
Fast Cluster Failover Using Virtual Memory-Mapped Communication

Yuanyuan Zhou∗, Peter M. Chen+, and Kai Li∗

∗ Computer Science Department
Princeton University
Princeton, NJ 08544

{yzhou, li}@cs.princeton.edu

+Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, MI 48109-2122
pmchen@eecs.umich.edu

Abstract

This paper proposes a novel way to use virtual memory-
mapped communication (VMMC) to reduce the failover time
on clusters. With the VMMC model, applications’ virtual
address space can be efficiently mirrored on remote mem-
ory either automatically or via explicit messages. When a
machine fails, its applications can restart from the most re-
cent checkpoints on the failover node with minimal memory
copying and disk I/O overhead. This method requires little
change to applications’ source code. We developed two fast
failover protocols: deliberate update failover protocol (DU)
and automatic update failover protocol (AU). The first can
run on any system that supports VMMC, whereas the other
requires special network interface support.

We implemented these two protocols on two different
clusters that supported VMMC communication. Our re-
sults with three transaction-based applications show that
both protocols work quite well. The deliberate update pro-
tocol imposes 4-21% overhead when taking checkpoints ev-
ery 2 seconds. If an application can tolerate 20% overhead,
this protocol can failover to another machine within 4 mil-
liseconds in the best case and from 0.1 to 3 seconds in the
worst case. The failover performance can be further im-
proved by using special network interface hardware. The
automatic update protocol is able to take checkpoints every
0.1 seconds with only 3-12% overhead. If 10% overhead is
allowed, it can failover applications from 0.01 to 0.4 seconds
in the worst case.

1 Introduction

Reliability and availability are of critical importance for ap-
plications where computer malfunctions have catastrophic
results. Examples include aircraft flight-control systems,
hospital patient monitors, and financial on-line transactional
applications. These applications require computer systems
to continue functioning in the presence of hardware and soft-
ware failures. In the past, custom-designed, fault-tolerant
hardware has been used to provide highly reliable and avail-
able systems. Tandem [2, 1, 32, 18] and Stratus [33] are ex-

amples of such systems. However, custom systems tend to
be expensive and do not track technology trends as quickly
as commodity hardware.

Recent efforts have focused on building fault-tolerant
systems using clusters of commodity components. The Mi-
crosoft cluster service (MSCS) [37] and the Digital TruClus-
ter [19] are two such examples. If a node crashes in a clus-
ter, applications running on the node migrate transparently
to another node in the same cluster. This is called the
“failover” process. Failover allows the system to continue
providing services, although the overall performance may
degrade.

However, most existing fault-tolerant clusters take more
than 10 seconds to failover applications [8, 37]. This is un-
acceptable for mission-critical applications such as aircraft
flight-control systems. There are two main factors that con-
tribute to this high failover delay. The first is that the
failover process in these systems usually involves access to
external shared storage, such as shared disks. At periodic
checkpoint intervals, an application must write important
state information and other data to a shared disk. When a
node fails, its checkpointed data is reloaded from the shared
disk into memory before continuing the application on an-
other node. As a result, the memory state recovery perfor-
mance is limited by slow disk accesses. The second factor
is that existing cluster failover schemes limit the checkpoint
frequency for applications that cannot afford the high check-
pointing overhead associated with writing to disks. Existing
cluster failover schemes have high worst-case recomputation
costs, which is determined by the checkpoint interval time.

Another line of related research is in the area of non-
volatile and persistent memory. For example, the eNVy sys-
tem [38] uses non-volatile Flash RAM to serve as a perma-
nent data repository. It can tolerate hardware faults such
as power outages. The Rio file cache [15] makes ordinary
main memory safe for persistent storage by enabling mem-
ory to survive machine crashes. The main advantage of using
non-volatile or persistent memory is that it can reduce the
overhead of accessing persistent storage by several orders of
magnitude. However, these approaches have not addressed
how to failover quickly. Although these systems preserve
data if a node fails, applications running on the node will be
unavailable until the node restarts or its memory is moved to
another node. When using the traditional failover method,
the nodes have to periodically write their state to shared
storage. This eliminates the benefits of using non-volatile
or persistent memory. The challenging question is what ar-
chitectural support and algorithms are needed to achieve
fast failover for clusters.



Primary

Backup

N
et

w
o

rk

F
as

tNetwork

(LAN or WAN) Disk

Client

Client

...

Figure 1: An example of highly reliable and available clus-
ters

This paper proposes a novel way to use virtual memory-
mapped communication (VMMC) to reduce the failover time
on clusters. Our fast failover method includes two parts: fast
checkpointing and fast failover. When a node fails, its ap-
plications can restart from the most recent checkpoints on
the failover node where most of the stack, heap, and other
memory data are already in place. In the best scenario, the
node that takes over can immediately continue providing
services with no memory copying or disk access overhead.
Another feature of our method is application transparency.
It requires little change to applications’ source code. We
developed two fast failover protocols: one requiring special
network interface support and the other requiring no special
network interface support.

To evaluate these protocols and investigate the design
tradeoffs of the network interface hardware, we implemented
two fault-tolerant PC clusters, one using SHRIMP network
interfaces [14, 13] and the other using Myrinet [3, 9, 7]
network interfaces. Both systems support virtual memory
mapped communication. Our results with three transaction-
based applications show that VMMC is a convenient and ef-
ficient communication mechanism to support fast failover on
clusters. With no special network interface support, our sys-
tem imposes 4-21% overhead when taking checkpoints every
2 seconds. If applications can tolerate 20% overhead, the
deliberate update failover protocol can failover to another
node within 4 milliseconds in the best case and from 0.1 to
3 seconds in the worst case. The failover performance can
be further improved by using special network interface hard-
ware. The automatic update failover protocol is able to take
checkpoints every 0.1 seconds with only 3-12% overhead. If
10% overhead is allowed, it can failover applications from
0.01 to 0.4 seconds in the worst case.

2 Background

Building a reliable and available system usually involves re-
dundant hardware components so that working components
can take over when failures occur. Figure 1 shows the ar-
chitecture for a simple cluster that provides reliability and
availability. The primary node runs an application, while
the backup node either stands by or runs other applications.
The primary communicates with the backup through a net-
work. The backup node can still access disk data when
the primary fails because dual-ported disks are connected
to both nodes.

