the file cache, the registry con-
tains the physical memory address, file id (device number
and inode number), file offset, and size. Registry informa-
tion changes relatively infrequently during normal opera-
tion, so the overhead of maintaining it is low. It is also quite
small; only 40 bytes of information are needed for each 8
KB file cache page.

The second issue is when to restore the dirty file cache
contents during reboot. To minimize the changes needed to
the VM and file system initialization procedures, we per-
form the warm reboot in two steps. Before the VM and file
system are initialized, we dump all of physical memory to
the swap partition. This saves the contents of the file cache
and registry from before the crash and is similar to perform-
ing a crash dump as the system is going down. While a stan-
dard crash dump often fails, however, this dump is
performed on a healthy, booting system and will always
work. We also restore the metadata to disk during this step,
using the disk address stored in the registry, so that the file
system is intact before being checked for consistency by
fsck.

After the system is completely booted, a user-level
process analyzes the memory dump and restores the UBC
using normal system calls such as open and write.

2.3 Effects on File System Design
The presence of a reliable file cache changes some

aspects of the file system. First, reliability-induced writes to
disk are no longer needed, because files in memory are as
permanent and safe as files on disk. Digital Unix includes

tunable parameters to turn off reliability writes for the UBC.
We disable buffer cache writes as in [Ohta90] by turning
most bwrite and bawrite calls to bdwrite; we modify sync
and fsync calls to return immediately1; and we modify the
panic procedure to avoid writing dirty data back to disk
before a crash. With these changes, writes to disk occur only
when the UBC or buffer cache overflows, so dirty blocks
can remain in memory indefinitely. Less extreme
approaches such as writing to disk during idle periods may
improve system responsiveness, and we plan to experiment
with this in the future. The focus of this paper is reliability,
hence we take the extreme approach of delaying writes to
disk as long as possible.

Second, metadata updates in the buffer cache must be
as carefully ordered as those to disk, because buffer cache
data is now permanent.

Third, memory’s high throughput makes it feasible to
guarantee atomicity when updating critical metadata infor-
mation. When the system wants to write to metadata in the
buffer cache, it first copies the contents to a shadow page
and changes the registry entry to point to the shadow. When
it finishes writing, it atomically points the registry entry
back to the original buffer.

3 Reliability
The key to Rio is reliability: can files in memory truly

be made as safe from system crashes as files on disk? To
answer this, we measure how often crashes corrupt data on
disk and in memory. For each run, we inject faults to crash a
running system, reboot, then examine the file data and mea-
sure the amount of corruption.

3.1 Fault Models
This section describes the types of faults we inject.

Our primary goal in designing these faults is to generate a
wide variety of system crashes. Our models are derived
from studies of commercial operating systems [Sullivan91b,
Lee93] and from prior models used in fault-injection studies
[Barton90, Kao93, Kanawati95]. The faults we inject range
from low-level hardware faults such as flipping bits in mem-
ory to high-level software faults such as memory allocation
errors. We classify injected faults into three categories: bit
flips, low-level software faults, and high-level software
faults. Unless otherwise stated, we inject 20 faults for each
run to increase the chances that a fault will be triggered.
Most crashes occurred within 15 seconds after the fault was
injected. If a fault does not crash the machine after ten min-
utes, we discard the run and reboot the system; this happens
about half the time. Note that faults that leave the system
running will propagate data to disk and hence not change
the relative reliability between memory and disk.

The first category of faults flips random bits in the ker-
nel’s address space [Barton90, Kanawati95]. We target three
areas of the kernel’s address space: thekernel text, heap,
andstack. These faults are easy to inject, and they cause a

1. We do provide a way for a system administrator to easily
enable and disable reliability disk writes for machine main-
tenance or extended power outages.

variety of different crashes. They are the least realistic of
our bugs, however. It is difficult to relate a bit flip with a
specific error in programming, and most hardware bit flips
would be caught by parity on the data or address bus.

The second category of fault changes individual
instructions in the kernel text. These faults are intended to
approximate the assembly-level manifestation of real C-
level programming errors [Kao93]. We corrupt assignment
statements by changing thesource or destination register.
We corrupt conditional constructs by deletingbranches. We
also deleterandom instructions (both branch and non-
branch).

