
Speculative Execution Across Layers

by

Benjamin J. Wester

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2012

Doctoral Committee:
Professor Peter M. Chen, Chair
Professor Demosthenis Teneketzis
Associate Professor Jason N. Flinn
Assistant Professor Satish Narayanasamy

c© Benjamin J. Wester 2012
All Rights Reserved

ACKNOWLEDGEMENTS

This dissertation is not the product of my effort alone. Over these last few years of my

life as a graduate student, it has taken the help of my colleagues, friends, and family to pull

me through grad school and give me the opportunities I have today. I have many to thank,

but a few a few people deserve a special mention.

I would like to thank my advisor Peter Chen for guiding me through the process of

becoming a researcher. He has always been there to discuss new ideas and shape the old

ones into something better. During my time here, he has shown me great patience and

encouragement, and I cannot imagine having made it this far without him.

I want to thank my committee, Peter Chen, Jason Flinn, Satish Narayanasamy and

Demosthenis Teneketzis, for helping me shape this thesis and give it direction. I especially

thank Jason for being like a second advisor for me. I am fortunate to have been able to have

his assistance throughout my stay at Michigan.

I am grateful to my many colleagues and friends at Michigan, those that have already

moved on as well as those still studying. There has never been a lack of interesting discus-

sion (or more often, diversion) in the office, nor of students to hear one more practice talk

or gawk in wonder at how our systems ever ran in the first place. I have Jody Su, Dan Peek,

Sushant Sinha, Kaushik Veeraraghavan, Arnab Nandi, Mona Attariyan, Timur Alperovich,

Jessica Ouyang, Jakub Czyz, and many others to thank for keeping me sane through these

years.

Lastly, I owe the greatest thanks to my family. My parents Ric and Terry and my

sister Whitney have always given me their love and support. To my wife Amy: you have

always been there to read through my papers, to watch me draw convoluted sketches on the

whiteboard, and to force me to say what I really mean. You brought me food and blankets

ii

when I stayed late in the lab, put up with me during paper deadlines, celebrated with me

when I got something published, and took care of my life when I was too wrapped up in

research to know what was going on. You even still talk to me after these last few months

spent finishing this degree. Most of all, you gave me your support and had confidence

that I could accomplish what I wanted to, even if my methods drove you crazy. Lily, my

daughter, hasn’t been around very long, but she has already brought great joy into my life

and helped to give me a better perspective on life. She reminded me why I chose to take

my life in this direction and helped me choose which way I wanted to take it in the future.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vii

LIST OF TABLES . viii

ABSTRACT . ix

CHAPTERS

1 Introduction . 1
1.1 Speculative Execution . 2
1.2 Contributions . 4

1.2.1 Speculation as an OS Service 5
1.2.2 Fault-Tolerant Protocols 6
1.2.3 Race Detection . 7

1.3 Thesis Overview . 8

2 Background . 9
2.1 Single-layer Speculation . 9
2.2 Multi-layer Speculation . 12
2.3 Speculator . 15

3 Custom Speculation Policies . 17
3.1 Generic Speculation . 20
3.2 Custom Policies . 22

3.2.1 Creating Speculations . 23
3.2.2 Output Policy . 25
3.2.3 Committing . 26

3.3 Issues with Separation . 28
3.3.1 Committing State . 28
3.3.2 Multi-threaded Speculation 28

3.4 Mechanism Design & Implementation 30
3.4.1 Overview . 30
3.4.2 Policy API . 30

iv

3.5 Design Process . 32
3.5.1 Determining Actions . 32
3.5.2 Implementing Custom Policies 33
3.5.3 Optimization . 35

3.6 Case Studies . 35
3.6.1 Predictive Application Launching 36
3.6.2 Firefox Certificate Checks 40
3.6.3 BFT Client . 41

3.7 Related Work . 44
3.8 Chapter Conclusions . 47

4 Fault-Tolerant Protocols . 48
4.1 Client speculation in replicated services 50

4.1.1 Applicability to replicated services 50
4.1.2 Protocol adjustments . 51

4.2 Client speculation for PBFT . 55
4.2.1 PBFT overview . 55
4.2.2 PBFT-CS base protocol 56
4.2.3 Handling failures . 60
4.2.4 Correctness . 61

4.3 Discussion and future optimizations 63
4.3.1 Alternative failure handling strategies 63
4.3.2 Coarse-grained dependency tracking 63
4.3.3 Reads in the past . 64

4.4 Implementation . 66
4.4.1 NFS client operation . 66
4.4.2 PBFT-CS client operation 67
4.4.3 Server operation . 67

4.5 Evaluation . 68
4.5.1 Experimental setup . 68
4.5.2 Counter throughput . 69
4.5.3 Counter latency . 71
4.5.4 NFS . 72
4.5.5 NFS: Read-only micro-benchmark 75
4.5.6 NFS: Write-only micro-benchmark 75
4.5.7 NFS: Read/write micro-benchmark 75
4.5.8 NFS: Apache build macro-benchmark 76
4.5.9 Cost of failure / faulty primary 76

4.6 Related work . 77
4.7 Chapter Conclusions . 79

5 Parallelizing Race Detection . 80
5.1 Background . 83

5.1.1 Happens-Before Race Detection 83
5.1.2 Sequential FastTrack . 84

v

5.1.3 Uniparallelism . 86
5.2 System Architecture . 87

5.2.1 Applicability to Analysis Algorithms 89
5.2.2 Performance Discussion 90
5.2.3 Handling a Race . 91

5.3 Parallel FastTrack . 92
5.3.1 Informal Algorithm . 92
5.3.2 Uniparallel Analysis Abstraction 94
5.3.3 Formal Algorithm . 94
5.3.4 Analysis . 96
5.3.5 Optimizations . 97

5.4 Implementation . 98
5.4.1 Instrumentation . 99
5.4.2 Analysis Library . 100
5.4.3 Optimizations . 101

5.5 Evaluation . 102
5.5.1 Methodology . 102
5.5.2 Scalability Measurements 103
5.5.3 Overhead Measurements 106
5.5.4 Discussion . 108

5.6 Related Work . 109
5.7 Chapter Conclusions . 110

6 Conclusion . 112
6.1 Contributions . 112
6.2 Future Work . 113
6.3 Final Remarks . 114

BIBLIOGRAPHY . 115

vi

LIST OF FIGURES

Figure
3.1 Generic OS speculation. 21
3.2 Speculation with custom policies. 23
3.3 System call API. 31
3.4 Process execution time when launched speculatively. 36
3.5 Comparison of BFT clients. 44
4.1 PBFT-CS Protocol Communication. 56
4.2 Speculative fault-tolerant NFS architecture. 65
4.3 Server throughput in a LAN, measured on the shared counter service. . . . 70
4.4 Time taken to run 2000 updates using the shared counter service. 71
4.5 Read-only NFS micro-benchmark performance. 73
4.6 Write-only NFS micro-benchmark. 73
4.7 Read/Write NFS micro-benchmark. 73
4.8 The Apache build NFS benchmark. 74
4.9 Apache build benchmark with 1% failure rate. 77
5.1 Parallel race detector architecture. 88
5.2 Scalability of Parallel FastTrack for two worker threads. 105
5.3 Overhead breakdown in Parallel FastTrack and the benefits of lock elision. . 107

vii

LIST OF TABLES

Table
3.1 Speculative applications. 35
3.2 Application run times and load times. 37
3.3 SSL connection establishment time. 41
4.1 Sources of overhead affecting throughput for PBFT-CS relative to PBFT. . . 68
5.1 Vector Clocks: relations, operators, functions, and constants. 84
5.2 The Sequential FastTrack algorithm. 85
5.3 The Parallel FastTrack algorithm. 95
5.4 Scalability of Parallel FastTrack. 104
5.5 Parallel FastTrack average memory accesses per epoch. 109

viii

ABSTRACT

To achieve good performance on modern hardware, software must be designed with

a high degree of parallelism. New advancements in processor design and manufacturing

have produced chips that offer greater computation capacity, but they do this primarily by

providing more processing cores rather than by greatly improving per-core performance.

Speculative execution is a technique that can be used improve the parallelism of sequen-

tial programs by predicting the dependencies between tasks, allowing a later task to run

concurrently with an earlier one.

Software systems are composed of many different cooperating layers: CPU, virtual

machine, operating system, language runtime, and program code. The effects of speculative

execution are traditionally confined to a single layer. Code running at higher layers is

unaware that its execution is speculative, and code running at lower layers never observes

any speculative behavior or output from higher layers.

This thesis explores the benefits of letting speculative executions be visible across the

many layers of a software system. Components of the system can be aware of speculative

computations and, with controlled access rather than isolation, can be designed to handle

speculative state and effects correctly. With cooperation among layers, new opportunities

for parallelization appear.

This dissertation shows how visible speculations across layers can be applied to ap-

plication development, network protocols, and dynamic application analysis. I develop a

new programming model for applications that separates the mechanism used to implement

safety from the policy that describes how to control an individual speculation. The operat-

ing system implements the mechanism, leaving each application to describe its own custom

ix

policy. I then describe a new agreement protocol for Byzantine fault-tolerant services that

is optimized for client applications capable of executing speculatively. Finally, I develop

an algorithm for parallelizing data race detection by expressing speculative parallelism and

handling it in the algorithm itself.

x

CHAPTER 1

Introduction

The ability to write parallel programs is important for many disciplines in computer sci-

ence. Scientific applications have for a long time spread numerical computation and sim-

ulations across a large number of nodes to achieve reasonable performance. For systems

with massive data requirements, it has often been found that spreading data and computa-

tion across a large number of slow computers can be more cost-effective than provisioning a

single large, fast system [18,29], assuming the needed computations are capable of running

in parallel.

Over the last decade, parallelism has become increasingly important to commodity

computing systems as well. Traditionally, improvements in processor clock speed and

architecture could be relied upon to improve sequential software performance at a rate of

40%–50% each year [41]. Software needing improved performance could simply wait for

the underlying hardware to provide it. However, recent processor trends have diverged

from this pattern. Advances in chip manufacturing and architectural design have been

used to provide multiple processing cores on a single chip instead of providing improved

single-core performance. Commodity chips are currently shipping with the capacity to

run 12 sequential processes concurrently [3]. This number is expected to significantly in-

crease in the next few years. Single-core performance is still improving in each successive

chip design, but developers can no longer rely on the same trend to quickly improve their

program’s performance. To take advantage of the hardware offered by modern systems,

desktop programs must be able to run in parallel across a large number of cores.

1

Unfortunately, writing parallel programs is a difficult task. Some tasks, like physical

simulations, can be parallelized easily. Other tasks are more naturally described as a single

sequence of computations where latter computations depend on the results of previous ones.

This thesis focuses on one technique that systems can use to extract greater parallelism from

a program in the presence of sequentially-dependent tasks: speculative execution.

1.1 Speculative Execution

A task is executed speculatively when it is started before the system knows whether the

task can or should be executed. When a system uses speculation, the system will predict

the effects and results of a currently-running task and then use that prediction to start future

tasks in parallel with the current task. These tasks started early using predicted results are

referred to as speculative tasks. By running the task early, its work can execute in parallel

with that of its logical predecessors. Once the real inputs to the task are ready, they can be

compared against the predicted inputs. When the prediction is correct, a speculative task

will have performed the same computations it would have performed had it run later, i.e.

when its inputs were ready. In this case, the speculation should be committed to preserve the

work already performed. However, if the prediction turns out to be wrong, the speculative

task has performed a computation that the program did not request, and the computation

and any state associated with the execution must be rolled back. Despite this alteration of

the steps of the program, we would still like the program to have the same semantics as

its sequential specification. To maintain the sequential semantics of the program in either

outcome, it is also necessary to delay any external output generated by the program until

the output would have been generated by the sequential execution of tasks. Delayed output

is released when the speculation is committed and discarded if the speculation is rolled

back.

Using speculative execution has the potential to greatly improve the concurrency of a

program, but there are two costs to using this technique. The first is a direct cost involved

in creating any speculation. To support rollback, any changes made by the speculative ex-

ecution must be undoable. Hence, modified objects will typically use checkpoints or undo

2

logs to restore the original state on a rollback. Maintaining this old state may incur setup

overhead (e.g., initializing a copy-on-write snapshot or making a complete one) and ongo-

ing overhead (e.g., logging old values, writing to a copy-on-write snapshot, and buffering

effects) in processing time and memory. When a speculation is committed or rolled back,

these old data must be deleted or restored, consuming additional resources. For speculation

to be useful, the amount of work done while speculative must exceed this overhead.

The second cost is an opportunity cost incurred when a speculation is aborted. Execut-

ing a failed speculative computation consumes system resources, even though the computa-

tion is ultimately ignored. Instead of being used for a wasted computation, those resources

could have been used to make progress other non-speculative tasks on the system (if there

are other tasks).

To decide if speculative execution should be used to predict a task, one should use a

cost-benefit analysis. The expected benefit gained through increased parallelism should be

greater than the cost of performing that speculation, taking into account the direct and ex-

pected opportunity cost. For some tasks, the direct cost of predicting the task and starting

a speculative execution are greater than any potential savings (e.g., if the task’s total dura-

tion is less than the time needed snapshot its state). The actual opportunity cost depends

greatly on what other tasks are available to be run. A heavily-loaded server may allow only

near-certain speculative paths to execute, while a system with many unused cores may be

willing to take a greater chance by following less-certain predictions. The ideal task to

predict is one that is slow, relative to the setup overhead, and predictable.

Slow and predictable tasks appear in many different components through a computer

system. Consequently, speculative execution has been used to accelerate the performance

of sequential tasks in a variety of areas such as processor design, virtual machines, operat-

ing systems, application runtime environments, network protocols, and user applications.

We deal with the enormous complexity of an entire computing system by building sys-

tems that are composed of individual components designed for a specific task. These tasks

are often organized to provide abstractions that are layered on top of each other. Each com-

ponent within a layer provides some small piece of functionality which is used by higher

layers and is built on the functionality of lower layers. For illustration, processors may pro-

3

vide certain guarantees about program execution to operating systems, which can provide

easier and safer abstractions to an application, where the runtime system can further refine

the system properties to offer programmers a streamlined way to write applications.

A large number of systems (discussed in Section 2.1) apply speculative execution trans-

parently and exclusively within a single layer. That is, one component in the larger system

uses speculation internally without exposing any speculative state or behaviors to other

components. A program running in higher layers (e.g., a user’s program) may be execut-

ing speculatively, but it will be unable to differentiate its own speculative execution from

a non-speculative one. As the speculative component interacts with components in other

layers, it ensures that it never externalizes any speculative state.

Isolating all speculations within a single layer keeps the overall complexity of the sys-

tem low by reducing the dependencies between layers. Doing so means that one part of the

system can be modified to perform its duties using speculative execution without requiring

changes to other layers.

However, a single-layer approach can miss speculative opportunities in some compu-

tations by limiting the potential benefits of the speculations. Programs that frequently

use synchronous external communication may find that their speculative tasks make lit-

tle progress before they block. A request external to the layer cannot be released from a

speculative task (since it cannot be easily rolled back), so the reply on which the task is

waiting will not come until the speculation is committed. When communication is frequent

enough, the amount of work that can be parallelized becomes smaller than the overhead of

using speculation.

1.2 Contributions

This thesis claims that making speculative executions visible across layers in the system

creates new opportunities for parallelization and improved performance. When multiple

layers, each capable of handling speculations on their own, are permitted to observe spec-

ulative state and take part in one speculative execution, interactions between those layers

can be controlled and rolled back if needed. This changes the cost-benefit analysis for a

4

communicating task. Rather than quickly blocking, the task’s output can be allowed and

it can continue running. By making speculative state visible to other components, more

tasks become eligible to run speculatively because the expected benefit of the task may

then outweigh the cost of speculative execution.

We will demonstrate this claim by designing and constructing three new systems that

make speculations visible across layers. We first explore the general idea of how cooper-

ation between two layers could be structured. We then apply speculative execution to two

applications and show how speculative cooperation across layers can be used to improve

their parallelism and performance. These systems are briefly described below.

1.2.1 Speculation as an OS Service

We view a speculation system as being composed of two separate parts: a mecha-

nism that implements fundamental speculation primitives like state checkpointing, output

buffering, and dependency tracking, and a policy that specifies how the mechanism should

be used. Our work examines how the mechanism can be implemented in the operating

system and controlled from within an application. By allowing this interaction between the

OS and application layers, interesting uses of speculation can be developed in applications

without significantly complicating the program design.

To speculatively execute applications transparently, the OS uses a conservative generic

policy that preserves safety for any application. For some applications, this policy is too

restrictive. We allow an application to specify a custom policy that varies from the generic

policy along three main axes. A creation policy, specified at a level of abstraction that

makes sense for the application, lets the application specify what program actions are pre-

dictable and how to predict their results. An output policy allows the program to specify

some of its output as safe to be released non-speculatively. A commit policy lets an appli-

cation define how to compare the results of a predicted tasks and how to recover when the

results differ.

5

1.2.2 Fault-Tolerant Protocols

We next explore how speculative execution can be applied to Byzantine fault-tolerant

(BFT) services to improve client performance. In a generic BFT system, when a server

experiences a Byzantine fault, it can no longer be guaranteed to hold correct data or follow

any network protocol correctly. To guard against such faults, a service must be replicated

across several machines that fail independently. A client must then aggregate many replies

from different replicas, since any single reply could be from a faulty server that gives in-

correct results. The client only determines the true result when a quorum of replicas have

all given the same reply.

We add speculative execution to BFT systems based on the observation that in the

common case where no replica is faulty, the first reply a client receives is likely to be

correct (though the client cannot guarantee it yet). Thus our client can predict that the first

reply it receives is correct and continue executing its reply handler speculatively while it

waits for more replies to be returned.

So far, only speculation within the client is required to implement this system. How-

ever, if the client is executing speculatively and wants to continue to interact with the BFT

service, it must wait until its prior speculations have committed before sending another

request, reducing the benefit of the speculation. To address this problem, we develop the

PBFT-CS protocol that is optimized for a speculative client and permits speculative inter-

action between the two layers. PBFT-CS is designed to return the first reply to the client as

fast as possible. Each request in our protocol is augmented with predicates that must be sat-

isfied before a replica will execute the request. Clients can use these predicates to encode

their speculative dependencies, so that if a message depends on an incorrect prediction, a

non-faulty replica will discard it.

We then use our speculative client and protocol to implement a fault-tolerant NFS ser-

vice. The NFS protocol itself can use speculative execution with cooperation between the

distributed file server and the local OS [52]. We show how these two parts can be merged

into one cohesive system that allows speculative execution across the operating system, a

client proxy application, the network transport, and the distributed service layers.

6

1.2.3 Race Detection

Finally, we will demonstrate how a dynamic program analysis algorithm can be paral-

lelized efficiently if it can be aware of the speculative executions of its target program. We

apply speculative execution to improve the performance of a dynamic data race detector.

Data races are caused when two threads access the same piece of shared memory without

first synchronizing their accesses. A dynamic data race detector is a tool that instruments

the memory and synchronization operations of a program to detect data races when they

occur. Current detectors incur a large overhead: state-of-the-art detectors slow a program’s

execution by an average of 8.5× for managed code [23].

The third part of this thesis describes a new race detection algorithm, Parallel FastTrack,

that is designed to parallelize the work of instrumenting and analyzing memory accesses.

Our approach uses a uniparallel architecture as the fundamental method of extracting par-

allelism. In a uniparallel execution, a program’s execution is time-sliced into epochs, each

of which is run twice. One execution lets threads run concurrently on different cores while

epochs are run in order. In this execution, we add minimal instrumentation to gather in-

formation only on the synchronization operations of each thread. The other execution runs

epochs concurrently while an epoch’s threads are constrained to a single core. In this ex-

ecution, we include instrumentation to analyze every memory access as well as the thread

synchronization. This instrumentation lets our detector find all the races that occur inside

an epoch. The two executions are synchronized with each other by using deterministic

replay techniques. A final sequential commit phase gathers the analysis results from each

epoch to find races that span epochs. Epochs are executed speculatively, so that if a race is

discovered, the program state can be rolled back to the instant where the race occurred.

As with most program analysis algorithms, race detection algorithms are designed to

operate on a sequential execution of the program. By exposing the speculative execution

environment to the algorithm, we construct an algorithm that parallelizes its work more

efficiently while maintaining the same correctness guarantees.

7

1.3 Thesis Overview

Chapter 2 presents an overview of background research on which this thesis is built.

We describe and categorize many existing uses of speculative execution. We also describe

Speculator, an implementation of operating-system-level speculation, that underlies all the

work presented in this thesis.

Chapter 3 discusses how speculative execution in an operating system can be cus-

tomized by individual applications. Applications can describe their use of speculation while

using a common implementation in the operating system.

Chapter 4 presents a new Byzantine fault-tolerance protocol that is optimized for spec-

ulative clients. Speculative clients on their own can hide some of the latency involved

in a fault tolerant system. Protocol support allows these clients to continue to access the

replicated service while executing speculatively.

Chapter 5 describes the construction of a parallel data race detection algorithm. Al-

though race detection algorithms are formally specified for a linear sequence of program

events, we build on the FastTrack algorithm to allow it to parallelize its work in a specula-

tive environment.

Chapter 6 concludes the thesis. We summarize our contributions and discuss future

work.

8

CHAPTER 2

Background

Speculative execution is a well-established technique that has been studied in many

domains. This section presents a brief survey of many existing systems that have used

speculation.

In addition, we introduce and describe the construction of the Speculator kernel, an

custom Linux kernel that implements speculative execution inside the operating system.

2.1 Single-layer Speculation

A large number of systems apply speculative execution transparently and exclusively

within a single layer. That is, one component in the larger system uses speculation inter-

nally without exposing any speculative state or behaviors to other components. Software

running in higher layers (e.g., a user’s program) may be executing speculatively but will be

unable to differentiate its own speculative execution from a non-speculative one. Interac-

tions with other components will be tightly regulated to ensure that no speculative state is

externalized from the layer providing the speculation.

Although we find this model to be limiting, a significant amount of work can be paral-

lelized without cooperation between layers. We group these works by the layer in which

they are implemented.

9

Processor Architecture One early use of speculation was in the design of processor ar-

chitectures to enable greater Instruction Level Parallelism (ILP). Programs are written as a

sequence of instructions, yet the processor can choose to execute instructions concurrently

by issuing instructions back-to-back through the same pipeline or by issuing multiple in-

structions in the same clock cycle.

Speculative execution is used in several different ways at this layer. A conditional and

indirect branch instructions adds stalls to a pipeline by delaying the determination of the

next instruction until an arithmetic or memory operation is evaluated. By predicting the

target of each branch, the processor can begin executing instructions from the likely target

before the actual outcome is known [73]. Conflicting memory accesses must necessarily

be executed in program order. When the target of an access is indirect it might conflict

with other operations. By predicting that two accesses do not conflict, they can be executed

concurrently [57]. Even when there is a data dependence between two instructions, the data

value result of the earlier instruction can be predicted to break that dependency and allow

subsequent instructions to execute concurrently [45, 46].

Virtual Machines Speculative execution has also been used to provide improved perfor-

mance for virtual machine replication. Primary/backup replication is a common system

architecture for fault-tolerant services. The traditional approach to virtual machine replica-

tion forces VMs to agree on all non-determinism before it can affect the OS, so that output

generated on the primary system is reproducible on the backup. Remus [17] uses spec-

ulative execution to instead continuously send snapshots from the primary to the backup

without agreeing on non-determinism. Between snapshots, the primary executes its OS

speculatively and buffers all its output until the backup has acknowledged the last snap-

shot. On a failure, uncommitted output is squashed before the backup takes over.

Runtime Environments We consider a runtime environment to be a software layer that

runs in the same context as a program but is not specified by the program itself. Such code

could be a language-based virtual machine, code inserted by a compiler, or code added

through binary instrumentation. Speculative execution can be achieved by starting new

10

speculative threads inside the process and carefully controlling what state those threads are

allowed to modify and which system calls they are allowed to issue.

Speculation within this layer has been used to generate I/O hints about future file ac-

cesses [13]. When an application performs a file read that would block in the kernel,

the runtime can spawn a speculative thread that runs ahead of the true thread and issues

prefetching hints. In this instance, the runtime is predicting that the file access pattern does

not depend on the data itself.

Operating Systems An operating system is responsible for isolating one process from

another and mediating access to shared resources. A process can only directly affect state

within its own address space. To do anything else, a process must use a well-defined API

to issue a request to the OS, asking that it perform an action on the program’s behalf.

These characteristics give an OS considerable freedom to alter the execution of programs.

Speculation within an OS usually involves forking a process and handling its system calls

differently to preserve safety.

The I/O hint generation discussed earlier can also be performed inside the OS [13, 24].

Speculation has also been used to hide the latency of synchronous disk operations. Because

the state of the disks and file systems is not directly observable, a long synchronous write

can be predicted to complete without errors, allowing applications to run ahead without

waiting for a full commit to disk [54]. Deadlock detection can also benefit from a specu-

lative OS. When a potential deadlocked process is found, the OS can run the process spec-

ulatively to discover the exact resources used by each thread and process [43]. Speck [53]

uses speculation to parallelize added security checks to a process through epoch paral-

lelism (this execution style is discussed more completely in Chapter 5). When a check, like

searching through memory for a private value or analyzing system call behavior, is needed,

the system can predict that the check will succeed and allow the process to continue exe-

cuting speculatively. The Rx [62] system allows software to recover from some types of

software failures. As a program executes, periodic checkpoints are taken. If the program

crashes, it is rolled back to a safe checkpoint and retried while the system interposes in an

attempt to prevent the same bug from occurring.

11

User Applications To use speculation within a user application, the developer must be

careful to track the speculative state and effects manually. Despite the effort, some pro-

grams do realize a significant boost from using speculative execution that justifies the added

complexity.

Speculative execution has long been used in database systems as optimistic concurrency

control [37]. Multiple transactions are allowed to execute concurrently under the prediction

that their updated do not conflict. If they do, the database must undo the conflicting mod-

ifications and re-run the transactions serially. Remote display viewers have also benefited

from speculative execution. Screen updates in the VNC protocol are highly predictable, so

the user’s perceived latency can be improved by showing predicted updates to the user and

fixing the display afterwords to correct any bad data [40].

Network Message Delivery Replicated services rely on some form of atomic broadcast

protocol to ensure that replicas execute requests in an identical order. A necessary step

in such a protocol is to have each replica agree on the sequence of requests. Waiting

for agreement can add significant latency to each request. By having each replica predict

that its sequence is correct, it can handle a request concurrently with agreement. This

general pattern has been studied for transaction processing in database systems [33] and

for Byzantine fault-tolerant systems [35].