A typical way to implement a highly reliable and avail-
able system is to checkpoint the application’s data periodi-
cally to shared disks [1]. When the primary fails, the backup
node will reload the checkpoint data from shared disks and
continue the application from the most recent checkpoint.
Taking checkpoints more frequently generally increases over-

head during normal operation, but reduces recovery time by
minimizing the amount of lost work that must be redone.
The automatic process for detecting a failure and switching
to the backup node at the most recent checkpoint is called
failover.

Figure 2 illustrates the failover process. A common way
to detect failures is to use a periodic heartbeat mechanism [24].
Application C first runs on the primary, which periodically
sends an “I’m alive” message to the backup. C checkpoints
every T seconds. After C runs for a while, the primary
dies at time x. When the backup discovers the absence of
the heartbeat message from the primary, it first confirms
the primary’s failure using some voting mechanism. Once
the failure is detected, the backup takes over. It first loads
C’s data from shared disks and then restarts C at its most
recent checkpoint. Finally, the backup has to redo all the
computation from the most recent checkpoint to the point
where the primary failed. After these steps, the system can
continue providing service to its clients.

Three factors are relevant when evaluating a fault toler-
ant cluster: system overhead, failover delay, and application
transparency. System overhead is measured by two metrics:

• Relative overhead: the amount of overhead relative to
the total execution time. This includes the overhead
for taking checkpoints and any other operations that
are necessary for correct failover. The overhead usu-
ally depends on how frequently checkpoints are taken.
In general, the more frequently an application check-
points, the more execution overhead is added. The
traditional method of checkpointing to disks is inef-
ficient. For example, even if less than 4 KBytes of
data are modified during a checkpoint interval, it takes
more than 10 milliseconds to write the data to a fast
storage system [16]. Therefore, applications have to re-
duce the frequency of checkpoints in order to lower the
percentage overhead below some acceptable threshold
(e.g. 10%).

• Maximum checkpoint time. Some applications con-
sider this an important metric because checkpoints
may block, that is, no service is provided during a
checkpoint. For example, it is unacceptable to block
for more than two seconds for many on-line transac-
tion processing systems because they require that ev-
ery transaction finishes within two seconds.

The failover delay is an important metric of a fault-
tolerant system, especially for mission-critical applications.
This is because the delay defines the amount of time the
service is unavailable. The failover delay includes the time
to detect failure, recover memory state to the most recent
checkpoint, and redo lost computation until the failure point.
Most existing cluster systems take a long time to failover
(more than 10 seconds), mainly for two reasons. First, ap-
plications must reload data from disk to recover the state
at the most recent checkpoint. Second, most checkpoint in-
tervals are large, which leads to a long redo process during
recovery. For example, if the application checkpoints every
10 seconds, the backup has to redo 10 seconds of work (in
the worst case) after it takes over from the primary.

Application transparency reflects how much applications
need to be involved in recovery. The ideal case is full trans-
parency, where any program written for an unreliable sys-
tem can failover successfully. For example, the Stratus sys-
tem [33] appears to users as a conventional single-node com-
puter that does not require special application code for fail-
ure detection and recovery. However, many other existing



�������� ������

������

checkpoint

h
ea

rt
b

ea
t

detect failure redo computationrecover memory

x
crashT

failover time

backup

primary
checkpoint

Figure 2: Failover process

fault-tolerant systems require applications to help check-
point their state and/or assist during failures. In some sys-
tems [37, 19], applications must provide recovery scripts that
are executed by the system during failover.

In this paper, we propose a new technique that not only
reduces the system overhead and failover delay, but also re-
quires very little change to applications’ source code [29].

3 Fast failover

The main idea of our fast failover method is to mirror appli-
cations’ virtual address space on the backup so that when
the primary fails, the backup can take over quickly since it
has most of the memory data in place. As in many other
similar fault-tolerant systems, we also assume that the pri-
mary and backup fail independently.

In this section, we present our approach by first describ-
ing the virtual memory-mapped communication model and
then presenting the two failover protocols. Lastly, we de-
scribe how to support transaction-based applications and
failure detection.

3.1 Virtual Memory-Mapped Communication

A fast communication mechanism is needed to transfer data
efficiently between the two application virtual address spaces
(primary and backup) in order to replicate application data
while minimizing interference with the computation. Among
existing communication models, virtual memory-mapped com-
munication (VMMC) [14, 9, 7] is a good candidate because it
provides direct data transfer between virtual address spaces.
With the VMMC model, the receiver exports variable-sized
regions of contiguous virtual memory, called receive buffers,
with a set of permissions. Any other process, with proper
permission, can import the receive buffer to a proxy receive
buffer, which is a local representation of the remote receive
buffer.

Like most commodity network interfaces, VMMC sup-
ports deliberate update communication. This requires the
sender to explicitly initiate a data transfer by specifying a
local virtual address, a remote virtual address (proxy), and a
transfer size. The data is delivered directly from the sender’s
to the receiver’s virtual address space without memory copy-
ing.

Using a custom network interface (SHRIMP [14, 13])
VMMC also supports automatic update data transfers. This
type of data transfer propagates updates automatically to
the corresponding imported receive buffer. To use auto-
matic update, a portion of local virtual memory is bound to
an imported receive buffer such that all writes to the bound
memory are automatically transferred to the remote receive
buffer as a side-effect of local memory writes.

3.2 Automatic update failover protocol

The automatic update mechanism can transfer updates while
the application is executing without requiring an explicit
send call. The automatic update failover protocol (AU) is
designed for a network interface with this automatic data
propagation capability.

The AU protocol creates two processes when the applica-
tion starts, one running on the primary and one running on
the backup. The primary process does all the computation
by executing the application code, while the backup process
only handles requests from the primary process.

The virtual address space of the backup process is “mapped”
to the primary process using the VMMC mechanism. The
mapping is established by having the backup process export
its data segment (as receive buffers) to the primary process.
The primary process imports and binds these receive buffers
to the corresponding addresses in its data segment. By do-
ing this, updates to the primary process’s data segment will
be transferred to the backup process’s data segment while
the application is executing. That is, a local write to the
data segment of the primary process will be automatically
propagated to the corresponding address of the backup pro-
cess.

