
JetStream: Cluster-scale parallelization of information flow queries

Andrew Quinn, David Devecsery, Peter M. Chen and Jason Flinn
University of Michigan

Abstract
Dynamic information flow tracking (DIFT) is an im-
portant tool in many domains, such as security, debug-
ging, forensics, provenance, configuration troubleshoot-
ing, and privacy tracking. However, the usability of
DIFT is currently limited by its high overhead; com-
plex information flow queries can take up to two orders
of magnitude longer to execute than the original exe-
cution of the program. This precludes interactive uses
in which users iteratively refine queries to narrow down
bugs, leaks of private data, or performance anomalies.

JetStream applies cluster computing to parallelize and
accelerate information flow queries over past executions.
It uses deterministic record and replay to time slice ex-
ecutions into distinct contiguous chunks of execution
called epochs, and it tracks information flow for each
epoch on a separate core in the cluster. It structures the
aggregation of information flow data from each epoch as
a streaming computation. Epochs are arranged in a se-
quential chain from the beginning to the end of program
execution; relationships to program inputs (sources) are
streamed forward along the chain, and relationships to
program outputs (sinks) are streamed backward. Jet-
Stream is the first system to parallelize DIFT across a
cluster. Our results show that JetStream queries scale
to at least 128 cores over a wide range of applications.
JetStream accelerates DIFT queries to run 12–48 times
faster than sequential queries; in most cases, queries run
faster than the original execution of the program.

1 Introduction
Dynamic information flow tracking (DIFT) has

emerged as an important tool for understanding and
troubleshooting program behavior. Originally proposed
by the security community [16], DIFT instruments an
application binary to track data and/or control flow
from global sources (e.g., program inputs) to global
sinks (e.g., program outputs). Information flow analy-
sis has proven to be helpful in a diverse set of domains
that include forensic analysis [12], information prove-
nance [6], privacy [7], application debugging [20], and
troubleshooting of configurations [1, 2].

Unfortunately, dynamic information flow analysis can
be painfully slow; depending on the granularity and
amount of information tracked, execution slowdowns of

up to one or two orders of magnitude are common. While
this cost can be reduced by limiting analysis to man-
aged languages such as Java or by restricting the types of
queries that can be performed, general-purpose informa-
tion flow analysis over binary code requires batch-style
analysis for substantial programs. In other words, the
user employing DIFT must run such analyses over the
course of hours. DIFT would be much more powerful if
analysis could be employed interactively; for instance, a
user could refine a particular query by changing sources,
sinks, the propagation function, the granularity of in-
strumentation, or the period of program execution over
which the analysis is employed. The user could then nar-
row down the bug, misconfiguration, or privacy violation
in a manner similar to traditional debugging techniques.

Our goal is to make DIFT queries interactive by par-
allelizing them across many cores in a compute cluster.
With hundreds or thousands of cores, DIFT queries that
previously took hours or days can complete in seconds
or minutes, enabling refinement and iteration over multi-
ple queries. Thus, a shared cluster can become a valuable
resource for a large team of system operators or program-
mers who want to occasionally engage in an interactive
debugging or troubleshooting session using DIFT tools.
Usage scenarios for DIFT include both live analysis (as
the program runs) and after-the-fact analysis (executed
on a replay of an execution). We target the latter sce-
nario.

Previous efforts at parallelizing DIFT have met with
only limited success. Information flow is inherently dif-
ficult to scale (Ruwase et al. call it “embarrassingly se-
quential” [20]) because it tracks many fine-grained se-
quential dependencies between memory and register val-
ues. The set of dependencies at each step is a function of
a large number of prior instructions executed by the pro-
gram. Consequently, prior efforts have produced parallel
versions that scale to only a few cores on a single ma-
chine, and no current approach can effectively leverage a
commodity cluster to scale DIFT.

Our solution, JetStream, provides cluster-level scala-
bility by computing information flow in two phases, each
using a different form of parallelization.

The first phase is the local DIFT phase; it divides
program execution into time segments (epochs) and as-
signs a separate core to compute the information flow

for each epoch. Each core determines the dependen-
cies within its epoch that may be relevant to answer-
ing the overall query. It tracks sources and sinks that
are identified explicitly in the query (e.g., network input
and output); we call these global sources/sinks. It also
tracks locations that may serve as links between global
sources and sinks; we call these local sources/sinks. Lo-
cal sources are all memory addresses and registers at the
beginning of an epoch, and local sinks are all memory
addresses and registers at the end of an epoch. The local
DIFT phase parallelizes cleanly into separate partitions,
with all dependencies between partitions resolved in the
next phase.

Two challenges arise for the local DIFT phase. First,
computing all dependencies that may be relevant to the
query is too expensive. We address this challenge by
deferring and avoiding work as much as possible. Jet-
Stream uses merge trees [20] to represent and manipu-
late dependency sets more efficiently. More importantly,
it defers traversing these merge trees until the next (ag-
gregation) phase; that phase avoids traversing the vast
majority of tree nodes that do not lie on a dependency
path between a global source and a global sink.

The second challenge is that each epoch must follow
the same execution as the original execution, so that the
aggregation of local DIFTs produces a result equivalent
to a sequential DIFT. JetStream uses checkpointing and
deterministic record/replay to divide an execution into
epochs and perform the local DIFT for each epoch inde-
pendently, yet consistently. JetStream uses lightweight
statistics collected during the original execution of a pro-
gram to partition the DIFT work equally, and it uses
heavyweight statistics collected during the first query of
an execution to better partition subsequent queries.

The second phase, called the aggregation phase,
prunes and combines the information from the local
DIFT phase to compute the final result, i.e., the rela-
tionship between global sources and global sinks across
the entire execution. The cores in this phase are orga-
nized in a chain in order of program execution, and the
computation is structured as a stream processing algo-
rithm with pipeline-style parallelism. Each core resolves
dependencies using information from one epoch’s local
DIFT phase, and the global query is answered via two
streaming passes.

In the first streaming pass, the locations (registers and
memory addresses) that are derived from global sources
are passed forward along the chain (from the beginning
to the end of execution). This information is used to
prune deferred operations that do not depend on a global
source. In the second streaming pass, the locations that
propagate dependencies to a sink are passed backward
along the chain. This lets JetStream prune deferred oper-
ations on which no sink depends.

The structuring of the aggregation is the most impor-
tant factor in enabling JetStream to scale much better
than prior approaches at parallelizing DIFT. Our insight
is that a small amount of sequential information is nec-
essary to avoid huge amounts of unnecessary work; this
information is essentially the locations that depend on
global sources (forward pass) and the locations on which
global sinks will depend (backward pass). Streaming this
data along a sequential chain allows most processing to
occur in parallel, with the sequential limitation being es-
sentially the time to pass a single data value from one
end of the chain to the other; this is much less than the
total query time even for hundreds of processors.