2.2 Multi-layer Speculation

Many prior system have also been designed to allow some layers to cooperate to provide

speculative execution. We present these systems grouped by the layers that cooperate.

Most of these systems implement speculative execution to fit the exact problem they are

addressing. Our work addresses the more general issue of how two different layers can

cooperate in a generic and reusable way. We also present two new systems that demonstrate

cooperation between application & network layers and between OS & dynamic analysis.

12

Processor & Runtime A significant amount of research effort has focused on Thread-

Level Speculation (TLS) [26, 74, 75], a technique where a compiler analyzes an applica-

tion’s code to automatically extract parallelism. The data dependencies between two suc-

cessive blocks of code can be classified according to whether static analysis can guarantee

that a value produced in the early block is definitely used in the subsequent block (must

dependency), or whether the analysis cannot prove that a value is not accessed (may de-

pendency). TLS analysis looks for blocks of code where the value all must dependencies is

predictable and the may dependencies do not actually alias frequently. Loop bodies in sci-

entific applications are particularly well-suited to this kind of analysis and can frequently

be spawned as independent threads. Processor support is used to efficiently detect conflicts

between threads and to buffer a thread’s memory changes until the thread can commit.

OS & Runtime Speck [53] (mentioned previously in Section 2.1) also considered how

to provide dynamic taint tracking to a program via speculative execution. Unlike the other

security checks used by Speck, taint tracking is inherently an analysis over the sequential

events of the program. The analysis environment must be redesigned and optimized to

function correctly with an epoch-parallel architecture, although this work stops short of

redesigning the taint-tracking algorithm itself.

OS & Application AutoBash [76] is a tool to help users troubleshoot configuration man-

agement problems. OS-layer speculative execution allows predicates—commands that

check for configuration bugs—to perform arbitrary actions without permanently changing

system state (e.g., their speculations are always aborted). Speculations are also presented

directly to the user via the Bash shell. As the user attempts to fix the problem, he can

explicitly roll back any command.

OS & Network Although network protocols are typically implemented by individual

applications, an operating system that provides distributed services may directly interact

with other systems via network protocols. By allowing speculative messages to be sent and

received, local speculative processes can make progress even through remote operations.

13

The Time Warp operating system [31] used speculative execution to hide the latency

of communication between nodes in a distributed simulation. Computation at each node

occurs in fixed steps, and communication messages contain a time stamp showing exactly

when they are to be read. Time Warp allows an application to run computation steps spec-

ulatively, predicting that all prior messages have been received. If a message arrives late,

the node will be rolled back so that the message can be read. If the re-execution produces a

different message stream, the old messages are un-sent (causing the receiver to roll back).

Speculator showed that speculative execution can hide the latency associated with re-

mote operations in distributed file systems [52]. When a remote request is sent, the client

predicts the high-level content of the reply—that the client’s cache is up-to-date—and ser-

vices the request from its local cache. This prediction is know to the file server, and subse-

quent speculative messages, which carry a list of speculative dependencies, can be ignored

when they depend on an incorrect prediction.

Runtime & Application Recently, many projects have explored how to add speculative

execution to a language runtime so that applications can make use of speculation without

having to worry about checkpointing program objects or logging their modifications. By

leaving the management tasks to a runtime, the application can avoid complicating its own

design and logic.

This goal has been explored in several different contexts. Prabhu et al. develop a formal

language that models speculation by explicitly defining a producer of a value, a consumer

of that value, and a prediction function to generate a prediction for the speculative execution

of the consumer [60]. They also explore the conditions that allow a speculative consumer

to avoid needing to log memory updates. Prospect [77] uses speculative execution to im-

plement epoch parallelism, running a fast, buggy version of a program alongside a slower

more-correct program. The fast program provides hints about the slow program’s future

state, assuming that the slow and fast executions agree on all prior actions. Crom [50]

extends the JavaScript environment to support speculative page loading and rendering. An

API is presented that lets an application specify how to predict the user’s interaction with

the application. Fast Track [32] allows an application to specify a fast code path and an

14

equivalent slow code path. The runtime executes the two concurrently, predicts that the two

will result in identical state, and lets the fast path continue executing speculatively.

Full-system The Mojave system [72] consists of a compiler, dynamic runtime environ-

ment, and operating system that provide support for speculative execution. An API is

provided so that speculative executions can be defined over application code. The runtime

and OS can also start speculations when they encounter predictable events.

Mojave has been used to implement speculative execution for software distributed

shared memory (DSM) [78]. DSM is implemented in the OS and performs a distributed

page invalidation protocol transparently on a shared memory page access by the appli-

cation. Messages exchanged between systems are logically timestamped and should be

processed in a strict order. Much like the Time Warp OS, when a message is received, the

OS speculates that it will not receive a logically-earlier message in the future, so the mes-

sage is immediately processed. Also, when reading a shared page, the OS will speculate

that its locally-cached version is up-to-date. This speculation will be aborted if it receives

a write request timestamped before its read request.

2.3 Speculator

All works in this thesis use speculative execution at the operating system layer. To im-

plement speculations at this layer, we rely heavily on the Speculator kernel [52], a modified

Linux kernel with internal support for speculations.

A process running in a kernel context can call create speculation() to have the

process begin running speculatively. Immediately, a checkpoint is make of the current

process by forking a new suspended process (referred to as the checkpoint process). The

kernel’s existing copy-on-write mechanism is used to preserve the program’s address space

in the checkpoint process. Other process state is duplicated during the fork. At any time, the

kernel can call commit speculation() to commit the speculation. When this happens,

the checkpoint process is destroyed (without having run). Should the kernel instead call

fail speculation() to abort the speculation, the speculative process swaps identities

15

with the checkpoint process and exits while the checkpoint process is awakened and starts

re-executing the system call that started the initial speculation.

One powerful feature of Speculator is its ability to allow a speculative process to interact

internally with the rest of the system. Speculator tracks which speculations a thread, or any

other data structure, is dependent upon. In this way, aborting a speculation can roll back all

state throughout the kernel that is causally dependent on the speculation. Each kernel object

contains a list of dependencies and an undo log. Reading a shared kernel object causes the

process to take on any extra dependencies of the object, creating a new process checkpoint

if necessary. Modifying a shared object causes it to take on the process’s dependencies,

and an undo record is generated that can reverse the modification on an abort. Using this

mechanism, speculative data can travel between processes via signals, files, sockets, pipes,

and other forms of inter-process communication.

Output from a speculative process to an externally-visible device cannot be rolled back,

so it is disallowed by Speculator. When possible (e.g, for sockets and terminals), the output

is buffered and the program is allowed to continue. Otherwise, since the system cannot

perform the action requested by the program, the speculative process must block and wait

until it becomes non-speculative before it can continue.

16

CHAPTER 3

Custom Speculation Policies

What does it mean to make a speculation visible to other layers? This question lies at

the core of our thesis. Intuitively, we call for tasks running at higher layers to somehow

be aware of when they are executing speculatively. What should the task do with this

knowledge? To make a speculation visible to a lower layer intuitively calls for externalizing

some speculative state. How can the safety of our application be preserved if this is to

happen?

To help us approach an answer to these questions, we construct a new way of think-

ing about speculative systems. We view an implementation of speculative execution as a

system composed of two parts: (1) a policy that specifies what operations and values to

predict, what actions to allow while speculating, and how to compare results; and (2) the

mechanisms that support speculative execution, such as checkpointing, rollback, causality

tracking, and output buffering. An application needs to make full use of both parts. The

policy should be flexible enough to let an application use speculation as it requires, and the

mechanism should be capable of implementing that policy while allowing the application

to execute unimpeded. As we have seen in Chapter 2, speculation is used to accomplish

many different goals. We would like to be able to capture these different needs within our

definition of a “policy.”

Existing systems typically conflate the mechanism and policy and will implement them

together within a single layer, such as the processor, operating system, or application. Un-

fortunately, no single layer is well-suited to implement both policy and mechanism. Policy

17

decisions are best done by higher layers in the system, such as applications, that under-

stand the semantics of the actions that are being predicted and can more accurately predict

a value and compare it with the actual result. In contrast, mechanisms that support specu-

lation policies are best implemented at lower layers in the system (e.g., operating systems).

Lower layers exercise more control over the entire system, enabling them to to propagate

or coordinate speculations between applications. Implementing the mechanisms for spec-

ulative execution in the lower layer also frees application writers from re-implementing

speculation for each application. By implementing speculation in a single layer, an appli-

cation must choose between its need to have an effective policy and its need to interact with

the larger system.

In this chapter, we show how to separate policy from mechanism in a speculation sys-

tem. We implement a mechanism for speculation in the operating system, where it can

easily propagate speculations between multiple applications, control the output from spec-

ulative applications, and be shared by multiple applications. We delegate policy decisions

to applications, which have the semantic information needed to specify which operations to

execute speculatively, what values to predict, what operations to allow during speculation,

and what criteria to use when comparing predicted and actual values.

Separating mechanism from policy opens up a new design space regarding what behav-

iors a policy should specify and how to best describe them. An application-specific policy

can address a number of issues at each phase of speculative execution:

• Starting the speculation: What actions are predictable? When should each specula-

tion begin?

• Performing the speculation: How should output be handled? What data can be

marked as speculative? How many resources should be used?

• Ending the speculation: Which results should be considered correct? How should

the system recover from a misprediction?

Allowing applications to specify their own policies about when and how to speculate en-

ables them to use speculative execution in ways that are difficult to implement using generic

policies provided by lower layers. We demonstrate this by building a prototype speculation

18

mechanism at the operating system layer with policies specified in user-space programs.

Within this system, we modify three existing applications to demonstrate our approach:

• Predictive application launching: The Bash shell predicts the next command a user

will type and executes it speculatively. An X11 proxy permits graphical applications

to interact with the X server while being launched speculatively.

• Firefox performs certificate revocation checks while continuing to establish an SS-

L/TLS connection with a server.

• A Byzantine fault-tolerant (BFT) client assumes that the first reply to a request is

correct without waiting on consensus.

An OS-implemented speculation system lacks the abstractions needed to specify these fea-

tures, while an application-implemented speculation system limits the scope of each spec-

ulation and complicates the development effort. To address these issues, our separated

system allows custom policies to be specified in these applications by adding localized

changes that reuse a common mechanism. Our changes allow predicted applications to

hide 85% of their start time, reduce Firefox’s SSL connection latency by 15%, and increase

the BFT client’s request rate by 82%. We do impose a trade-off on developers: an appli-

cation using an optimized speculation implementation can improve on our results by 8%,

although it must give up system support to do so.

This chapter makes the following specific contributions: first, we present a discussion

of the rationale for separating speculative policy from the mechanism that implements it.

Second, we use this discussion to design and implement a speculation system that places

mechanism in the operating system and gives user-space processes control over policy.

Finally, we demonstrate that our approach permits existing programs to use speculation for

increased performance without requiring extensive modifications.

The rest of this chapter is laid out as follows. Section 3.1 describes how speculative

execution works when implemented below the application. Section 3.2 explores the dif-

ferent behaviors a policy can customize, and Section 3.3 describes two issues that arise

when applications control their own speculation. Section 3.4 describes what mechanisms

we implement in the operating system to support custom speculation policies. Section 3.5

19

discusses the process used to locate and implement custom policies. Section 3.6 describes

three case studies for using customized speculation policies and evaluates the performance

improvements that custom policies enables. Section 3.7 describes related work, and Sec-

tion 3.8 presents a summary of the work.

3.1 Generic Speculation

This section describes how speculative execution works when it is implemented below

the application and thus does not understand the program’s semantics. We refer to this as a

generic speculation system.

Speculation can be implemented at many layers below the application, such as in hard-

ware, a virtual-machine monitor, the operating system, or a language runtime. The layer at

which speculation is implemented determines the natural unit of execution that the specu-

lation system controls. For example, speculation implemented in a virtual machine monitor

would control the execution of virtual machines, while speculation implemented inside an

operating system would control the execution of processes. To make the discussion more

concrete, our description assumes speculation is implemented in the operating system; the

same principles apply to other layers below the application.

Implementing speculation in the operating system provides a good balance of semantic

information and scope. The operating system understands the semantics of useful objects

like processes, users, and files, yet is low enough in the software stack to control the ex-

ecution of all applications. The natural unit of computation for OS-level speculation is a

process, and the natural unit of state is a process’s address space. The OS also sees objects

such as files and sockets and manages related state (such as the file table) on behalf of

processes. Processes communicate with the OS mainly through the system call interface.

Figure 3.1 illustrates the generic approach to operating system speculation. A specula-

tion starts when the operating system predicts the results of an action (A). Actions are units

of computation that have definite start and end points. An action causes a process’s state

to transition from one state to another; actions also may produce output. We refer to the

difference in states as the action’s result. An action is considered predictable if its result

20

S
0

S
α

B

A

S
0

S
0

sy
sc
a
ll S

α

B
A

S
β

S
α

B

B

A

roll backcommit
α α

α

βα

(a) (b) (c)
Sequential Speculative Commit Speculative Abort

Figure 3.1: Generic OS speculation. Part (a) shows a process in state S 0 execute syscall A with
result α. When the syscall returns, the process continues to execute program action B. In (b) and
(c), the system predicts the result of A and returns to user space speculatively while executing A in
parallel. If the prediction is correct, the system commits the speculation (b). Otherwise, it aborts
(c).

can be guessed at some point in time before the action completes. For OS-level speculation,

actions are typically individual system calls.

Speculative execution allows predictable actions to execute in parallel with the pro-

gram’s future actions. When the operating system can guess the results of a process’s

action before it executes, the operating system marks the process as speculative, returns

the predicted result to the process, and allows it to continue executing speculatively. In

parallel, the operating system carries out the action and determines the actual result.

When speculating, a generic speculation system must ensure that no effects resulting

from a missed speculation are visible outside the system. To hide misspeculations, the

system must roll back all effects of the speculation. To support rollback, the system takes

a checkpoint of the process (usually copy-on-write for efficiency) when the speculation

begins.

We define the boundary of a speculation to be the collection of all objects whose state

depends on a speculation. Initially, this boundary will include only the state of the process

that initiated the speculative action. As the process interacts with the system, it may try to

modify state outside its bounds by generating output. A generic speculation system may

21

handle output in one of three ways, each of which meets the requirement of completely

hiding misspeculations.

• Expand: the boundary of speculation is expanded to include the receiver of the out-

put, and then the output is sent. When a new object (e.g., a process or file) becomes

included in a speculation, a checkpoint of its state must be taken so it can be rolled

back if the speculation fails.

• Defer: the write is deferred until the speculation commits.

• Block: the modifier’s execution is halted until the speculation commits.

When the system finishes executing the action, it compares the predicted result with the

actual result. If the actual result matches the predicted result, the system commits the spec-

ulation and releases any deferred output (Figure 3.1b). Otherwise, it aborts the speculation

and rolls back all state within the speculation’s boundary (Figure 3.1c).

3.2 Custom Policies

Because an application has more semantic information about its own behavior, its per-

formance can be improved by using a speculation policy customized for that application.

A custom, application-specific policy can vary from a generic policy in several ways:

creating speculations, managing output, evaluating results, and controlling the commit.

Overall, custom policies benefit an application by letting it make more predictions, helping

those predictions be more accurate, and allowing it to achieve more work while speculative.

Figure 3.2 shows an overview of how a sequential execution is parallelized using spec-

ulative execution with custom policies. An important distinction between OS generic spec-

ulation and custom speculation is which level controls the speculation. In OS generic

speculation, the operating system executes the action that is being predicted and evaluates

the result. In custom speculation, the application executes the action that is being predicted

and evaluates the result. To allow the application to control the speculation, the system

forks the process when the speculation begins. One copy of the process (left side of Fig-

ures 3.2b and 3.2c) incorporates the predicted result of the action and continues executing

22

S
0

S
1

S
2

A

B

S
0

S
1

A

S
1
’

S
2

B

S
2

B

S
0

S
1

A

S
1
’

S
2
’

B

fork fork

(a) (b) (c)
Sequential Speculative Commit Speculative Abort

Figure 3.2: Speculation wit custom policies. Part (a) shows a sequential process in initial state S 0

that executes actions A and B, moving its state to S 1 and then to S 2. Parts (b) and (c) show the same
process predicting the result of action A and forking a speculative copy of the process that runs B
in parallel with A. If S 1 and S ′1 are equivalent, the speculation can be committed (b). Otherwise,
the speculation is aborted (c), and the process continues from state S 1. We call the left process in
Figures (b) and (c) the speculative process, and we call the right process in Figures (b) and (c) the
control process.

speculatively; we call this copy the speculative process. The other copy of the process

(right side of Figures 3.2b and 3.2c) executes the action and compares the actual result

with the predicted result; we call this copy the control process.

We explore three axes along which an application can provide a customized policy:

creating speculations, handling output, and handling commits.

3.2.1 Creating Speculations

The most basic task in speculative execution is determining where to start and end the

speculation, along with what value to predict for that interval. A generic speculation system

is not suited to identify the best places to start and end a speculation. First, it sees only a

subset of events issued by the process, e.g., system calls. Second, it has little information

by which to determine which of these events are predictable: a certain system call may

have a predictable result for one application but not another (e.g., reading a configuration

file is more predictable than reading a user document). A generic speculation system may

also fail to predict the result of the action, since the same action will often have different

23

results for different applications.

An application sees and understands much more about its own behavior and semantics.

For example, a program can start and end speculations at any line of code, rather than only

at system calls. We define actions at this level to be an interval of program statements. This

definition allows system calls to still count as actions, but it also lets the program speculate

over many more regions, including arbitrary function calls. With so many additional actions

visible, there is a greater opportunity to find predictable actions.

A custom policy on creating speculations lets the program specify which intervals of

code are worthwhile to speculate on and how to predict the intervals’ results. The program

can pick its actions to be those at an abstraction layer that is easily predictable.

Selecting the right abstraction layer is crucial to locating predictable actions. Interfaces

often exist to hide implementation details from the higher layers of a program, and we can

take advantage of them to minimize the amount of state that must be predicted. Lower-

level actions, themselves unpredictable, may work together to construct a high-level action

whose effects are well-defined and whose outcome is predictable. Defining a high-level ac-

tion can filter out the unpredictability of lower-level events and intermediate state changes

that are not actually relevant to the overall task.

As an example, consider a program that calls the function get user option() to dis-

play a menu, specify a default choice, and wait for the user to interactively select an option.

If we implemented our speculation in a slightly-lower layer of abstraction, the available ac-

tions concern the interaction with the menu itself. The program might find itself predicting

which menu item the user would select next. At still a lower level, the program might try to

speculate on the return value of the read() call that gets the user’s next keystroke. (Note

that this is all the generic system would see.)

By understanding the semantics of the high-level action, a custom policy would let the

program speculate over the entire get user option() function to predict that the user

will take the default option. The exact sequence of keystrokes that a user took to make a

selection and the internal menu state are irrelevant details that get abstracted away to make

the action predictable.

24

3.2.2 Output Policy

An application next needs to determine how its output should be handled while it runs

speculatively. Recall that a generic speculation system must handle output by expanding

the boundary of speculation, deferring the output, or blocking the speculation. Each of

these handling strategies has drawbacks in certain situations:

• Expanding the speculative boundary involves more objects in the speculation. This

increases complexity and increases the cost of a rollback. For example, if a heavily-

shared object such as the X11 server or /etc/passwd became speculative, the specu-

lation would quickly spread among other objects, and the entire system could become

speculative (and thus non-responsive).

• Deferring the output prevents the receiver from getting the output and starting useful

work. If the speculative sender is waiting on a reply from the recipient, it too will

stop making any forward progress.

• Blocking on output is the safest, easiest option, but it performs the worst because it

limits how far the application can speculate.

A generic system lacks information about the purpose of the output, the sharing patterns

of objects that receive the output, how quickly that output needs to be sent, and how far the

application could proceed speculatively after sending the output.

By specifying a custom output policy, an application can choose the best way to handle

its output from among these options. With its knowledge of which actions are safe, what it

is writing to, and whether it needs a reply, the application is in a better position to make this

choice. For instance, an application can avoid deferring writes when it will spin waiting

for a reply, and it can expand its speculative bounds only when it would not involve many

other objects in the speculation.

In addition, the application may be able to violate the conservative restriction of com-

pletely hiding misspeculations, because the application may not care if the output produced

by a misspeculation is rolled back. Hence, a custom output policy can specify a fourth strat-

egy in addition to those available to the generic system: allow the output without expanding

25

the boundary of speculation and without rolling back the receiver upon misspeculation. An

application can safely follow this output strategy in the following scenarios:

• The output does not modify external state: Many networking applications use re-

quests that return data without modifying important server state, such as HTTP GET

or SQL SELECT requests. Since no state change needs to be undone on a rollback,

these requests are safe to allow off the system.

• The application provides its own safety guarantee: Even if the system cannot roll

back the effects of an output, the application may be able to ensure that on a rollback,

the effects of its output will be undone. To guarantee this behavior, a networking ap-

plication might implement a distributed speculation system by tagging its messages

with its outstanding speculations and informing recipients when a rollback occurs.

• Inconsistent output can be tolerated on a rollback: A study by Lange shows that

users are able to tolerate a limited amount of speculative and inconsistent information

being displayed on their screen in exchange for faster performance [40].

By customizing its output policy, an application can ensure that its safe output does not

cause it to prematurely halt forward progress. A customized output policy also directs the

system to handle the unsafe output using the most efficient and appropriate strategy.

3.2.3 Committing

When the action whose result is being predicted finishes, the system must decide to

either commit or abort the speculation. If the actual result is identical to the predicted result,

the speculation can be committed. Without knowing what the application uses the predicted

values for, this is the only condition under which a speculation can commit. If a generic

system detects any differences between the actual and predicted result, it cannot determine

if that difference is significant, so it must be conservative and abort the speculation.

However, some applications can tolerate differences between the predicted and actual

states. Custom commit policies let the application specify what differences can be toler-

ated and how to to deal with those differences. Thus, custom commit policies can broaden

26

the criterion for correct predictions from being identical to being equivalent. A custom

commit policy can use this flexibility to commit more speculations, thus reducing the num-

ber of speculations that roll back and preserving more work. We consider four ways that

differences can be equivalent while not being identical.

First, some differences in process state are not semantically important to a valid exe-

cution and may be ignored. For example, different patterns of malloc() calls may result

in data structures being allocated in different locations. This is safe to ignore if there are

no inconsistent pointers to these structures. Likewise, the exact contents of unused stack

frames can differ if two executions take different code paths, but these are not significant.

Second, other differences in results may be unused and can also be ignored. For ex-

ample, a reply to an RPC may convey the complete metadata of a shared object, but the

application may only examine its time stamp. Differences in other parts of the reply can be

ignored. Another example is when the application uses the time stamp only by comparing

with another value. All results where the time stamp is less than the other value are in the

same equivalence class.

Third, some state differences may affect execution, but the semantics of the changed

state may permit updates to be lost. For instance, a cache may acquire an entry that is not

predicted, but the cache’s semantics allow it to drop the entry when needed.

Finally, some differences matter but can be imported into the speculative state. To

do this, the control process can forward the difference to the speculative process to be

merged into its current state. Continuing the previous example, although it may be valid

for a cache to lose unpredicted entries, the program may wish to preserve them for better

performance. If the speculative process has not read or written the differing state before it

is forwarded by the control process, the merge can be performed easily without worrying

about read/write conflicts. If the speculative process has read or written the differing state

before it is forwarded by the control process, the updated state can be passed as a message

to the speculative process.

27

3.3 Issues with Separation

Despite the benefits mentioned in the previous section, splitting the mechanism and

policy into different layers causes two new issues that must be addressed. Both issues arise

because the application participates in controlling its own speculation.

3.3.1 Committing State

Our control processes lacks effective isolation between two logically distinct portions

of application state: the state used to control the speculation is co-mingled with the state

effected by running the predicted action. The logic carrying out the predicted action and

the logic controlling the speculation execute within the same address space (the control

process). As a result, there is no easy way for the system to separate the state used by

the logic controlling the speculation (which should not be preserved), the predicted results

(which must be checked for equivalence), and other unpredicted state (which could be

discarded, forwarded, or cause a rollback). That is, if a particular change is detected, it is

not obvious how to handle that change.

This issue does not arise in a single-level system. For instance, when an OS speculates

on a system call, the process switches to a separate kernel stack, isolating the speculative

control logic from the application state. Furthermore, the effects of the system call on the

process’s state are well-defined. As a result, it is easier to check for equivalent results, and

there should never be any completely unpredicted state changes.

It is left to the application’s commit policy to decide how to disentangle these pieces of

state. In the applications we have modified to use custom speculation, this has not been a

significant burden. Still, it is an added complexity that we would avoid if possible.

3.3.2 Multi-threaded Speculation

The issue of separating state is compounded by multi-threaded processes. Our descrip-

tion of custom speculation so far has assumed that an application has only a single thread,

which both executes the action and uses the result. With speculation, we fork this thread

28

into a control thread and a speculative thread. The speculative copy of the thread contin-

ues using the predicted result, while the control copy of the thread executes the action and

commits or aborts the speculation.

In contrast, with multi-threaded processes, a single address space is shared among many

different threads. Some of these threads execute the predicted action and control the spec-

ulation; other threads use the results of the predicted action; and some threads may be

independent of the predicted action. Forking a process when a speculation begins causes

all threads within that process to be copied.

We designed a solution to these issues that lets us speculate using multi-threaded pro-

grams. The key issue is deciding which threads to start in each process.

We first consider the case in which the predicted action involves only a single thread

(A); other threads may use the predicted result or be independent of the action. Thread A

starts a speculation by predicting a result for the action and forking a speculative process.

Thread A must run in the control process to execute the predicted action and control the

speculation; thread A may also continue in the speculative process after skipping over the

portion of its execution that is being predicted.

Threads that use the predicted result must run in the speculative process to achieve the

desired parallelism; they cannot run in the control process since they would have to wait

for the predicted result.

Threads that are independent of the predicted action may run in both of the control and

speculative processes, but this duplicates their work and wastes computing resources. To

avoid wasting work, the independent threads are allowed to run in only one of the processes;

they are blocked in the other process. Most speculations are more likely to commit than

abort, so we run the independent threads in the speculative process (which is more likely

to survive the speculation than the control process). While we could merge the changes

from the independent threads into the surviving process, this would require us to modify

the independent threads to deal with the speculation.

In the general case, multiple threads may be involved in the predicted action. All threads

involved in the predicted action must run in the control process, and they must skip the

predicted action in the speculative process (if they run in the speculative process). Threads

29

that cooperate on the predicted action must also cooperate on starting and controlling the

speculation.