The checkpoint procedure is quite simple in this protocol.
Because all data segment modifications since the last check-
point have been automatically propagated to the backup
process, the primary only needs to send the current execu-
tion environment at the checkpoint. The execution environ-
ment includes important register values, instruction coun-
ters, stack pointers, etc. The checkpoint procedure com-
pletes after the primary receives an acknowledgment from
the backup. Waiting for an acknowledgment is necessary
for the primary to ensure that all data is in place at the
backup.

As in most checkpointing systems, an undo log must be
generated on the backup before its data is overwritten with
new values propagated from the primary. The undo logs are
used to roll back to the most recent checkpoint after appli-
cation failover. We use copy-on-write to create the undo log
on the backup. All user pages are initially write protected.
The first write attempt to a page triggers a page fault on
the primary. The page fault handler sends an undo log re-
quest to the backup. The backup then makes a duplicate
of the faulted page and acknowledges the primary. Once
the primary receives the backup’s reply, it unprotects the
page and restarts the faulting instruction. At checkpoints,
all dirty pages are write protected to catch write attempts
in the next checkpoint interval.

The backup takes over once it detects that the primary
has failed. It first rolls back all the changes since the most
recent checkpoint by copying undo logs back to the corre-
sponding pages. After the backup recovers the memory state
to the most recent checkpoint it redos any lost computation
and then starts executing the application.



}

undo log request

undo log reply

backup process

} make undo log

undo log request

undo log reply

checkpoint request

checkpoint reply

Automatic update failover protocol

new data

make undo log

backup process

checkpoint

page fault page fault

checkpoint new data + request

checkpoint reply

primary processprimary process

Deliberate update failover protocol

Figure 3: The failover protocols

There are two exceptions of data that is not mapped
between the two processes. First, a special region of the
backup’s address space is not mapped because it contains
all the data used in our failover library and the underlying
VMMC libraries. Second, the stack segment is not mapped
because our operating system (Linux) does not provide a
separate stack to handle signals. Copy-on-write is difficult
to implement since the copy-on-write handler itself needs to
write to the stack. Some operating systems provide a sepa-
rate stack to handle signals. Instead, we use a shadow-page
mechanism for the stack. The shadow buffer mechanism
avoids making a full copy of the whole stack by having two
receive buffers on the backup for the stack. The two receive
buffers are used for receiving the entire primary stack in an
alternating fashion.

Besides the application’s user data, system states also
need to be recovered in order to successfully failover an ap-
plication. Examples of system states include open files/sockets,
file positions, and page protections. Many techniques for
recovering system states have been developed in other fault-
tolerant systems. For example, one can intercept all system
calls and provide a virtual interface to the application [17].
In order to redo the computation on the backup when the
primary fails, the failover system must be able to repro-
duce signals, messages, and any other external events. One
simple solution to this problem is to checkpoint before ev-
ery non-abortable event [17]. An alternative solution is to
log those events and replay them after the backup takes
over [36, 8, 23, 34]. Our prototype implementation uses the
second approach and is able to recover all operating system
states which are necessary to failover applications used in
our experiments.

3.3 Deliberate update failover protocol

The deliberate update failover protocol (DU) is similar to
the automatic update protocol. The fundamental difference
between the two protocols is that the DU protocol transfers
the primary data to the backup using explicit messages. The
DU protocol incurs higher data-transfer overhead, but it can
be implemented on most existing cluster systems.

At a new checkpoint, the primary process sends the backup
all pages that were modified since the last checkpoint. Un-
like the AU protocol, the DU protocol does not allow com-
putation during checkpoint-data transfer. Therefore, the
checkpoint procedure in the DU protocol may impose more

overhead than the AU protocol. On the other hand, the
DU protocol can hide the undo log overhead by creating
undo logs on the backup in parallel while the primary is
computing. The page-fault handler proceeds as soon as it
sends the undo log request to the backup. If the commu-
nication mechanism guarantees reliable data transfer, there
is no need for the primary to wait in the page fault han-
dler since the data on the backup is not updated until the
next checkpoint. At checkpoints, the primary process must
check whether the backup has finished creating the undo log
before propagating the new data.

Figure 3 illustrates the two protocols performing a check-
point. The AU protocol has to wait in the page fault handler
to make undo logs but does not need to send new data at
checkpoints. On the other hand, the DU protocol allows
page faults to proceed without blocking but has to send up-
dates at checkpoints.

3.4 Optimizations for Transaction-Based Applications

Two special function calls, “ignore region” and
“register recover function” are provided to transaction-based
applications to enable better performance. The “ignore region”
function is used to tell the failover system to ignore some re-
gions when making undo logs. The “register recover function”
call is used by applications to register a special function
which is called after the backup takes over. With these two
calls, applications themselves can make undo logs for some
data regions and recover them with the registered recovery
function when the primary fails. For example, a database
application can choose to ignore its data buffer. When the
backup takes over, it only rolls back the application’s con-
trol data. The recovery function provided by the application
is called to rollback the data buffer. This mechanism may
improve overall performance because database applications
usually create undo logs and recover dirty data more effi-
ciently.

For transaction-based applications, the “ignore region”
optimization has less of an effect on the DU protocol than
the AU protocol. Although it is unnecessary to make undo
logs for ignored regions, all modifications to these regions
still need to be propagated to the the backup. The benefit
for the DU protocol is minimal because it must still use
page faults to find dirty pages and at the next checkpoint, it
transfers data for each modified page whether it is ignored
or not. The AU protocol has no overhead for replicating



ignored regions to the backup because all modifications are
propagated automatically.

Our failover system uses the 1-safe commit mechanism [22].
In a 1-safe design, the primary process goes through the
standard commit logic and declares completion when the
commit record is written to the local log. This mechanism
provides the same throughput and response time as a single-
node design. However, the 1-safe design risks the loss of
transactions. This risk is higher with the DU protocol than
with the AU protocol because AU propagates updates auto-
matically as a side-effect of local writes to the log. Moreover,
the risk can be completely eliminated with the AU protocol
by having the primary wait for the backup’s reply before
declaring completion. To achieve similar a result with DU
requires slightly higher overhead because the DU protocol
needs to explicitly transfer the new log records to the backup
first.