The contributions of this paper are:
• An algorithm for parallelizing DIFT that scales

much better than prior approaches, enabling inter-
active (sub-minute) response times.
• Scalable and efficient support for tracking millions

of distinct global sources and sinks at byte gran-
ularity, without restrictions on source-code avail-
ability, compute platform, or query type.
• A detailed evaluation of the remaining bottlenecks

in accelerating DIFT through parallelization.
We have applied JetStream to run DIFT queries over

seven desktop and server applications: Evince, Firefox,
Ghostscript, Gzip, Mongodb, Nginx, and OpenOffice.
Our results show that JetStream scales DIFT to at least
128 cores for these applications. It accelerates DIFT
queries to run 12–48 times faster than sequential queries,
and, in most cases, runs queries faster than the original
execution of the program.

2 Motivation

DIFT is a fundamental analysis that is useful in di-
verse domains. For example, Arnold [6] uses DIFT for
provenance queries that reveal how data values in files
and application memory were derived. In forensics [12],
DIFT has been used to answer questions such as: “How
was my system compromised?” and “What data was
leaked?” TaintDroid [7] and similar systems use DIFT
to reveal whether an application execution leaks sensi-
tive data. X-Ray [1] uses DIFT to identify misconfigura-
tions that cause performance anomalies, and ConfAid [2]
uses DIFT to identify misconfigurations that cause bugs.
Poirot’s [11] use of DIFT helps determine if a security
vulnerability has been exploited.

Many of the above systems run complex DIFT queries
on native binaries and can suffer from painfully slow
DIFT query times. These systems are often forced to
use batch-style computation, even though many would
ideally be interactive in nature.

Consider a developer debugging an incorrect output
value from a Web server. Using JetStream, she begins

by running a DIFT query that shows all program inputs
from which the faulty value was derived. This alone is
not enough to reveal the bug, so she runs an additional
query tracking the inputs that led to a correct output.
Comparing the results shows that inputs from a partic-
ular network connection led to the faulty output but not
the correct one. Using this information, she discovers a
bug in the code which parses network inputs. To see if
this bug has impacted any file system state, the developer
runs another query specifying all values from the faulty
parsing code as global sources and all file system outputs
as global sinks. She detects that no permanent state has
been affected by her bug. Next she considers other forms
of external output such as network messages.

Debugging the problem and determining the impact
of the bug both require multiple DIFT queries. Further,
phrasing the correct queries may be non-trivial and re-
quire multiple iterations to get helpful results. If each
query takes hours to complete, then this process only
makes sense for the most difficult bugs. In contrast, low-
latency DIFT enables information flow analysis to be an
integral part of the debugging process.

3 Background

We first describe two technologies on which Jet-
Stream builds: dynamic information flow tracking and
deterministic record and replay.

3.1 DIFT

Dynamic information flow tracking, sometimes re-
ferred to as taint tracking, instruments applications to
monitor data flow as programs execute. In its most gen-
eral form, DIFT reveals which global sources causally
affect which global sinks according to a propagation
function. Global sources are typically external program
inputs, such as bytes read from a file or a network socket,
and global sinks are typically external outputs.

The propagation function specifies what information
flows to track during program execution. For example,
a basic data flow propagation function for the instruc-
tion x = y+ z would state that the sources on which x
depends are the union of the sources on which y and z
depend. Usually, DIFT tracks data flow (as we do in this
work), but some DIFT systems also track implicit flows
propagated via control flow.

When an application executes, DIFT assigns a taint
identifier to each unique global source. For each lo-
cation, it maintains a set of taint identifiers that shows
the global sources on which that location currently de-
pends, and it updates taint sets as instructions execute.
At each global sink, DIFT outputs the set of taint iden-
tifiers of all locations written to the sink (e.g., the bytes
sent to a network socket). Thus, DIFT produces a set of
〈globalsource,globalsink〉 tuples that describe how par-

ticular global sources and global sinks are related.
JetStream tracks global sources, global sinks, and de-

pendencies at byte granularity using binary instrumenta-
tion inserted by Pin [14]. A single JetStream query may
look for relationships between millions of distinct global
sources and sinks. In contrast, many prior DIFT systems
require source code or the use of a managed language
runtime. Others track only whether any global source
data propagates to a global sink and cannot determine
which sources affect each sink—such systems cannot an-
swer questions such as: “Which inputs affected this pro-
gram value?” or “What data did I leak?”

A JetStream query contains a program execution to
monitor, a filter that specifies the global sources, a fil-
ter that specifies sinks, and a propagation function. For
instance, a provenance query [6] might wish to deter-
mine the lineage of the data in a particular file. The
source filter would match all external program inputs and
the output filter would match writes to a particular file.
This would reveal which bytes in the file were derived
from which sources. Alternatively, a privacy query [7]
might specify reads from sensitive files as sources and
network outputs as sinks. This would reveal what data
was leaked over the network and how it was leaked. Jet-
Stream provides an interface for supporting custom prop-
agation functions and supplies Arnold’s copy, data, and
index propagation functions [6] as defaults.

For complex applications, mapping all global sources
to all global sinks at byte granularity produces far
too much information (e.g., terabytes of data for some
benchmarks in Section 5). Thus, filters are needed to
extract the right information succinctly. This leads to re-
finement through iteration. Our goal is to make DIFT fast
enough to be interactive, so that a user can issue multiple
queries to search for the right information.

3.2 Deterministic replay

Deterministic replay allows the execution of a pro-
gram to be recorded and reproduced faithfully. When a
program first executes, all inputs from nondeterministic
actions are logged; these values are supplied during sub-
sequent replays in lieu of performing the nondetermin-
istic operations again. Thus, the program starts in the
same state, executes the same instructions on the same
data values, and generates the same results.

JetStream derives several benefits from using deter-
ministic replay. First, replay allows JetStream to parti-
tion a recorded execution into epochs and execute these
epochs in parallel. Deterministic replay guarantees that
the result of stitching together all epochs is equivalent to
a sequential execution of the program. Second, replay
allows an execution recorded on one machine to be re-
played on a different machine. There are few external
dependencies, since interactions with the operating sys-

Instructions Taint IDs Merge Log Live Set Taint Tuples
(forward pass) (backward pass)

Epoch 0

{< IN0,OUT0 >,< IN1,OUT0 >}
1. A = read() A: IN0
2. B = read() B: IN1
3. C = A + B C: M0[0] M0[0] : {IN0, IN1}

{A,B,C}

Epoch 1

{< OUT0,C >}
4. D = X + Y D: M1[0] M1[0] : {X1,Y1}
5. E = C E: C1
6. B = 0 B: {}
7. Z = A[D] Z: M1[1] M1[1] : {A1,M1[0]}

{A,C,E,Z}

Epoch 2

{< OUT0,E >}
8. F = E F: E2
9. write(F) OUT0: E2

Table 1: DIFT analysis of an example program.

tem and other external entities are nondeterministic and
replayed from the log. Thus, the only requirement for
replay is that the replaying computer has the same hard-
ware architecture as the recording computer and that it
runs a kernel modified to support replay. Finally, replay
allows iterative queries over the same execution.