The last and most extensive category of faults imitate
specific programming errors in the kernel [Sullivan91b].
These are more targeted at specific programming errors than
the previous fault category. We inject aninitialization fault
by deleting instructions responsible for initializing a vari-
able at the start of a procedure [Kao93, Lee93]. We inject
pointer corruption by 1) finding a register that is used as a
base register of a load or store and 2) deleting the most
recent instruction before the load/store that modifies that
register [Sullivan91b, Lee93]. We do not corrupt the stack
pointer register, as this is used to access local variables
instead of as a pointer variable. We inject anallocation
management fault by modifying the kernel malloc proce-
dure to occasionally start a thread that sleeps 0-256 ms, then
prematurely frees the newly allocated block of memory.
Malloc is set to inject this error every 1000-4000 times it is
called; this occurs approximately every 15 seconds. We
inject acopy overrun fault by modifying the kernel’s bcopy
procedure to occasionally increase the number of bytes it
copies. The length of the overrun was distributed as follows:
50% corrupt one byte; 44% corrupt 2-1024 bytes; 6% cor-
rupt 2-4 KB. This distribution was chosen by starting with
the data gathered in [Sullivan91b] and modifying it some-
what according to our specific platform and experience.
bcopy is set to inject this error every 1000-4000 times it is
called; this occurs approximately every 15 seconds. We
inject off-by-one errors by changing conditions such as > to
>=, < to <=, and so on. We mimic commonsynchronization
errors by randomly causing the procedures that acquire/free
a lock to return without acquiring/freeing the lock.

Fault injection cannot mimic the exact behavior of all
real-world operating system crashes. However, the wide
variety of faults we inject (13 types), the random nature of
the faults, the large number of ways the system crashed in
our experiments (e.g. 74 unique error messages, including
59 different kernel consistency error messages), and the
sheer number of crashes we performed (1950) give us confi-
dence that our experiments cover a wide range of real-world
crashes.

3.2 Detecting Corruption
File corruption can occur in two ways. Indirect cor-

ruption, a series of events eventually causes a procedure
(usually a non-I/O procedure) to accidentally write to file
data. Memory is more vulnerable than disks to direct cor-
ruption, because it is nearly impossible for a non-disk pro-
cedure to directly overwrite the disk drive. However, direct
memory corruption can affect disk data if the system stays

up long enough to propagate the bad memory data to disk.
In indirect corruption, a series of events eventually causes a
procedure to call an I/O procedure with the wrong parame-
ters. The I/O procedure obediently carries out the request
and corrupts the file cache. Disks and memory are both vul-
nerable to indirect corruption.

We are interested primarily in protecting memory from
direct corruption, because this is the weak point of random-
access memories. Note that the mechanisms described in
Section 2.1 protect only against direct corruption; indirect
corruption will circumvent our protection mechanism.

We use two strategies to detect file corruption: check-
sums detect direct corruption, and a synthetic workload
calledmemTest detects direct and indirect corruption.

The first method to detect corruption maintains a
checksum of each memory block in the file cache
[Baker92b]. We update the checksum in all procedures that
write the file cache; unintentional changes to file cache buff-
ers result in an inconsistent checksum. We identify blocks
that were being modified while the crash occurred by mark-
ing a block aschanging before writing to the block; these
blocks cannot be identified as corrupt or intact by the check-
sum mechanism. Files mapped into a user’s address space
for writing are also marked changing as long as they are in
memory, though this does not occur with the workloads we
use.

Catching indirect corruption requires an application-
level check, so we create a special workload calledmemTest
whose actions and data are repeatable and can be checked
after a system crash. Checksums andmemTest complement
each other. The checksum mechanism provides a means for
detecting direct corruption for any arbitrary workload;
memTest provides a higher-level check on certain data by
knowing its correct value at every instant.

memTest generates a repeatable stream of file and
directory creations, deletions, reads, and writes, reaching a
maximum file set size of 100 MB. Actions and data in
memTest are controlled by a pseudo-random number gener-
ator. After each step,memTest records its progress in a sta-
tus file across the network. After the system crashes, we
reboot the system and runmemTest until it reaches the point
when the system crashed. This reconstructs the correct con-
tents of the test directory at the time of the crash, and we
then compare the reconstructed contents with the file cache
image in memory (restored during the warm reboot).

As a final check for corruption, we keep two copies of
all files that are not modified by our workload and check
that the two copies are equal. These files were not corrupted
in our tests.

In addition to memTest, we run four copies of the
Andrew benchmark [Howard88], a general-purpose file-sys-
tem workload. Andrew creates and copies a source hierar-
chy; examines the hierarchy using find, ls, du, grep, and wc;
and compiles the source hierarchy. As with all file activity
besides memTest, the correctness of Andrew’s files is
checked only with the checksum mechanism.

3.3 Reliability Results
Table 1 presents reliability measurements for three

systems: a disk-based (write-through) file cache, Rio with-
out protection (just warm reboot), and Rio with protection.
We conducted 50 tests for each fault category for each of the
three systems (disk, Rio without protection, Rio with pro-
tection); this represents 6 machine-months of testing.