3.5 Primary Node Failure Detection

Primary node failure detection can be implemented using
the classic heartbeat mechanism [37]. The primary ma-
chine periodically sends a sequenced message to the backup,
over a network that is marked for internal communication.
The backup raises a failure suspicion event after it detects a
number of consecutive missing heartbeats from the primary.
Once a failure suspicion is raised, a standard voting protocol
can be used to confirm that the primary process is out of
service, because the primary machine is down, the applica-
tion process has crashed, or the link from the primary to the
network is broken.

To implement a fast failover system, it is very important
to have a failure detection mechanism that detects failures
quickly and precisely. Most existing systems use alarm sig-
nals to periodically generate heartbeats. The main draw-
back of this method is that the alarm handler may not be
triggered on exact intervals due to the operating system’s
process scheduling. As a result, the backup must wait for
a long detection period before triggering a failure suspicion.
The second drawback is the context switch overhead which
limits the heartbeat frequency. For example, the Microsoft
Cluster Service sends a heartbeat every 1.2 seconds and the
detection period for a failure suspicion is 7.2 seconds [20].

Our system implements failure detection on the network
interface. The network interface on the primary node pe-
riodically injects the network with a heartbeat message for
the backup. When the network interface on the backup de-
tects a number of consecutive missing heartbeats, it starts
the failure suspicion process. Once the primary failure is
confirmed, it generates an interrupt for the backup process
to take over from the primary. In our prototype implemen-
tations, the primary sends heartbeats to the backup every
millisecond and the detection period for a failure suspicion
is 3 milliseconds.

4 Testbeds

To evaluate the two fast failover protocols, we require
a platform that support virtual memory-mapped commu-
nication. We constructed two PC clusters, one connected
with SHRIMP network interfaces [14, 13] and the other with
Myrinet[3, 9, 7] network interfaces. The SHRIMP cluster
provides both automatic update and deliberate update vir-
tual memory-mapped communication, whereas the Myrinet
cluster can only support deliberate update. However, the
Myrinet cluster can better represent new generation systems

SHRIMP Myrinet
CPU speed (Mhz) Pentium 66 Pentium Pro 200
L2 Cache (KBytes) 256 512
DRAM (MBytes) 64 256
1 word transfer (µs) 8 25
4K Page Transfer (µs) 180 87
4K Page Copy (µs) 90 68
Page Fault (µs) 80 20
Page Protection (µs) 22 10

Table 1: System configuration and basic operation costs on
the SHRIMP and Myrinet clusters.

than the SHRIMP cluster. Both systems run the Linux op-
erating system. Table 1 compares the system configuration
and basic operation costs on these two clusters.

4.1 SHRIMP Cluster

The custom network interface is the key system compo-
nent of the SHRIMP cluster. It connects each PC node to
the routing backplane and implements hardware support for
virtual memory-mapped communication (VMMC) [14, 13].
The network interface hardware consists of two printed cir-
cuit boards because it connects to both the memory bus and
the I/O bus. The memory bus board, called “snoop logic”,
simply snoops all main-memory writes, passing address and
data pairs to the network interace.

4.2 Myrinet Cluster

The Myrinet cluster can only support deliberate update vir-
tual memory-mapped communication [9, 7]. Myrinet is a
high-speed local-area network or system-area network for
computer systems. A Myrinet network is composed of point-
to-point links that connect hosts and switches. The network
link can deliver 1.28 Gbits/s bandwidth in each direction [3].
The PCI network interface is composed of a 32-bit control
processor called LANai (version 4.1) with 256 KBytes of
SRAM (Static Random Access Memory). The LANai pro-
cessor is clocked at 33 MHz and executes a LANai Control
Program (LCP) which supervises the operation of the DMA
engines and implements a low-level communication protocol.

5 Performance Evaluation

To evaluate our fast failover method, we implemented the
two failover protocols as user level libraries on our testbeds.
The failover libraries use periodic timer signals to trigger
checkpoints. The libraries are also responsible for detecting
failures and automatically failing over to the backup.

The goal of our experiments is to answer three questions:

• How much is the system overhead?

• What is the maximum time for a checkpoint?

• How much does it take to failover applications from
the primary to the backup?

We conducted several experiments with a variety of applica-
tions. The results on both platforms are similar. Therefore,
we only present the performance evaluation on the SHRIMP
cluster. We then discuss the impact of different system con-
figurations. Finally, we use the results with two SPEC95
applications to discuss the requirement for the network in-
terface design.



0 200 400 600 800 1000

update size (KBytes)

20000

40000

60000

80000

100000

ov
er

he
ad

 (
M

ic
ro

se
co

nd
s)

 
AU
DU

Figure 4: Checkpoint overhead vs. update size per check-
point on the SHRIMP cluster with the AU and DU proto-
cols.

5.1 Applications

The first set of experiments use three transaction applica-
tions: Debit-Credit (based on TPC-B), Order-Entry (based
on TPC-C) and Postgres. The system successfully fails over
all three applications with almost no modification to the
applications’ source code.

Debit-Credit and Order-Entry are based on TPC-B and
TPC-C, which are two widely used transaction-processing
benchmarks. We ran the two benchmarks on top of a light-
weight, main-memory transaction library, Rio Vista [27].
The Rio Vista is modified slightly by inserting two func-
tion calls, “ignore region” and “register recovery func”, to
improve the performance (See Section 3.4). We chose the
largest possible database sizes which fit in main memory.

Postgres [35] is an object relational database developed
at University of Berkeley. This application does not as-
sume stable main memory. When a transaction commits,
it flushes all dirty data modified by the transaction to disks
with synchronous writes. The numbers are collected with
the Postgres Wisconsin Benchmark.

5.2 Microbenchmark

To measure the system overhead, we first use a microbench-
mark to quantify the relationship between the absolute sys-
tem overhead and working set size for the two failover pro-
tocols. In this microbenchmark, every checkpoint interval
modifies some pages by writing the first word of each page.
We vary the number of modified pages from 1 page (4 Kbyte)
to 256 pages (1 Mbyte). Figure 4 shows the relationship
between the number of bytes touched per checkpoint inter-
val and the overhead incurred per interval, which includes
both the checkpoint cost and page fault handling time.