When one thread in a multi-threaded process starts a speculation, our system relies on

that thread to determine which of the other currently-running threads should also be started

in the control process. Unless otherwise specified, all other threads are assumed to be

independent, and remain running only in the speculative process.

3.4 Mechanism Design & Implementation

Custom policies were introduced in Section 3.2 by describing what behaviors an ap-

plication should be allowed to customize. In this section, we discuss how our mechanism

layer is built and how applications can express those policies.

3.4.1 Overview

Our underlying mechanism for speculative execution is based on the Speculator kernel

(see Section 2.3). We introduce custom policies to this system by creating a group of new

system calls, which are described in Section 3.4.2. At a high level, policy decisions are

executed from within the process, and the system calls are used to direct the mechanism

appropriately.

When a speculation starts, the system creates two separate processes (a control process

and a speculative process), each with their own address space. The isolation provided

by having separate address spaces is crucial: state from the speculative process should

not violate causality by influencing the execution of the control process. If a conflict is

detected, the system may conservatively abort the speculation. The application should

gracefully resume executing as if no speculation were created.

3.4.2 Policy API

Applications implement custom policies through a new set of system calls. An overview

of each call is given in Figure 3.3.

30

spec fork(out status, out spec id)
Begin a speculation.

commit(in spec id)
Commit a speculation.

abort(in spec id)
Abort a speculation.

set policy(in fd, in new pol, out old pol)
Set the file’s output policy, returning the old one.

get specs(out spec id list)
List the current process’s uncommitted speculations.

spec barrier(in spec id)
Block until the given speculation has committed.

start threads(in thread id list)
Start additional threads in the control process.

Figure 3.3: System call API used by an application to construct custom policies.

To create a new speculation, the application invokes spec fork() and splits into con-

trol and speculative processes. After the control process executes its predicted action, it

can call commit() or abort() for the speculation.

Custom output policies are specified using the function set policy(fd, policy).

Each write operation can use a per-file policy or, if that is unspecified, a per-thread de-

fault policy. Policies specify one of the strategies for handling output described in Sec-

tion 3.2.2 or default. A single write operation can use its own policy by wrapping it with

set policy().

We permit processes to view the status of ongoing speculations. A process can get

a list of its current speculative dependencies by calling get specs(). The kernel also

provides a socket that broadcasts spec id-s as they are created, committed, and aborted.

We also found it useful to allow a speculative process to voluntarily limit its own resource

usage. By calling spec barrier(), a process can halt its execution until some or all of its

dependencies have committed.

In a multi-threaded application, only the thread that called spec fork() is initially

started in the control process. All other threads in that process start blocked. If the action

requires that other threads be running in the control process, they can be explicitly woken

31

by calling start threads(). If the speculation aborts, all threads will automatically be

woken in the control process. (Note that all threads in the speculative process are active by

default.)

3.5 Design Process

We envision the use of custom speculations as a design process consisting of three

steps. First, a developer must locate interesting speculation points in a program. Second,

custom speculations must be implemented safely. Finally, the system as a whole should be

examined for additional optimization.

3.5.1 Determining Actions

There are three generic guidelines that should be followed when locating a suitable ac-

tion to predict. First, executing the action should take longer than the overhead of creating

a speculation (i.e., the cost of a fork). Blocking I/O operations (e.g., waiting for user input

or network messages) often greatly exceed the overhead cost—our own case studies focus

on these operations. Lengthy computations may be appropriate, as long as there are avail-

able cores to do the work in parallel. Second, it is important that the speculative process be

able to make forward progress. Using a custom output policy may remove some blocking

points, thus allowing more progress. Finally, the result of the action must be predictable.

By using a custom commit policy, it is sufficient to predict an equivalent result rather than

an identical one.

Our system imposes additional constraints on the selection of an appropriate action. We

rely on the program to explicitly verify that all effects of the action were predicted. To do

this correctly, the developer must be able to understand precisely the effects of the action

on the local process’s memory. Clean, narrow interfaces for accessing and modifying local

state significantly aid the developer in performing this task. An ideal interface cleanly

separates pure functions, which do not change local state, from the mutating functions.

In our experience, suitable interfaces are often found at the boundary between program

32

1 int count; / ∗ Gl ob a l s t a t e ∗ /

2
3 int* foo() {
4 ...

5 count++;

6 return ptr;
7 }

8
9 int* spec_foo() {

10 int p_cnt = count + 1;
11 int p_ret = 1;
12 (stat, spec_id) = s p e c f o r k ();
13 if (stat == SPEC) {
14 count++;

15 result = new int(p_ret);
16 } else if (stat == CONTROL) {
17 result = foo();

18 if (count == p_cnt && *result == p_ret)
19 commit(spec_id);
20 else
21 abort(spec_id);
22 }

23 return result;
24 }

25
26 void work() {
27 x = spec_foo(); / ∗ R e p l a c e s foo () ∗ /

28 p = s e t p o l i c y (fd, ALLOW);
29 send(*x);

30 s e t p o l i c y (fd, p);
31 }

Listing 3.1: Basic structure for predicting the result of simple function call.

modules. If an action seems too convoluted, it may be more reasonable to look at a different

abstraction layer.

3.5.2 Implementing Custom Policies

Once a suitable action has been located, it is necessary to implement the policy in code

as API calls and state modifications. We use the code in Listing 3.1 as a running example

of how to use our API to predict the results of running the function foo().

We found it useful to work with actions defined by a single function. When the code

is structured in this way, we can write a wrapper function (spec foo()) that isolates our

policy implementation from the action and surrounding code.

33

The developer is responsible for deciding how to predict the return value and side ef-

fects of executing an action (lines 10–11). Once that prediction is made, spec fork can

be called to split the application into speculative and control processes. The speculative

process should update local state as if the action had completed with the predicted result

(ln. 14–15). The control process should execute the action (ln. 17) and then, to implement

the commit policy, explicitly verify that the changed state matches the prediction (ln. 18).

It is important for correctness that all relevant side effects of the action be predicted

(in the speculative process) and verified (in the control process). In the example, if count

were ignored in the prediction (i.e., by omitting ln. 14), it would lead to odd program

semantics where count appears to increment only when the speculation aborts. Not all

differences are relevant: foo might have different dynamic memory allocation patterns

from the speculative process’s fast update (ln. 15). This difference does not affect program

semantics. Hence in the example, only the value of the returned object is checked. It is a

challenge to decide which state is relevant. For this reason, it is crucial that the developer

be able to understand the behavior of the action.

To selectively allow speculative output on a per-message basis, a program may wrap its

I/O functions with calls to set policy (ln. 28–30). The developer should ensure that the

receiver can handle potentially-incorrect data. Also note that after rolling back, messages

sent while speculative might be retransmitted.

Although we support executing multiple threads in the control process, a single thread

that makes blocking operations on local data is preferred. Acquiring a lock to access shared

data may introduce a deadlock if the lock holder is not running in the control thread. If the

system can detect the deadlock, the speculation can be aborted, freeing all other threads.

We suggest grabbing needed locks or making local copies of data structures before starting

the speculation. If multiple threads are required to run in the control process, they should

synchronize with each other first before executing a spec fork. The prediction must in-

clude the state changes due to all threads’ executions.

34

Application
Custom Policy

Start/End Output Commit
Predictive launch:

Bash Y Y
X Proxy Y Y

Firefox Y Y Y
BFT Y Y

Table 3.1: Speculative applications. A “Y” indicates that the application has a custom policy defined
for that category.

3.5.3 Optimization

By examining the behavior of the system in a few key areas, it may be possible to further

optimize performance. When a speculation fails, it might be the result of an overly-precise

commit policy. An expanded definition of “equivalence” might allow a greater number of

speculations to commit. When a speculative process blocks, it could indicate the need for

a more permissive output policy. If the process is waiting for output to be released, it could

be worthwhile to consider whether it is safe to allow that output. However, the system’s

performance as a whole may suffer if the boundary of speculation expands too far. If a

highly-shared system object becomes speculative, this may suggest that a more-restrictive

output policy is needed.

3.6 Case Studies

To evaluate the effectiveness of our split-layer speculation system, we look at three case

studies. We modify each application in the study to add a feature that uses custom policies

to achieve greater parallelism. Table 3.1 shows the applications and which policies they

use. For comparison, we discuss the difficulties involved when implementing each feature

in single-layer systems at both operating system and application layers. To quantify the

changes needed to implement these features, we measure the Lines of Code (LoC) added

and modified in each application (excluding blank lines, comments, and braces). Finally,

we quantify the improvement in performance due to each feature. Our test system uses two

Xeon single-core 3 GHz processors with 8 GB of RAM.

35

(b)

(a)
Launch

CommitSpec. Launch

time

time

User runs command

Figure 3.4: Process execution time when launched speculatively. In part (a), a process is launched
normally at the time the user invokes it. In part (b), the program is launched speculatively ahead of
time. We measure the execution time after the user invokes a command (dark bar).

3.6.1 Predictive Application Launching

We make use of custom speculation policies to improve perceived application startup

time by predicting the launch of an application and speculatively starting it. This will not

decrease the actual time needed to launch the application, but part of that time may be

overlapped with the user’s think time. As a result, the system will appear more responsive.

We first quantify the potential performance benefit from this technique. When it is

possible to successfully predict the next program far in advance, how much work of the

program launch can be hidden? Figure 3.4 illustrates our method for examining the capacity

of non-interactive programs to launch speculatively. In a normal launch (Figure 3.4a), a

program starts executing when it is invoked by the user’s shell. We measure the run time

of the process from its invocation to termination. In a speculative launch (Figure 3.4b),

we begin executing the program before it is requested. Once the speculative program quits

making progress, we invoke the application—committing the speculation—and measure

the program’s run time from that point. We examine two non-interactive applications:

building a LaTeX paper, and building the Bash shell via make.

Interactive graphical applications do not automatically terminate, so we examine their

load time from invocation instead of their run time. We end our load time measurement

when the rate of X11 messages sent by the application falls below 200 messages in a 100 ms

period. This threshold is arbitrary, but it effectively distinguishes drawing splash screens

and main windows from handling smaller incidental actions, like redrawing buttons as the

pointer moves across a window. We examine two interactive applications: GIMP 2.2 and

OpenOffice 3.1.1.

36

Application
Normal Launch (s) Speculative

Warm $ Cold $ Launch (s)
LaTeX build† 2.66 ± 0.03 4.72 ± 0.07 0.092 ± 0.001
Bash make† 45.1 ± 0.02 49.0 ± 0.04 0.19 ± 0.001
GIMP? 5.1 ± 0.3 8.4 ± 0.5 0.72 ± 0.03
OpenOffice? 3.33 ± 0.05 11.8 ± 0.08 0.29 ± 0.03

Table 3.2: Application run times† and load times? for non-interactive and interactive programs,
respectively. Normal launches are examined with both warm and cold disk caches; speculative
launches were not affected by cache state. Each value is given in seconds and is the mean of 10
runs, with 95% confidence intervals.

Table 3.2 shows the run times and load times of our test applications when launched

normally and speculatively. Because of the high impact on load times, we also varied the

state of the disk cache. When launching speculatively, we did not find a significant differ-

ence in run/load time due to cache state. Although application load times are significantly

decreased when using a warm cache, they are not eliminated. When applications are spec-

ulatively launched before invocation, almost all execution time spent running/loading the

program can be performed before the program is invoked. Compared to a normal launch

with a cold cache, at least 91% of the run/load time is capable of being hidden. Even with

warm caches, 85% can be hidden.

Section 3.6.1 describes our modifications to the Bash shell that lets it take advantage of

this potential by predicting the user’s next command line and executing it speculatively. By

itself, the changes to Bash are sufficient to benefit non-interactive commands. Section 3.6.1

describes how we implement an X11 proxy that lets graphical programs benefit from a

speculative launch.

Bash

We modified a Bash 3.2.48 shell to predict the next full command line the user will type

and begin running it speculatively. Bash predicts one command at a time, starting when the

shell prompt is first displayed.

To perform the prediction, we re-implemented the EMA online machine learning al-

gorithm [47], which predicts the next line based on the command history. One could also

37

imagine developing an algorithm that alters its guess as the user types. Finding the best

predictor is an orthogonal problem; our concern is how to effectively design a system to

make use of the predictions.

Following our design process, we identified the interface between Bash and the Read-

line library as an ideal modification point. We used the basic pattern described in Listing 3.1

to wrap Bash’s call to readline() (in Bash’s yy readline get()), which accepts user

input and returns it in a new buffer. Other program state is not modified. Our wrapper calls

into EMA to generate a predicted buffer. The speculative process returns a copy of this

buffer. The control process makes the call to readline() and compares the two strings.

Note that the two executions return different memory allocations. In this program, only the

buffer contents are relevant, so the commit policy makes only that comparison. Other state

is assumed, without verification, to not have changed.

Later observation led us to implement two additional changes. First, we found that

when a user hits Ctrl-C to interrupt Bash, the signal handler uses longjmp() to (incor-

rectly) bypass our wrapper. We modified the function throw to top level() on the

interrupt control path to abort outstanding speculations when this happens. Second, we

found that tab completion could add spaces to the end of command lines. In response, we

added a custom equivalence policy that normalizes commands before comparison.

Overall, only two function in Bash needed modification to permit speculative launching.

Basic command prediction used 56 LoC inside Bash to invoke our EMA predictor (433

LoC). The equivalence policy added 36 LoC, mostly text manipulation functions, for a

total of 525 LoC. Because Bash relies on the system’s default output policy to maintain

safety for arbitrary applications, no code was needed to implement the output policy. To

put these numbers in perspective, the full source code for Bash is over 100K LoC.

X Proxy

Graphical applications send and receive messages over a socket to communicate with

the X server. Following the generic policy used by Bash, a speculative application that

attempts to use this socket will either have all of its messages buffered, preventing it from

loading, or it will force the X server to become speculative, preventing further user interac-

38

tion. Neither result is desirable for speculative launching.

The generic policy is unnecessarily restrictive. While loading, an X application issues

many requests that read global state or modify application state without resulting in any

user-visible output. These messages can be safely exposed to the X server. In particular,

applications can create windows and set their properties without exposing those windows

to the user (mapping the window, in X terminology). The X protocol is designed to operate

asynchronously, so those few messages that do result in a visible change can be buffered

and released only when the speculation commits.

We design and implement an X proxy that sits between the application and the X server

to selectively permit messages through the boundary of speculation. By placing this func-

tionality in a proxy, we can support arbitrary unmodified applications and avoid modifying

the core X server.

For ease of development, we modify an existing proxy: xtrace 1.0.2 [44]. When a

new application connects to it, the proxy forks a new server, which becomes speculative

immediately after accepting the connection. The proxy takes advantage of system support

for buffering output to avoid complicating its own message-handling code. Using custom

output policies, requests to map, unmap, or delete widows are deferred. All other requests

are allowed. The proxy rewrites sequence numbers in each message to correct for the

buffered messages.

When the speculation commits, the system releases the buffered messages, and the ap-

plication begins to draw its main window. The proxy is notified of the commit and performs

a custom commit action: it adjusts its sequence number rewriting algorithm for the newly-

released messages. If the speculation aborts, the proxy will exit, breaking its connection

with the X server. The X server can recover by releasing application-held resources without

rolling back.

Implementing these changes added 280 LoC to xproxy (itself 7K LoC). Most code

additions are used for sequence number rewriting.

39

3.6.2 Firefox Certificate Checks

Verification can be a slow process whose outcome is often predictable. We use the

Firefox 3.5.4 web browser as an example of how to execute verification tasks in parallel

with the rest of an application. The task we speculate on is Firefox’s verification of a

server’s public certificate.

Many Internet protocols use the SSL/TLS protocol to establish a secure link between

client and server. To establish a session, Firefox sends a handshake and receives the server’s

public certificate. It then validates this certificate by contacting the certificate’s issuer.

Finally, if the certificate is valid, Firefox exchanges random data with the server to derive a

session key. Encrypted data can then be sent. We modify Firefox to predict that certificates

are valid and speculatively agree on a session key. The data stream should be delayed until

the validation is committed.

It would be difficult for a generic speculation system to provide this feature. First,

the generic speculation system would need to distinguish the requests used to verify the

certificate from other network messages. Second, it would need to predict the entire reply

to the client’s verification request, which is especially difficult if this certificate has not

been previously verified. Furthermore, once the speculation has started, the generic system

must treat further output conservatively and prevent it from leaving the system.

Speculation could also be implemented entirely within Firefox. However, this would

require the programmer to implement a custom checkpoint mechanism, and such a mecha-

nism would require extensive code modifications throughout the program because Firefox

is not written to isolate its state. Furthermore, the programmer would need to manually

block most output while speculative.

To express this feature using custom speculations, we create a variation of the function

ocsp GetOCSPStatusFromNetwork() in the NSS component, which requests the status

of a certificate from a remote server and caches the result. Our speculative process assumes

the verification succeeds, so it places a fake success record in the cache before returning.

We also use a custom output policy that allows SSL handshake data to be sent: socket

output is allowed around some calls to ssl3 GatherData(). Certificate prediction and

40

Site Spec. (ms) Normal (ms) Speedup
Google Accounts 297.6 ± 31.9 330.3 ± 32.7 9.9%
Windows Live ID 416 ± 46 501 ± 43 17%
Chase home page 310 ± 51 382 ± 46 19%

Table 3.3: SSL connection establishment time. Time taken to establish the first SSL connection to
various sites, for speculative vs. unmodified Firefox. Error values show 95% confidence intervals.
Despite the high variance, a T-Test confirms with 94% confidence that there is latency reduction
when using speculation.

cache modification used 122 LoC, and the output policy was specified in 27 LoC. For

comparison, the certificate validation code alone takes 8.5K LoC.

We encountered two difficulties during development. First, by default the validation

request is handed off to a dedicated thread that performs simple requests. We did not ex-

pect multiple threads to be involved, and the dependency prevented our speculation from

succeeding. The easiest fix was to eliminate the dependency by sending the request in the

validating thread. Second, sometimes a chain of certificates must be validated. Since the

speculative process only inserted a fake cache record for the first certificate, subsequent

cache modifications by the control process were being lost. To preserve the data, we imple-

mented a custom commit policy that forwards (via a message buffer in shared memory) the

verification response for all certificates from the control process to the speculative process.

Forwarding added 90 LoC, for a total of 239 LoC changed in Firefox.

To evaluate the impact of this feature on performance, we used a packet analyzer to

measure the amount of time taken to establish an SSL connection with and without spec-

ulation. Note that certificate verification is only one step in session establishment. Our

results are presented in Table 3.3. Overall, our improvement decreases the time it takes to

establish an initial SSL connection by an average of 15% when certificates have not been

revoked.

3.6.3 BFT Client

We next examine a client in the PBFT-CS protocol, which we fully explore in Chapter 4.

We develop the PBFT-CS protocol to decrease the perceived latency of executing requests

41

on a Byzantine fault-tolerant (BFT) cluster. We discuss the full motivation for this protocol

later. For now, we are only concerned with how the client is structured.

BFT services are accessed through a shared library using an RPC interface: clients

submit requests and wait for the service to return a reply. Because each reply may come

from a faulty server, it is necessary to wait until a quorum of authenticated matching replies

is received before the client can determine the correct reply. Servers must coordinate their

execution of requests; consequently each operation typically has high latency. PBFT-CS

observes that the first reply is usually correct and allows a client capable of speculation

to continue executing before the reply is known to be correct. Further requests encode

speculative dependencies so that the service can squash aborted requests. As a result, the

client sees lower latencies for its requests and it can pipeline requests to increase its own

local throughput.

This client for this case study is simple enough that we were able to construct one that

implements its own lightweight checkpoint system. This is a single-purpose application-

implemented speculation system. We compare this client against another client that has

been implemented to use custom policies.

We can see several examples of custom policies in this client description. The BFT

code decides when to make a prediction (after receiving one reply), what to predict (that

the first reply will be validated), which output to allow (additional BFT requests, with

modification), and when to commit (after receiving enough replies).

Our policy-based client implements its speculation logic entirely within the BFT shared

library. We modified the inner message-handling routine to expose intermediate results.

Then, from a layer between the internal functions and the client, we use spec fork() to

implement our own custom start policy. As results are returned, our layer associates the re-

ply with the current dependency set (from get specs()) to be encoded on future requests.

We set the output policy on BFT sockets to allow all messages to be sent. We implement

a default commit policy by requiring the actual reply to be identical to the predicted reply.

These internal changes and policies were implemented in 221 LoC, out of 17K LoC for the

full library.

By using custom policies, our modified BFT library can be used by any existing BFT

42

application without further modification. Those applications can also specify their own

policies for other uses without conflicting with those set by the BFT library.

In contrast, the application-implemented client is tied to the service that is using it.

Instead of being written as a sequential process that uses blocking operations (the normal

RPC interface), this client uses a main event loop. Making the logic event-based forces state

to be isolated and saved outside of the stack, so checkpoints can be safely taken between

events using memcpy(). Other applications have far more state (that may extend into the

OS, if open files are considered), which will require more complex checkpointing logic.

To interpose on output, the client logic is written not to perform output directly. BFT

requests are queued and handled by the mechanism so that checkpoints can be created

correctly. Other application output must be queued so it can be released only when its

dependencies have committed.

We see the policy-based library as an improvement in programmability. It is also nec-

essary to consider the performance trade-offs involved when selecting between using a

policy-based system or an application-implemented system. From PBFT-CS, we evaluate

a simple shared counter service with a single operation that increments the counter and

returns its value. The client simply executes a fixed number of requests in a tight loop.

We examine this application from two perspectives. First, we consider the improvement

of our client’s performance due to speculative execution. Second, we compare two different

implementations of speculation: our policy-based system and an application-implemented

system tuned for the application. This comparison lets us quantify the performance cost we

incur by relying on heavier, generic checkpoints.

The benefit of an application-implemented speculation system is a small performance

advantage over our speculation system. Figure 3.5 compares a non-speculative client

against speculative clients implemented in both policy-based and application-implemented

systems. We vary the amount of network latency between each server and see how it affects

each client’s throughput when accessing a lightly-loaded server.

Both speculative clients perform much faster than the non-speculative one. The policy-

based client lets the client issue 82% more requests per second than the non-speculative

client with latencies above 0.5 ms. The client using application-implemented speculation

43

 0

 200

 400

 600

 800

 1000

 0 0.5 1 1.5 2

C
li

en
t

O
p
er

at
io

n
s

p
er

 S
ec

o
n

d
Latency Between Servers (ms)

App-implemented spec.
Policy-based spec.

Non-speculative

Figure 3.5: Comparison of BFT clients.

employs a checkpoint and restore mechanism that is tuned to the application. Hence, it has

less overhead and is able to issue 90% more requests per second than the non-speculative

client (an 8% improvement over our generic mechanism). In exchange, the development

effort for the client is greatly increased, and it cannot expand its speculative boundary

beyond the process itself. A developer must balance these trade-offs when deciding how to

implement a feature speculatively.

3.7 Related Work

Fast Track [32] is a speculative runtime environment that allows applications to direct

speculations over their own execution in a similar style to our custom policies. A pro-

grammer invokes FastTrack() to fork and and let one branch become speculative, like

spec fork(). Each side executes different version of the same action that are predicted

to be identical: a fast but unsafe version and a slow, correct one. We go beyond the Fast

Track model by giving the programmers greater control over when to commit and abort

speculations in the presence of state differences that may be irrelevant. Our system also

allows applications to specify a custom output policy and to speculate based on the actions

of multiple coordinating threads. Fast Track, being implemented in the language compiler

and runtime, cannot expand its boundary of speculation beyond its own process.

Prospect [77] is a compiler-based platform to generate programs that execute a fast

program variant speculatively along with a slow variant that can include additional safety

44

checks. Speculative system calls are allowed, although their effects are only made visible

to other processes after a commit. Prospect also commits on equivalent, rather than iden-

tical, states. However, this is not verified in current implementations. In the context of

our work, applications modified by Prospect could have benefited from the existence of a

shared kernel mechanism to handle speculative system calls that would have allowed it to

specify a default defer output policy. One could also view this project as an implementation

of speculative mechanisms and policy at a low layer (the language and runtime) without

considering the application semantics.

Crom is another framework that allows web applications to control their own specula-

tions [50]. This mechanism is implemented as a JavaScript library that lets web application

developers predict upcoming UI events. Developers flag individual events and provide lists

of likely values for input controls. Equivalence functions are specified to let the system

determine which speculative executions could match the user’s actual event. The program-

ming model for JavaScript is simpler than that for arbitrary binaries. Hence, custom poli-

cies must deal with a wider range of actions. Crom does not provide an analogue to custom

output policies for its two I/O actions: network requests generated by the speculative code

are sent and writes to the screen are kept hidden until a commit. Speculations capture the

full state of the DOM tree and are isolated from each other, so causality tracking is not

needed in this system.

We broadly categorize other work by considering what it is predicting, how much con-

trol it gives to applications, and what layer in the software stack implements the mechanism.

Speculative parallelism. Our work is closest to other systems that are designed to

execute sequential code segments concurrently. Thread-level speculation (TLS) systems

execute blocks of sequential code in parallel on separate threads, predicting that there are

are no memory conflicts between the blocks [75]. TLS systems provide fine-grained paral-

lelism, and the selection of the blocks is often driven by automated program analysis. The

mechanism needed to support speculations at this granularity often has problems rolling

back in the presence of system calls or I/O operations, so these are disallowed while spec-

ulative. Our system is built to support speculations at a much coarser granularity, and we

consider system calls and I/O to be good sources for predictable actions. Because our sys-

45

tem predicts state instead of read/write sets, the programmer can specify what value should

be read by future reads.

Transactions. Speculative execution is similar in many ways to atomic transactions,

and thus our system is similar to systems that provide operating system support for ap-

plication transactions, such as QuickSilver [69] and TxOS [58]. Both transactions and

speculation execute actions in parallel with other code, and both can commit or abort the

action. The difference between transactions and speculation is the relationship between the

action and other code. With transactions, other code executes in parallel with the action

(with varying degrees of isolation [25]). In speculation, the outcome of an action is being

predicted, and other threads are continuing based on that prediction.

Transactional memory and optimistic concurrency control are uses of transactions that

also leverage a prediction [28]. As with TLS, these uses of transactions predict that there

are no read/write conflicts between concurrently executing threads.

Generic speculation. There are many examples of generic low-level systems that do

not take advantage of application semantics. Speculator originally predicted only system-

level events such as NFS calls and disk syncing [52, 54]. Pulse speculatively resumes

threads that are waiting for a resource to see if they will deadlock [43]. The Time Warp

system lets processes in a distributed system run speculatively under the assumption that

all their messages arrived in the correct program order [31]. Ţăpuş et al. also performed

similar speculations for a distributed shared memory system [78]. These systems begin

speculations only on system-visible events, and either disallow other output or handle it

conservatively.