JetStream uses Arnold [6] to provide deterministic
record and replay of multithreaded, multiprocess appli-
cations. Arnold’s performance overhead is less than 10%
for most workloads, and its storage overhead is reason-
able even for continuous recording of a workstation.

4 Design and implementation
To parallelize a DIFT query, JetStream divides an ex-

ecution into epochs and assigns each epoch to a different
core. JetStream then evaluates the query in two phases:
a local DIFT phase and an aggregation phase.

In the local DIFT phase, each core concurrently com-
putes the relationships between sources and sinks within
its epoch. A core can directly observe global sources
and global sinks that occur during its epoch. How-
ever, some locations at the start of an epoch may depend
on global sources from preceding epochs, and the local
DIFT cannot know the actual dependencies because the
local DIFTs for those preceding epochs are being exe-
cuted concurrently. Thus, for all epochs but the first one,
the local DIFT phase conservatively tracks all locations
at the start of the epoch as local sources and assigns
a unique local source identifier to each location at the
epoch start. Similarly, the local DIFT cannot determine
which locations at the end of an epoch will ultimately
propagate to global sinks in succeeding epochs, so the
local DIFT treats all locations at the end of the epoch as
local sinks. A local DIFT phase thus tracks and reports
dependencies between all sources (both local and global)

and all sinks (both local and global).
In the aggregation phase, the cores organize as a chain

in program execution order and communicate local DIFT
results forward and backward along the chain to produce
the final set of 〈globalsource,globalsink〉 tuples. We
next describe these two phases in more detail.

Table 1 shows an example query in which JetStream
finds all dependencies from global sources to global
sinks in a simple program. Program execution is divided
into three epochs (shown by the horizontal partitioning).
The local DIFT phase is the region to the left of the dou-
ble vertical bar, and the aggregation phase is the region
to the right of the bar. Instructions 1 and 2 read data from
global sources, and instruction 9 writes to a global sink.

4.1 Local DIFT

JetStream implements the local DIFT phase as a Pin
tool. Executing an application with this tool attached is
quite slow (e.g., 14–75x slowdown for the benchmarks
in Section 5). There are two reasons: DIFT may add
several additional instructions to track taint for each ap-
plication instruction executed, and Pin dynamically adds
the instrumentation to an application as it executes. The
first is a fundamental cost of DIFT, while the second is a
consequence of using a dynamic instrumentation tool.

The local DIFT phase for a given epoch first replays
the application uninstrumented to advance its execution
to the start of the epoch, a process we call fast forward-
ing. JetStream may start the replay from the beginning,
or it may start from a checkpoint of application state
taken during recording or during a previous query. Given
the relative speed difference between instrumented and
uninstrumented execution, starting from the beginning is
reasonable for low numbers of epochs. As the number of
epochs increases, fast forward time comes to dominate

total query time, and checkpoints are quite beneficial.
Next, JetStream attaches the DIFT tool to the applica-

tion and Pin starts instrumenting the application to track
dependencies. JetStream assigns a unique source identi-
fier to each location modified by a global source in the
epoch and to each location at the start of the epoch.

JetStream runs all threads of a multithreaded applica-
tion on a single core to realize an important performance
benefit: the instrumentation code does not need to obtain
locks to synchronize access to the DIFT data structures
because only one thread runs at any given time [21]. Jet-
Stream still fully utilizes the processor because each core
runs a different epoch in parallel.

For each location, JetStream stores an integer taint
identifier that represents the set of global and local
sources on which that location currently depends. A taint
identifier may be: (1) a global source identifier, (2) a lo-
cal source identifier, or (3) an identifier that maps to a
set of global and local sources. In the Taint IDs column
of Table 1, IN0 and IN1 are global source identifiers, and
C1 and E2 are local source identifiers that represent the
taint of address C at the start of epoch 1 and the taint of
address E at the start of epoch 2.

For each x86 instruction, the local DIFT tool reads the
taint identifiers of the instruction’s inputs and updates the
taint identifiers of the instruction’s outputs. Taint iden-
tifiers for registers are stored in a per-thread array, and
taint identifiers for memory addresses are stored in a two-
level page table. The tool decomposes the work for each
instruction into a sequence of four sub-commands: set,
clear, copy, and merge. The first three sub-commands
are straightforward—set assigns a taint identifier to a
location, clear assigns the NULL identifier to a loca-
tion, and copy sets the destination’s taint identifier equal
to the source’s. Thus, each of these sub-commands are
low overhead integer operations. Table 1’s Taint IDs col-
umn shows how the local DIFT tool updates the taint data
structures: a set for instruction 1, a clear for instruc-
tion 6, and a copy for instruction 5.

The merge sub-command is used for instructions that
combine dependencies, e.g., instructions 3, 4, and 7. For
these instructions, the set of sources on which the output
depends is the union of the sets of sources on which the
inputs depend. Our original implementation tracked such
sets explicitly, but this worked poorly. For some com-
plex applications, the DIFT did not finish after running
for hours, or the size of the sets exceeded the 256 GB
memory of our server. Intuitively, the reason is that the
set of tuples that relate all local sources to all local sinks
can be as large as the size of the address space squared.

We therefore turned to an idea proposed by Ruwase et
al. [20] in which sets of taint values are represented by a
binary tree. Each merge operation generates a new taint
identifier to represent the set union. JetStream writes

an entry to a merge log, which contains the taint iden-
tifiers of the input to the merge. Thus, the merge log is a
DAG sorted in temporal order, and each node (entry) in
the merge log represents a binary tree of taint identifiers
rooted at that node. Any merge node can be resolved
to a set of source identifiers by performing a depth-first
traversal of the tree rooted at that node.

In the example, instruction 4 creates a merge node
M1[0] (each epoch has a distinct merge log, with the par-
ticular log denoted by the subscript). The node states that
address D depends on whatever X and Y depend on at the
start of epoch 1. Instruction 7 creates a merge node that
has M1[0] as a child, so address X depends on whatever
A, X , and Y depend on at the start of the epoch.