The minimum overhead is 185 µs per checkpoint for both
protocols. This overhead is achieved with only touching a
variable in the stack. Most of the 185 µs is used to send
the stack to the backup. Since our implementation does not
use copy-on-write for stacks because of the Linux limitation,
both protocols have to explicitly transfer the stack to the
backup (See Section 3.2. No page faults occur in this case.

The overhead with the AU protocol increases slower than
the DU protocol when the working set increases. The AU
protocol has almost constant checkpoint cost, but it takes
220 µs to handle the write protection signal for each page
modified. The 200 µs includes 80 µs to invoke a page fault,
100 µs to make an undo log on the backup and 20 µs to
change the page protection. With the DU protocol, each
modified page adds 290 µs of the overhead, including 180

µs for sending the page to the backup, 80 µs for triggering
a page fault and 30 for handling the page fault. Since the
cost for each modified page using the AU protocol is smaller
than the DU protocol, the AU curve grows 30% slower than
DU.

In general, there is no fixed relationship between abso-
lute overhead (time) and relative overhead (fraction of exe-
cution time). Real programs that touch a larger amount of
data in an interval are likely to spend more time on com-
puting than programs that touch only a small amount of
data. Hence their checkpoint overhead will be amortized
over a longer period of time. The main factor in determining
relative overhead is locality. Programs that perform more
work per touched page will have lower relative overhead than
programs that touch many pages without performing much
work. Therefore, the relative overhead is application depen-
dent.

5.3 Relative Overhead

Figure 5 shows the relative overhead with different check-
point interval lengths for the three applications. The auto-
matic update failover protocol is able to take checkpoints
every 0.1 seconds while adding only 3-12% overhead. The
deliberate update protocol has higher overhead than the AU
protocol with the two TPC benchmarks and similar over-
head with Postgres.

With the Debit-Credit and Order-Entry applications, failover
can be efficiently supported with the automatic update pro-
tocol. For example, the AU protocol has only 5% overhead
when the two applications checkpoint every 0.1 seconds. If
the tolerable overhead is 10%, the application can afford to
checkpoint every 0.05 seconds. As checkpoints are taken less
frequently, the relative overhead drops because fewer page
faults occur.

The deliberate update protocol imposes higher overhead
than the AU protocol on the Debit-Credit and Order-Entry
applications. For example, the protocol has 66% overhead
when checkpoints are taken every 0.1 seconds in the Debit-
Credit application. To reduce the overhead below 10%, the
application has to increase the checkpoint interval to more
than 3 seconds. The DU protocol overhead is mostly spent
on transferring dirty pages in the database buffers to the
backup process. Since these buffers are “ignored” for making
undo logs, modification to those buffers imposes no overhead
with the AU protocol. However, with the DU protocols, each
dirty page in the database buffers adds 80 µs to trigger the
page fault and 180 µs to send the page to the backup.

In the Debit-Credit application, the relative overhead
with the deliberate update protocol remains constant when
varying the checkpoint interval from 0.01 to 0.1 seconds.
The main reason is that this application modifies data records
randomly. Although the number of checkpoints decreases by
some factor, the number of pages modified during each in-
terval is increased by the same factor. Small amount of data
reuse happens after the checkpoint interval time is greater
than 0.1 seconds and increases gradually with the interval
time. As a result, the relative overhead drops as check-
points are taken less frequently. The percentage overhead
decreases earlier in Order-Entry than in Debit-Credit be-
cause the Order-Entry application exposes better data lo-
cality than the Debit-Credit application.

Both protocols have low overhead with Postgres. The rel-
ative overhead of both protocols is less than 12% with this
application when the system is checkpointing every 0.1 sec-
onds. Since Postgres does not assume stable main memory,



0.01 0.1 1 10

checkpoint interval (seconds)

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

ve
rh

ea
d

Debit-Credit

0.01 0.1 1 10

checkpoint interval (seconds)

0

20

40

60

80

100

Order-Entry

DU
AU

0.01 0.1 1 10

checkpoint interval (seconds)

0

20

40

60

80

100

Postgres

Figure 5: Relative overhead for varying intervals with three transaction based applications on the SHRIMP cluster. The
Debit-Credit and Order-Entry benchmarks run on top of the Rio Vista main memory database [27].

it flushes dirty data to disks with synchronous writes at com-
mit time. Accessing disks is usually two orders of magnitude
slower than transferring data to remote memory. Therefore,
in this application, the total execution time is dominated by
disk I/Os rather than the checkpointing overhead.

5.4 Maximum Checkpoint Time

The maximum time for a checkpoint is very small in the au-
tomatic update protocol (See Figure 6). The reason is that
most of the application data is automatically propagated
to the backup as a side-effect of local writes in this proto-
col. At each checkpoint, the primary first sends the backup
its important register values and the entire stack and then
write-protects all un-ignored regions. The primary can pro-
ceed as soon as the backup replies. Since the cost of all these
operations are independent of the number of modified pages,
the absolute checkpoint time remains almost constant with
different checkpoint interval time. The maximum time for a
checkpoint is always less than 10 milliseconds with the AU
protocol for all applications and checkpoint frequencies.

In contrast to the AU protocol, the maximum time for
a checkpoint in the DU protocol is very high and mostly
increases with the length of checkpoint intervals. In the
DU protocol, dirty pages are transferred to the backup at
checkpoints using explicit messages. Therefore, DU has to
spend 180 µs for every page that is modified during the last
checkpoint interval. In general, the number of dirty pages
increases when the system checkpoints less frequently. The
maximum and average time for a checkpoint are similar in
the two TPC applications. But the maximum time is sig-
nificantly higher than the average time in Postgres because
writes are not evenly distributed across the whole execution
time in this application.

5.5 Failover Delay

The worst case happens when the primary fails at the end
of a checkpoint interval, that is, right before the primary
propagates the last piece of data to the backup. In this
scenario, the backup not only needs to roll back all changes,
but also has to redo all the lost computation from the most
recent checkpoint to the point when primary fails.