Systems offering customization. The Atomos programming language offers open

transactions, which allow a thread to commit its writes back to memory while inside an

uncommitted transaction [8]. Our custom output policies also allow for the same behav-

ior, though we also consider blocking and expanding speculative boundary. The Mojave

compiler also exposes an interface to start, commit, and abort speculations [72]. During a

speculation, isolation is preserved, and since this is a runtime-based system, most system

calls are not allowed. In Fast Track, the application customizes the actions being predicted

and the predicted result, but not other policies.

46

Custom speculation implementations. The work by Lange et al. on speculative re-

mote displays is an example of a program that uses an application-implemented speculation

system [40]. They built a remote VNC viewer that predicts screen updates and displays the

speculative view to the user. The authors also found that RDP events are also predictable,

but they did not attempt to build a viewer, citing RDP’s reliance on client state.

3.8 Chapter Conclusions

In this chapter, we explored the advantages of separating the mechanism to support

speculative execution from the policy that describes what needs to be done. Applications

that wish to use speculative execution are freed from the burden of implementing their

own mechanisms such as checkpointing, rollback, causality tracking, and output buffering.

Instead, they can focus on defining when to begin speculating, what results to predict, how

output should be handled when speculative, and when to commit the speculation.

We demonstrate the effectiveness of our mechanism/policy split by examining three

different applications that can be easily modified using our shared mechanism. First, our

system reduces the startup time of programs by at least 85% when the program’s launch

can be predicted. Secondly, the latencies of establishing secure connections on Firefox

are reduced by 15%, as our new mechanism/policy split allows it to perform certificate

verification in parallel, partially removing it from a critical path.

Finally, the BFT client shows the low trade-off between performance and convenience

in our system. While using an optimized application-level speculation mechanism gives an

8% performance improvement over our separated speculation system, its use prevents the

application from interacting with the rest of the system while speculative.

47

CHAPTER 4

Fault-Tolerant Protocols

For some applications, it is not enough to be able to communicate speculatively with

other components on the same machine. Applications are increasingly being developed

that depend on networked services for part or all of their functionality. The utility of shar-

ing speculative state with local processes is greatly diminished if the speculative applica-

tion spends its time waiting to communicate with a remote server. For such applications,

we would like to be able to make local speculations visible across the network to remote

services. This chapter develops one example of how we can expose application-layer spec-

ulations to network protocols: we develop a Byzantine fault-tolerant protocol that allows

clients to safely issue speculative requests.

As dependence on network services increases, so too should the services’ ability to

tolerate faults increase. Replicated state machines [70] provide a general methodology to

tolerate a wide variety of faults, including hardware failures, software crashes, and mali-

cious attacks. Numerous examples exist for how to build such replicated state machines,

such as those based on agreement [11, 16, 35, 39] and those based on quorums [1, 16].

For replicated state machines to provide increased fault tolerance, the replicas should

fail independently. Various aspects of failure independence can be achieved by using multi-

ple computers, independently written software [4,65], and separate administrative domains.

Geographic distribution is one important way to achieve failure independence when con-

fronted with failures such as power outages, natural disasters, and physical attacks.

Unfortunately, distributing the replicas geographically increases the network latency

48

between replicas, and many protocols for replicated state machines are highly sensitive

to latency. In particular, protocols that tolerate Byzantine faults must wait for multiple

replicas to reply, so the effective latency of the service is limited by the latency of the

slowest replica being waited for. Agreement-based protocols further magnify the effects of

high network latency because they use multiple message rounds to reach agreement. Some

implementations may also choose to delay requests and batch them together to improve

throughput.

In this chapter, we explore how to use speculative execution to allow clients of repli-

cated services to be less sensitive to high communication latencies by overlapping compu-

tation with communication in agreement protocols. We observe that faults are generally

rare, and, in the absence of faults, the response from even a single replica is an excel-

lent predictor of the final, collective response from the replicated state machine. Based on

this observation, clients in our system can proceed speculatively after receiving the first

response, thereby hiding considerable latency in the common case in which the first re-

sponse is correct, especially if at least one replica is located nearby. When responses are

completely predictable, clients can even continue before they receive any response.

Speculative execution proves safety in the rare case in which the first response is faulty.

By tracking all effects of the speculative execution and not externalizing speculative state,

our system can undo the effects of the speculation if the first response is later shown to be

incorrect.

Because client speculation hides much of the latency of the replicated service from the

client, replicated servers in our system are freed to optimize their behavior to maximize

their throughput and minimize load, such as by handling agreement in large batches.

We show how client speculation can help clients of a replicated service tolerate net-

work and protocol latency by adding speculation to the Practical Byzantine Fault Tolerance

(PBFT) protocol [11]. We demonstrate how performance improves for a counter service

and an NFSv2 service on PBFT from decreased effective latency and increased concur-

rency in light workloads. Speculation improves the client throughput of the counter service

2–58× across two different network topologies. Speculation speeds up the run time of

NFS micro-benchmarks 1.08–19× and up to 5× on a macro-benchmark when co-locating

49

a replica with the client. When replicas are equidistant from each other, our benchmarks

speed up by 1.06–6× and 2.2×, respectively. The decrease in latency that client speculation

provides does have a cost: under heavy workloads, maximum throughput is decreased by

18%.

4.1 Client speculation in replicated services

4.1.1 Applicability to replicated services

As discussed in Section 1.1, speculative execution has often been used to hide the la-

tency associated with network communication. For speculation to be applicable, commu-

nication protocols must be slow (beyond the cost of creating the speculation) and highly

predictable.

Replicated services are an excellent candidate for client-based speculative execution.

Clients of replicated state machine protocols that tolerate Byzantine faults must wait for

multiple replicas to reply. That may mean waiting for multiple rounds of messages to be

exchanged among replicas in an agreement-based protocol. If replicas are separated by

geographic distances (as they should be in order to achieve failure independence), network

latency introduces substantial delay between the time a client starts an operation and the

time the client receives the reply that commits the operation. Thus, there is substantial time

available to benefit from speculative execution, especially if one replica is located near the

client.

Replicated services also provide an excellent predictor of an operation’s result. Under

the assumption that faults are rare, a client’s request will generate identical replies from

every replica, so the first reply that a client receives is an excellent predictor of the final,

collective reply from the replicated state machine (which we refer to as the consensus

reply). After receiving the first reply to any operation, a client can speculate based on 1

reply with high confidence. For example, when an NFS client tries to read an uncached file,

it cannot predict what data will be returned, so it must wait for the first reply before it can

continue with reasonable data.

50

The results of some remote operations can be predicted even before receiving any

replies; for instance, an NFS client can predict with high likelihood of success that file

system updates will succeed and that read operations will return the same (possibly stale)

values in its cache [52]. For such operations, a client may speculate based on 0 replies

since it can predict the result of a remote operation with high probability.

4.1.2 Protocol adjustments

Based on the above discussion, it becomes clear that some replicated state machine pro-

tocols will benefit more from speculative execution than others. For this reason, we propose

several adjustments to protocols that increase the benefit of client-based speculation.

Generate early replies

Since the maximum latency that can be hidden by speculative execution, in the absence

of 0-reply speculation, is the time between when the client receives the first reply from any

replica and when the client receives enough replies to determine the consensus response,

a protocol should be designed to get the first reply to the client as quickly as possible.

The fastest reply is realized when the client sends its request to the closest replica, and that

replica responds immediately. Thus, a protocol that supports client speculation should have

one or more replicas immediately respond to a client with the replica’s best guess for the

final outcome of the operation, as long as that guess can accurately predict the consensus

reply.

Assuming each replica stores the complete state of the service, the closest replica can

always immediately perform and respond to a read-only request. However, that reply is not

guaranteed to be correct in the presence of concurrent write operations. It could be wrong

if the closest replica is behind in the serial order of operations and returns a stale value,

or in quorum protocols where the replica state has diverged and is awaiting repair [1]. We

describe optimizations in Section 4.2.2 that allow early responses from any replica in the

system, along with techniques to minimize the likelihood of an incorrect speculative read

response.

51

It is more difficult to allow any replica to immediately execute a modifying request in

an agreement protocol. Backup replicas depend on the primary replica to decide a sin-

gle ordering of requests. Without waiting for that ordering, a backup could guess at the

order, speculatively executing requests as it receives them. However, it is unlikely that

each replica will perceive the same request ordering under workloads with concurrent writ-

ers, especially with geographic distribution of replicas. Should the guessed order turn out

wrong (beyond acceptable levels [36]), the replica must roll back its state and re-execute

operations in the committed order, hurting throughput and likely causing its response to

change.

For agreement protocols like PBFT, a more elegant solution is to have only the primary

execute the request early and respond to the client. As we explain in Section 4.2.3, such

predictions are correct unless the primary is faulty. This solution enables us to avoid spec-

ulation or complex state management on the replicas that would reduce throughput. Used

in this way, the primary should be located near the most active clients in a system to reduce

their latency.

Prioritize throughput over latency

There exist a myriad of replicated state machine protocols that offer varying trade-

offs between throughput and latency [1, 11, 16, 35, 56, 64, 82]. Given client support for

speculative execution, it is usually best to choose a protocol that improves throughput over

one that improves latency. The reason is that speculation can do much to hide replica

latency but little to improve replica throughput.

As discussed in the previous section, speculative execution can hide the latency that

occurs between the receipt of an early reply from a replica and the receipt of the reply

that ends the operation. Thus, as long as a speculative protocol provides for early replies

from the closest or primary replica, reducing the latency of the overall operation does not

ordinarily improve user-perceived latency.

Speculation can only improve throughput in the case where replicas are occasionally

idle by allowing clients to issue more operations concurrently. If the replicas are fully

loaded, speculation may even decrease throughput because of the additional work caused

52

by mispredictions or the generation of early replies. Thus, it seems prudent to choose a

protocol that has higher latency but higher potential throughput, perhaps through batching,

and stable performance under write contention [11,35], rather than protocols that optimize

latency over throughput [1, 16].

An important corollary of this observation is that client speculation allows one to choose

simpler protocols. With speculation, a complex protocol that is highly optimized to reduce

latency may perform approximately the same as a simpler, higher latency protocol from

the viewpoint of a user. A simpler protocol has many benefits, such as allowing a simpler

implementation that is quicker to develop, is less prone to bugs, and may be more secure

because of a smaller trusted computing base.

Avoid speculative state on replicas

To ensure correctness, speculative execution must avoid output commits that externalize

speculative output (e.g., by displaying it to a user) since such output can not be undone once

externalized. The definition of what constitutes external output, however, can change. For

instance, sending a network message to another computer would be considered an output

commit if that computer did not support speculation. However, if that computer could

be trusted to undo, if necessary, any changes that causally depend on the receipt of the

message, then the message would not be an output commit. One can think of the latter case

as enlarging the boundary of speculation from just a single computer to encompass both

the sender and receiver.

What should be the boundary of speculation for a replicated service? At least three

options are possible: allow all replicas and clients of the service to share speculative state,

allow replicas to share speculative state with individual clients but not to propagate one

client’s speculative state to other clients, and disallow replicas from storing speculative

state.

Our design uses the third option, with the smallest boundary of speculation, for several

reasons. First, the complexity of the system increases as more parts participate in a specula-

tion. The system would need to use distributed commit and rollback [21] to involve replicas

and other clients in the speculation, and the interaction between such a distributed commit

53

and the normal replicated service commit would need to be examined carefully. Second, as

the boundary of speculation grows larger, the cost of a misprediction is higher; all replicas

and clients that see speculative state must roll back all actions that depend on that state

when a prediction is wrong. Finally, it may be difficult to precisely track dependencies

as they propagate through the data structures of a replica, and any false dependencies in a

replica’s state may force clients to trust each other in ways not required by the data they

share in the replicated service. For example, if the system takes the simple approach of

tainting the entire replica state, then one client’s misprediction would force the replica to

roll back all later operations, causing unrelated clients to also roll back.

Use replica-resolved speculation

Even with this small boundary of speculation, we would still like to allow clients to

issue new requests that depend on speculative state (which we call speculative requests).

Speculative requests allow a client to continue submitting requests when it would other-

wise be forced to block. These additional requests can be handled concurrently, increasing

throughput when the replicas are not already fully saturated.

One complication here is that, to maintain correctness, if one of the prior operations on

which the client is speculating fails, any dependent operations that the client issues must

also abort. There is currently no mechanism for a replica to determine whether or not a

client received a correct speculative response. Thus, the replica is unable to detect whether

or not to execute subsequent dependent speculative requests.

To overcome this flaw, we propose replica-resolved speculation through predicated

writes, in which replicas are given enough information to determine whether the specula-

tions on which requests depend will commit or abort. With predicated writes, an operation

that modifies state includes a list of the active speculations on which it depends, along with

the predicted responses for those speculations. Replicas log each committed response they

send to clients and compare each predicted response in a predicated write with the actual re-

sponse sent. If all predicated responses match the saved versions, the speculative request is

consistent with the replica’s responses, and it can execute the new request. If the responses

do not match, the replica knows that the client will abort this operation when rolling back a

54

failed speculation, so it discards the operation. This approach assumes a protocol in which

all non-faulty replicas send the same response to a request.

Note that few changes may need to be made to a protocol to handle speculative requests

that modify data. An operation O that depends on a prior speculation Os, with predicted

response r, may simply be thought of as a single deterministic request to the replicated

service of the predicated form: if response(Os) = r, then do O. This predicate must

be enforced on the replicas. However, as shown in Section 4.4, predicate checking may

be performed by a shim layer between the replication protocol and the application without

modifying the protocol itself.

4.2 Client speculation for PBFT

In this section, we apply our general strategy for supporting client speculative execution

in replicated services to the Practical Byzantine Fault Tolerance (PBFT) protocol. We call

the new protocol we develop PBFT-CS (CS denotes added support for client speculation).

4.2.1 PBFT overview

PBFT is a Byzantine fault tolerant state machine replication protocol that uses a primary

replica to assign each client request a sequence number in the serial order of operations.

The replicas run a three-phase agreement protocol to reach consensus on the ordering of

each operation, after which they can execute the operation while ensuring consistent state

at all non-faulty replicas. Optionally, the primary can choose and attach non-deterministic

data to each request (for NFS, this contains the current time of day).

PBFT requires 3 f + 1 replicas to handle f concurrent faulty replicas, which is the

theoretical minimum [7]. The protocol guarantees liveness and correctness with up to f

failures, and runs a view change sub-protocol to move the primary to another replica in the

case of a bad primary.

The communication pattern for PBFT is shown in Figure 4.1. The client normally re-

ceives a commit after five one-way message delays, although this may be shortened to

55

Figure 4.1: PBFT-CS Protocol Communication. The early response from the primary is shown with
a dashed hollow arrow, which replaces its response from the Reply phase (dotted filled arrow) in
PBFT.

four delays by overlapping the commit and reply phases using a tentative execution opti-

mization [11]. To reduce the overhead of the agreement protocol, the primary may collect a

number of client requests into a batch and run agreement once on the ordering of operations

within this batch.

In our modified protocol, PBFT-CS, the primary responds immediately to client re-

quests, as illustrated by the dashed line in Figure 4.1.

4.2.2 PBFT-CS base protocol

In both PBFT and PBFT-CS, the client sends each request to all replicas, which buffer

the request for execution after agreement. Unlike the PBFT agreement protocol, the pri-

mary in PBFT-CS executes an operation immediately upon receiving a request and sends

the early reply to the client as a speculative response. The primary then forms a pre-prepare

message for the next batch of requests and continues execution of the agreement protocol.

Other replicas are unmodified and reply to the client request once the operation has com-

mitted.

Since the primary determines the serial ordering of all requests, under normal circum-

stances the client will receive at least f committed responses from the replicas matching

the primary’s early response. This signifies that the speculation was correct because the

request committed with the same value as the speculative response. If the client receives

f + 1 matching responses that differ from the primary’s response, the client rolls back the

current speculation and resumes execution with the consensus response.

56

Predicated writes

A PBFT-CS client can issue subsequent requests immediately after predicting a re-

sponse to an earlier request, rather than waiting for the earlier request to commit. To enable

this without requiring replicas themselves to speculate and potentially roll back, PBFT-CS

ensures that a request that modifies state does not commit if it depends on the value of any

incorrect speculative responses. To meet this requirement, clients must track and propagate

the dependencies between requests.

For example, consider a client that reads a value stored in a PBFT-CS database (op1),

performs some computation on the data, then writes the result of the computation back

to the database (op2). If the primary returns an incorrect speculative result for op1, the

value to be written in op2 will also be incorrect. When op1 eventually commits with a

different value, the client will fail its speculation and resume operation with the correct

value. Although the client cannot undo the send of op2, dependency tracking prevents op2

from writing its incorrect value to the database.

Each PBFT-CS client maintains a log of the digests dT of each speculative response

issued at logical timestamp T . When an operation commits, its corresponding digest is

removed from the tail of the log. If an operation aborts, its digest is removed from the log,

along with the digests of any dependent operations.

Clients append any required dependencies to each speculative request, of the form

{c, 〈ti, di〉, ...} for client c and each digest di at timestamp ti.

Replicas also store a log of digests for each client with the committed response for each

operation. The replica executes a speculative request only if all digests in the request’s

dependency list match the entries in the replica’s log. Otherwise, the replica executes a

no-op in place of the operation.

It is infeasible for replicas to maintain an unbounded digest log for each client in a

long-running system, so PBFT-CS truncates these logs periodically. Replicas must make

a deterministic decision on when to truncate their logs to ensure that non-faulty replicas

either all execute the operation or all abort it. This is achieved by truncating the logs at

fixed deterministic intervals.

57

If a client issues a request containing a dependency that has since been discarded from

the log, the replicas abort the operation, replacing it with a no-op. The client recognizes

this scenario when receiving a consensus response that contains a special retry result. It

retries execution once all its dependencies have committed. In practice an operation will

not abort due to missing dependencies, provided that the log is sufficiently long to record

all operations issued in the time between a replica executing an operation and a quorum of

responses being received by the client.

Read-only optimization

Many state machine replication protocols provide a read-only optimization [1, 11, 16,

35] in which read requests can be handled by each replica without being run through the

agreement protocol. This allows reads to complete in a single communication round, and

it reduces the load on the primary.

In the standard optimization, a client issues optimized read requests directly to each

replica rather than to the primary. Replicas execute and reply to these requests without

taking any steps towards agreement. A client can continue after receiving 2 f + 1 match-

ing replies. Because optimized reads are not serialized through the agreement protocol,

other clients can issue conflicting, concurrent writes that prevent the client from receiving

enough matching replies. When this happens, the client retransmits the request through the

agreement protocol. This optimization is beneficial to workloads that contain a substantial

percentage of read-only operations and exhibit few conflicting, concurrent writes. Impor-

tantly, when a backup replica is located nearer a client than the primary, that replica’s reply

will typically be received by the client before the primary’s.

PBFT-CS cannot use this standard optimization without modification. A problem arises

when a client issues a speculative request that depends on the predicted response to an

optimized read request. PBFT-CS requires all non-faulty replicas to make a deterministic

decision when verifying the dependencies on an operation. However, since optimized reads

are not serialized by the agreement protocol, one non-faulty replica may see a conflicting

write before responding to an optimized read, while another non-faulty replica sees the

write after responding to the read. These two non-faulty replicas will thus respond to the

58

optimized read with different values, and they will make different decisions when they

verify the dependencies on a later speculative request. A non-faulty replica that sent a

response that matches the first speculative response received by the client will commit the

write operation, while other non-faulty replicas will not. Hence, writes may not depend on

uncommitted optimized reads. This is enforced at each replica by not logging the response

digest for such requests.

We address this problem by allowing a PBFT-CS client to resubmit optimized read

requests through the full agreement protocol, forcing the replicas to agree on a common

response. When write conflicts are low, the resubmitted read is likely to have the same

reply as the initial optimized read, so a speculative prediction is likely to still be correct.

After performing this procedure, we can send any dependent write requests, as they no

longer depend on an optimized request.

There are three issues that must be considered for a read request to be submitted using

this optimization.

• The request cannot read uncommitted state.

• The client should not follow a read with a write.

• The reply should not be completely predictable.

The first issue is required for consistency. A client cannot optimize a read request for

a piece of state before all its write requests for that state are committed. Otherwise, it

risks reading stale data when a sufficient number of backup replicas have not yet seen the

client’s previous writes. The data dependency tracking required to implement this policy is

also used to propagate speculations, so no extra information needs to be maintained. Reads

that do depend on uncommitted data may still be submitted through the agreement protocol

as with write requests. Should a client desire a simpler policy for ensuring correctness, it

can disable the read-only optimization while it has any uncommitted writes.

Second, consider a client that reads a value, performs a computation, and then writes

back a new value. If the read request is initially sent optimized, issuing the write will force

the read to be resubmitted. The “optimization” results in additional work. Clients that

anticipate following a read by a write should decline to optimize the read.

59

Finally, if a client can predict the outcome of the request before receiving any replies

(for instance, if it predicts that a locally-cached value has not become stale), then it should

submit the request through the normal agreement protocol. Since the client does not need

to wait for any replies, it is not hurt by the extra latency of waiting for agreement.

4.2.3 Handling failures

Speculation optimizes for reduced latency in the non-failure case, but it is important

to ensure that correctness and liveness are maintained in the presence of faulty replicas.

Failed speculations also increase the latency of a client’s request, forcing it to roll back

after having waited for the consensus response, and hurt throughput by forcing outstanding

requests to become no-ops. It is important for our protocol to handle faults correctly in a

way that still tries to preserve performance.

A speculation will fail on a client when the first reply it receives to a request does not

match the consensus response. There are three cases in which this might happen:

• The most common case occurs when a write issued by another client conflicts with

an optimized read. In an extreme instance, one replica’s early reply could contain the

stale data while all other replicas reply with current data.

• The second case occurs when there is a view change. PBFT ensures that committed

requests will be ordered the same in the new view, but the client is speculating on

uncommitted requests that the new replica could order differently. View changes

may be the result of a bad primary, or they may be triggered by network conditions

or proactive recovery [12].

• The third case occurs when the primary is faulty, and it either returns an incorrect

speculative response or serializes a request differently when running the agreement

protocol. We next examine this scenario further.

It is trivial for a client to detect a faulty primary: a request’s early reply from the primary

and the consensus reply will be in the same view and not match. If signed responses are

used, the primary’s bad reply can be given to other replicas as a proof of misbehavior.

However, if simple message authentication codes (MACs) are used, the early reply cannot

60

be used in this way since MACs do not provide non-repudiation.

The simplest solution to handling faults with MACs is for a client to stop speculating if

the percentage of failed speculations it observes surpasses a threshold. PBFT-CS currently

uses an arbitrary threshold of 1%. If a client observes that the percentage of failed specula-

tions is greater than 1% over the past n early replies provided by a replica, it simply ceases

to speculate on subsequent early replies from that replica. Although it will not speculate

on subsequent replies, it can still track their accuracy and resume speculating on further

replies if the percentage falls below a threshold. Our experimental results verify that at this

threshold, PBFT-CS is still effective at reducing the average latency under light workloads.

4.2.4 Correctness

The speculative execution environment and PBFT protocol used in our system both

have well-established correctness guarantees [10, 52]. We thus focus our attention on the

modifications made to PBFT, to ensure that this protocol remains correct.

Our modified version of PBFT differs from the original in several key ways:

• A client may be sent a speculative response that differs from the final consensus

value.

• A client may submit an operation that depends on a failed speculation.

• The primary may execute an operation before it commits.

We evaluate each modification independently.

Incorrect speculation A bad primary may send an incorrect speculative response to a

client, in that it differs on the value or ordering of the final consensus value. We also

consider in this class an honest primary that sends a speculative response to a client but is

unable to complete agreement on this response due to a view change. In either case, the

client will only see the consensus response once the operation has undergone agreement

at a quorum of replicas. If the speculative response was incorrect, it is safe for the client

to roll back the speculative execution and re-run using the consensus value, since PBFT

ensures that all non-faulty replicas will agree on the consensus value.

61

Dependent operations A further complication arises when the client has issued subse-

quent requests that depend on the value of a speculative response. Here, the speculation

protocol on the client ensures that it rolls back execution of any operations that have depen-

dencies on the failed speculation. We must ensure that all valid replicas make an identical

decision to abort each dependent operation by replacing it with a no-op.

Replicas maintain a log of the digests for each committed operation and truncate this

log at deterministic intervals so that all non-faulty replicas have the same log state when

processing a given operation. Predicated writes in PBFT-CS allow the client to express

the speculation dependencies to the replicas. A non-faulty replica will not execute any

operation that contains a dependency that does not match the corresponding digest in the

log, or that does not have a matching log entry. Since the predicated write contains the

same information used by the client when rolling back dependent operations, the replicas

are guaranteed to abort any operation aborted by the client. If a client submits a dependency

that has since been truncated from the log, it will also be aborted.

The only scenario where replicas are unable to deterministically decide whether a spec-

ulative response matches its agreed-upon value is when a speculative response was pro-

duced using the read-only optimization. Here, different replicas may have responded with

different values to the read request. We explicitly avoid this case by making it an error to

send a write request that depends on the reply to an optimized read request; correct clients

will never issue such a request. Replicas do not store the responses to optimized reads in

their log and hence always ignore any request sent by a faulty client with a dependency on

an optimized read.

Speculative execution In our modified protocol, the primary executes client requests im-

mediately upon their receipt, before the request has undergone agreement. The agreement

protocol dictates that all non-faulty replicas commit operations in the order proposed by the

primary, unless they execute a view change to elect a new primary. After a view change,

the new primary may reorder some uncommitted operations executed by the previous pri-

mary, however, the PBFT view change protocol ensures that any committed operations

persist into the new view. It is safe for the old primary to restore its state to the most recent

62

committed operation since any incorrect speculative response will be rolled back by clients

where necessary.

4.3 Discussion and future optimizations

In this section, we further explore the protocol design space for the use of client specula-

tion with PBFT. We compare and contrast possible protocol alternatives with the PBFT-CS

protocol that we have implemented.

4.3.1 Alternative failure handling strategies

We considered two alternative strategies for dealing with faulty primaries. First, we

could allow clients to request a view change without providing a proof of misbehavior.

This scheme would seem to significantly compromise liveness in a system containing faulty

clients since they can force view changes at will. However, this is an existing problem in

BFT state machine replication in the absence of signatures. A bad client in PBFT is always

able to force a view change by sending a request to the primary with a bad authenticator

that appears correct to the primary or by sending different requests to different replicas [10].