Using the merge log yields two benefits. First, it de-
fers expensive set union operations until the aggregation
phase; optimizations in that phase avoid the need to per-
form the vast majority of such unions. Second, the merge
log uses much less memory than storing a set for each
location. Memory usage is roughly proportional to the
number of unique merge operations rather than the total
size of all taint sets for every location. The cost of using
a merge log is that JetStream must perform a tree traver-
sal when it needs to resolve a root node to a set of source
identifiers.

JetStream makes two enhancements to Ruwase et al’s
algorithm. First, it uses a hash table to cache recently-
seen merge pairs and reuse merge nodes when duplicates
are found. Second, whereas Ruwase et al. used the tree
data structure only for abstract values (i.e., local source
identifiers); JetStream also uses the tree structure for sets
of global source identifiers, such as distinct bytes from
different sources encountered during the local epoch (as
for instruction 3 in the example).

At the end of an epoch, JetStream writes four datasets
to a shared memory buffer: global source metadata,
global sink metadata, the merge log, and the taint identi-
fiers for all local sinks. The global source metadata de-
scribes each global source identifier (e.g., the system call
that read the byte, the file the byte was read from, the off-
set within the file, etc.). Similarly, the global sink meta-
data describes each byte sent to a sink. Since applica-
tion execution typically modifies only a small percentage
of locations during a given epoch, the local sink identi-
fiers for most locations will be the local source identi-
fier of those locations. To save space, the local DIFT
only outputs those local sink identifies where this rela-
tionship does not hold. These optimizations allow the
output of the local DIFT phase to fit in the memory of
modern servers (though it is still large, e.g., a few GB
per epoch).

4.2 Partitioning

The time to produce an answer to a query depends
on the longest local DIFT time for any epoch. Thus, to
achieve good speedups, JetStream must partition local
DIFT so that each core does roughly the same amount
of work. To accomplish this, JetStream estimates the
amount of time it will take to run local DIFT for any
given interval of execution and defines epoch boundaries
so that the estimated local DIFT time for each epoch is
the same.

We estimate the local DIFT time for an interval of ex-
ecution as a linear combination of three factors:

• Fast Forward Time: JetStream replays the appli-
cation without instrumentation to advance execu-
tion to the start of the epoch. We estimate that this
component of work is proportional to the user-level
CPU time used for this portion of execution by the
recorded application.

• Instructions executed: To track information flow
for an interval of execution, JetStream must exe-
cute the instructions in that interval, as well as the
instrumentation code that propagates dependencies
among locations. This component of work is pro-
portional to the number of instructions executed,
which we estimate from the user-level CPU time
used to execute the interval in the recorded execu-
tion.

• Unique instructions executed: Pin instruments an
instruction when it is executed for the first time.
With Pin, instrumentation cost is a significant por-
tion of the overall DIFT time, especially for short
intervals in which each instruction may only be ex-
ecuted a few times. As JetStream parallelizes the
DIFT work across more cores, each interval be-
comes shorter, and the relative cost of instrument-
ing instructions increases. This component of work
is proportional to the number of unique instructions
executed. During recording, we read processor per-
formance counters via the perf events API to es-
timate the number of unique instructions executed
by sampling the instruction pointer (we sample ev-
ery 32 L1 instruction cache read misses for user-
level code). When executing the first query for an
execution, we use dynamic instrumentation to mea-
sure the actual number of unique instructions exe-
cuted during an interval; this adds little overhead
compared to DIFT instrumentation.

To avoid confounding testing and training in our eval-
uation, we choose the constants in the model for the first
query of an execution by running a linear regression over

data from the other benchmarks in our set. The coeffi-
cient of determination (R2 value) for these regressions is
0.86–0.87. Due to the high overhead of instrumenting
code with Pin, the cost of inserting instrumentation (pro-
portional to unique instructions executed) usually dom-
inates the cost of running the instrumented code (pro-
portional to instructions executed), especially for small
epochs.

For subsequent queries of a given execution, we run a
linear regression over the performance data gathered dur-
ing the first query. This produces a much better R2 value
of 0.985. We also add the number of merges that oc-
curred during each interval to our model, and that change
slightly increases the R2 value to 0.989.

JetStream partitions the recorded execution into n
epochs of roughly equal local DIFT time as estimated
by the above model, where n is the number of available
cores to run the query. This process is conceptually sim-
ple, but a complication is that the total local DIFT time
depends on the particular partitioning chosen because an
instruction that is executed in multiple epochs will in-
cur an instrumentation cost in each of those epochs. We
solve this problem by using a hill-climbing algorithm in
which each iteration updates the estimate of the total lo-
cal DIFT time for the query, and the new estimate is
used to calculate a better partitioning in the next iteration.
Usually, this process converges after a small number of
iterations.

4.3 Aggregation

The aggregation phase produces the set of
〈globalsource,globalsink〉 tuples that are related
by the propagation function. Within a single epoch, a
global source and global sink are related if the global
sink either has the global source’s identifier or if it has
the identifier of a merge node and that node resolves to
a set that contains the global source’s identifier. If the
global source and sink are in adjacent epochs, then they
are related if there exists a location L at the boundary
of the two epochs such that, in the first epoch, the local
sink identifier of L depends on the global source, and in
the second epoch, the global sink depends on the local
source identifier of L. If one or more epochs separate the
epochs of the global source and sink, then there must be
multiple such relationships forming a continuous path
from source to sink.

In Table 1, such a path exists between the global
sources of instruction 1 and 2 and the global sink of in-
struction 9. In epoch 0, resolving the merge tree for ad-
dress C reveals that it depends on both global source 0
and global source 1. In epoch 1, the final value of E de-
pends on the value of C at the beginning of the epoch. In
epoch 2, instruction 9 writes address F, which depends
on location E at the beginning of the epoch. Determin-

ing the complete relationship between global sources and
global sinks requires aggregating the data from the local
DIFT phase of each epoch.

4.3.1 Parallelizing aggregation: A failed attempt

To meet our performance goals, both the local DIFT
and aggregation phases must scale well with the number
of cores. Our first approach to constructing a parallel ag-
gregation phase was based on a tree-like merge of local
DIFT information. First, each individual epoch produces
a map of all 〈source,sink〉 tuples where sources and sinks
may be either local or global. For each sink with a taint
identifier that represents a merge node, the map is gen-
erated by a depth-first traversal of the tree rooted at that
node to resolve the set of source identifiers. This step is
performed in parallel for all epochs, and caching is used
to avoid revisiting tree nodes. If both the source and sink
in a tuple are global, then the tuple is immediately out-
put and removed from the map. Such tuples represent
dependencies that can be computed solely on the DIFT
information in a local epoch.