Table 2 gives the worst case failover delay with the two
protocols under the assumption that the application can
tolerate 10% or 20% of relative overhead. Although our
applications can successfully failover from the primary to

Time in seconds
Application DU AU

10% 20% 10% 20%
Debit-Credit 3.817 3.070 0.055 0.055
Order-Entry 4.069 3.224 0.071 0.027
Postgres 0.465 0.153 0.462 0.096

Table 2: Worst case failover delay for two different relative
overheads (10% and 20%) on the SHRIMP cluster.

the backup and continue providing services, it is impossi-
ble to measure the worst case failover delay. Therefore, we
calculate the worst case delay by adding the basic failover
cost and the maximum time to make undo log and redo lost
computation. The basic failover cost in our system is 4 mil-
liseconds. The undo time is computed by multiplying the
average cost for copying a page with the maximum number
of page faults during a checkpoint interval. The recompute
time is the smallest interval time to achieve the given rela-
tive overhead.

The automatic update protocol can failover within 0.01-
0.4‘seconds while adding 10% of the overhead. If applica-
tions can tolerate 20% overhead, the failover time can be
reduced to 0.01-0.1 seconds. The failover time with the de-
liberate protocol is 3-4 seconds for the two TPC benchmarks
because the 10% overhead can only be achieved when check-
points are taken less frequently than every 3 seconds. The
DU protocol can failover within 0.01 to 0.4 seconds for the
Postgres application.

5.6 Impact of Configuration Scaling

Starting from the point study on the SHRIMP cluster, one
can roughly project the results on systems with better sys-
tem configuration such as faster processor, higher memory
bandwidth or higher network bandwidth. We only consider
applications with uniform updates because they provide a
lower bound of the relative checkpoint overhead for our
failover scheme. The TPC benchmarks are two such ap-
plications.

For a transaction-based application with uniform up-
dates, we use R to represent the transaction rate on a plat-
form A. Then the computation time for each transaction
is 1

R . Suppose each transaction modifies P pages and the
set of pages modified by each transaction is distinct. We



0.01 0.1 1 10

checkpoint interval (secconds)

0.0

0.2

0.4

0.6

ch
ec

kp
oi

nt
 t

im
e 

(s
ec

on
ds

)

Debit-Credit

0.01 0.1 1 10

checkpoint interval (secconds)

0.0

0.2

0.4

0.6

Order-Entry

DU (average)
DU (maximal)
AU (average)
AU (maximal)

0.01 0.1 1 10

checkpoint interval (secconds)

0.0

0.2

0.4

0.6

Postgres

Figure 6: Maximum and average time for a checkpoint with three transaction based applications on the SHRIMP cluster.

assume that the system checkpoints every t seconds and the
checkpoint overhead for each modified page on this platform
is T , then the overhead for each transaction is P · T . The
relative overhead with this checkpoint frequency is

P × T
1
R

+ P × T
If the system can tolerate θ relative overhead, the failover

system has to satisfy

T ≤ θ

R× P × (1− θ)
For the DU protocol, the checkpoint overhead for each

modified page mainly consists of two parts: operating sys-
tem overhead Tos and the communication overhead Tcomm.
Tos includes the time to trigger page fault and changing page
protections. Tcomm includes the time to transfer the modi-
fied page at checkpoints and send a 1-word undo log request
to the backup.

Running an application on a new platform only changes
the values for T and R. For example, on the Myrinet Clus-
ter, one can use the numbers on Table 1 to calculate Tos and
Tcomm to be 30 µs and 112 µs, respectively. Therefore, T
equals 142 µs on Myrinet, which is almost half of the cost on
SHRIMP. We then measure the transaction rates without
linking with the failover library. The Order-Entry bench-
marks run at 11600 transactions per sec on the Myrinet
cluster, which is twice higher than the transaction rate on
the SHRIMP cluster (6000 transactions per sec). Substitut-
ing these numbers to the first formula described above, one
can easily conclude that the deliberate update failover pro-
tocol has similar relative overhead on both platforms. The
transaction rate with Debit-Credit benchmarks on Myrinet
is also twice that on SHRIMP, therefore this application has
the similar relative failover overhead on both platforms. Our
experiments on the real platforms verify this analysis (See
Figure 7).

A similar analysis can be used to project results on other
systems with different configurations. However, this method
only works for simple and regular applications like TPC
benchmarks. For other applications that have irregular up-
date patterns or non-deterministic computation, it requires
a more complicated and accurate model to do the projection.

5.7 Network Interface Requirement

Besides the three transaction based applications, we have
also used two SPEC95 applications: Go and Tomcatv. The

0.01 0.1 1 10

checkpoint interval (seconds)

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

ve
rh

ea
d

Debit-Credit

0.01 0.1 1 10

checkpoint interval (seconds)

0

20

40

60

80

100

Order-Entry

Myrinet
SHRIMP

Figure 7: Comparison of relative checkpoint overhead on the
SHRIMP and Myrinet clusters with the DU protocol.

Go is an integer benchmark, whereas Tomcatv is a highly
vectorizable double precision floating point FORTRAN pro-
gram. Although these applications are not mission-critical
applications, they reveal certain properties that other appli-
cations do not show.

Figure 8 shows the relative overhead with these two ap-
plications on the SHRIMP cluster. Both protocols have less
than 10% of the overhead for Tomcatv. The reason is that
this application involves lots of floating point computation
for each modified page. With the Go application, however,
the automatic update failover protocol imposes much larger
overhead than the deliberate overhead. For example, when
the application checkpoints every 0.2 seconds, the relative
overhead of the AU protocol is up to 13.2%, whereas the DU
protocol has only 6.7% of the overhead. The main reason
lies in the SHRIMP network interface design.

On the SHRIMP network interface, an Outgoing FIFO
is used to provide flow control for automatic update. To
prevent overflow, the network interface generates an inter-
rupt when the amount of data in the FIFO exceeds a pro-
grammable threshold. The operating system then de-schedules
all processes that perform automatic update until the FIFO
drains sufficiently. On the SHRIMP cluster, the minimal
Outgoing FIFO capacity is 1K bytes to prevent the case
that the FIFO is quickly filled before the CPU recognize the
threshold interrupt. This number is calculated by multiply-
ing the memory write bandwidth by the hardware interrupt
invoking time.