We could mitigate the damage a given bad client can do by having replicas make a local

decision to ignore all requests from a client that ‘framed’ them. In this way a bad client can

not initiate a view change after incriminating f primaries.

Alternatively, we could require signatures in communications between client and repli-

cas. This is the most straight-forward solution, but entails significant CPU overhead.

Compared to these two alternative designs, we chose to have PBFT-CS revert to a non-

speculative protocol due to the simplicity of the design and higher performance in the

absence of a faulty primary.

4.3.2 Coarse-grained dependency tracking

PBFT-CS tracks and specifies the dependencies of a speculative request at fine granular-

ity. Thus, message size and state grow as the average number of dependencies for a given

63

operation increases. To keep message size and state constant, we could use coarser-grained

dependencies.

We could track dependencies on a per-client basis by ensuring that a replica executes a

request from a client at logical timestamp T only if all outstanding requests from that client

prior to time T have committed with the same value the client predicted.

Instead of maintaining a list of dependencies, each client would instead store a hash

chained over all consensus responses and subsequent speculative responses. The client

would append this hash to each operation in place of the dependency list. The client would

also keep another hash chained only over consensus responses, which it would use to re-

store its dependency state after rolling back a failed speculation.

Each replica would maintain a hash chained over responses sent to the client and would

execute an operation if the hash chain in the request matches its record of responses. Oth-

erwise, it would execute a no-op.

We chose not to use this optimization in PBFT-CS since the use of chained hashes cre-

ates dependencies between all operations issued by a client even when no causal dependen-

cies exist. This increases the cost of a failed speculation since the failure of one speculative

request causes all subsequent in-progress speculative operations to abort. Coarse-grained

dependency tracking also limits the opportunities for running speculative read operations

while there are active speculative writes. Since speculative read responses are not serialized

with respect to write operations, it is likely that the client will insert the read response in

the wrong point in the hash chain, causing subsequent operations to abort.

4.3.3 Reads in the past

A read-only request need not circumvent the agreement protocol completely, as de-

scribed in section 4.2.2. A client can instead take a hybrid approach for non-modifying

requests: it can submit the request for full agreement and at the same time have the nearest

replica immediately execute the request.

If the primary happens to be the nearest to the client, this is not a change from the

normal protocol. When another replica is closer, the client can get a lower-latency first

64

libbyz spec

shim
NFSD

libbyz spec

shim
NFSD

ReplicasClient

Relay libbyz

Speculator

NFS

Client

Figure 4.2: Speculative fault-tolerant NFS architecture.

reply, plus having agreement eliminates the second consideration for optimized reads (in

Section 4.2.2), that a client should not follow a read with a write.

However, this new optimization presents a problem when there are concurrent writes

by multiple clients. A non-primary replica will execute an optimized request, and a client

will speculate on its reply, in a sequential order that is likely different from the request’s

actual order in the agreement protocol. In essence, the read has been executed in the past,

at a logical time when the replicas have not yet processed all operations that are undergoing

agreement but when they still share a consistent state.

We could extend the PBFT-CS read-only optimization to also allow reads in the past.

Under a typical configuration, there is only one round of agreement executing at any one

time, with incoming requests buffered at the primary to run in the next batch of agreement.

If we were to ensure that all buffered reads are reordered, when possible, to be serialized at

the start of this next batch, it would be highly likely that no write will come between a read

being received by a replica and the read being serialized after agreement.

Note that the primary may assign any order to requests within a batch as long as no

operation is placed before one on which it depends. Recall that a PBFT-CS client will only

optimize a read if the read has no outstanding write dependencies. Hence, the primary is

free to move all speculative reads to the start of the batch. The primary executes these

requests on a snapshot of the state taken before the batch began.

65

4.4 Implementation

We modified Castro and Liskov’s PBFT library, libbyz [11], to implement the PBFT-CS

protocol described in Section 4.2. We also modified BFS [11], a Byzantine-fault-tolerant

replicated file service based on NFSv2, to support client speculation. The overall system

can be divided into three parts as shown in Figure 4.2: the NFS client, a protocol relay, and

the fault-tolerant service.

4.4.1 NFS client operation

Our client system uses the NFSv2 client module of the Speculator kernel (see Sec-

tion 2.3) to provide process-level support for speculative execution. To execute a remote

NFS operation, Speculator first attaches a list of the process’s dependencies to the mes-

sage, then sends it to a relay process on the same machine. The relay interprets this list and

attaches the correct predicates when sending the PBFT-CS request.

The relay brokers communication between the client and replicas. It appears to be a

standard NFS server to the client, so the client need not deal with the PBFT-CS protocol.

When the relay receives the first reply to a 1-reply speculation, the reply is logged and

passed to the waiting NFS client. The NFS client recognizes speculative data, creates a

new speculation, and waits for a confirmation message from the relay. Once the consensus

reply is known, the relay sends either a commit message or a rollback{reply} message

containing the correct response.

Our implementation speculates based on 0 replies for GETATTR, SETATTR, WRITE, CREATE,

and REMOVE calls. It can speculate on 1 reply for GETATTR, LOOKUP, and READ calls. This list

includes the most common NFS operations: we observed that at least 95% of all calls in all

our benchmarks were handled speculatively. Note that we speculate on both 0 replies and

1 reply for GETATTR calls. The kernel can speculate as soon as it has attributes for a file.

When the attributes are cached, 0 replies are needed, otherwise, the kernel waits for 1 reply

before continuing.

66

4.4.2 PBFT-CS client operation

Speculation hides latency by allowing a single client to pipeline many requests; how-

ever, our PBFT implementation only allows for each PBFT-CS client to have a single out-

standing request at any time. We work around this limitation by grouping up to 100 logical

clients into a single client process.

NFS with 0-reply speculation requires its requests to be executed in the order they were

issued. A PBFT-CS client process can tag each request with a sequence number so that the

primary replica will only process requests from that client process’s logical clients in the

correct order. Of course, two different clients’ requests can still be interleaved in any order

by the primary.

To support this additional concurrency, we designed the client to use an event-driven

API. User programs pass requests to libbyz and later receive two callbacks: one delivers

the first reply and another delivers the consensus reply. The user program is responsible for

monitoring libbyz’s communication channels and timers.

4.4.3 Server operation

On the replicas, libbyz implements an event-based server that performs upcalls into

the service when needed: to request non-deterministic data, to execute requests, and to

construct error replies. The library handles all communication and state management, in-

cluding checkpointing and recovery.

A shim layer is used to manage dependencies on replicas. When writes need to be

quashed due to failed speculative dependencies, the shim layer issues a no-op to the service

instead. Thus, the underlying service is not exposed to details of the PBFT-CS protocol.

The primary will batch together all requests it receives while it is still agreeing on

earlier requests. Batching is a general optimization that reduces the number of protocol

instances that must be run, decreasing the number of communications and authentication

operations [11, 35, 36, 82]. This implementation imposes a maximum batch size of 64

requests, a limit our benchmarks do run up against.

67

Overhead Source Slowdown
Early replies 8.2%

Larger request 4.1%
Complex client 2.8%

Predicate checking 1.8%

Table 4.1: Sources of overhead affecting throughput for PBFT-CS relative to PBFT.

4.5 Evaluation

In this section, we quantify the performance of our PBFT-CS implementation using

a simple shared counter micro-benchmark we implemented and several NFS micro- and

macro-benchmarks.

We compare PBFT-CS to two other modern Byzantine fault-tolerant agreement pro-

tocols: PBFT [11] and Zyzzyva [35]. PBFT is the base protocol we extend make use of

client speculation. Its overall structure is illustrated in Figure 4.1. We use the tentative reply

optimization, so each request must go through 4 communication phases before the client

acquires a reply that it can act on. PBFT uses an adaptive batching protocol, allowing up

to 64 requests to be handled in one agreement instance.

Zyzzyva is a recent agreement protocol that is heavily optimized for failure-free opera-

tion. When all replicas are non-faulty (as in our experiments), it takes only 3 phases for a

client to possess a consensus reply. We run Kotla et al.’s implementation of Zyzzva, which

uses a fixed batch size. We simulate an adaptive batching strategy by manually tuning the

batch size as needed for best performance.

By comparison, a PBFT-CS client can continue executing speculatively after only 2

communication phases. We expect this to significantly reduce the effective latency of our

clients. Note that requests still require 4 phases to commit, but we can handle those requests

concurrently rather than sequentially. If we limit the number of in-flight requests to some

number n, we call the protocol “PBFT-CS (n).”

4.5.1 Experimental setup

Each replica machine uses a single Intel Xeon 2.8 GHz processor with 512 MB RAM

(sufficient for our applications). We always evaluate using four replicas without failures

68

(unless noted). In our NFS comparisons, we use a single client that is identical in hardware

to the replicas. Our counter service runs on an additional five client machines using Intel

Pentium 4s or Xeons with clock speeds of 3.06–3.20 GHz and 1 GB RAM. All systems use

a generic Red Hat Linux 2.4.21 kernel.

Our machines use gigabit Ethernet to communicate directly with a single switch. Exper-

iments using the shared counter service were performed on a Cisco Catalyst 2970 gigabit

switch; NFS used an Intel Express ES101TX 10/100 switch.

Our target usage scenario is a system that consists of several sites joined by moderate

latency connections (but slower than LAN speeds). Each site has a high-speed LAN hosting

one replica and several clients, and clients may also be located off-site from any replica.

For comparison with other agreement protocols, we also consider using PBFT-CS in a LAN

setting where all replicas and clients are on the same local segment.

Based on the above scenarios, we emulate a simplified test network using NISTNet [9]

that inserts an equal amount of one-way latency between each site. We let this inserted

delay be either 2.5 ms or 15 ms.

We also measure performance at clients located in different areas in our scenario. In

the primary-local topology, the client is at the same site as the current primary replica. The

primary-remote topology considers a client at different site hosting a backup replica. A

client not present at any site is shown in the uniform topology, and we let the client have

the same one-way latency to all replicas as between sites.

When comparing against a service with no replication in a given topology, we always

assume that a client at a site can access its server using only the LAN. A client not at a site

is still subject to added delay.

4.5.2 Counter throughput

We first examine the throughput of PBFT-CS using the counter service. Similar to

Castro and Liskov’s standard 0/0 benchmark [11], the counter’s request and reply size are

minimal. This service exposes only one operation: increment the counter and return its

new value. Each reply contains a token that the client must present on its next request.

69

 0

 10

 20

 30

 40

 50

 60

 70

 1 10 100

T
h

ro
u

g
h

p
u

t
(K

o
p

s/
se

c)
Number of Clients

Zyzzyva
PBFT

PBFT-CS (4)

Figure 4.3: Server throughput in a LAN, measured on the shared counter service. PBFT-CS (4) is
limited to four concurrent requests.

This does add a small amount of processing time to each request, but it ensures that client

requests must be submitted sequentially.

Our client is a simple loop that issues a fixed number of counter updates and records

the total time spent. No state is externalized by the client, so we allow the client process to

implement its own lightweight checkpoint mechanism. Checkpoint operations take negli-

gible time, so our results focus on the characteristics of the protocol itself rather than our

checkpoint mechanism.

We measure throughput by increasing the number of client processes per machine (up

to 17 processes) until the server appears saturated. Graphs show the mean of at least 6 runs,

and visible differences are statistically significant.

Figure 4.3 shows the measured throughput in a LAN configuration. We found that in

this topology, a single PBFT-CS client gains no benefit from having more than 4 concurrent

requests, and we enforce that limit on all clients. When we have 12 or fewer concurrent

clients, PBFT-CS has 1.19–1.49× higher throughput than Zyzzyva and 1.79–2× higher

throughput than PBFT.

In lightly loaded systems, the servers are not being fully utilized, and speculating clients

can take advantage of the spare resources to decrease their own effective latency. As the

server becomes more heavily loaded, those resources are no long free to use. As a result,

PBFT-CS reaches its peak throughput before other protocols.

There is a trade-off of throughput for latency: PBFT-CS shows a peak throughput that

is 17.6% lower than PBFT. We found four fundamental sources of overhead, summarized

70

0 2.5 15

0

50

100

T
im

e
 (

se
c
)

PBFT-CS

PBFT-CS(4)

Zyzzyva

PBFT

No rep

0 2.5 15

0

50

100

Network delay (ms)
(a) Primary-local (b) Uniform

Figure 4.4: Time taken to run 2000 updates using the shared counter service. The primary-local
topology (a) shows a client located at the same site as the primary. The uniform topology (b) shows
a remote client equidistant from all sites. 0 ms (LAN) times for both graphs are (in bar order):
0.36 s, 0.27 s, 0.41 s, 0.54 s, and 0.16 s.

in Table 4.1. First, the client implementation for PBFT-CS uses an event-driven system

to handle several logical clients, needed to support concurrent requests. This design does

lead to a slower client than the one in PBFT, which can get by with a simpler blocking

design. Second, we found that having the primary send early replies increases its time

spent blocking while transmitting. Third, each predicate added to a request makes the

request packet larger, and fourth, those predicates take additional work to verify on each

replica.

4.5.3 Counter latency

We next examine how latency affects client performance under a light workload when

the client is located at different sites. Figure 4.4 shows the time taken for a single counter

client to issue 2000 requests in different topologies. In the LAN topology where no delay

is added, a PBFT-CS client is able to complete the benchmark in 33% less time than PBFT,

reflecting average run times of 357 ms and 538 ms respectively. When we increase the

latency between sites, run time becomes dominated by number of communication phases.

With a uniform topology (Figure 4.4b), PBFT-CS takes 50% less time than PBFT and 33%

less time than Zyzzyva, and its runtime is only 1% slower than the unreplicated service.

This matches our intuitive understanding of the protocol behavior described at the start of

71

this section.

For PBFT-CS, the critical path is a round-trip communication with the primary replica.

Moving to a primary-remote topology (bringing one backup replica closer) does not affect

this critical path, and our measurements show no significant difference between primary-

remote and uniform topologies.

Figure 4.4a presents results when using a primary-local topology. As latency increases

and backup replicas move further from the client, performance does not degrade signifi-

cantly, since the latency to the primary is fixed. At 15 ms latency, a client using PBFT takes

58× longer than with PBFT-CS. The combination of client speculation and a co-located pri-

mary achieves much of the performance benefit of a closely located non-replicated server,

while providing all the guarantees of a geographically distributed replicated service that

tolerates Byzantine faults.

These significant gains are directly attributable to the increased concurrency possible

in the primary-local topology. When we limit PBFT-CS to only 4 outstanding requests, the

client must then wait on requests to commit, reintroducing a dependence on communication

delay. In topologies where the client does not have privileged access to the primary, as in

the uniform topology, limiting concurrency has little effect.

4.5.4 NFS

We next examine PBFT-CS applied to an NFS server. Considering that the NFSv2 pro-

tocol is not explicitly designed for high-latency environments, we compare against the vari-

ation of NFS that uses 0-reply speculation. All benchmarks begin with a freshly-mounted

file system and an empty cache.

Unlike the counter service, this application has overhead associated with creating, com-

mitting, and rolling back to a checkpoint. Processes may have computation to perform

between requests, and they may need to block before an output commit.

For comparison with non-speculative systems, we measure the performance of NFS

under PBFT. Using our speculative NFS protocol, we measure PBFT using only 0-reply

speculation (PBFT + 0-spec) and PBFT-CS. The difference between these two measure-

72

0 2.5 15

0

20

40

60

T
im

e
 (

se
c
)

0 2.5 15

0

20

40

60

0 2.5 15

0

20

40

60

PBFT

PBFT + 0-spec

PBFT-CS

No rep + 0-spec

Network delay (ms)
(a) Primary-local (b) Primary-remote (c) Uniform

Figure 4.5: Read-only NFS micro-benchmark performance across different network topologies. The
last three data sets use 0-reply speculation. At 0 ms, all three topologies are equivalent, so the same
data is used for each graph. The no rep data show a lower bound for run time. There is only one
no rep data set for primary-local and primary remote topologies, because the location of the server
does not change with increasing latency. For these two graphs, the 0 ms bar applies to all latencies
but is not repeated.

0 2.5 15

0

2

4

6

T
im

e
 (

se
c
)

0 2.5 15

0

2

4

6

0 2.5 15

0

2

4

6

PBFT

PBFT + 0-spec

PBFT-CS

No rep + 0-spec

Network delay (ms)
(a) Primary-local (b) Primary-remote (c) Uniform

Figure 4.6: Write-only NFS micro-benchmark.

0 2.5 15

0

5

10

15

20

T
im

e
 (

se
c
)

0 2.5 15

0

5

10

15

20

0 2.5 15

0

5

10

15

20

PBFT

PBFT + 0-spec

PBFT-CS

No rep + 0-spec

Network delay (ms)
(a) Primary-local (b) Primary-remote (c) Uniform

Figure 4.7: Read/Write NFS micro-benchmark.

73

0 2.5 15

0

10

20

30

T
im

e
 (

m
in

)

0 2.5 15

0

10

20

30

0 2.5 15

0

10

20

30

PBFT

PBFT + 0-spec

PBFT-CS

No rep + 0-spec

Network delay (ms)
(a) Primary-local (b) Primary-remote (c) Uniform

Figure 4.8: The Apache build NFS benchmark measures how long it takes to compile and link
Apache 2.0.48.

ments show the benefit of 1-reply speculation. As a lower bound, we also measure the

performance of a non-replicated NFS server that uses 0-reply speculation (No rep + 0-

spec).

We use a vanilla kernel for evaluating non-speculative PBFT with a slight modification

that increases the number of concurrent RPC requests allowed. Other benchmarks use the

Speculator kernel.

In the no replication configuration, the NFS client uses a thin UDP relay on the local

machine that stands in for the BFT relay.

Our modifications to the NFS client, the relay, and the replicated service have intro-

duced additional overhead that is not present in the original PBFT. This inefficiency is par-

ticularly apparent in our 0 ms topologies, where PBFT-CS shows a 1.03–2.18× slowdown

relative to PBFT across all our benchmarks. However, in all cases at higher latencies, client

speculation results in a clear improvement, and we primarily address these configurations

in the following sections.

At the time of publication, we had not yet ported our NFS server to use the Zyzzyva

protocol, so we regretfully are unable to provide a direct comparison for these benchmarks.

All graphs show the mean of at least five measurements. Error bars are shown when the

95% confidence interval is above 1% of the mean value.

74

4.5.5 NFS: Read-only micro-benchmark

We first ran a read-only micro-benchmark that greps for a common string within the

Linux headers. The total size of the searched files is about 9.1 MB. Most requests in this

benchmark are read-only and are optimized to circumvent agreement.

Figure 4.5 shows that PBFT takes 2.06× longer to complete than PBFT-CS at 15 ms.

0-reply speculation lets the client avoid blocking when revalidating a file after opening

it. With PBFT-CS, we can additionally read from a file without delay: a nearby replica

supplies all the speculative data. Without a nearby replica (in uniform topology), 1-reply

speculation is not beneficial since optimized reads complete at about the same time the

client gets its first reply.

4.5.6 NFS: Write-only micro-benchmark

We next ran a write-only micro-benchmark that writes 3.9 MB into an NFS file (Fig-

ure 4.6). All writes are issued asynchronously by the file system, and the client only blocks

when the file is closed. In this case, speculation is not needed to increase the parallelism of

the system.

There are a very small number of read requests in this benchmark, issued when first

opening a file, so there is no practical opportunity to use 1-reply speculation. Speculation

at 2.5 ms reduces the benchmark run time by only 6–7%. We found that within each

latency (irrespective of topology), there is no statistical difference between PBFT+0-spec

and PBFT-CS.

4.5.7 NFS: Read/write micro-benchmark

We next ran a read/write micro-benchmark that creates 100 4 KB files in a directory.

For each file, the client creates and writes to a file; this includes read-only operations to

read the directory entries. PBFT-CS never blocks on any of these operations.

In the primary-local topology, PBFT takes up to 19× longer to complete than PBFT-

CS (Figure 4.7). Furthermore, PBFT-CS shows a resilience to changes in latency as it

increases from 0-15 ms: PBFT-CS execution time doubles while PBFT takes 59× longer.

75

On the primary-remote and uniform topologies, operations take longer to complete, but

client speculation still speeds up run time by 6.03×.

4.5.8 NFS: Apache build macro-benchmark

Finally, we ran a benchmark that compiles and links Apache 2.0.48. This emulates the

standard Andrew-style benchmark that has been widely used in the PBFT literature. This is

intended to model a realistic and common workload, where speculation allows significant

computation to be overlapped with I/O.

Within the primary-local topology, PBFT takes up to 5.0× longer to complete than

PBFT-CS (Figure 4.8). In the uniform topology, PBFT takes up to 2.2× longer than PBFT-

CS. Since files are often reused many times during the build process, there is less oppor-

tunity to benefit from 1-reply speculation. However, the relative difference in performance

degradation as latency increases is still significant. With a co-located primary, PBFT-CS

becomes 4.3× slower as delay increases to 15 ms, while PBFT slows down by a factor of

25.

4.5.9 Cost of failure / faulty primary

To measure the cost of speculation failures, we modified our PBFT-CS relay to inject

faulty digests into early replies, simulating a primary that returns corrupted replies at a rate

of 1%. Any speculation based on a corrupted reply will eventually be rolled back, and any

dependent requests will be turned into no-ops on good replicas.

The results of this experiment are presented in Figure 4.9. We used the Apache build

benchmark in the primary-local topology. The injected faults were responsible for slow-

downs in PBFT-CS of 3%, 9%, and 29% at 0 ms, 2.5 ms, and 15 ms delay respectively.

These slowdowns are not identical because a client may have a greater number of re-

quests in the pipeline for completion at a 15 ms delay than at a 0 ms delay. When one

request fails, nearly all outstanding requests also fail. We observed that 1% of our specu-

lations failed directly, and an additional 1%, 4%, and 5% of speculations (at 0 ms, 2.5 ms,

and 15 ms respectively) failed due to their dependencies. These extra requests added un-

76

0 2.5 15

0

10

20

30

T
im

e
 (

m
in

)

PBFT-CS (no fail)

PBFT-CS (1% fail)

PBFT

Network delay (ms)

Figure 4.9: Apache build benchmark with 1% failure rate. For the Apache build benchmark in the
primary-local topology, PBFT-CS is at worst 29% slower when 1% of its speculations fail.

necessary load to the replicas. By executing more requests in advance, clients must roll

back a larger amount of state.

As discussed in section 4.2.3, once a client detects that 1% of requests are failing, it can

stop trusting the primary to provide good first replies and disable its own speculation. If

replies are signed, each primary can cause only a single failed speculation, and the resulting

view change will dominate recovery time. For reference, over 100 failed speculations in

this benchmark result from a 1% failure rate.

4.6 Related work

This work contributes the first detailed design for applying client speculative execution

to replicated state machine protocols. It also provides the first design and implementation

that uses client speculation to hide latency in PBFT [11].

Speculator [52] was originally used to hide latency in distributed file systems, and thus

our work shares many of Speculator’s original goals. Speculator’s distributed file system

application assumes the existence of a central file server that always knows ground truth.

No such entity exists in a replicated state machine. For instance, non-faulty replicas may

disagree about the ordering of read-only requests as discussed in Section 4.2.2. Prior to

this work, Speculator was only used to speculate on zero replies. The possibility of also

speculating on a single reply opens up several potential protocol optimizations that we have

77

explored, including the possibility of generating early replies and optimizing agreement

protocols for throughput.

There has also been extensive prior work in the development of replicated state ma-

chines, both in the fail-stop [38, 56, 70] and Byzantine [1, 11, 16, 34, 35, 64, 82] failure

models. While Byzantine fault tolerance in particular has been an area of active research,

it has seen relatively limited deployment due to its perceived complexity and performance

limitations.

Our client-side speculation techniques apply equally well to reducing latency in both

fail-stop and Byzantine fault tolerance protocols. However, they are particularly useful for

protocols that tolerate Byzantine faults due to the higher latencies of such protocols.

PBFT [11] provides a canonical example of a Byzantine fault-tolerant replicated state

machine, using multiple phases of replica-to-replica agreement to order each operation.

Several systems since PBFT have aimed to reduce the latency in ordering client operations,

typically by optimizing for the no-failure case [35] or for workloads with few concurrent

writes [1, 16].

Byzantine quorum state machine replication protocols such as Q/U [1] build upon ear-

lier work in Byzantine quorum agreement [5, 6, 19, 48], and provide lower latency in the

optimal case. Q/U is able to respond to write requests in a single phase, provided that there

are no write operations by other clients that modify the service state; inconsistent state

caused by other clients requires a costly repair protocol. HQ [16] aimed to reduce the cost

of repair, and reduces the number of replicas required in a Byzantine Quorum system from

5 f + 1 to 3 f + 1, but it introduces an additional phase to the optimized protocol.

Agreement protocols that use a primary replica are able to batch multiple requests into

a single agreement operation, greatly reducing the overhead of the protocol and increasing

throughput. While our protocol applies to both quorum and agreement protocols, the higher

throughput offered by batched agreement, along with resilience during concurrent write

workloads, makes them a better match for our techniques.

Our work on client speculation complements the server-side use of speculation in the

Zyzzyva protocol [35]. In Zyzzyva, replicas execute operations speculatively based on an

ordering provided by the primary, while in our system clients speculate based on an early

78

response from the primary (or on 0 replies), with replicas executing only committed opera-

tions. These two approaches are complementary. Client speculation allows a client to issue

a subsequent operation after only a single phase of communication with the primary, which

is especially helpful for geographically dispersed deployments where some replicas are far

from the client. Server speculation speeds up how fast replicas can supply a consensus re-

sponse to the client, which would allow clients in our system to commit speculations faster.

While we have evaluated client speculation on the PBFT protocol, it would apply equally

well to Zyzzyva, where the client can receive early speculative and consensus responses,

in the absence of failures.

4.7 Chapter Conclusions

Replicated state machines are an important and widely-studied methodology for tol-

erating a wide range of faults. Unfortunately, while replicas should be distributed geo-

graphically for maximum fault tolerance, current replicated state machine protocols tend to

magnify the effects of the long network latencies associated with geographic distribution.

In this work, we have shown how to use speculative execution at clients of a replicated ser-

vice to reduce the impact of network and protocol latency. We outlined a general approach

to using client speculation with replicated services, then implemented a detailed case study

that applies our approach to a standard fault tolerant protocol (PBFT).

Although we studied PBFT in depth, the techniques discussed in this work should be ap-

plicable to a wider range of protocols and services. Client speculation is directly applicable

to other agreement-based replication protocols [35], and it may be applicable to protocols

that use more complex replication schemes, such as erasure encoding [27], although clients

of such protocols may require more than one reply to predict the final response with high

probability.