Rio’s goal is to match the reliability of disk, so we start
by measuring the reliability of a write-through file cache.
We use the functionality and setup of the default Digital
Unix kernel. That is, we do not use warm reboot or protec-
tion, nor do we turn off reliability-induced disk writes. To
achieve write-through semantics,memTest calls fsync after
every write—without this, many runs would lose asynchro-
nously written data that had not yet made it to disk. Only
memTest is used to detect corruption on disk, because data
on disk is not subject to direct corruption, so the checksum
is guaranteed to be correct.

Table 1 shows that corruption is quite infrequent,
which agrees with our intuition that disks are usually safe

from operating system crashes. Of 650 crashes, only seven
crashes (1.1%) corrupted any file data, and each of those
runs corrupted only a few (1-4) files/directories.2

The middle section of Table 1 shows the reliability of
the Rio file cachewithout the protection mechanisms
described in Section 2.1. We turn off all reliability-related
disk writes (Section 2.3) and use warm reboot (Section 2.2)
to recover the files in memory after a crash. These runs thus
measure how often files in memory are corrupted during an
operating system crash if no provisions are made to protect
them. Out of 650 crashes, ten crashes (1.5%) corrupted any
file data. As with the disk tests, each corruption affected a
small number of files/directories, usually just a small por-
tion of one file.memTest detected all ten corruptions, and
checksums detected five of the ten. Interestingly, the cor-
rupted data in the other five corruptions resided on disk
rather than the file cache. This implies that the system
remained running long enough to propagate the corruption
to disk. Copy overruns have a relatively high chance of cor-
rupting the file cache because the injected fault directly
overwrites a portion of memory, and this portion of memory
has a reasonable chance of overlapping with a file cache
buffer.

While slightly less reliable than disks, Rio without
protection ismuch more reliable than we had expected and
is probably reliable enough for most systems. To illustrate,
consider a system that crashes once every two months (a
somewhat pessimistic estimate for production-quality oper-
ating systems). If these crashes were the sole cause of data
corruption, the MTTF (mean time to failure) of a disk-based
system would be 15 years, and the MTTF of Rio without
protection would be 11 years. That is, if your system
crashes once every two months, you can expect to lose a few
file blocks about once a decade with Rio, even with no pro-
tection! Thus,warm reboot enables a file cache to be nearly
as reliable as disk, even with no protection.

These results stand in sharp contrast to the general
feeling among computer scientists (including the authors)
that operating system crashes often corrupt files in memory.
We believe the results are due to the multitude of consis-
tency checks present in a production operating system,
which stop the system very soon after an injected fault is
encountered and thereby limit the amount of damage. In
addition to the standard sanity checks written by program-
mers, the virtual memory system implicitly checks each
load/store address to make sure it is a valid address. Particu-
larly on a 64-bit machine, most errors are first detected by
issuing an illegal address [Kao93, Lee93].

Thus, even without protection, Rio stores files nearly
as reliably as a write-through file system. However, some
applications will require even higher levels of safety. The
rightmost section of Table 1 shows the reliability of the Rio
file cache with protection turned on. Out of 650 crashes, we

2. We plan to trace how faults propagate to corrupt files
and crash the system instead of treating the system as a
black box. This is extremely challenging, however, and is
beyond the scope of this paper [Kao93].

Table 1: Comparing Disk and Memory Reliability. This
table shows how often each type of error corrupted data for
three systems. We conducted 50 tests for each fault type for
each of three systems. The disk-based system uses fsync
after every write, achieving write-through reliability. The
two Rio systems test memory reliability by turning off
reliability writes to disk and using warm reboot to recover
the in-memory data after a crash. Blank entries had no
corruptions. Even without protection, Rio’s reliability is
nearly as high as a write-through system. With protection,
Rio achieves even higher reliability than a write-through
system.

Fault Type
Disk-
Based

Rio
without

Protection

Rio with
Protection

kernel text 2 1

kernel heap

kernel stack 1 1

destination reg.

source reg. 2

delete branch 1 1 1

delete random
inst.

1

initialization 1

pointer 1

allocation

copy overrun 4

off-by-one 1 2 1

synchronization

Total
7 of 650
(1.1%)

10 of 650
(1.5%)

4 of 650
(0.6%)

measured only four corruptions (0.6%). Thus Rio with pro-
tection provides reliability even higher than a write-through
file cache while issuing no reliability-induced writes to
disk! We recorded eight crashes where the Rio protection
mechanism was invoked to prevent an illegal write to the file
cache (six for copy overrun and two for initialization); these
indicate cases where the file cache would have been cor-
rupted had the protection mechanism been off. Rio’s protec-
tion mechanism provides higher reliability than a write-
through file cache because it halts the system when it
detects an attempted illegal access to the file cache. Write-
through file caches, in contrast, may continue to run and
later propagate the corrupted memory data to disk.