Although the outgoing FIFO in this system actually has
32 Kbytes, the number of interrupts due to flow-control is



0.01 0.1 1 10

checkpoint interval (seconds)

0

20

40

60

80

100
pe

rc
en

ta
ge

 o
ve

rh
ea

d

Go

0.01 0.1 1 10

checkpoint interval (seconds)

0

20

40

60

80

100

Tomcatv

DU
AU

Figure 8: Relative overhead for varying intervals with two
SPEC95 applications on the SHRIMP cluster

still significantly high when memory writes are very inten-
sive such as in the Go application. When a threshold in-
terrupt happens, the kernel has to spin for average 1.4 mil-
liseconds to wait for the FIFO to drain to a special water
mark, for example, half of the FIFO capacity. As a result,
in some cases, more than 30% of the total execution time is
spent on this flow control delay. This explains why the auto-
matic protocol has much more overhead than the deliberate
protocol with the Go application.

The mismatch between the FIFO filling speed and drain-
ing speed is the main reason for the high frequency of thresh-
old interrupts and long spinning time. The memory band-
width on the SHRIMP cluster is 50 Mbytes/sec, whereas
the data transfer bandwidth is 25 Mbytes/sec, limited by
the I/O bus bandwidth. Because the automatic update
failover protocol needs to propagate most of data writes
to the backup, it requires the network interface to reduce
the bandwidth mismatch of the propagation datapath, es-
pecially for applications with burst writes such as the Go
application.

Another limitation that our testbed imposes is that the
AU mechanism requires using write-through caching strat-
egy for all mapped virtual memory with AU operations.
For certain applications, it is well known that write-through
caching strategy requires more memory bandwidth than write-
back. For example, in the application Tomcatv, the DU pro-
tocol has slightly less overhead than the AU protocol when
checkpoints are taken more frequently than every 0.5 sec-
ond. One way to avoid the write-through problem is to to
use the write-back caching strategy for the AU mechanism of
a virtual memory-mapped network interface. To make this
method work well, it requires an efficient mechanism to flush
dirty cache lines of a virtual address space at a checkpoint.

6 Related work

In the past, custom-designed fault tolerant hardware has
been used to provide highly reliable and available systems.
The state-of-art Tandem system [2, 1, 32, 18] is the first
commercially available system designed specifically for on-
line transaction processing applications. The Stratus sys-
tem [33] presents the same inputs to two processor boards
and uses a comparison logic on each board for failure detec-
tion. All these systems are custom-designed, therefore are
very expensive and do not track technology trends well.

Recently, the fault tolerant system research has been fo-
cused on building highly reliable and available systems with
a cluster of commodity hardware. For example, Microsoft

cluster service (MSCS) [37, 20] takes a phased approach to
build highly reliable and available clusters of PCs. Another
similar system is the Digital TruCluster [19]. These systems
usually take more than 10 seconds to failover an application
and require applications to be responsible for checkpoint-
ing memory states to shared disks. This paper presents the
novel approach of using virtual memory-mapped communi-
cation to reduce the failover time for clusters with minimal
modifications to existing applications.

Other systems exploit a bus or broadcast network to im-
plement fault-tolerant processes on top of an operating sys-
tem. The work described in [4, 8, 30, 12] exemplify this
approach. The most recent work of the Hypervisor based
fault tolerance [5] uses a software layer that implements vir-
tual machines to coordinate replicas on the primary and
backup machines. Their system slows down applications
performance by a factor of two. Although our study shares
some similar issues with these systems, our system propa-
gates data from the primary to backup either automatically
or explicitly using virtual memory mapped communication
mechanism.

Checkpointing and log-and-replay [10] are the two main
techniques for reconstructing the state of a failed process.
Checkpointing has been used for many years [6, 26] and in
many systems [31, 25, 29, 17]. In this paper, we checkpoint
to remote memory for fast failover.

PERSEAS is another work [28] similar to our study. It
is a transaction library based on reliable main memory pro-
vided by mirroring the data at the remote memory. It differs
from our work because it does not support failover of pro-
cess state. It only guarantees that the database won’t be
lost when the machine crashes.

Previous results on the SHRIMP system [14, 13] show
that automatic update outperforms deliberate update in few
cases and the blocked mode with automatic update does not
matter for most of applications. Our study creates a very
good example for demonstrating the benefit of the automatic
update hardware and exposes different design tradeoffs of
the network interface.

7 Conclusions and Limitations

This paper presents a novel way to use the virtual memory-
mapped communication model to reduce the failover time
for cluster systems. Our system mirrors applications’ vir-
tual address space to the backup node either automatically
or explicitly. The prototype implementations on two PC
clusters with three transaction-based applications show that
both protocols work quite well. Even the DU failover pro-
tocol that requires no special network interface support im-
poses less than 4-21% overhead when taking checkpoints ev-
ery 2 seconds. If applications can tolerate 20% overhead, it
can failover within 4 milliseconds in the best case and from
0.1 to 3 seconds in the worst case. This demonstrates that
VMMC is a convenient and efficient communication mecha-
nism to support fast cluster failover.

Our results also show that the AU failover protocol has
less overhead and failover delay time than the DU failover
protocol. The AU protocol is able to checkpoint every 0.1 sec-
onds with only 3-12% overhead. If 10% overhead is allowed,
it can failover applications within 0.01 to 0.4 seconds in the
worst case. This indicates that some special network in-
terface hardware support for automatic update is very use-
ful for building fault-tolerant cluster systems. Besides the
SHRIMP cluster, the automatic update failover scheme can
also be modified for use in clusters built with other network



hardware, such as MemoryChannel [21], Memnet [11] and
etc.

We learned that although virtual memory-mapped com-
munication supports fast failover for many applications, care
must be taken when designing the automatic update mech-
anism. We found that the automatic update end-to-end
bandwidth must be high enough to reduce the flow control
overhead for applications that have intensive burst writes.