79

CHAPTER 5

Parallelizing Race Detection

The previous chapters have shown how the operating system can work with different

layers of the system to improve the parallelization of applications. In this chapter, we

examine how we can parallelize an algorithm for dynamic program analysis by letting

it make use of speculative execution. Specifically, we develop a parallel algorithm for

performing dynamic data race detection in a target program.

A prevalent model for writing parallel programs is shared-memory multiprocessing.

In this model, several threads of execution share a single address space, allowing each

thread to access the same memory locations concurrently. To coordinate access to shared

variables, threads use synchronization operations (e.g., locks and condition variables) to

ensure that only one thread can modify a variable at any time.

A data race occurs when two threads access the same memory location without proper

synchronization (and at least one access is a write). Some data races (termed benign) may

be intentionally introduced to avoid the overhead of synchronization. Otherwise, races are

considered programming errors. Because there is no explicit synchronization, the outcome

of a data race depends on the relative execution speed between threads. As a result, data

races can be difficult to reproduce and debug with standard cyclic debugging techniques.

Data race detectors are systems designed to detect data races in existing programs. Race

detectors can be implemented with the assistance of special hardware components, some of

which can operate with overheads of as little as 22% [51]. However, the hardware needed

to support these systems is not generally available on commodity processors. Such systems

80

will not be discussed further.

Race detectors can also vary on when they detect the race. Port-mortem detectors can

discover a data race at some point after the program terminates. The information generated

by a post-mortem detector can be useful to point out a race to a developer, but it is too

late to affect the execution of the program. An on-the-fly detector can discover a data race

during a program execution the instant it occurs.

Some race detectors trade off precision for performance. Imprecise detectors group

many memory locations together, typically an entire object, and treat the group as one vari-

able. These detectors have high false-positive rates because some synchronized accesses to

logically-distinct variables may be considered races. Precise detectors look for races at the

same granularity that the underlying memory system provides (typically byte or word).

Current software-only on-the-fly race detection is slow. Production-quality race detec-

tors for arbitrary binaries (e.g., Intel ThreadChecker [67]) slow down a target program’s

execution time by at least 100×. Even among research systems, the state-of-the-art precise

race detector FastTrack [23] (not to be confused with the Fast Track [32] speculation envi-

ronment) imposes an average of 8.5× slowdown on the execution time of Java programs.

Developers are interested in different performance characteristics for race detectors,

depending on the usage scenario. Detectors can be used as part of a large automated test-

ing system, where running code against a race detector is one step in the validation of a

build. In this environment, developers are mostly concerned with having a high throughput

(i.e., maximizing the average number of tests completed per second) and only need to be

informed of a detected data race eventually.

We want to consider the scenario where a developer suspects there may be an error in

his application, so he invokes a race detector as a debugging tool to help him locate a race.

To maximize the productivity of this developer, the race detector should have a minimal

latency (i.e., the time taken to run one test) and detect the race as soon as it occurs so that

less of the developer’s time is spent waiting for an execution to complete. Once the data

race has been detected, the developer then needs access to precise information about where

this race occurred.

This chapter presents a new race detector that can parallelize the work of a race detector

81

to significantly decrease its latency, and in some benchmarks, to increase its throughput. We

rely on uniparallelism [79], a kind of execution where parallelism is provided by breaking a

program’s execution into timeslices, which we call epochs, and running those epochs con-

currently. For use in this architecture, we develop the new Parallel FastTrack race detection

algorithm based on the FastTrack algorithm (which we henceforth refer to as “Sequential

FastTrack”) that allows each epoch to be analyzed concurrently for races. Races between

two accesses that occur within one epoch can be detected as the epoch executes. As epochs

finish, their accesses are checked against all prior committed epochs to detect races across

epochs.

We evaluate the effectiveness of Parallel FastTrack by measuring the speedup of our

detector as we increase the number of CPU cores available for race detection. We find

that Parallel FastTrack can effectively use additional cores to decrease the execution time

of an analyzed program. On our benchmark suite of five parallel applications, we found

that Parallel FastTrack speeds up the application execution times by 2.1×, 2.8×, and 3.3×

on average when by using 2, 3, and 4 times the number of worked threads used in the

application.

For four out of six of our benchmarks, executing the race detection analysis using uni-

parallelism improves the latency of the detector even when given the same number of CPU

cores as the sequential analysis. Uniparallelism allows us elide locks in the instrumentation

code, significantly reducing the total amount of work and speeding up an execution by an

average of about 3×.

The rest of this chapter is organized as follows. Section 5.1 discusses the background

material we build upon: uniparallelism and the Sequential FastTrack algorithm. Section 5.2

presents the overall architecture of our parallel race detection system.

We then in Section 5.3 describe the Parallel FastTrack algorithm and argue its equiv-

alence to Sequential FastTrack. Section 5.4 discusses details of our implementations of

Sequential FastTrack and Parallel FastTrack. We evaluate the performance of our detector

in Section 5.5.

82

5.1 Background

In this section we present an overview of race detection using the happens-before rela-

tion, followed by our formalism of the FastTrack algorithm. We then present an overview

of uniparallelism.

5.1.1 Happens-Before Race Detection

A data race occurs when two threads access the same memory location without synchro-

nization and at least one of the accesses is a write. There are two fundamental approaches

to race detection in current literature. One approach tracks which locks are held by a thread

(i.e., its “lockset”) as each memory location is accessed. When two threads access the

same location without holding a lock in common, a potential race is flagged. While we

believe that this approach is amenable to parallelization, we leave this claim to be validated

in future work.

This work focuses on a second approach, which finds accesses to the same memory

location that happen concurrently according to the happens-before partial ordering of pro-

gram actions. Considering only memory accesses and synchronization operations (specifi-

cally, mutex lock/unlock and thread fork/join) as program events, the happens-before rela-

tion is the least restrictive partial ordering of events that ensures the following conditions.

1. For two events in the same thread, one must occur before the other.

2. Releasing a lock happens before the lock’s next acquisition.

3. A thread calls fork() before the new thread starts executing, and a thread exits before

a join() on it returns.

These rules can be extended to cover other synchronization operations (like barriers,

condition variables, and atomic accesses). A happens-before race detector looks for a pair

of accesses to the same variable that are unordered and at least one access is a write.

Vector clocks [22, 49] are a mechanism that is commonly used to precisely track the

happens-before relation. Many systems [20, 23, 30, 59, 83] have applied vector clocks to

83

Partial order A v B ≡∀n A[n] ≤ B[n]

Merge (A t B)[n] = max(A[n], B[n])

Summary S i(A)[n] = {if i = n : A[n], else 0}

Increment ith elem. inci(A)[n] = {if i = n : A[n] + 1, else A[n]}

Minimum ⊥ = 〈0, . . .〉

Table 5.1: Vector Clocks: relations, operators, functions, and constants.

race detection in the following simplified manner. Each thread holds a vector clock that

tracks the thread’s local view of logical time. Every program variable has associated clocks

that store the logical time at which it was last read and written. When a variable is accessed,

its last-accessed timestamps are compared against the current thread’s clock. If the previous

accesses are unordered with the current access and at least one of those accesses is a write,

then a race has been detected.

5.1.2 Sequential FastTrack

Our work is based on the version of vector clocks used by FastTrack [23]. We chose

to focus on FastTrack as a representative algorithm for happens-before data race detectors

that use vector clocks. Other algorithms based on vector clocks follow a similar pattern

of execution and should be adaptable to our parallel architecture in a similar manner. To

distinguish the original FastTrack algorithm from our modification, we refer the original

version as “Sequential FastTrack.”

At a high level, the Sequential FastTrack algorithm is similar to the standard vector

clock algorithm previously discussed. FastTrack is notable in its use of a vector clock

summary its authors call an epoch. (This is an unfortunate overlap of terminology. We

will refer to this type of vector clock as a “summary” and reserve the word “epoch” for

discussing uniparallelism.) This summary stores only a threads identifier and local clock

value at the time of access, and the summary can be compared and updated in constant time

and space. FastTrack prefers to summarize vector clocks whenever possible.

We now present our formalization of Sequential FastTrack. We begin by formalizing

vector clocks and continue to discuss the details of the detection algorithm.

84

Event at Thread i Check Update
Acquire lock L Ti := Ti t LC

Release lock L LC := Ti ; Ti := inci(Ti)
Fork thread j T j := T j t Ti ; Ti := inci(Ti)

Join on thread j Ti := Ti t T j ; T j := inc j(T j)

Read X XW v Ti XR :=

S i(Ti) if XR is a summary ∧XR v Ti

XR t S i(Ti) otherwise
Write X XW v Ti ∧ XR v Ti XW := S i(Ti) ; XR := ⊥(if XR is a full VC)

Table 5.2: The Sequential FastTrack algorithm. Operations are split between handling events for
synchronization (top) and variable access (bottom). The algorithm makes different update choices
depending on the representation of the last-read clock XR. It can be a full vector clock or a summary.

A vector clock (VC) is a vector of integers of length N (e.g. VC[n] : n < N), where N

is the number of threads in the process. A partial order is defined over VCs (v) by com-

paring each index pairwise. Two VCs can be joined (t) by taking the maximum element

at each index. For convenience, we also define functions to increment the ith index and to

summarize a VC by dropping all but one element. We also name the minimal element (⊥).

These operations are described in Table 5.1.

Race detectors are often formalized as operating on program execution traces that

record a sequential order of program events. For FastTrack, these events are variable ac-

cesses and synchronization operations. Java programs treat a “variable” as meaning a field

of an object or the entire object. When analyzing an arbitrary binary programs, a single

“variable” should be each addressable unit of memory on the architecture. To perform

on-the-fly race detection, events are handled at the time they are generated.

FastTrack associates state with each program thread, lock, and variable. Each thread

has a unique identifier i and a vector clock Ti. Each lock L has an associated vector clock

LC, and each variable X has two clocks: a last-read clock XR and last-written clock XW .

Initially, all variable and lock VCs are zero (LC, XR, XW = ⊥) and threads clocks are

initialized to Ti = inci(⊥). As synchronization events are encountered, the analysis state

changes according to the rules given in Table 5.2. When a synchronization operation is

handled, the corresponding update is applied to establish the proper happens-before rela-

tionship between threads. When a variable is accessed, the access is first checked to see

85

if it races with a prior access. If the predicate given in Table 5.2 evaluates to True, then

the access event does not race with a previous event, and the variable’s state is updated

appropriately. If the predicate is False, then the access is part of an apparent race on the

variable.

5.1.3 Uniparallelism

We execute programs in a modified style called uniparallelism [79]. In this execution

style, a program execution is divided into time slices, which we refer to as epochs. A

single epoch is our fundamental unit of work. Each epoch is executed twice, once in a

thread-parallel execution and again in a paired epoch-parallel execution.

A thread-parallel execution is similar to a normal execution of the program. Epochs

are delineated by periodically interrupting all program threads and drawing a consistent

boundary. As threads are spawned, the threads can be scheduled on other processing cores

to provide parallelism. In this execution, each of the program’s epoch are run sequentially

in the program’s logical order.

In an epoch-parallel execution, each epoch can run concurrently with other epochs.

Epochs are isolated in their own address space, and the program’s semantics are equivalent

to a sequential execution: e.g. writes to local memory or files in one epoch are visible to

epochs that logically occur later. All threads in a single epoch are constrained to execute

on a single CPU core and are preempted only at well-defined points. In this execution,

an application relies exclusively on the parallelization of epochs, rather than on the paral-

lelization of threads, for its concurrency.

These two executions of each epoch are synchronized using online multiprocessor re-

play techniques [42]. The same program input is provided to both executions, and we

ensure that both executions follow an identical happens-before for synchronization opera-

tions. In the absence of races, this guarantees that the two executions are consistent with

each other [66].

In order to start future epochs in the epoch-parallel execution before previous epochs

have finished, the starting state of the future epoch—or equivalently, the ending state of the

86

previous epoch—must be predicted. The predicted state includes the architectural state of

the process (the entire address space and all thread registers) as well as the relevant sys-

tem state (e.g. so that file accesses are consistent). If the prediction is correct, then each

epoch can be stitched together to form a single natural sequential execution of the pro-

cess. However, if the prediction was incorrect—i.e. the previous epoch’s ending state was

different—stitching the two epochs together would result in an unnatural state transition.

In this case, the epoch and its output must be discarded, and the epoch must be re-executed

starting at the correct state. We execute each epoch speculatively to ensure that the epoch’s

output and state can be correctly discarded. As a committed epoch finishes, its final state

is compared against the next epoch’s starting state. If the two states match, the next epoch

can be committed. Otherwise, the next epoch is rolled back and re-executed using the final

committed state.

To generate these predictions for the epoch-parallel execution, we look to the thread-

parallel execution. An epoch in the thread-parallel execution will typically execute faster

that the corresponding epoch in the uniparallel execution. As the thread-parallel execution

runs ahead, its state is used to predict the starting states for future epochs in the epoch-

parallel execution execution.

5.2 System Architecture

We make a distinction between the race detection algorithm and the architecture to

support it. The algorithm formally defines what events a program can generate and how to

analyze those events to locate a race. The architecture defines how the program’s behavior

generates, collects, and presents those events to the algorithm.

In most existing race detectors, the architecture is straightforward to the point that it is

not distinguished from the analysis itself. Instrumentation is added to a target program to

capture relevant events, either through binary rewriting (static or dynamic) or by modifying

the runtime layer (for languages that use one; e.g. Java). As events are encountered, they

are sent to the race detection algorithm for immediate analysis (“on-the-fly” analysis) or

logged in an execution trace file to be examined later (“post-mortem” analysis).

87

ti
m
e

Thread-Parallel Epoch-parallel Sequential Commit

[Ep 0]

[Ep 0]

[Ep 1]

[Ep 1]

[Ep 2]

[Ep 2]

[Ep 3]

[Ep 0]

[Ep 1]

[Ep 2]

[Ep 3]

[Ep 3]

Checkpoint

&

Replay

Logs

Final

Analysis

State

Figure 5.1: Parallel race detector architecture.

Our system uses a more complex uniparallel architecture to capture events. Figure 5.1

presents an overview of this architecture. Each program is executed twice, once as a thread-

parallel execution and again as an epoch-parallel execution, and the two executions are

constrained to have the same happens-before order. Full details of this execution style are

given in Section 5.1.3.

Before proceeding, we must consider which parts of the race detector are slow. When

we examined how much slowdown in a sequential detector was due to instrumenting and

analyzing different events, we found that the amount of times spent handling synchroniza-

tion operations is negligible compared to the overall execution time of program. The vast

majority of work in a race detector comes from instrumenting and analyzing individual

variable accesses.

Based on these results, we focused our efforts on making sure that the handlers for

variable accesses would scale well. With this goal in mind, we handle synchronization

events in both the thread-parallel execution and in the epoch-parallel execution, and we

instrument variable accesses only in the epoch-parallel execution. Splitting the work in this

way places the slowest work in the phase that we can parallelize the easiest.

Ideally, all work would be done exactly once in the epoch-parallel execution. However,

race detection algorithms are inherently stateful: the analysis state gathered by analyzing

prior epochs is required to correctly detect all races in the current epoch. Analyzing an

epoch on its own will find all races in that epoch, but races that span epochs would not be

88

detected. To recover the cross-epoch races, we introduce a sequential commit phase that

examines epochs in program order as they finish.

To manage the cross-epoch dependencies in the analysis state, we keep a global copy of

the state that reflects the final analysis state from all prior committed epochs. The commit

phase is responsible for performing deferred checks against this state and then for updating

it when the next epoch commits. Some of the checks that must be performed during an

epoch require access to the final analysis state at the end of the previous epoch. Since that

information is not available during the epoch, those checks are deferred until the epoch’s

commit phase (when the information is guaranteed to be available). We discuss the exact

work that is deferred in Section 5.3. Once the deferred checks are made, the partial analysis

state from the epoch is used to update the global committed state.

Keeping a single global committed state simplifies how epochs commit, but it does

impose a strict sequential order on the tasks to be performed. If we were to keep around

intermediate states after each epoch commits (i.e., committing an epoch generates a new

state instead of updating a shared one), we could allow additional parallelism by processing

the deferred checks for an epoch at the same time it’s final state is being prepared. This

however complicates our design and increases memory utilization.

5.2.1 Applicability to Analysis Algorithms

In designing this architecture, we exploit a key property of the FastTrack algorithm:

the portion of the algorithm that tracks and maintains the happens-before relation can func-

tion on its own as a fast closed subset of the full algorithm. To specify this as a general

property, we are interested in a subset of analysis state and events that meets the following

conditions:

• The analysis of an event in the subset depends only on state in the subset.

• The state in the subset is only updated when analyzing events in the subset.

When a proper subset exists that meets these conditions, events outside the subset can be

ignored while analyzing a program trace without affecting the the analysis state in the sub-

set. Thus when we instrument only that subset of events in the thread-parallel execution,

89

we are guaranteed that the analysis state it maintains will be identical to the state generated

in the epoch-parallel execution. This property is necessary to maintain the equivalence be-

tween the thread-parallel and epoch-parallel executions when their instrumentations differ.

It is also important that the analysis of events in the subset incur low overhead since this

analysis will occur twice.

In general, the analysis architecture developed here can be used for any analysis al-

gorithm that contains a suitable subset. Other race detection algorithms that are based on

vector clocks perform happens-before tracking similar to FastTrack. In race detectors based

on locksets, the maintenance of those locksets may also form a suitable subset.

This architecture can also be used for analyses that have no suitable subset of events

and state. In this case, all instrumentation would exist only in the epoch-parallel execution.

Section 5.6 discusses related work that has dealt with program analysis in this category.

5.2.2 Performance Discussion

The parallelism of our uniparallel execution is limited by two factors: the rate at which

new epochs can be spawned from the thread-parallel execution, and the rate at which epochs

can be committed. Spawning and committing epochs are fundamentally sequential; we ex-

tract parallelism from this system entirely through the epoch-parallel execution. Given

enough cores, the rate at with epochs can finish in the epoch-parallel execution will eventu-

ally rise to some maximum supported rate, determined by the slower of the epoch creation

rate or the epoch commit rate. It follows that the greatest amount of parallelism can be

achieved by making these two sequential tasks as fast as possible. While this goal is hin-

dered by handling synchronization events in the thread-parallel execution, the information

gathered by this analysis is used to greatly simplify the parallel detection algorithm and

reduce the amount of work that must be saved for the sequential commit phase. Our eval-

uation found that the slowdown to the thread-parallel execution is not significant for most

benchmarks; in fact we often impose additional rate limiting on our thread-parallel execu-

tion to keep it from generating new epochs faster than our epoch-parallel execution can run

them, or than our commit phase can commit them.

90

The amount of work done in the sequential commit phase turns out to be a key factor in

performance. There can be a significant amount of work to be done in this phase, depending

on the benchmark, and any processing time spent in this phase reduces the fraction of work

that can be parallelized. Once there are a large number of cores available (i.e., the epoch-

parallel phase has a completion rate), if it takes longer for an epoch to be committed than to

be created, the commit phase will be the bottleneck in the epoch pipeline, limiting the rate at

which epochs and be completed. On the other hand, if it takes less time to commit an epoch

than it did to create it, then the thread-parallel execution will set the overall completion rate.

5.2.3 Handling a Race

One benefit of using an on-the-fly detection algorithm is the ability to catch the program

the instant it performs its second unsynchronized access to a shared variable. Although this

architecture cannot guarantee that a cross-epoch race will be detected until the end of each

epoch, we can still recover the program to the exact location where the race occurred by

reusing our replay logs in a method similar to RecPlay [66]. When a race is detected, the

process can be rolled back to the beginning of the epoch. The replay logs can be used to

advance the program’s state up to the point where the race was detected. If the two racing

instructions belong to the same epoch, both threads involved in the race can be advanced to

the exact racing instructions.

After the correct program state is recovered, the reaction of the system should depend on

the end use of the race detector. When debugging, it may be useful to generate a breakpoint

and attach a debugger at the exact instant or to produce a core dump. If the goal is to

generate a log for deterministic replay, two options are apparent: the racing instructions

could be dynamically modified to log the outcome of the race; or the system could impose

some method of ordering the racing operations, perhaps by inserting locks or momentarily

executing one thread at a time.

91

5.3 Parallel FastTrack

This section describes the main contribution of this work: the Parallel FastTrack algo-

rithm. It is designed to be used in a uniparallel architecture as described in Section 5.2.

The use of uniparallelism itself does not strictly require a new detection algorithm. As

prior work has done [53], we might have hidden details of the uniparallel execution from

the algorithm and merely used the execution as a faster way to generate a sequential log of

program events. The instrumentation would be parallelized, but not the analysis. A commit

phase then processes logs in order by the usual sequential algorithm. While the collection

of events is a significant overhead in an execution, the analysis of those events also takes a

significant amount of work.

By exposing the uniparallel architecture to the race detection algorithm, we construct a

parallel race detection algorithm that distributes more of the work into the parallel phase.

At a high level, Parallel FastTrack divides its work across three different phases. In the first

phase (the thread-parallel execution), synchronization operations are analyzed to establish

the happens-before order among program regions. The second phase (epoch-parallel exe-

cution) operates in parallel on each epoch and detects all races that occur within that epoch.

The third phase (sequential commit) operates sequentially on epochs in program order to

detect races that span multiple epochs.

The rest of this section describes this algorithm in detail. We first present an informal

description of Parallel FastTrack. Then we build an analysis abstraction suitable for ana-

lyzing uniparallel executions. We then present the formalization of the algorithm and argue

its equivalence to Sequential FastTrack. Finally, we discuss additional optimizations that

can be made to the algorithm.

5.3.1 Informal Algorithm

Parallel FastTrack is an adaptation of Sequential FastTrack for use in a uniparallel archi-

tecture. The core of the algorithm is unchanged from the sequential version. Our modifica-

tions address how to divide work between parallel and sequential phases, what information

to log during an epoch’s execution, and how to process and merge epoch state when it

92

commits. This section presents the algorithm informally.

We divide Sequential FastTrack into three phases. The first phase of work occurs in the

thread-parallel execution, where we instrument and analyze synchronization operations to

track the happens-before information for the program. This instrumentation and analysis

imposes a minimal overhead on the program’s execution. By performing this analysis in

the thread-parallel execution, happens-before information is available for use in the second

phase.

The second phase adds instrumentation to the epoch-parallel execution to analyze syn-

chronization operations and all variable reads and writes. The uniparallel replay system

will ensure that the happens-before information is the same for both the thread- and epoch-

parallel executions. Within each epoch, Sequential FastTrack is used to detect accesses

that race inside that epoch. However, this method cannot be used to check if the first access

in an epoch races with any access in logically-earlier epochs. Without any analysis in the

thread-parallel execution, the analysis state of each variable at the end of the previous epoch

will not be known, so the check cannot be made. When this occurs, the check that would

have been evaluated is logged for later evaluation. Once a variable’s state is overwritten,

which occurs at the first write to the variable, its new value can be used for the rest of the

epoch to detect races in the epoch without logging.

The third sequential commit phase analyzes epoch-parallel epochs in program order as

they finish executing. This phase has access to a separate committed version of analysis

state for each variable. We maintain the invariant that the committed state is identical to the

state generated by running Sequential FastTrack over all committed epochs. To commit a

new epoch, its logged accesses must be verified first. The unknown values in logged checks

are replaced by the true values from the committed state, and the check is reevaluated. This

procedure will detect any race between the first access in the new epoch (which is logged)

and the last access to a variable from all prior epochs. Then, the final state of any modified

variable is used to update the committed state. When these steps are finished, the epoch has

been committed, and the subsequent epoch can be processed if it has finished executing.

93

5.3.2 Uniparallel Analysis Abstraction

Before formally specifying Parallel FastTrack, we must consider how to reason about

dynamic program analyses in a uniparallel architecture.

It is difficult to directly specify meaningful semantics for an algorithm that deals with

many concurrent processes or threads (as happens in a thread-parallel execution). To make

this task easier, a simplifying abstraction is used that eliminates the concurrency from the

algorithm. Rather than dealing with actions performed concurrently across several cores,

the program’s execution is assumed to be sequentially-consistent, so it suffices to analyze

some sequential execution of the program that is consistent with the concurrent execu-

tion. Common memory models followed by hardware and compilers preserve this property.

Even programs with races can be considered sequentially-consistent (at the hardware level)

up to the first race [2, 66]. Using this assumption, analyses can be specified to operate on

an execution as a sequence of discrete events without considering concurrency.

We would similarly like to specify our analysis on some sequential execution of the pro-

gram that is consistent with the uniparallel execution, allowing us to abstract away the con-

currency. We find this execution by stitching together each epoch from the epoch-parallel

execution to make a single execution. Although each of these epochs executes concur-

rently, the epochs are logically ordered by the program, and logically-adjacent epochs will

have identical program states on their boundaries (this is guaranteed by the replay system

used in uniparallelism). Hence, we can rearrange the epochs so that they occur sequen-

tially. Because each epoch in the epoch-parallel execution runs on a single CPU core, an

epoch is already sequentially-consistent internally. When arranged back-to-back, one con-

tinuous natural execution is created that is sequentially consistent. We preserve the original

epoch boundaries as epoch begin and epoch end events in the execution so that the analysis

algorithm can take special actions at the start and end of an epoch.

5.3.3 Formal Algorithm

We formally define Parallel FastTrack state in two components: synchronization state

(Ti and LC) and variable state, of which there are two copies. The synchronization state

94

Event at Thread i Check Update
Acquire lock L Ti := Ti t LC

Release lock L LC := Ti ; Ti := inci(Ti)
Fork thread j T j := T j t Ti ; Ti := inci(Ti)

Join on thread j Ti := Ti t T j ; T j := inc j(T j)

Read X XW v Ti ? XR :=

S i(Ti) if XR v Ti

XR t S i(Ti) otherwise
Write X XW v Ti ∧ XR v Ti ? XW := S i(Ti) ; XR := ⊥

Epoch end verify log ? ∀X :

XR := XR ; XW := XW if XW , ♦X,W

XR := XR t XR otherwise
Epoch begin ∀X : XW := ♦X,W ; XR := ♦X,R

Table 5.3: The Parallel FastTrack algorithm. Operations on synchronization events (top) are un-
changed from Sequential FastTrack. In the update rules for variable accesses (middle), modified
rules are given in boldface. The epoch event (bottom) is new in Parallel FastTrack. Its update rules
specify how to update committed state (X) with one epoch’s local state (X). ?: Comparisons against
♦ must be logged and re-evaluated against committed state at the end of an epoch.

is the same as in Sequential FastTrack. For each variable X, it maintains read and write

clocks in local state for each epoch (XR and XW) and in a separate committed state that is

globally accessible (XR and XW). Initially, LC, and XR/W are initialized to ⊥. At the start of

each epoch, XR/W are initialized to ♦X,R/W , a special symbolic placeholder value. We treat ♦

as a vector clock, but it cannot combine with other clocks. That is, ♦t〈0, 2〉must be stored

as two components: ♦ and 〈0, 2〉.