4 Performance
The main benefit of Rio discussed so far is reliability:

all writes to the file cache are immediately as permanent and
safe as files on disk. In this section, we show that Rio also
improves performance by eliminating all reliability-induced
writes to disk. Table 2 compares the performance of Rio
with different Unix file systems, each providing different
guarantees on when data is made permanent.

UFS is the default Digital Unix file system. It writes
data asynchronously to disk when 64 KB of data has been
collected, when the user writes non-sequentially, or when
the update daemon flushes dirty file data (once every 30 sec-
onds). UFS writes metadata synchronously to disk to
enforce ordering constraints [Ganger94].

UFS’s poor performance is due in large part to its syn-
chronous metadata updates. To eliminate this bottleneck, we
enhanced UFS to delay all data and metadata until the next
time update runs; this is the optimal “no-order” system in
[Ganger94]. This improves performance significantly over
the default UFS; however, the optimization risks losing 30
seconds of both data and metadata.

We measure the behavior of two file systems that write
data synchronously to disk. UFS with write-through-on-
close makes data permanent upon each file close by calling
fsync. UFS with write-through-on-write makes data perma-
nent upon each file write by mounting all file systems with
the “sync” option and also calling fsync after each close.
Note that only UFS with write-through-on-write achieves
the same reliability as Rio.

The Memory File System, which is completely mem-
ory-resident and does no disk I/O, is shown to illustrate
optimal performance [McKusick90]. AdvFS is a journalling
file system that reduces the penalty of metadata updates by
writing metadata sequentially to a log.

We run three workloads, cp+rm, Sdet, and Andrew.
cp+rm recursively copies then recursively removes the Digi-
tal Unix source tree (40 MB). Sdet is one of SPEC’s SDM
benchmarks and models a multi-user software development
environment [SPE91]. Andrew also models software devel-
opment but is dominated by CPU-intensive compilation
[Howard88]. All results represent an average of at least 5
runs.

The last two rows of Table 2 show that Rio’s protec-
tion mechanism adds almost no performance penalty, even
on very I/O intensive workloads such as cp+rm. Since Sec-
tion 3.3 shows that Rio’s protection mechanism enables
memory to be even safer than a write-through file system,
we recommend that protection be turned on.

Table 2 shows that Rio performs as fast as a memory
file system and significantly faster than all other file sys-
tems. As expected, Rio’s performance improvement is larg-
est over systems that provide similar reliability
guarantees—Rio performs 4-22 times as fast as UFS write-
through-on-write and write-through-on-close.

Table 2: Performance Comparison. This table compares the running time of Rio with different Unix file systems, each
providing different guarantees on when data is made permanent. cp+rm recursively copies then recursively removes the
Digital Unix source tree (40 MB); Sdet is one of SPEC’s SDM benchmarks and models a multi-user software development
environment; Andrew also models software development but is dominated by CPU-intensive compilation. Rio achieves
performance comparable to a memory-resident file system while providing the reliability of a write-through file system.
Rio’s protection mechanism adds essentially no overhead, yet enables Rio to surpass the reliability of a write-through file
system. Rio is 2-14 times as fast as the default Unix file system. Delaying metadata writes by 30 seconds enables UFS to
match Rio’s speed on some workloads, but Rio is still 3 times as fast on cp+rm. Rio is 4-22 times as fast as systems that
guarantee data permanence after each file write or close.

Data Permanent
cp+rm

(seconds)
Sdet (5 scripts)

(seconds)
Andrew
(seconds)

Memory File System never 21 (15+6) 43 13

UFS with delayed data and metadata after 0-30 seconds, asynchronous 81 (76+5) 47 13

AdvFS (log metadata updates) after 0-30 seconds, asynchronous 125 (110+15) 132 16

UFS
data after 64 KB, asynchronous

metadata synchronous
332 (245+87) 401 23

UFS with write-through after each close after close, synchronous 394 (274+120) 699 49

UFS with write-through after each write after write, synchronous 539 (419+120) 910 178

Rio without protection after write, synchronous 24 (18+6) 42 12

Rio with protection after write, synchronous 25 (18+7) 42 13

Other file systems can shrink the gap in performance
by sacrificing reliability. Rio is 2-14 times as fast as the
standard UFS file system, yet Rio provides synchronous
data updates. Rio is 1-3 times as fast as UFS with delayed
data and metadata. Yet while the optimized UFS system
risks losing 30 seconds of data and metadata on a crash, Rio
loses no data or metadata.