Next, we merge maps for pairs of adjacent epochs.
For all locations, L, if there exists a tuple 〈source,L〉 in
the first epoch and a tuple 〈L,sink〉 in the second epoch,
then this step adds the tuple 〈source,sink〉 to its map.
Since two epochs are involved, this step is parallelized
across two cores. As before, if the sources and sinks in
a tuple are both global, the tuple is immediately output
and removed from the map. Merges are performed in a
binary tree, merging sets of 4, 8, 16, etc. epochs, using
the same approach as above. The number of cores par-
ticipating in each merge grows proportionally, and the
number of merge steps is logarithmic in the number of
epochs.

Unfortunately, this algorithm performed very poorly.
Traversing the merge log for each end value and generat-
ing sets of start values was extremely time-consuming,
even with caching and reuse of intermediate results.
Even worse, for most of our applications, some of the
merged maps failed to fit in 256 GB of memory. Our
analysis showed that the reason for this behavior was
that we were doing far more work than we needed to:
the vast majority of merge nodes visited and values in
the merged maps were not actually on a path between a
global source and a global sink. However, because no
epoch knew the full set of global sources and sinks when
creating or merging maps, each had to calculate all de-
pendencies that could possibly be used.

We concluded from this failed attempt that a fully-
parallel aggregation phase is infeasible because it vastly
increases the total work done. To fix this, aggregation
must use data about global sources and sinks to generate
less intermediate data and to traverse fewer merge nodes.

4.3.2 Backward pass

Our next approach to aggregation was to structure
the computation as a stream processing algorithm that
scales via pipeline-style parallelism. We arrange the
epochs in an ordered chain. In parallel, each epoch pro-
cesses any global sinks encountered during the epoch.
The JetStream aggregator checks the taint identifier for
each byte sent to a global sink. If the taint identi-
fier is a global source (i.e., if the global source and
sink are in the same epoch), the aggregator immediately
outputs a 〈globalsource,globalsink〉 tuple. If the taint
identifier is a local source identifier L, the aggregator
sends a 〈L,globalsink〉 tuple to the previous epoch in
the chain. Epochs on the same machine communicate
via a shared memory buffer; epochs on different ma-
chines communicate via a TCP socket. If the taint iden-
tifier is a merge log node, the aggregator resolves the
set with a depth-first traversal of the tree rooted at that
node. For each unique source identifier in the set, it ei-
ther outputs a 〈globalsource,globalsink〉 tuple or sends
a 〈L,globalsink〉 tuple to the previous epoch.

When the aggregation phase for an epoch receives
a 〈L,globalsink〉 tuple from the succeeding epoch, it
checks the epoch’s local sink taint identifier for L. This
is either a local source identifier, a global source identi-
fier, or a merge node identifier that resolves to a set of
source identifiers. For each global source, the aggregator
outputs a 〈globalsource,globalsink〉 tuple, and for each
local source L′, it sends a 〈L′,globalsink〉 tuple to the
preceding epoch.

The last epoch sends a sentinel value to its preceding
epoch after it has finished processing its sinks; when an
epoch reads the sentinel, its work is done as no more
tuples will be forthcoming. It then sends the sentinel to
its predecessor.

The last column of Table 1 shows the backward pass.
Epoch 2 determines that OUT0 depends on location E
and passes that tuple to epoch 1. Epoch 1 determines
that E depends on C, so passes the tuple 〈OUT0,C〉 to
epoch 0. Epoch 0 resolves the merge tree rooted at M0[0]
and outputs tuples relating OUT0 with both IN0 and IN1.

The major advantage of this streaming algorithm is
that no epoch will process a merge node or send a tuple
to a proceeding epoch unless the node/tuple represents
a location that propagates to some global sink according
to the propagation function. In the example, no merge
nodes in epoch 1 are visited. This vastly reduces the
amount of aggregation work. The potential disadvan-
tage of this algorithm is that we have added a sequen-
tial step; each tuple must flow from global sink to global
source, passing through all intermediate epochs. Our re-
sults show that this has only a minor effect on overall
query time since each core can still process tuples in
parallel. In other words, the latency of passing a tuple

through all epochs in the chain is very small compared
to the query time, just as the sequential time to execute
a machine instruction in a pipelined CPU is trivial com-
pared to the time spent operating with a full pipeline.

Our results show that this algorithm, which we will
refer to as the backward pass produces reasonable aggre-
gation costs for some simple applications/queries, but it
still takes too long for complex applications/queries. The
reason is that we are still visiting too many merge nodes
and creating too many tuples that are not ultimately on
the path between a source and a sink. Thus, we found it
necessary to also add a streaming forward pass that prop-
agates information about which locations are related to
global sources along the chain of epochs.
4.3.3 Forward pass

The forward pass runs prior to the backward pass. For
each epoch, the forward pass first calculates a reverse
index that has the same vertexes as the merge log DAG
but that has edges in the opposite direction. The reverse
index is also a DAG; depth-first traversal from a given lo-
cal or global source yields the set of sinks that depend on
that source. Each epoch builds its reverse index by first
visiting all merge log nodes in temporal order, then vis-
iting all local sinks. This step is fully parallelized since
the reverse index can be computed purely with local in-
formation for each epoch.

Next, for each byte read from a global source, the ag-
gregator does a depth-first traversal of the reverse index
to determine the set of local sinks that depend on any
source. It passes these sink locations to the succeed-
ing epoch in the chain (forward in time). Here, the ag-
gregator is only determining that a given local sink is
tainted by any global source; it is not identifying a partic-
ular global source that has tainted the local sink. There-
fore, the aggregator passes a local sink to the succeeding
epoch at most once, and it visits each node in the reverse
index at most once. It sets a visited bit for each local
sink and merge node to avoid duplicate work.

As the aggregator receives locations from the prior
epoch, it does a depth-first traversal of the reverse index
to determine which (if any) additional local sinks depend
on that location. It sends the locations associated with
those local sinks to the succeeding epoch. The aggre-
gator also retains the complete set of locations obtained
from the prior epoch; this live set is the set of all local
sources that depend on any global source.

Similar to the backward pass, the first epoch sends
a sentinel token as soon as it finishes processing global
sources. Once an epoch receives the sentinel, its live set
is complete; the epoch then sends the sentinel to its suc-
cessor.

In Table 1, the Live Set column shows the forward
pass. At the end of the first epoch, locations A, B, and C
depend on at least one global source. The second epoch

adds Z to this set because it depends on A and adds E to
this set because it depends on C. Additionally, the second
epoch removes B from this set because its taint value was
cleared.