State is modified as the algorithm operates on the sequence of program events and epoch

boundaries. The state update rules are given in Table 5.3. The top segment of these rules

shows how program synchronization is handled. The middle segment shows how to handle

read/write events within an epoch in the epoch-parallel execution. The lower segment

shows how epoch boundaries affect the local and committed versions of read/write state.

Program synchronization events are the same as in Sequential FastTrack. These events

are handled in both the thread-parallel and uniparallel executions. The deterministic replay

system ensures that the partial order of these two executions are equivalent, so in our ab-

stract sequential model, the state of the lock and thread clocks will be unaffected by epoch

events.

Within an epoch, local variable state is updated in a similar way to Sequential FastTrack.

95

We alter the original algorithm so that updates will no longer depend on the representation

of the vector clock (summary or full clock) but only on focus on the value of the clock.

As events are handled, the access is first checked to see if it races with a prior access

(according to the “check” column in Table 5.3), then the state of the variable is updated. At

the time of the first write to a variable X in an epoch, XW will be ♦X,W , so this check cannot

be evaluated. We log the access (X,W,Ti) so it can be checked later in the commit phase.

The value of XW is then overwritten with Ti, so subsequent comparisons to XW need not be

logged. Reads of X before its first write will update XR but do not overwrite it, so we log

(X,R,Ti) for evaluation in the commit phase.

When an epoch end event is handled, all logged accesses should be examined. From a

log record (X,R/W,C), we reconstruct and evaluate the check XR/W v C using the commit-

ted state for X. If one of these checks evaluates to False, then the access to X is part of a

race that spans epochs. If all checks are True, then there are no races. Then, for every vari-

able X that was accessed in the epoch, we update XR/W to new state XR/W after substituting

the old value of XR/W in place of any ♦R/W .

The amount of work done in this phase grows linearly with the amount of memory

accessed during an epoch. Variables that are not accessed need no processing. With opti-

mization, each variable can generate at most N + 1 logged checks for N threads (1 for the

first write, N for the first read by N threads).

5.3.4 Analysis

We developed Parallel FastTrack to produce output identical to Sequential FastTrack.

We formalize this condition as follows. For some sequential execution of a program

that contains epoch boundaries (i.e., the epoch-parallel execution with epochs stitched to-

gether), consider a prefix of this execution that consists of all events from the beginning

of the program to some epoch end event. After processing this final event, the committed

state of Parallel FastTrack (Ti, LC, XR/W) should be equivalent Sequential FastTrack’s state

(T ′i , L
′
C, X

′
R/W) and both algorithms should agree on whether there has been a race in the

execution so far. The rest of this section argues that this equivalence condition is met by

96

our modifications to the algorithm.

First, consider the synchronization states. Both sequential and parallel algorithms han-

dle synchronization operations equivalently, and only synchronization operations update

the synchronization state. It follows that (Ti, LC) = (T ′i , L
′
C) after processing the same

sequence of events.

Second, consider the variable clocks. Parallel FastTrack only has a symbolic value

♦X,R/W initially while Sequential FastTrack has a concrete value XR/W . However, whenever

those values are needed to perform a race check, the check is deferred. In the sequential

commit phase, these deferred checks will be evaluate against the concrete values for XR/W ,

resolving identically to Sequential FastTrack. If there is a data race involving the first read

or write to a variable in an epoch, Sequential FastTrack will detect the race immediately

while our deferred approach will not catch the race until later. However, because our se-

quential commit phase checks the same condition as Sequential FastTrack, the race will be

discovered, and our architecture can roll back the program to make it appear as if the race

were detected on-the-fly.

Once Parallel FastTrack writes a concrete value to XR/W , future operations to X will

proceed identically to Sequential FastTrack.

One potential source of differences between the two analyses may come from each

analysis choosing a different way to handle each event. Sequential FastTrack may, for

instance, decide not to set XR := ⊥ on a write, while our parallel analysis does. These

small differences should not affect the outcome of any individual check, so the overall

equivalence will still hold.

5.3.5 Optimizations

We use two optimizations at the algorithmic level to improve the performance of Paral-

lel FastTrack by reducing the amount of work in the sequential commit phase.

Bounded read access logs The general algorithm as described logs every read access in

an epoch up through the first write. This logs more accesses than necessary to find a race.

If one read access at time C is logged (i.e., the check “♦ v C” is deferred) to a variable

97

and a second access happens at time Ti after the first access (i.e., C v Ti), then the second

access does not need its check (i.e. “♦ tC t D v Ti”) to be logged. Reasoning informally,

if the first read did not race with the previous write, the second one, being ordered after the

first, cannot either. If the first read does race, the second check is irrelevant. Formally, this

is specified as ♦ v C ∧C v Ti ⇒ ♦ v Ti. With this optimization, each thread only needs to

log its first read to the variable. Hence, the number of logged accesses is bounded by the

number of threads.

Use natural barriers Intuitively, once a thread has synchronized with every other thread

in an epoch, it is guaranteed that its subsequent accesses are ordered after every access from

prior epochs. Consequently, its future race checks do not need to be logged. Formally, we

use ♦X,R/W as a symbolic placeholder for the last access before the epoch. Although its

exact value cannot be known until the commit phase, its range is limited. Let E =
⊔

i Ti for

all threads i at the start of the epoch. By definition, ♦X,R/W v E, so E v Ti ⇒ ♦ v Ti.

Even if the deferred check can be eliminated, the first access to a variable will generate

some work for the sequential commit phase, since that variable’s per-epoch state must be

committed.

5.4 Implementation

We developed a custom implementation of our race detector that re-implements the Se-

quential FastTrack algorithm as well as Parallel FastTrack algorithm. This implementation

consists of three parts: the replay system, the instrumentation, and the analysis library. The

replay system is responsible for providing a uniparallel execution of the target program.

We build our race detector on top of the infrastructure for DoublePlay [79], a system pro-

viding uniparallel executions as described in Section 5.1.3. To intercept relevant events

from the program’s execution, we use two techniques: first, the dynamic linker helps our

race detector interpose on all program calls to pthread functions, and second, we statically

instrument each load and store in the program during compilation to invoke our race detec-

tor. The events are then analyzed in library code that implements our detection algorithms.

98

The next two subsections describe these last two components in greater depth. We then de-

scribe the performance optimizations we use to decrease the total amount of work needed

to perform race detection.

5.4.1 Instrumentation

The race detector intercepts program events through the use of two different techniques,

depending on the event. Both techniques rely on altering the program at compile-time.

To intercept synchronization operations, we use dynamic library interposition. Our

race detection library redefines the common pthread synchronization functions, such as

pthread mutex lock(), and is statically linked with the target program, overriding the

original functions. Our wrapper functions call into the race detection library before and

after invoking the original functions (as needed), which are looked up by the dynamic

linker.

Program loads and stores are intercepted via instrumentation added as a source pro-

gram is compiled. We use the LLVM compiler with a custom pass that inserts calls to

our read/write handlers (e.g., handle read(uint32 t addr, uint32 t size)) into the

program’s intermediate representation. The exact instrumentation depends on which detec-

tor we are using. For the Sequential FastTrack algorithm, the function call is inserted

unconditionally before every load or store instruction.

For Parallel FastTrack, we want the thread-parallel execution to run as fast as possible

without handling loads or stores, while the epoch-parallel execution must handle each load

and store. We implement this requirement by having the instrumentation first check a

global variable enable instr and then conditionally call the handler. This method was

chosen for its simplicity, not performance. A better solution could involve switching the

binary from a fast, uninstrumented version to a slow, instrumented version when a new

epoch replay is forked from the thread-parallel run. Making these two binaries compatible

is a challenge, though Prospect [77] presents one viable solution.

There are two consequences of our instrumentation technique. First, by instrumenting

the LLVM IR, we skip handling accesses to variables that do not escape their functions. In

99

type-safe programs, such variables are guaranteed to be inaccessible to other threads. In

unsafe programs, bugs like wild pointer accesses or buffer overflows could result in a data

race that our tool would miss, but these bugs could be caught and fixed by other means

before employing this detector.

Second, the program’s external libraries must either be compiled with instrumentation

or must have their functions annotated. We implement annotations for libc through wrapper

functions that explicitly invoke the read/write handlers. For all other libraries, we compile

a special version that includes the appropriate instrumentation.

5.4.2 Analysis Library

The core event handler and race analysis algorithm is written in C++ and linked into a

program via a static library. The exact procedure for updating analysis state is detailed in

Section 5.3. We discuss in this section other interesting implementation details, particularly

our use of shadow memory.

Logically, we assign a single FastTrack variable to each byte of program memory to

detect races at byte granularity. However most program accesses are to word-sized units of

memory (or multiples thereof). To save space and reduce the number of FastTrack updates,

we shadow each source word with a single FastTrack variable. If individual bytes are

accessed, we allocate an array of variables that can track each byte individually.

Parallel FastTrack requires two separate shadow memory regions. The local analysis

state is kept in a private mmaped region so that each epoch has its own copy. The com-

mitted analysis state is in a shared mmap region so that all epochs can access it. Each

shadow memory region is organized by a single-level page table. New regions are tracked

in blocks of 4 MB. The code to look up the shadow word for address addr is simply

shadow base[addr >> shift1][(addr & mask) >> shift2]. The rest of the mem-

ory in each region is used for dynamic allocations of byte-level variables and for full vector

clocks.

It is important that our race detector itself contains no data races and handles each

program event atomically. This property does not come free when instrumenting a multi-

100

threaded application. If the source program accesses the same location concurrently (e.g.,

by data races, read-shared variables, or barrier wait()), instrumentation code may race

with itself. Even when there is no sharing in the source program, our instrumentation

adds its own sharing, since bytes are grouped together initially. To provide atomicity, our

instrumentation guards shadowed memory with spinlocks. All shadow variables on a single

cache line are guarded by the same lock to reduce contention. We keep a fixed number of

spinlocks available; a hash of the memory address selects which lock to use.

Overall, our implementation of Parallel FastTrack has a minimum memory overhead

of 4×. We use a single 32-bit integer to store a FastTrack compressed vector clocks (4 bit

thread identifier with a 28 bit logical clock). Each variable needs two such clocks (last-read

and -written) and has two shadowed copies (local and committed). By grouping program

words, only 4 extra words of shadow memory are needed for each single word of program

memory. When full vector clocks or arrays for byte-level tracking are needed, they are

dynamically allocated from fixed-sized pools. For comparison, tracking bytes (not words)

directly would bring the minimum overhead to 16×.

5.4.3 Optimizations

We use two optimizations to reduce the amount of work our detector is required to

perform.

Lock elision In the uniparallel execution, locks are not needed to provide atomicity to

our instrumentation. The uniparallel execution only allows one thread to run at a time, and

context switches between threads are strictly controlled. When instrumentation is added,

atomicity can be provided by ensuring that a context switch does not occur inside instru-

mentation code. Hence we can safely elide all spinlocks from the instrumentation. This

optimization eliminates work that must be performed in Sequential FastTrack.

Omit memory comparison To ensure that the epoch-parallel execution is equivalent to

a continuous thread-parallel execution, it is necessary to ensure that the final memory state

of one epoch is equivalent to the beginning memory state of the next epoch. This condi-

101

tion allows epochs to be stitched together to form a single continuous run of the program.

In prior systems that use epoch parallelism for multi-threaded applications (e.g., Respec,

DoublePlay, and Frost), the presence of a data race within an epoch could cause its final

memory to differ from the starting memory in the next epoch. Hence, to ensure continuity,

any modified memory pages must be explicitly compared. This comparison can be omitted

in our detector because the commit phase will discover the memory race on its own. This

optimization reduces the overhead of uniparallelism.

5.5 Evaluation

Parallel FastTrack was designed to scale performance by increasing the number of CPU

cores available. This section experimentally evaluates how well our implementation of this

algorithm was able to achieve our goal. We also explore the sources of overhead in our

implementation and quantify the benefit lock elision.

We first present our experimental setup and general methodology used to evaluate the

system. We then present all our experimental data that measures scalability and overhead,

followed by an analysis and discussion of these results.

5.5.1 Methodology

All experiments were performed on a single workstation that contains 6 GB RAM and

uses dual Intel Xeon CPUs with 12 MB cache to provide a total of 8 cores running at 2.4

GHz. System software is built upon that of prior work on uniparallelism [79]. The system

ran a 32-bit PAE Linux 2.6.26 kernel that has been heavily modified to provide speculative

execution and uniparallel replay. We used a custom version of Glibc 2.5.1 to provide the

user-space logging and replay components for uniparallel replay. Aside from Glibc, all

programs and libraries were compiled in LLVM 2.9 with a custom instrumentation pass.

We primarily evaluate performance by comparing the execution times of a set of bench-

mark programs under different configurations. We examine a collection of five applications

from the modified SPLASH-2 benchmark suite [81] — water-n2, lu, ocean-contig, fft, and

102

radix — and one parallel application — pbzip2. The SPLASH-2 applications are CPU and

memory intensive and contain little I/O, if any. Pbzip2 is used to compress an 8 MB file,

with multiple threads compressing different blocks of the file in parallel. We prefetch this

file in advance to keep the application from becoming I/O-bound.

We only evaluate our system on benchmark applications that do not contain overly-

frequent data races. If a program contains a frequent data race, the bug will be discovered

quickly whether the detector is fast or slow. Performance is relevant mainly for programs

that are mostly race-free, which may run for an extended amount of time before encoun-

tering any data race. We exclude many of the other SPLASH-2 applications on this basis.

When a race is detected, our detector records the event, but does not otherwise alter the

execution of the target program.

For the SPLASH-2 benchmarks, we adjust our workload sizes to produce an execution

time of 100-120 second in a normal execution on a single core when possible. For some

applications, we scale the input by adding a loop through program’s main computation

many times inside the same process. We also modify some of the more CPU-intensive

applications to periodically make a system call. This change was introduced to offset a

limitation of our replay system: it does not have support for deterministic interrupts which

would be required to end an epoch via preemption. Inserting the system call gives our

replay system opportunity to break a long-running epoch. For pbzip2, we were unable to

scale the workload significantly beyond a few seconds.

Unless otherwise noted, all measurements represent the mean of at least 4 samples. We

show the sample standard deviation along with means where noted.

5.5.2 Scalability Measurements

Our primary goal is to allow race detection to scale across available cores in the system,

reducing the total execution time of the target application. We determine the scalability of

our race detector for a given benchmark application by selecting a workload that consists

of a fixed number of worker threads and measuring the execution time as we increase the

number of CPU cores available. With a total of only 8 cores available on our test machine,

103

Application Worker System Original Sequential CPU Parallel Parallel
threads calls time (s) FT (s) cores FT (s) speedup

water-n2 1 — 126 (2.6) 2983 (48) 1
2 2390742 72.2 (0.6) 1891 (59) 2 1419 (0.8) 1.33 (0.04)

4 757 (2.5) 2.50 (0.08)
6 495 (1.9) 3.82 (0.12)
8 392 (2.9) 4.83 (0.16)

4 4827240 44.4 (1.0) 1484 (23) 4
8 439 (4.5) 3.38 (0.06)

lu 1 — 103 (1.3) 3520 (68) 1
2 94002 53.3 (0.6) 2103 (61) 2 1623 (1.3) 1.30 (0.04)

4 862 (4.5) 2.44 (0.07)
6 564 (1.7) 3.73 (0.11)
8 439 (5.0) 4.79 (0.15)

4 144454 27.8 (0.8) 1178 (26) 4
8 438 (3.3) 2.69 (0.06)

ocean 1 — 118 (2.9) 4182 (98) 1
2 621767 64.4 (0.8) 2453 (187) 2 2026 (3.2) 1.21 (0.09)

4 1081 (4.3) 2.27 (0.17)
6 702 (1.5) 3.50 (0.27)
8 534 (2.0) 4.60 (0.35)

4 1969753 38.4 (0.6) 1731 (36) 4
8 551 (1.0) 3.14 (0.07)

fft 1 — 98.7 (1.7) 622 (77) 1
2 110764 50.5 (1.3) 2790 (123) 2 2531 (12) 1.10 (0.05)

4 1338 (2.9) 2.09 (0.09)
6 868 (1.8) 3.21 (0.14)
8 662 (1.5) 4.22 (0.19)

4 226127 27.8 (0.4) 1533 (24) 4
8 648 (12) 2.37 (0.06)

pbzip2 1 — 1.99 (0.04) 48.3 (1.2) 1
2 449 1.09 (0.03) 27.4 (0.8) 2 27.3 (0.5) 1.01 (0.03)

4 18.2 (0.2) 1.51 (0.04)
6 14.8 (0.9) 1.86 (0.12)
8 14.7 (0.7) 1.87 (0.11)

4 489 0.69 (0.04) 18.6 (0.43) 4
8 20.2 (2.8) 0.92 (0.13)

radix 1 — 118 (2.4) 481 (4.7) 1
2 9652 60.2 (0.9) 318 (68) 2 346 (1.7) 0.92 (0.20)

4 212 (2.1) 1.50 (0.32)
6 200 (3.0) 1.59 (0.34)
8 198 (2.7) 1.60 (0.34)

4 21308 31.5 (0.4) 311 (57) 4
8 179 (3.5) 1.74 (0.32)

Table 5.4: Scalability of Parallel FastTrack. Sample standard deviations are given in parentheses.

104

 0

 1

 2

 3

 4

 5

 2 4 6 8

S
p
ee

d
u
p
 r

el
at

iv
e

to
 S

eq
u
en

ti
al

 F
as

tT
ra

ck

Number of Cores Available

linear sc
aling

no scaling

water
lu

ocean
fft

pbzip2
radix

Figure 5.2: Scalability of Parallel FastTrack for two worker threads.

we chose to focus on 2- and 4-core workloads. We vary the available cores by pinning

record threads to the first p cores for p worker threads and pinning replay threads to the

first N cores, where we vary p ≤ N ≤ 8.

The results of our scalability study are presented in Table 5.4. For each application,

we briefly characterize the workload as the number worker threads used and the number of

system calls during one execution. We then measure the total execution time (in seconds)

of the application when running without any modification or instrumentation (base) and

when running using the Sequential FastTrack algorithm (Sequential FT). The next group of

data present our main results: measurements of the total execution time when using Parallel

FastTrack (Parallel FT) across the given number of CPU cores. Our speedup column shows

the speedup of Parallel FastTrack relative to Sequential FastTrack (i.e., sequential/parallel

execution time). To better illustrate the trends in this data, Figure 5.2 shows the last column

of data when using two worker threads.

Overall, our implementation of Sequential FastTrack results in an average slowdown

of 23.5× relative to the uninstrumented baseline (mean taken over all applications and

all workloads). This slowdown is comparable to other implementations of non-sampling

105

race detectors for unmanaged code [66–68, 71]. We note that our results are worse than

the published slowdown for the original Java implementation of FastTrack. We feel that

improved language safety allows a Java race detector to be better optimized than one for

unsafe languages like C, but we defer this investigation for future work.

Our results show that Parallel FastTrack is indeed capable of parallelizing data race

detection. We see average speedups of 2.1, 2.8, and 3.3 as we increase the number of

CPU cores to 2×, 3×, and 4× the number of worker threads, respectively. There is a high

variance in parallelization among the benchmark applications. Four of our SPLASH-2

benchmarks—water, lu, ocean, and fft—show super-linear speedup, with average speedups

among just these benchmarks of 2.6, 3.6, and 4.6 with increasing number of cores. At

the other end of the spectrum, pbzip and radix show little improvement, with a maximum

speedup of 1.9 for any tested number of cores. We defer a full discussion of these results

to Section 5.5.4.

5.5.3 Overhead Measurements

There are several different components that are required for Parallel FastTrack to func-

tion correctly. Figure 5.3 shows how these components affect the runtime of the detector

for the workload of 2 threads. We normalize each application’s runtime to its baseline

measurement. This figure shows several bars for each application. The first bar on the left

shows the normalized runtime of Sequential FastTrack, to serve as a reference point.

Each subsequent bar shows the runtime of Parallel FastTrack using a different number

of cores. From left to right, we show 2, 4, 6, and 8 core performance. Each bar is further

broken down into different components, each of which represents one part of the overhead.

These components are:

• Baseline: The lowest bar on the stack shows the baseline, which is scaled for each

application to be “1.”

• Replay: The next higher bar shows the execution time of each process under a uni-

parallel replay. This result is higher than previously published results for uniparallel

execution. Unlike prior work, we schedule replay threads on the same CPUs as

106

 0

 10

 20

 30

 40

 50

 60

water lu ocean fft pbzip2 radix

N
o
rm

al
iz

ed
 r

u
n
ti

m
e

Application

Sequential FT

+ Commit phase
+ Instrument R/W
+ Instrument sync
+ Replay
Baseline

Ideal scaling
w/out commit phase

Figure 5.3: Overhead breakdown in Parallel FastTrack and the benefits of lock elision. Execution
times for each application configuration are normalized to the baseline configuration. The workload
shown uses 2 worker threads.

recording threads, thus slowing both down. While this scheduling strategy hurts per-

formance when Replay is examined alone, it improves utilization and latency once

instrumentation is added.

• Instrument sync: Instrumenting synchronization operations in both record and replay

sides of the uniparallel execution results in a negligible increase in runtime (and is

nearly indistinguishable in Figure 5.3).

• Instrument R/W: The largest slowdown in execution time overall comes from instru-

menting and analyzing each memory operation within each epoch. This overhead

can itself be broken into smaller components: calling into the race detector library

(about 35%), locating shadow variables (20%), and analyzing accesses (40%).

• Commit phase: This component includes maintaining a log of the first access to each

memory location as well as processing the log in the sequential commit phase.

The line drawn across each application shows the ideal scalability for each application

based on the overhead breakdown of the 2-core trial. The scalable parts of the benchmark

107

are Replay, Instrument Synch, and Instrument R/W. We compute the ideal line by scaling

only those components of the runtime across multiple cores (i.e. f (x) = sequential +

scalable/x).

5.5.4 Discussion

All benchmarks showed some scalability and reduced latency, although the improve-

ments were not consistent across applications. We discuss here three important factors that

affect the performance of an application.

First, we found that the uniparallel execution of the was overall faster than the normal,

sequential analysis even when using the same number of cores. This can be seen by ex-

amining the first two bars of each application in Figure 5.3, which directly compare the

Sequential and Parallel FastTrack algorithms on 2 cores. It is this improvement that allows

our benchmarks to exhibit super-linear scalability. Much of this improvement can be ex-

plained by our lock elision optimization. We found that on average, the use of locks in our

instrumentation code was responsible for 22% of the runtime in the Instrument R/W com-

ponent. These locks are unnecessary in the uniparallel execution, so we can remove them

to reduce the overall execution time by about 3×. This optimization is somewhat unrelated

to our parallelization of the FastTrack algorithm. This performance boost should be seen

in any instrumentation that uses locks frequently and can run in a uniparallel architecture.

Second, we found that overall, the system is scaling as intended. Four out of six of our

benchmarks show that the epoch-parallel phase can efficiently parallelize its work when

given up to to 4 times as many cores as worker threads. This indicates that the epoch-

parallel is the performance bottleneck in these benchmarks. Race detection on radix adds

relatively little amount of overhead, so its bottleneck quickly becomes the thread-parallel

phase (or commit phase, if enabled). Even with eight cores available, radix only has enough

parallel work at any time to regularly make use of five cores. Pbzip2’s trouble scaling is

a result of its short length. Epoch parallelism has low core utilization at the beginning

and end of replay, and pbzip2 was too short to amortize this cost. We are still working on

scaling the workload for this benchmark.

108

Application Total accesses % First access % Deferring a check (approx.)
water-n2 43 M 0.1% 0.01%
lu 182 M 1.4% 0.2%
ocean 186 M 7% 0.07%
fft 62 M 9% 2.1%
pbzip2 209 M 5% 4.3%
radix 36 M 45% 3.9%

Table 5.5: Parallel FastTrack average memory accesses per epoch.

Third, we found that the temporal locality of memory references has a significant in-

fluence on performance and scalability. Table 5.5 looks at benchmarks using 2 worker

threads and 8 cores and shows three measurements: the average number of memory ac-

cesses analyzed in each epoch, the percentage of total accesses that are the first access to

a new variable, and the percentage of total accesses that defer a check (approximately). It

shows a strong correlation between overall performance and the frequency of first accesses

to a new memory location. Our detection algorithm can parallelize repeated accesses to

the same location within one epoch, but the first access to a new location must be logged

during the epoch-parallel execution and re-examined during the sequential commit phase.

The sequential detector has no need for logging; this is overhead added by parallelization.

Applications with high temporal locality will access many of the same memory locations

repeatedly within one epoch. The resulting log will be small, and the sequential commit

phase will be fast. Conversely, applications with little temporal locality will access many

different memory locations with a low frequency. The optimizations mentioned in in Sec-

tion 5.3.5 greatly help to reduce the number of checks that must be deferred to the commit

phase. However, the optimizations cannot eliminate the need for logging altogether. Some

record of each access must be made so that the shadow state for the location can be com-

mitted during the commit phase.

5.6 Related Work

Dynamic data race detection has been studied by many hardware [51, 55, 61] and soft-

ware [2, 14, 15, 20, 23, 30, 59, 63, 66, 68, 83] approaches.

109

To our knowledge, this is the first work that attempts to parallelize data race detection,

though the broader topic of parallelizing instrumentation and analysis has been previously

considered. Both Speck [53] and SuperPin [80] use epoch-parallel execution to offload

instrumentation and analysis of single-threaded programs to an epoch-parallel run. Their

examples include a dynamic taint tracker and a data cache simulator, two analyses that

depend on cross-epoch information. A similar architecture can be found in other works [77,

79, 84]. The architecture presented in this chapter is inspired by these projects, and we

extend their basic architecture to allow limited instrumentation to run in the thread-parallel

execution when needed.

Hardware-based systems have proposed using speculative execution to perform data

race detection. ReEnact [61] uses Thread-Level Speculation hardware to detect races.

Once a race is detected, recently-completed instructions are rolled back and re-executed

to characterize and possibly repair the bug. SigRace [51] adds a Race Detection Module

that quickly scans memory accesses for races using a Bloom filter. When a potential race

is detected, program execution is rolled back and re-executed using a precise race detector.