5 Architectural Support for Reliable File
Caches

We have shown that memory can safely store perma-
nent data in the presence of operating system crashes. This
has several implications for computer architects. First,
designers of memory-management hardware should con-
tinue to provide the ability to force all accesses through the
TLB, as is done in most microprocessors today. Without this
ability, the processor can bypass the TLB at any time, and
code patching must be used to protect the file cache from
corruption.

Second, since memory contains long-term data, the
system should treat memory like a peripheral that can be
removed from the rest of the system. If the system board
fails, it should be possible to move the memory board to a
different system without losing power or data [Moran90,
Baker92a]. Similarly, the system should be able to be reset
and rebooted without erasing the contents of memory or
CPU caches containing memory data. DEC Alphas allow a
reset and boot without erasing memory or the CPU caches
[DEC94]; the PCs we have tested do not.

Storing permanent data both on disk and in memory
makes data more vulnerable to hardware failures than sim-
ply storing data on disk. Being able to remove the memory
system without losing data can reduce but not eliminate the
increased vulnerability. Because software crashes are the
dominant cause of failure today [Gray90], we do not con-
sider the increased vulnerability to hardware failures a seri-
ous limitation of Rio. However, if memory or CPU failures
becomes the most common cause of system failure, extra
redundancy may need to be added to compensate for the
larger number of components holding permanent data.

6 Related Work
Several researchers have proposed ways to protect

memory from software failures [Copeland89], though to our
knowledge none have evaluated how effectively memory
withstood these failures.

Many commercial I/O devices contain memory. This
memory is assumed to be reliable because of the I/O inter-
face used to access it. These devices include solid-state
disks, non-volatile disk caches, and write-buffers such as
Prestoserve [Moran90]. While these can improve perfor-
mance over disks, their performance is limited by the low
bandwidth and high overhead of the I/O bus and device
interface. Being able to use ordinary main memory to store
files reliably would be much better: systems already have a
relatively large amount of main memory and can access it
very quickly. Further, main memory is random-access,
unlike special-purpose devices.

Phoenix is the only file system we are aware of that
attempts to make all permanent files reliable while in main

memory [Gait90]. Phoenix keeps two versions of an in-
memory file system. One of these versions is kept write-pro-
tected; the other version is unprotected and evolves from the
write-protected one via copy-on-write. At periodic check-
points, the system write-protects the unprotected version
and deletes obsolete pages in the original version. Rio dif-
fers from Phoenix in two major ways: 1) Phoenix does not
ensure the reliability of every write; instead, writes are only
made permanent at periodic checkpoints; 2) Phoenix keeps
multiple copies of modified pages, while Rio keeps only one
copy.

Harp protects a log of recent modifications byreplicat-
ing it in volatile, battery-backed memory across several
server nodes [Liskov91]. Harp designers considered using
warm reboot to protect against software bugs that crash both
nodes. Unfortunately, the MicroVax’s used to run Harp
overwrote memory during a reboot, making warm reboot
impossible [Baker94].

The Recovery Box stores system state used in recovery
in a region of memory [Baker92b]. Recovery box memory
is preserved across crashes and used during the reboot of file
servers. Similar to results found in Rio, Baker and Sullivan
expect few crashes to corrupt the contents of the Recovery
Box and so rely primarily on checksums to verify that data
is intact. They lower the chance of corruption by 1) writing
to the Recovery Box through a careful interface that checks
for errors and 2) storing the Recovery Box within the kernel
text segment, where it is less likely to be corrupted by ran-
dom pointer errors. If checksums indicate that the Recovery
Box is corrupted despite these precautions, the system dis-
cards the data and performs a full recovery.

Rio differs from Recovery Box in the degree to which
the system depends on memory being intact, as well as the
use and size of the data. Data in the Recovery Box is seen
strictly as a hint; if the data is wrong, the system can recover
all information. In contrast, Rio sees memory as reliable
enough to store the sole copy of data. This allows Rio to
store a wider range and larger amount of data. In particular,
Rio stores file data and can thus improve file system perfor-
mance under normal operation.