Once an epoch knows its live set, it prunes its merge
log. The aggregator processes merge log nodes sequen-
tially. Any local source not in the live set for that epoch
cannot depend on a global source. So, if a child of a
merge node is a local source identifier, and the local
source is not in the live set, the child is replaced by a
NULL identifier. If a merge node has two NULL chil-
dren, no members of its source set depend on a global
source. Any identifier in the merge log that refers to such
a node is also replaced with a NULL value. Essentially,
this is a garbage collection in which any node known to
be unrelated to a global source is removed. This garbage
collection can substantially prune the merge log. Each
epoch can run the prune in parallel once it knows its
live set. Thus, the only sequential component of the for-
ward pass is the propagation of live set values. In Ta-
ble 1, epoch 1 prunes merge node M1[0] because it does
not depend on any global source. M1[1] is updated to
〈A1,NULL〉.

By inserting a forward pass, JetStream guarantees that
all merge nodes processed and all tuples generated dur-
ing the backward pass are on a path between a global
source and global sink. This vastly reduces the num-
ber of nodes processed and tuples generated, making the
backward pass more efficient. Note that although the for-
ward pass itself must visit all nodes tainted by a global
source (even those that do not lead to a global sink), the
forward pass does much less work than the backward
pass because it tracks only whether or not a location de-
pends on a global source. It does not identify the specific
source(s) on which the location depends.
4.3.4 Pre-pruning

JetStream uses one final optimization to improve ag-
gregation performance. During an epoch, many values
in memory or registers are overwritten before the epoch
ends. If a merge log node does not propagate to ei-
ther a local or global sink, then it can be removed from
the log based solely on information available from that
epoch. We call this step pre-pruning. JetStream does
pre-pruning via a mark-and-sweep garbage collection
over the merge log. It iterates through all sinks; if a sink
has the taint identifier of a merge log node, JetStream
marks the merge node as referenced. Then, JetStream it-
erates backward through the merge log. For each child in
a merge log entry that refers to a prior merge log node,
JetStream marks the prior merge log node as referenced.
It discards all unmarked nodes and compacts the merge
log. This reduces the number of merge log nodes that
need to be processed later during both the forward and
backward passes.

Benchmark Replay Log Replay Time Sequential DIFT Global Global Dependencies
Size (MB) (seconds) Time (seconds) Sources Sinks

Gzip 0.03 2.98 109.23 64352941 48791393 36586765
Ghostscript 0.12 1.03 76.90 2514067 176009 14682254
Evince 2.90 13.47 234.30 10302852 104061604 346305
Nginx 30.65 4.75 196.51 10412627 35000000 5000000
Mongodb 37.02 22.79 309.99 8863855 116592809 76042962
OpenOffice 15.25 7.55 418.03 9946659 32110959 14599069
Firefox 24.80 67.42 1838.70 920029 1636119 131476

Table 2: Benchmarks used in the evaluation.
4.3.5 Summary

For each epoch, JetStream performs the following op-
erations: (1) It runs the program without instrumentation
from the start or from the nearest checkpoint to the be-
ginning of the epoch. (2) It attaches a Pin tool and per-
forms a local DIFT until the end of the epoch. (3) It
pre-prunes the resulting local DIFT output to eliminate
merge log nodes that cannot lead to a global sink. (4) It
performs a forward aggregation pass to further prune the
merge log by excluding any node that does not depend on
a global source. (5) It performs a backward aggregation
pass to generate 〈globalsource,globalsink〉 tuples; only
merge nodes and locations on the path between a source
and a sink are visited during this pass. Almost all of
these steps can be performed in parallel for each epoch.
The exceptions are the propagation of source dependen-
cies in the forward path and 〈location,sink〉 tuples in the
backward pass. These sequential steps are structured as
stream processing along the epoch chain to maximize the
work done in parallel.

5 Evaluation
Our evaluation answers the following questions:
• How well does JetStream scale DIFT?
• What are the remaining scalability bottlenecks?
• What is the impact of query optimizations?

5.1 Experimental Setup

JetStream uses the Arnold record and replay system
[6] and the Pin dynamic instrumentation framework [14].
We evaluated JetStream using a CloudLab [19] cluster of
32 r320 machines (8-core Xeon E5-2450 2.1 GHz pro-
cessors, 16 GB RAM, 10 Gb NIC). We envision running
JetStream on an even larger cluster, but we could only
reliably get a 32 machine cluster from CloudLab. Since
these machines have a relatively small amount of RAM
(16 GB) and DIFT queries are memory-intensive, we use
only 4 cores per machine, leaving the experimental setup
with 128 effective cores. For all experiments, we report
the mean of 5 trials and show 95% confidence intervals.

5.2 Benchmarks

We evaluate JetStream with seven benchmarks chosen
to represent common desktop and server workloads:

• Gzip – Zip a large file.
• Ghostscript – Convert a research poster from

PostScript to PDF.
• Evince – Open and view a research paper.
• Mongodb – Yahoo cloud server benchmark [5].
• Nginx – Serve static content.
• OpenOffice – Edit a conference presentation.
• Firefox – A long Facebook browsing session.
For Gzip, Ghostscript, Evince, Mongodb, and Nginx,

the query asks for dependencies between all command
line, network, and file system inputs and all such outputs.
Running the all-to-all query for OpenOffice and Firefox
generated over 1 TB of data before we stopped the query.
Thus, the OpenOffice query only considers file system
data from the user’s home directory to be sources, and
the Firefox query considers cookie data to be sources and
network output to specific sites (about 10% of total out-
put) to be sinks. We use Arnold’s data flow propagation
function for all queries.

Table 2 shows a summary of the benchmarks. These
are complex queries: most consider millions of distinct
source and sinks, and most generate millions of depen-
dencies. We show the time to replay each benchmark
without instrumentation and the sequential DIFT time
on a replay as baselines. We do not show the time for
the original benchmark to run because that time depends
on user think-time (for interactive applications), network
delays, idle time (for server applications) and external
output. When the benchmark is not CPU bound, DIFT
overheads can be underestimated. Replay time, against
which we compare, can already be one or two orders
of magnitude faster than the original execution time [6].
We also report the compressed replay log size for each
benchmark.

5.3 Scalability

We first evaluate the scalability of JetStream queries.
Figure 1 shows the speedup of executing the first query
for each benchmark on a log-log scale as we vary the
number of cores from 1 to 128. Results are normalized
to evaluating a query using a sequential algorithm on a
single core; the black diagonal line shows ideal speedup,
and a horizontal line would show no speedup. Over-
all, JetStream accelerates DIFT queries by 8–28x with

 1

 10

 100

 1 10 100

N
o
rm

a
liz

e
d
 S

p
e
e

d
u
p

Number of Cores

Gzip
Ghostscript

Evince
Mongodb

Nginx
OpenOffice

Firefox
ideal scaling

Figure 1: First Query Scalability - JetStream’s scalability
from 1 to 128 cores

 1

 10

 100

 1 10 100

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Number of Cores

Gzip
Ghostscript

Evince
Mongodb

Nginx
OpenOffice

Firefox
ideal scaling

Figure 2: Scalability After Repartitioning - JetStream’s scal-
ability after incorporating its improved partitioning model

a mean of 13x using 128 cores. All benchmarks continue
to scale through 128 cores, but some (e.g., Evince) scale
less well at high numbers of cores.