Our study has several limitations. The first limitation
is that we only implemented a primary/backup process pair
which can failover on a single failure. Although it is easy
to extend our approach to a full cluster, we have not yet
evaulated it on large-scale clusters. In this paper, we fo-
cused on processor failures since many techniques have been
proposed to support failover when the disk or network fails.
Another limitation is that we were not able to experiment
with the proposed automatic update mechanism that allows
the use of a write-back caching strategy. We believe this
approach will improve the performance of the applications
that did not work well with the current automatic update
mechanism.

8 Acknowledgement

This project is sponsored in part by the Scalable I/O Ini-
tiative Effort under DARPA grant DABT63-94-0049 and
grants from Sandia National Lab and Lawerance Livermore
National Lab. We are grateful to Stefanos N. Damianakis
and Scott C. Karlin for helping with the system setting up.
This paper also benefits greatly from Stefanos N. Dami-
anakis and Sanjeev Kumar’s valuable suggestions.

References

[1] Bartlett et al. A NonStop Kernel. SOSP’81.

[2] Joel F. Bartlett. A NonStop Operating System. Tandem
Computers, Inc., 1977.

[3] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and Wen-King Su. Myrinet:
A Gigabit-per-Second Local Area Network. IEEE Micro,
15(1):29–36, February 1995.

[4] A. Borg, J. Baumbach, and S. Glazer. A Message System
Supporting Fault Tolerance. In SOSP’83.

[5] Thomas C. Bressoud and Fred B. Schneider. Hypervisor-
Based Fault Tolerance. ACM TOCS, 14, February 1996.

[6] K.M. Chandy and C.V. Ramamoorthy. Rollback and Recov-
ery Strategies for Computer Programs. In IEEE Transac-
tions on Computers, pages 546–556, June 1972.

[7] Y. Chen, S. Damianakis, C. Dubnicki, and K. Li. UTLB: A
Mechanism for Address Translation on Network Interfaces.
In ASPLOS, 1998.

[8] Borg et al. Fault Tolerance Under UNIX. ACM Transactions
on Computer Systems, 7, February 1989.

[9] C. Dubnicki et.al. Software Support for Virtual Memory-
Mapped Communication. In IPPS’96.

[10] E. N. Elnozahy et.al. A Survey of Rollback-Recovery Pro-
tocols in Message Passing Systems. Technical Report TR
96-181, Carnegie Mellon University, 1996.

[11] G. S. Delp et.al. Memory as a Network Abstraction. IEEE
Network, 5, July 1991.

[12] Greg Minshall et.al. An Overview of the NetWare Operating
System. In USENIX’94.

[13] M. Blumrich et.al. Design Choices in the SHRIMP System:
An Empirical Study. In ISCA’98.

[14] M. Blumrich et.al. A Virtual Memory Mapped Network In-
terface for the Shrimp Multicomputer. In ISCA’94.

[15] Peter M. Chen et.al. The Rio File Cache: Surviving Oper-
ating Systems Crashes. In ASPLOS’96.

[16] Peter M. Chen et.al. RAID: High-performance, Reliable Sec-
ondary Storage. ACM Computing Surveys, 26(2):145–185,
June 1994.

[17] Peter M. Chen et.al. Discount Checking: Transparent, Low-
Overhead Recovery for General A pplications. Technical re-
port, University of Michigan, July 1998.

[18] R. Chillarege et.al. Challenges in Designing Fault-Tolerant
Systems. In FTCS’91.

[19] W. M. Cardoza et.al. Design of the TruCluster Multicom-
puter System for the Digital UNIX Environment. Digital
Equipment Corporation Technical Journal, 8(1), May 1996.

[20] W. Vogels et.al. Scalability of the Microsoft Cluster Service.
In Proceedings of the 2nd USENIX Windows NT Sympo-
sium, 1998.

[21] R. Gillett, M. Collins, and D. Pimm. Overview of Network
Memory Channel for PCI. In Proceedings of the IEEE Spring
COMPCON ’96, February 1996.

[22] Jim Gray and Andreas Reuter. Transaction Processing: con-
cepts and techniques. 1993.

[23] Yennun Huang and Yi-Min Wang. Why Optimistic Message
Logging Has Not Been Used in Telecommunication Systems.
In FTCS’95.

[24] Katzman J, A and et.al. A Fault-tolerant multiprocessor
system system. United States Patent 4,817,091, March 89.

[25] David Johnson and Willy Zwaenepoel. Recovery in Dis-
tributed Systems Using Optimistic Message Logging and
Checkpointing. In PODC’88.

[26] Richard Koo and Sam Toueg. Checkpointing and Roolback-
Recovery for Distributed Systems. IEEE Transactions on
Software Engineering, 13(1):23–31, January 1987.

[27] David E. Lowell and Peter M. Chen. Free Transactions With
Rio Vista. In SOSP’97.

[28] A. E. Papathanasiou and E. P. Markatos. Lightweight Trans-
actions on Networks of Workstations. In ICDCS’98.

[29] James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li.
Libckpt: Transparent Checkpointing under Unix. In Pro-
ceedings of the 1995 Winter USENIX Technical Conference,
1995.

[30] M. L. Powell and D. L. Presotto. Publishing: A Reliable
Broadcast Communication Mechanism. In SOSP’83.

[31] Kenneth Salem and Hector Garcia-Molina. Checkpointing
Memory-Resident Databases. Technical Report CS-TR-126-
87, Department of Computer Science, Princeton University,
1987.

[32] Siewiorek and Swarz. The Theory and Practice of Reliable
Systems Design. Digital, Bedford, 1982.

[33] D. P. Siewiorek and R. S. Swarz. Reliable Computer Design
and Evaluation. Digital Press, Burlington, MA, USA, 1992.

[34] J. H. Slye and E. N. Elnozahy. Supporting Nondeterministic
Execution in Fault-Tolerant Systems. In FTCS’96.

[35] Michael Stonebraker. The Postgres DBMS. In SIGMOD’90.

[36] Robert E. Strom and Shaula Yemini. Optimistic Recovery
in Distributed Systems. ACM Transactions on Computer
Systems, 3(3):204–226, August 1985.

[37] Werner Vogels and etc. The Design and Architecture of the
Microsoft Cluster Service. FTCS’98.

[38] Michael Wu and Willy Zwaenepoel. eNVy: A Non-Volatile,
Main Memory Storage System. In ASPLOS’94.