Rio’s protection mechanism is similar to the scheme in
[Baker94] and the “expose page” scheme in [Sullivan91a],
but Rio additionally protects against physical addresses that
would otherwise bypass the TLB. Sullivan and Stonebraker
measure the overhead of “expose page” to be 7% on a
debit/credit benchmark. The overhead of Rio’s protection
mechanism, which is negligible, is lower for two reasons.
First, Rio is implemented in the kernel and needs no system
call to change a page’s protection. Second, data in the file
cache is written in larger blocks than in debit/credit; this
amortizes the cost of changing protection over more bytes.

Banatre, et. al. implement stable transactional mem-
ory, which protects memory contents with dual memory
banks, a special memory controller, and explicit calls to
allow write access to specified memory blocks [Banatre91].
In contrast, Rio makes all files in memory reliable without
special-purpose hardware or replication.

A variety of general-purpose hardware and software
mechanisms may be used to help protect memory from soft-

ware faults. Papers by Johnson and Wahbe suggest various
hardware mechanisms to trap updates to certain memory
locations [Johnson82, Wahbe92]. Hive uses the Flash fire-
wall to protect memory against wild writes by other proces-
sors in a multiprocessor [Chapin95]. Hive preemptively
discards pages that are writable by failed processors, an
option not available when storing permanent data in mem-
ory. Object code modification has been suggested as a way
to provide data breakpoints [Kessler90, Wahbe92] and fault
isolation between software modules [Wahbe93].

Other projects seek to improve the reliability of mem-
ory against hardware faults such as power outages and
board failures. eNVy implements a memory board based on
non-volatile, flash RAM [Wu94]. eNVy uses copy-on-write,
page remapping, and a small, battery-backed, SRAM buffer
to hide flash RAM’s slow writes and bulk erases. The Dura-
ble Memory RS/6000 uses batteries, replicated processors,
memory ECC, and alternate paths to tolerate a wide variety
of hardware failures [Abbott94]. These schemes comple-
ment Rio, which protects memory from operating system
crashes.

7 Conclusions
We have made a case for reliable file caches: main

memory that can survive operating system crashes and be as
safe and permanent as disk. Our reliability experiments
show that, even without protection, warm reboot enables
memory to achieve reliability close to that of a write-
through file system. Adding protection makes memory even
safer than a write-through file system while adding essen-
tially no overhead. Eliminating all reliability-induced writes
to disk enables Rio to run 4-22 times as fast as systems that
give comparable reliability guarantees, 2-14 times as fast as
a standard, delayed-write file system, and 1-3 times as fast
as an optimized system that risks losing 30 seconds of data
and metadata.

Reliable file caches have striking implications for
future system designers:
• Write-backs to disk are no longer needed except when

the file cache fills up. This changes the assumptions
about the dominance of write traffic underlying some file
system research such as LFS [Rosenblum92, Baker91].
Delaying writes to disk until the file cache fills up
enables the largest possible number of files to die in
memory and enables remaining files to be written out
more efficiently. Thus Rio improves performance over
existing delayed-write systems.

• All writes are synchronously and instantly permanent,
improving reliability over current systems. Fast, syn-
chronous writes improve performance by an order of
magnitude for applications that require synchronous
semantics. Applications that do not require synchronous
semantics for reliability may become simpler because
synchronous events are easier to deal with than asyn-
chronous events. For example, the order that synchro-
nous writes become permanent matches the order in
which writes are issued.

To further test and prove our ideas, we have installed a
departmental file server using the Rio file cache with protec-

tion and with reliability-induced writes to disk turned off.
Among other things, this file server stores our kernel source
tree, this paper, and the authors’ mail. We plan to redo this
study on a different operating system and to perform a simi-
lar fault-injection experiment on a database system. We
believe these will show that our conclusions about mem-
ory’s resistance to software crashes apply to other large soft-
ware systems.

The Rio file cache provides a new storage component
for system design: one that is as fast, large, common, and
cheap as main memory, yet as reliable and stable as disk.
We look forward to seeing how system designers use this
new storage component.

8 Acknowledgments
We would like to thank Mary Baker, Greg Ganger,

Peter Honeyman, Trevor Mudge, Margo Seltzer, and the
anonymous reviewers for helping improve the quality of this
work.

9 References
[Abbott94] M. Abbott, D. Har, L. Herger,

M. Kauffmann, K. Mak, J. Murdock,
C. Schulz, T. B. Smith, B. Tremaine,
D. Yeh, and L. Wong. Durable Memory
RS/6000 System Design. InProceedings of
the 1994 International Symposium on
Fault-Tolerant Computing, pages 414–423,
1994.

[APC96] The Power Protection Handbook. Technical
report, American Power Conversion, 1996.

[Baker91] Mary G. Baker, John H. Hartman,
Michael D. Kupfer, Ken W. Shirriff, and
John K. Ousterhout. Measurements of a
Distributed File System. InProceedings of
the 13th ACM Symposium on Operating
Systems Principles, pages 198–212, Octo-
ber 1991.