We find that the biggest bottlenecks to scalability of
the first query are (1) the epoch partitioning is often im-
balanced, resulting in delays due to tail latency, and (2)
the fast forward time becomes a bottleneck as query time
approaches the replay time (since we need to replay the
application from the beginning to start an epoch).

We address the first bottleneck by gathering data
about unique instructions executed during the first query
and improving the partitioning. Figure 2 shows the im-
pact of repartitioning for the second query. With this
optimization, JetStream scales the DIFT queries by 9–
26x, with a mean of 14x. Repartitioning improves per-
formance for all benchmarks except Gzip; in the case of
Gzip, the model generated with less-detailed statistics is
actually a better predictor of performance than the model
generated with more-detailed statistics.

We address the second bottleneck by taking inter-
mediate checkpoints during the first query. Figure 3
shows the scalability of the second query when using
both repartitioning and checkpointing. JetStream scales
the DIFT queries by 12–48x, with a mean of 21x. All
benchmarks continue to scale up to 128 cores, though the
pace of scaling diminishes with larger number of epochs.
At 128 cores, the Gzip and Mongodb queries execute

 1

 10

 100

 1 10 100

N
o
rm

a
liz

e
d
 S

p
e
e

d
u
p

Number of Cores

Gzip
Ghostscript

Evince
Mongodb

Nginx
OpenOffice

Firefox
ideal scaling

Figure 3: Second Query Scalability - JetStream’s scalability
after improving partitioning and checkpointing

faster than their sequential replay times, and all bench-
marks except Ghostscript execute faster than the original
execution time of the application.

5.4 Analysis of first-query bottlenecks

Next, we examine results for individual benchmarks
in more detail and identify scalability bottlenecks. Fig-
ures 4 and 5 show stacked bar graphs for each benchmark
at 128 cores; results for the first query are in the left col-
umn, and results for the second query are in the right
column.

Each stacked bar in a graph shows the time spent in
different query stages for a single epoch; the epochs are
ordered left to right by the order of the time slices in
the application execution. The bottom region, labeled
fast forward, shows the time for application execution to
reach the start of the epoch. Instrumentation is the time
required for Pin to instrument instructions, and analysis
is the time to execute that instrumentation. The split be-
tween these two values is estimated by assuming that the
instrumentation cost is equal to the unique instructions
executed term from the model in Section 4.2 (which has
an R2 value of 0.989) as we cannot directly distinguish
these two values.

Pre-prune, forward pass, prune, and backward pass
show the time spent in each aggregation stage. The se-
quential constraints of the forward pass and backward
pass are shown by the gently sloping lines at the top of
each region: one epoch’s forward or backward pass can-
not complete until the prior epoch in that pass has com-
pleted. The total time to complete the query is given by
the height of the first stacked bar; the first epoch is the
last to complete aggregation because of the sequential
nature of the backward pass.

Outlier epochs caused by the result of poor partition-
ing can be detected by variance in the tops of the analy-
sis regions (the combination of the fast forward, instru-
mentation, and analysis phases). All of our benchmarks
except Gzip and Mongodb noticeably benefit from im-
proved partitioning. For example, comparing the first
and second queries of OpenOffice (Figures 5a and 5b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch

(a) Gzip first query

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch

(b) Gzip second query

 0

 1

 2

 3

 4

 5

 6

 7

 8

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch

(c) Ghostscript second query

 0

 1

 2

 3

 4

 5

 6

 7

 8

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch

(d) Ghostscript second query

 5

 10

 15

 20

 25

 30

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch

(e) Evince first query

 0

 5

 10

 15

 20

 25

 30

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch

(f) Evince second query

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch

(g) Nginx first query

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch

(h) Nginx second query

 0

 5

 10

 15

 20

 25

 30

 35

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch

(i) Mongodb first query

 0

 5

 10

 15

 20

 25

 30

 35

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch

(j) Mongodb second query

Fast Forward
Instrumentation

Analysis
Pre-prune

Forward Pass
Prune

Backward Pass

Figure 4: Breakdown of query processing time for 128 cores. Each stacked bar shows one core processing an epoch. From
bottom to top, the shaded regions within each bar show the time spent fast forwarding, doing dynamic instrumentation, running
DIFT, pre-pruning, performing the forward pass, pruning the merge log and performing the backward pass.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch

(a) OpenOffice first query

 0

 5

 10

 15

 20

 25

 30

 35

 40

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch

(b) OpenOffice second query

 0

 20

 40

 60

 80

 100

 120

 140

 160

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch

(c) Firefox first query

 0

 20

 40

 60

 80

 100

 120

 140

 160

 20 40 60 80 100 120

T
im

e
 (

s
)

Epoch

(d) Firefox second query
Fast Forward

Instrumentation
Analysis

Pre-prune
Forward Pass

Prune
Backward Pass

Figure 5: Breakdown of query processing time for 128 cores. Each stacked bar shows one core processing an epoch. From
bottom to top, the shaded regions within each bar show the time spent fast forwarding, doing dynamic instrumentation, running
DIFT analysis, pre-pruning, performing the forward pass, pruning the merge log and performing the backward pass.

shows the benefit of improving the partitioning between
the first and second queries. Reducing outliers leads to
substantially faster second query times for these bench-
marks.

The effects of checkpointing in JetStream can be seen
in all of our benchmarks. For example, comparing the
first and second queries of Gzip (Figures 4a and 4b)
shows the dramatic effect that checkpointing can have on
query latency. The primary reason that this benchmark
does not scale well for the first query is that the query
time approaches the replay time of the benchmark—this
is shown by fast forward being a large component of the
last epoch time for the first query. In contrast, the fast
forward times in the second query are much smaller.

5.5 Analysis of second-query bottlenecks

We next look at second query performance and bottle-
necks. Interestingly, the specific bottlenecks vary from
benchmark to benchmark.

For Evince (Figure 4f), OpenOffice (Figure 5b), and
Firefox (Figure 5d), Pin instrumentation time dominates
total query time. Pin instrumentation time also impacts
Ghostscript (Figure 4d) to a lesser degree. To explore
this issue in more detail, Figure 6 shows the speedup for
just instrumentation and analysis. All benchmarks scale
up to 128 cores, but not ideally.