Software-based race detectors have not made use of speculative execution to our knowl-

edge.

5.7 Chapter Conclusions

This chapter developed the Parallel FastTrack algorithm for dynamically detecting data

races. By exposing the details of the uniparallel architecture at the algorithmic layer, we

can parallelize the algorithm more efficiently. Each epoch in the uniparallel execution is

instrumented to detect races that occur within the epoch. After epochs finish, they are

handled sequentially in a commit phase that detects races across epochs.

Parallel FastTrack has attained its goal of reducing the execution time of analyzed pro-

grams. It provided average of speedups of 2.1, 2.8, and 3.3 when the number of CPU cores

available are 2, 3, and 4 times the number of worker threads, respectively. Parallelization of

a particular application is influenced predominantly by the application’s temporal locality

of memory accesses. If the application tends to access the same memory locations within

110

an epoch, there will be less sequential work for the detector, leading to better performance

scaling.

By eliding locks in the uniparallel execution, Parallel FastTrack can avoid doing about

22% of the work needed for a sequential detector, decreasing overall runtime by an average

of 3× relative to a normal execution. We would expect to see similar benefits if unipar-

allelism were used to run other kinds of heavyweight instrumentation that makes use of

frequent locks to protect small segments of code.

111

CHAPTER 6

Conclusion

This thesis has explored the benefits of making speculative executions visible across

different layers and components of a software system. By allowing layers to cooperate to

preserve safety for speculations, new opportunities are created for improved parallelization.

This dissertation shows how multiple layers can cooperate, and it provides many examples

of how to take advantage of the speculative opportunities present between different system

layers. Our thesis is supported by the following contributions.

6.1 Contributions

We contribute to the theoretical understanding of speculative executions by introducing

the idea of custom speculation policies. Speculative execution is used in different ways for

different goals in a variety of systems. Even though the exact details change from system

to system, we realized that there are fundamental concerns that each system addresses, and

the variations fall into common patterns. These variations are captured in our idea of a

speculation policy. The different dimensions of the policy let us describe how a particular

use of speculation should be customized relative to a default conservative policy.

We demonstrate the utility of this idea by constructing a system for speculative ex-

ecution that splits the common concerns of speculation into a shared mechanism in the

operating system and a customized policy in user-level applications. By allowing these two

software layers to cooperate together, speculative executions can be more easily defined by

112

applications to take advantage of the opportunities generated by allowing speculations to

be visible across system components.

Building on applications’ new ability to easily control their speculative executions, we

show how speculation can be used to hide the latency associated with a replicated service.

We develop a new Byzantine fault-tolerance protocol which is optimized for clients that

are capable of executing speculatively. The communication protocol is designed so that

some speculative events on a client can be safely externalized to the replicated servers. As

a result, clients are able to increase their utilization of network services and reduce the

apparent latency of their requests.

As a final contribution, this thesis develops a new race detection algorithm that takes

advantage of uniparallel execution to improve its parallelization. We expose the speculative

epoch parallelism provided by the uniparallel execution model at the algorithmic layer.

Our Parallel FastTrack algorithm can then distribute its work across the different phases

of uniparallelism while maintaining the same semantics as a race detector built for normal

executions.

6.2 Future Work

There are some specific limitations of our work that could be addressed in the future.

The interface we use to describe speculative policies in an application permits a wide range

of application behaviors and policies. In particular, it puts the burden of ensuring a safe

and consistent program execution on the developer. By making speculative policies visible

to the application programming language, it may be possible to shift this burden of safety

from the developer to the language runtime environment. Language support for speculation

policies could also alleviate some of the difficulty we found when dealing with object dif-

ferences and multi-threaded applications by controlling memory allocations and providing

lightweight single-thread checkpoints. One other promising direction to explore is to inte-

grate the creation policy with the future concurrency construct. A future is a placeholder

value for the results of an asynchronous computation running in another thread. Once the

computation has finished, the future can be used like a normal variable. Until then, attempts

113

to access it will block. We imagine that a future could serve to delineate an individual task

and provide a clean definition for the “result” of that task.

Although the developer of an application is the best position to describe its speculation

policy, it may be worthwhile to investigate whether an automated system could examine an

application’s behavior to construct a better default policy. When looking at an operating-

system-layer speculation system, we can imagine that the use of machine learning algo-

rithms may help make some system calls predictable when an application uses them in

a regular pattern. It might also be capable of deciding whether an application’s attempt at

communication should be blocked, buffered, or used to extend the boundary of speculation,

based on observed communication patterns.

We plan on extending our parallel race detection architecture to support additional algo-

rithms. In particular, algorithms based on Locksets seem to be amenable to the kind of state

partitioning we perform for Parallel FastTrack. This would permit a similar architecture to

be used: synchronization operations could be handled in the thread-parallel phase, reads

and writes handled in the uniparallel phase, and modified memory merged in a commit

phase. Even other uses of invasive instrumentation, such as profiling or hardware simu-

lation, may benefit from running in a uniparallel environment. In particular, lock elision

provides a significant reduction in overhead for heavyweight instrumentation that shares

data internally.

6.3 Final Remarks

Concurrent programming poses a significant challenge for developers, and it is one

that must be mastered if we are to continue to make full use of modern hardware. It it

simply not practical to build new high-performance systems that lack some measure of

concurrency. Speculative execution is one tool that can help developers use concurrency

in a controlled and understood way. This thesis has removed some of the technical and

conceptual barriers that hindered the use of speculative executions. It is my hope that with

this thesis, speculative execution becomes more practical to use as a basic concurrency

primitive for use in common applications.

114

BIBLIOGRAPHY

115

BIBLIOGRAPHY

[1] Abd-El-Malek, M., Ganger, G. R., Goodson, G. R., Reiter, M. K., and Wylie, J. J. Fault-
scalable byzantine fault-tolerant services. In Proc. 20th ACM Symposium on Operating Sys-
tems Principles (Brighton, United Kingdom, October 2005), pp. 59–74.

[2] Adve, S. V., Hill, M. D., Miller, B. P., and Netzer, R. H. B. Detecting data races on weak
memory systems. In Proc. 18th Annual International Symposium on Computer Architecture
(1991), ACM, pp. 234–243.

[3] AMD. AMD Phenom II processors product brief. http://www.amd.com/, May 2011.

[4] Avizienis, A. The n-version approach to fault-tolerant software. IEEE Transactions on Soft-
ware Engineering SE-11, 12 (December 1985), 1491–1501.

[5] Ben-Or, M. Another advantage of free choice (extended abstract): Completely asynchronous
agreement protocols. In Proc. 2nd Annual ACM Symposium on Principles of Distributed
Computing (PODC ’83) (New York, NY, USA, 1983), ACM, pp. 27–30.

[6] Bracha, G., and Toueg, S. Resilient consensus protocols. In Proc. 2nd Annual ACM Sym-
posium on Principles of Distributed Computing (PODC ’83) (New York, NY, USA, 1983),
ACM, pp. 12–26.

[7] Bracha, G., and Toueg, S. Asynchronous consensus and broadcast protocols. Journal of the
ACM 32, 4 (1985), 824–840.

[8] Carlstrom, B. D., McDonald, A., Chafi, H., Chung, J., Minh, C. C., Kozyrakis, C., and

Olukotun, K. The Atomos transactional programming language. In Proc. 2006 ACM SIG-
PLAN Conference on Programming Language Design and Implementation (Ottawa, Ontario,
Canada, June 2006), pp. 1–13.

[9] Carson, M., and Santay, D. NIST Net – a Linux-based network emulation tool. ACM SIG-
COMM Computer Communication Review 33, 3 (June 2003), 111–126.

[10] Castro, M. Practical byzantine fault tolerance. Tech. Rep. MIT-LCS-TR-817, MIT, January
2001.

[11] Castro, M., and Liskov, B. Practical byzantine fault tolerance. In Proc. 3rd Symposium on
Operating Systems Design and Implementation (New Orleans, USA, February 1999), pp. 173–
186.

[12] Castro, M., and Liskov, B. Proactive recovery in a byzantine-fault-tolerant system. In Proc.
4th Symposium on Operating Systems Design and Implementation (October 2000), pp. 19–33.

116

http://www.amd.com/

[13] Chang, F., and Gibson, G. A. Automatic I/O hint generation through speculative execution.
In Proc. 3rd Symposium on Operating Systems Design and Implementation (February 1999),
pp. 1–14.

[14] Choi, J.-D., Lee, K., Loginov, A., O’Callahan, R., Sarkar, V., and Sridharan, M. Efficient
and precise datarace detection for multithreaded object-oriented programs. In Proc. ACM
SIGPLAN Conference on Programming Language Design and Implementation (June 2002),
ACM, pp. 258–269.

[15] Choi, J.-D., Miller, B. P., and Netzer, R. H. B. Techniques for debugging parallel programs
with flowback analysis. ACM Transactions on Programming Languages and Systems 13, 4
(October 1991), 491–530.

[16] Cowling, J., Myers, D., Liskov, B., Rodrigues, R., and Shrira, L. HQ replication: A hybrid
quorum protocol for byzantine fault tolerance. In Proc. 7th Symposium on Operating Systems
Design and Implementation (November 2006), pp. 177–190.

[17] Cully, B., Lefebvre, G., Meyer, D., Feeley, M., Hutchinson, N., and Warfield, A. Remus:
High availability via asynchronous virtual machine replication. In Proc. 5th USENIX Sym-
posium on Networked Systems Design and Implementation (San Francisco, CA, April 2008),
pp. 161–174.

[18] Dean, J., and Ghemawat, S. MapReduce: Simplified data processing on large clusters. In
Proc. 6th Symposium on Operating Systems Design and Implementation (December 2004),
USENIX Association, pp. 137–149.

[19] Dwork, C., Lynch, N., and Stockmeyer, L. Consensus in the presence of partial synchrony.
Journal of the ACM 35, 2 (1988), 288–323.

[20] Elmas, T., Qadeer, S., and Tasiran, S. Goldilocks: A race and transaction-aware java runtime.
In Proc. 2007 ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (June 2007), PLDI’07, ACM, pp. 245–255.

[21] Elnozahy, E. N., Alvisi, L., Wang, Y.-M., and Johnson, D. B. A survey of rollback-recovery
protocols in message-passing systems. ACM Computing Surveys 34, 3 (September 2002),
375–408.

[22] Fidge, C. J. Timestamps in message-passing systems that preserve the partial ordering. Aus-
tralian Computer Science Communications 10, 1 (February 1988), 56–66.

[23] Flanagan, C., and Freund, S. N. FastTrack: Efficient and precise dynamic race detection. In
Proc. 2009 ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (June 2009), PLDI’09, pp. 121–133.

[24] Fraser, K., and Chang, F. Operating system I/O speculation: How two invocations are faster
than one. In Proc. 2003 USENIX Technical Conference (June 2003), USENIX, pp. 325–338.

[25] Gray, J., and Reuter, A. Transaction Processing: Concepts and Techniques. Morgan Kauf-
mann Publishers, Inc., 1993.

[26] Hammond, L., Willey, M., and Olukotun, K. Data speculation support for a chip multiproces-
sor. SIGOPS Oper. Syst. Rev. 32, 5 (October 1998), 58–69.

117

[27] Hendricks, J., Ganger, G. R., and Reiter, M. K. Low-overhead byzantine fault-tolerant stor-
age. In Proc. 21st ACM Symposium on Operating Systems Principles (October 2007), pp. 73–
86.

[28] Herlihy, M., and Moss, J. E. B. Transactional memory: Architectural support for lock-free
data structures. In Proc. 20th Annual International Symposium on Computer Architecture (San
Diego, CA, May 1993), pp. 289–300.

[29] Isard, M., Budiu, M., Yu, Y., Birrell, A., and Fetterly, D. Dryad: Distributed data-parallel
programs from sequential building blocks. In Proc. 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems (March 2007), ACM, pp. 59–72.

[30] Itzkovitz, A., Schuster, A., and Zeev-Ben-Mordehai, O. Toward integration of data race
detection in DSM systems. Journal of Parallel and Distributed Computing 59, 2 (November
1999), 180–203.

[31] Jefferson, D., Beckman, B., Wieland, F., Blume, L., DiLoreto, M., Hontalas, P., Laroche, P.,
Sturdevant, K., Tupman, J., Warren, V., Wedel, J., Younger, H., and Bellenot, S. Distributed
simulation and the Time Warp operating system. In Proc. 11th ACM Symposium on Operating
Systems Principles (Austin, TX, November 1987), pp. 77–93.

[32] Kelsey, K., Bai, T., Ding, C., and Zhang, C. Fast Track: A software system for speculative
program optimization. In Proc. 7th Annual IEEE/ACM International Symposium on Code
Generation and Optimization (Seattle, WA, March 2009), pp. 157–168.

[33] Kemme, B., Pedone, F., Alonso, G., and Schiper, A. e. Processing transactions over optimistic
atomic broadcast protocols. In ICDCS ’99: Proceedings of the 19th IEEE International Con-
ference on Distributed Computing Systems (Washington, DC, USA, 1999), IEEE Computer
Society, p. 424.

[34] Kihlstrom, K. P., Moser, L. E., and Melliar-Smith, P. M. The SecureRing protocols for
securing group communication. In Proc. 1998 Hawaii International Conference on System
Sciences (1998), vol. 3, pp. 317–326.

[35] Kotla, R., Alvisi, L., Dahlin, M., Clement, A., and Wong, E. Zyzzyva: Speculative byzantine
fault tolerance. In Proc. 21st ACM Symposium on Operating Systems Principles (October
2007), pp. 45–58.

[36] Kotla, R., and Dahlin, M. High throughput byzantine fault tolerance. In Proc. 2004 Inter-
national Conference on Dependable Systems and Networks (Washington, DC, USA, 2004),
IEEE Computer Society, p. 575.

[37] Kung, H. T., and Robinson, J. T. On optimistic methods for concurrency control. ACM Trans-
actions on Database Systems 6, 2 (June 1981), 213–226.

[38] Lamport, L. Time, clocks, and the ordering of events in a distributed system. Communications
of the ACM 21, 7 (July 1978), 558–565.

[39] Lamport, L. The part-time parliament. ACM Transactions on Computer Systems 16, 2 (May
1998), 133–169.

118

[40] Lange, J. R., Dinda, P. A., and Rossoff, S. Experiences with client-based speculative remote
displays. In Proc. 2008 USENIX Annual Technical Conference (Boston, MA, June 2008),
USENIX Association, pp. 419–432.

[41] Larus, J. Spending more’s dividend. Communications of the ACM 52, 5 (May 2009), 62–69.

[42] Lee, D., Wester, B., Veeraraghavan, K., Narayanasamy, S., Chen, P. M., and Flinn, J. Re-
spec: Efficient online multiprocesor replay via speculation and external determinism. In Proc.
15th International Conference on Architectural Support for Programming Languages and Op-
erating Systems (March 2010), ASPLOS ’10, pp. 77–90.

[43] Li, T., Ellis, C. S., Lebeck, A. R., and Sorin, D. J. Pulse: A dynamic deadlock detection
mechanism using speculative execution. In Proc. 2005 USENIX Annual Technical Conference
(Anaheim, CA, USA, April 2005), USENIX Association, pp. 31–44.

[44] Link, B. R. XTrace - trace X protocol connections. http://xtrace.alioth.debian.org/,
September 2010.

[45] Lipasti, M. H., and Shen, J. P. Exceeding the dataflow limit via value prediction. In Proc. 29th
Annual ACM/IEEE International Symposuim on Microarchitecture (December 1996), IEEE
Computer Society, pp. 226–237.

[46] Lipasti, M. H., Wilkerson, C. B., and Shen, J. P. Value locality and load value prediction.
In Proc. 7th International Conference on Architectural Support for Programming Languages
and Operating Systems (October 1996), ASPLOS ’96, ACM, pp. 138–147.

[47] Madani, O., Bui, H., and Yeh, E. Efficient online learning and prediction of users’ desktop
actions. In Proc. 21st International Joint Conference on Artificial Intelligence (Pasadena, CA,
July 2009), pp. 1457–1462.

[48] Malkhi, D., and Reiter, M. Byzantine quorum systems. Distributed Computing 11, 4 (1998),
203–213.

[49] Mattern, F. Virtual time and global states of distributed systems. In Proc. International
Workshop on Parallel and Distributed Algorithms (Chateau de Bonas, France, October 1988).

[50] Mickens, J., Elson, J., Howell, J., and Lorch, J. Crom: Faster web browsing using speculative
execution. In Proc. 7th USENIX Symposium on Networked Systems Design and Implementa-
tion (San Jose, CA, April 2010).

[51] Muzahid, A., Suárez, D., Qi, S., and Torrellas, J. SigRace: Signature-based data race detec-
tion. In ISCA’09 (June 2009), pp. 337–348.

[52] Nightingale, E. B., Chen, P. M., and Flinn, J. Speculative execution in a distributed file
system. In Proc. 20th ACM Symposium on Operating Systems Principles (Brighton, United
Kingdom, October 2005), pp. 191–205.

[53] Nightingale, E. B., Peek, D., Chen, P. M., and Flinn, J. Parallelizing security checks on
commodity hardware. In Proc. 13th International Conference on Architectural Support for
Programming Languages and Operating Systems (March 2008), ASPLOS ’08, pp. 308–318.

119

http://xtrace.alioth.debian.org/

[54] Nightingale, E. B., Veeraraghavan, K., Chen, P. M., and Flinn, J. Rethink the sync. In
Proc. 7th Symposium on Operating Systems Design and Implementation (Seattle, WA, October
2006), pp. 1–14.

[55] Nistor, A., Marinov, D., and Torrellas, J. Light64: Lightweight hardware support for data
race detection using systematic testing of parallel programs. In MICRO’09 (December 2009),
pp. 541–552.

[56] Oki, B., and Liskov, B. Viewstamped replication: A new primary copy method to support
highly-available distributed systems. In Proc. ACM Symposium on Principles of Distributed
Computing (1988), pp. 8–17.

[57] Patt, Y. N., Melvin, S. W., mei Hwu, W., and Shebanow, M. C. Critical issues regarding HPS,
a high performance microarchitecture. In Proc. 18th Annual Workshop on Microprogramming
(1985), ACM, pp. 109–116.

[58] Porter, D. E., Hofmann, O. S., Rossbach, C. J., Benn, A., and Witchel, E. Operating system
transactions. In Proc. 22nd ACM Symposium on Operating Systems Principles (October 2009),
pp. 161–176.

[59] Pozniansky, E., and Scheuster, A. Efficient on-the-fly data race detection in multithreaded
C++ programs. In Proc. 9th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (June 2003), pp. 179–190.

[60] Prabhu, P., Ramalingam, G., and Vaswani, K. Safe programmable speculative parallelism. In
Proc. 2010 ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (June 2010), PLDI’10, ACM, pp. 50–61.

[61] Prvulovic, M., and Torrellas, J. ReEnact: Using thread-level speculation mechanisms to
debug data races in multithreaded codes. In ISCA ’03: Proceedings of the 30th Annual Inter-
national Symposium on Computer Architecture (June 2003), pp. 110–121.

[62] Qin, F., Tucek, J., Sundaresan, J., and Zhou, Y. Rx: Treating bugs as allergies — a safe
method to survive software failure. In Proc. 20th ACM Symposium on Operating Systems
Principles (October 2005), pp. 235–248.

[63] Ratasaworabhan, P., Burtscher, M., Kirovski, D., Zorn, B., Nagpal, R., and Pattabiraman,
K. Detecting and tolerating asymmetric races. In Proc. 14th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (February 2009), ACM, pp. 173–184.

[64] Reiter, M. K. The Rampart toolkit for building high-integrity services. In Theory and Practice
in Distributed Systems, vol. 938. Springer-Verlag, Berlin Germany, 1995, pp. 99–110.

[65] Rodrigues, R., Castro, M., and Liskov, B. BASE: Using abstraction to improve fault tolerance.
In Proc. 18th ACM Symposium on Operating Systems Principles (Banff, Canada, October
2001), pp. 15–28.

[66] Ronsse, M., and Bosschere, K. D. RecPlay: A fully integrated practical record/replay system.
ACM Transactions on Computer Systems 17, 2 (May 1999), 133–152.

[67] Sack, P., Bliss, B. E., Ma, Z., Petersen, P., and Torrellas, J. Accurate and efficient filtering
for the intel thread checker race detector. In Proc. 1st Workshop on Architectural and System
Support for Improving Software Dependability (2006), ACM, pp. 34–41.

120

[68] Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., and Anderson, T. Eraser: A dynamic
data race detector for multithreaded programs. ACM Transactions on Computer Systems 15, 4
(November 1997), 391–411.

[69] Schmuck, F., and Wylie, J. Experience with transactions in QuickSilver. In Proc. 13th ACM
Symposium on Operating Systems Principles (Pacific Grove, CA, October 1991), pp. 239–253.

[70] Schneider, F. B. Implementing fault-tolerant services using the state machine approach: a
tutorial. ACM Computing Surveys 22, 4 (December 1990), 299–319.

[71] Serebryany, K., and Iskhodzhanov, T. ThreadSanitizer: Data race detection in practice. In
Proc. Workshop on Binary Instrumentation and Applications (December 2009), WBIA’09,
ACM, pp. 62–71.

[72] Smith, J. D., Ţăpuş, C., and Hickey, J. The Mojave compiler: Providing language primatives
for whole-process migration and speculation for distributed applications. In Proc. Interna-
tional Parallel and Distributed Processing Symposium (March 2007), pp. 1–8.

[73] Smith, J. E. A study of branch prediction strategies. In Proc. 8th Annual International Sym-
posium on Computer Architecture (May 1981), pp. 135–148.

[74] Steffan, J. G., Colohan, C. B., Zhai, A., and Mowry, T. C. A scalable approach to thread-level
speculation. In Proc. 2000 International Symposium on Computer Architecture (June 2000),
pp. 1–24.

[75] Steffan, J. G., and Mowry, T. C. The potential for using thread-level data speculation to fa-
cilitate automatic parallelization. In Proc. 4th International Symposium on High Performance
Computer Architecture (Las Vegas, NV, February 1998), IEEE Computer Society, pp. 2–13.

[76] Su, Y.-Y., Attariyan, M., and Flinn, J. AutoBash: Improving configuration management with
operating system causality analysis. In Proc. 21st ACM Symposium on Operating Systems
Principles (October 2007), pp. 237–250.

[77] Süßkraut, M., Knauth, T., Weigert, S., Schiffel, U., Meinhold, M., and Fetzer, C. Prospect:
A compiler framework for speculative parallelization. In Proc. 8th Annual IEEE/ACM Inter-
national Symposium on Code Generation and Optimization (Toronto, Ontario, Canada, April
2010), ACM, pp. 131–140.

[78] Ţăpuş, C., Smith, J. D., and Hickey, J. Kernel level speculative DSM. In Proc. 3rd IEEE/ACM
International Symposium on Cluster Computing and the Grid (May 2003), pp. 487–494.

[79] Veeraraghavan, K., Lee, D., Wester, B., Ouyang, J., Chen, P. M., Flinn, J., and

Narayanasamy, S. DoublePlay: Parallelizing sequential logging and replay. In Proc. 16th
International Conference on Architectural Support for Programming Languages and Operat-
ing Systems (March 2011), ASPLOS ’11, pp. 15–26.

[80] Wallace, S., and Hazelwood, K. SuperPin: Parallelizing dynamic instrumentation for real-
time performance. In Proc. International Symposium on Code Generation and Optimization
(2007), IEEE Computer Society, pp. 209–220.

[81] Woo, S. C., Ohara, M., Torrie, E., Singh, J. P., and Gupta, A. The SPLASH-2 programs:
Characterization and methodological considerations. In Proc. 22nd Annual International Sym-
posium on Computer Architecture (June 1995), ACM, pp. 24–36.

121

[82] Yin, J., Martin, J.-P., Venkataramani, A., Alvisi, L., and Dahlin, M. Separating agreement
from execution for byzantine fault tolerant services. In Proc. 19th ACM Symposium on Oper-
ating Systems Principles (October 2003), pp. 253–267.

[83] Yu, Y., Rodeheffer, T., and Chen, W. RaceTrack: Efficient detection of data race conditions
via adaptive tracking. In Proc. 20th ACM Symposium on Operating Systems Principles (2005),
pp. 221–234.

[84] Zilles, C., and Sohi, G. Master/slave speculative parallelization. In Proc. 35th Annual
ACM/IEEE International Symposium on Microarchitecture (MICRO) (2002), pp. 85–96.

122

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Speculative Execution
	Contributions
	Speculation as an OS Service
	Fault-Tolerant Protocols
	Race Detection

	Thesis Overview

	Background
	Single-layer Speculation
	Multi-layer Speculation
	Speculator

	Custom Speculation Policies
	Generic Speculation
	Custom Policies
	Creating Speculations
	Output Policy
	Committing

	Issues with Separation
	Committing State
	Multi-threaded Speculation

	Mechanism Design & Implementation
	Overview
	Policy API

	Design Process
	Determining Actions
	Implementing Custom Policies
	Optimization

	Case Studies
	Predictive Application Launching
	Firefox Certificate Checks
	BFT Client

	Related Work
	Chapter Conclusions

	Fault-Tolerant Protocols
	Client speculation in replicated services
	Applicability to replicated services
	Protocol adjustments

	Client speculation for PBFT
	PBFT overview
	PBFT-CS base protocol
	Handling failures
	Correctness

	Discussion and future optimizations
	Alternative failure handling strategies
	Coarse-grained dependency tracking
	Reads in the past

	Implementation
	NFS client operation
	PBFT-CS client operation
	Server operation

	Evaluation
	Experimental setup
	Counter throughput
	Counter latency
	NFS
	NFS: Read-only micro-benchmark
	NFS: Write-only micro-benchmark
	NFS: Read/write micro-benchmark
	NFS: Apache build macro-benchmark
	Cost of failure / faulty primary

	Related work
	Chapter Conclusions

	Parallelizing Race Detection
	Background
	Happens-Before Race Detection
	Sequential FastTrack
	Uniparallelism

	System Architecture
	Applicability to Analysis Algorithms
	Performance Discussion
	Handling a Race

	Parallel FastTrack
	Informal Algorithm
	Uniparallel Analysis Abstraction
	Formal Algorithm
	Analysis
	Optimizations

	Implementation
	Instrumentation
	Analysis Library
	Optimizations

	Evaluation
	Methodology
	Scalability Measurements
	Overhead Measurements
	Discussion

	Related Work
	Chapter Conclusions

	Conclusion
	Contributions
	Future Work
	Final Remarks

	BIBLIOGRAPHY