[Baker92a] Mary Baker, Satoshi Asami, Etienne Deprit,
John Ousterhout, and Margo Seltzer. Non-
Volatile Memory for Fast Reliable File Sys-
tems. InFifth International Conference on
Architectural Support for Programming
Languages and Operating Systems (ASP-
LOS-V), pages 10–22, October 1992.

[Baker92b] Mary Baker and Mark Sullivan. The Recov-
ery Box: Using Fast Recovery to Provide
High Availability in the UNIX Environ-
ment. In Proceedings USENIX Summer
Conference, June 1992.

[Baker94] Mary Louise Gray Baker.Fast Crash Re-
covery in Distributed File Systems. PhD the-
sis, University of California at Berkeley,
January 1994.

[Banatre91] Michel Banatre, Gilles Muller, Bruno Roch-
at, and Patrick Sanchez. Design decisions
for the FTM: a general purpose fault tolerant
machine. InProceedings of the 1991 Inter-
national Symposium on Fault-Tolerant
Computing, pages 71–78, June 1991.

[Barton90] James H. Barton, Edward W. Czeck,
Zary Z. Segall, and Daniel P. Siewiorek.
Fault injection experiments using FIAT.
IEEE Transactions on Computers,
39(4):575–582, April 1990.

[Chapin95] John Chapin, Mendel Rosenblum, Scott De-
vine, Tirthankar Lahiri, Dan Teodosiu, and
Anoop Gupta. Hive: Fault Containment for
Shared-Memory Multiprocessors. InPro-
ceedings of the 1995 Symposium on Operat-
ing Systems Principles, December 1995.

[Chen96] Peter M. Chen, Wee Teck Ng, Gurushankar
Rajamani, and Christopher M. Aycock. The
Rio File Cache: Surviving Operating Sys-
tem Crashes. Technical Report CSE-TR-
286-96, University of Michigan, March
1996.

[Copeland89] George Copeland, Tom Keller, Ravi Krish-
namurthy, and Marc Smith. The Case for
Safe RAM. InProceedings of the Fifteenth
International Conference on Very Large
Data Bases, pages 327–335, August 1989.

[DEC94] DEC 3000 300/400/500/600/700/800/900
AXP Models System Programmer’s Manu-
al. Technical report, Digital Equipment Cor-
poration, July 1994.

[DeWitt84] D. J. DeWitt, R. H. Katz, F. Olken, L. D.
Shapiro, M. R. Stonebraker, and D. Wood.
Implementation Techniques for Main Mem-
ory Database Systems. InProceedings of
the 1984 ACM SIGMOD International Con-
ference on Management of Data, pages 1–8,
June 1984.

[Gait90] Jason Gait. Phoenix: A Safe In-Memory
File System.Communications of the ACM,
33(1):81–86, January 1990.

[Ganger94] Gregory R. Ganger and Yale N. Patt. Meta-
data Update Performance in File Systems.
1994 Operating Systems Design and Imple-
mentation (OSDI), November 1994.

[Gray90] Jim Gray. A Census of Tandem System
Availability between 1985 and 1990.IEEE
Transactions on Reliability, 39(4), October
1990.

[Hagmann87] Robert B. Hagmann. Reimplementing the
Cedar File System Using Logging and
Group Commit. InProceedings of the 1987
Symposium on Operating Systems Princi-
ples, pages 155–162, November 1987.

[Hartman93] John H. Hartman and John K. Ousterhout.
Letter to the Editor.Operating Systems Re-
view, 27(1):7–9, January 1993.

[Hennessy90] John. L. Hennessy and David A. Patterson.
Computer Architecture: A Quantitative Ap-
proach, 2nd Edition. Morgan Kaufmann
Publishers, Inc., 1990. page 493.

[Howard88] John H. Howard, Michael L. Kazar,
Sherri G. Menees, David A. Nichols,
M. Satyanarayanan, Robert N. Sidebotham,
and Michael J. West. Scale and Perfor-
mance in a Distributed File System.ACM
Transactions on Computer Systems,
6(1):51–81, February 1988.

[Johnson82] Mark Scott Johnson. Some Requirements
for Architectural Support of Software De-
bugging. InProceedings of the 1982 Inter-
national Conference on Architectural
Support for Programming Languages and
Operating Systems (ASPLOS), pages 140–
148, April 1982.

[Kanawati95] Ghani A. Kanawati, Nasser A. Kanawati,
and Jacob A. Abraham. FERRARI: A Flex-
ible Software-Based Fault and Error Injec-
tion System. IEEE Transactions on
Computers, 44(2):248–260, February 1995.

[Kane92] Gerry Kane and Joe Heinrich.MIPS RISC
Architecture. Prentice Hall, 1992.

[Kao93] Wei-Lun Kao, Ravishankar K. Iyer, and
Dong Tang. FINE: A Fault Injection and
Monitoring Environment for Tracing the
UNIX System Behavior under Faults.IEEE
Transactions on Software Engineering,
19(11):1105–1118, November 1993.

[Kessler90] Peter B. Kessler. Fast breakpoints: Design
and implementation. InProceedings of the
1990 Conference on Programming Lan-
guage Design and Implementation (PLDI),
pages 78–84, June 1990.

[Lee93] Inhwan Lee and Ravishankar K. Iyer.
Faults, Symptoms, and Software Fault Tol-
erance in the Tandem GUARDIAN Operat-
ing System. InInternational Symposium on
Fault-Tolerant Computing (FTCS), pages
20–29, 1993.

[Leffler89] Samuel J. Leffler, Marshall Kirk McKu-
sick, Michael J. Karels, and John S. Quar-
terman.The Design and Implementation of
the 4.3BSD Unix Operating System. Addi-
son-Wesley Publishing Company, 1989.

[Liskov91] Barbara Liskov, Sanjay Ghemawat, Robert
Gruber, Paul Johnson, Liuba Shrira, and
Michael Williams. Replication in the Harp
File System. InProceedings of the 1991
Symposium on Operating System Princi-
ples, pages 226–238, October 1991.

[McKusick90] Marshall Kirk McKusick, Michael J.
Karels, and Keith Bostic. A Pageable Mem-
ory Based Filesystem. InProceedings US-
ENIX Summer Conference, June 1990.

[Moran90] J. Moran, Russel Sandberg, D. Coleman,
J. Kepecs, and Bob Lyon. Breaking
Through the NFS Performance Barrier. In
Proceedings of EUUG Spring 1990, April
1990.

[Ohta90] Masataka Ohta and Hiroshi Tezuka. A Fast
/tmp File System by Delay Mount Option.
In Proceedings USENIX Summer Confer-
ence, pages 145–150, June 1990.

[Ousterhout85] John K. Ousterhout, Herve Da Costa, et al.
A Trace-Driven Analysis of the UNIX 4.2
BSD File System. InProceedings of the
1985 Symposium on Operating System Prin-
ciples, pages 15–24, December 1985.

[Rosenblum92] Mendel Rosenblum and John K. Ouster-
hout. The Design and Implementation of a
Log-Structured File System.ACM Transac-
tions on Computer Systems, 10(1):26–52,
February 1992.

[Silberschatz94] Abraham Silberschatz and Peter B. Galvin.
Operating System Concepts. Addison-Wes-
ley, 1994. page 200.

[Sites92] Richard L. Sites, editor.Alpha Architecture
Reference Manual. Digital Press, 1992.

[SPE91] SPEC SDM Release 1.0 Technical Fact
Sheet. Technical report, Franson and Hag-
gerty Associates, 1991.

[Sullivan91a] M. Sullivan and M. Stonebraker. Using
write protected data structures to improve
software fault tolerance in highly available
database management systems. InProceed-
ings of the 1991 International Conference
on Very Large Data Bases (VLDB), pages
171–180, September 1991.

[Sullivan91b] Mark Sullivan and R. Chillarege. Software

Defects and Their Impact on System Avail-
ability–A Study of Field Failures in Operat-
ing Systems. InProceedings of the 1991
International Symposium on Fault-Tolerant
Computing, June 1991.

[Tanenbaum95] Andrew S. Tanenbaum.Distributed Oper-
ating Systems. Prentice-Hall, 1995. page
146.

[Wahbe92] Robert Wahbe. Efficient Data Breakpoints.
In Proceedings of the 1992 International
Conference on Architectural Support for
Programming Languages and Operating
Systems (ASPLOS), October 1992.

[Wahbe93] Robert Wahbe, Steven Lucco, Thomas E.
Anderson, and Susan L. Graham. Efficient
Software-Based Fault Isolation. InProceed-
ings of the 14th ACM Symposium on Oper-
ating Systems Principles, pages 203–216,
December 1993.

[Wu94] Michael Wu and Willy Zwaenepoel. eNVy:
A Non-Volatile, Main Memory Storage
System. InProceedings of the 1994 Interna-
tional Conference on Architectural Support
for Programming Languages and Operat-
ing Systems (ASPLOS), October 1994.