There are two main factors that limit instrumentation
and analysis scalability: (1) JetStream must taint all local

 1

 10

 100

 1 10 100

N
o
rm

a
liz

e
d

 S
p

e
e

d
u
p

Number of Epochs

Gzip
Ghostscript

Evince
Mongodb

Nginx
Openoffice

Firefox
ideal scaling

Figure 6: DIFT Scaling - Scalability of local DIFT (excluding
fast-forward time) for different numbers of cores normalized to
local DIFT (excluding fast-forward time) for one core.

sources at each epoch boundary, and (2) Pin instruments
an instruction in every epoch in which that instruction
occurs, so dividing the program into smaller epochs in-
creases the total instructions instrumented. We isolated
the cost of (1) by running a sequential query on one core
that retaints each address at epoch boundaries. This does
the exact same work as the parallel version, and it pro-
duces the same results; however, Pin instruments each in-
struction only once across all epochs. As Figure 7 shows,
the overhead added by tainting local sources is relatively
small (3–25% of the sequential DIFT query). When this
overhead is parallelized over 128 cores, it should have
little effect on query time. Additionally, our model from
Section 4.2 shows that unique instructions correlate very

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 20 40 60 80 100 120

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

Number of Epochs

Gzip
Ghostscript
Evince
Mongodb
Nginx
OpenOffice
Firefox

Figure 7: Retainting Overhead - Overhead of tainting local
sources at the beginning of each epoch.

highly with instrumentation and analysis time.
Switching from a dynamic to static instrumentation

tool, using techniques that reduce the amount of dynamic
instrumentation [8], or employing a low-overhead binary
instrumentation platform (e.g., Protean code [13]) could
reduce instrumentation time. Alternatively, we could
take checkpoints that include already-instrumented code,
as is done by Speck [17].

Poor partitioning is a significant component of over-
all query time for Ghostscript (Figure 4d), Nginx (Fig-
ure 4h), and Mongodb (Figure 4j). There are two sepa-
rate reasons for poor partitioning in these benchmarks.

JetStream gathers statistics about query execution af-
ter each system call is executed. Ghostscript contains
long regions of computation without a system call. At
128 epochs, JetStream must split some of these regions
into multiple epochs. It divides these regions crudely
based on the number of entries in the replay log; this
crude metric often mispredicts the actual query execution
time for the split epochs. Gathering statistics at finer-
grained intervals would reduce outliers.

Outlier epochs in Nginx and Mongodb occur due to
variance in the amount of taint processing done in each
epoch. Outliers are correlated with large numbers of
tainted sources and/or sinks in the epoch. Currently,
our partitioning tool cannot determine which sources and
sinks will be tainted in advance, but JetStream could po-
tentially gather more statistics about sources and sinks
during the first query, which could help the partitioning
tool make such a determination for subsequent queries.

Aggregation plays a minor role in query time for most
benchmarks. The speed of the forward pass is seen in the
slope of the top of this region across epochs. Similarly,
the speed of the backward pass is given by the slope of
the top of that region. The total area for these two regions
is less relevant since the sequential constraints mean that
epochs will sometimes be idle waiting for data to arrive
from predecessor epochs. We see negligible forward pass
time across all benchmarks. Backward pass time is most
noticeable for Ghostscript (Figure 4d), Mongodb (Fig-

 0

 2

 4

 6

 8

 10

 12

G
zip

G
hostscript

Evince

M
ongodb

N
ginx

O
penO

ffice

Firefox

T
im

e
 (

s
)

Backwards Pass Only
+ Forward Pass
+ Pre-Prune

Figure 8: Optimization Effectiveness - Effect of aggregation
optimizations at 128 cores. Experiments that did not complete
are left blank.

ure 4j) and OpenOffice (Figure 5b), as shown by the no-
ticeable slope of the top region in each graph. Better
caching heuristics may improve the backward pass for
these benchmarks.

5.6 Optimizations

We next evaluate the costs and benefits of optimiza-
tions employed by JetStream. We first measure the ben-
efit of two aggregation optimizations: the forward pass
and pre-pruning. To isolate aggregation cost from out-
liers in the local DIFT stage, we let all epochs finish lo-
cal DIFT before beginning aggregation. This is the worst
case for aggregation costs since individual epochs cannot
pre-prune or construct the reverse index while waiting for
prior epochs to finish local DIFT.

Figure 8 shows the isolated cost of aggregation for
128 cores. If aggregation performs only the backward
pass (omitting the forward pass and pre-pruning), then
only Gzip and Nginx complete; aggregation runs out of
memory on all other benchmarks. For Gzip and Nginx,
adding the forward pass improves isolated aggregation
time by 98% and 71%, respectively.

The pre-prune optimization appears less effective. It
decreases isolated aggregation time for Firefox, OpenOf-
fice, and Ghostscript, but increases it slightly for Mon-
godb, Evince, and Gzip. We conclude that JetStream’s
policy of always pre-pruning is likely suboptimal; an
adaptive policy that only pre-prunes when spare CPU cy-
cles are available would be better.

We also measured the extra costs to optimize parti-
tioning. We measured the time to profile L1 instruction
cache misses for CPU-intensive benchmarks (Gzip and
Ghostscript); the average overhead was 3.1%. The aver-
age overhead imposed by taking checkpoints during the
first query was only 0.7% since each epoch takes at most
one checkpoint. Finally, the average overhead of tracing
unique instructions during the first query was 1.5%.

6 Related work

JetStream is the first system to parallelize DIFT across
a cluster, and it is the first system to efficiently track
millions of global sources, global sinks, and dependen-
cies. Several prior systems have parallelized DIFT across
the cores of a single machine. To achieve cluster-level
scalability, JetStream’s main contribution is parallelizing
the aggregation of local DIFT data while minimizing the
communication between cores.

Like JetStream, Speck [17] partitions an execution
into epochs and performs local DIFT for each epoch.
Speck tracks only a single label (tainted or untainted).
Speck’s local DIFT produces a log of sub-commands,
which it then optimizes to achieve an up to 6x reduc-
tion in log size. Aggregation is done sequentially over
the optimized log. This limits the speedup achieved by
Speck to only 2x on a 8-core machine.

Ruwase et al. [20] partition an execution into epochs
and perform local DIFT on each core using custom hard-
ware [4]. JetStream’s merge log optimization is derived
from this work; thus, the local DIFT phases of the two
systems are similar. However, Ruwase et al. perform ag-
gregation sequentially, and this limits scalability. Like
Speck, their system tracks only a single label. Taint-
Pipe [15] partitions DIFT into epochs and tracks taint as
symbolic formulas inside each epoch. TaintPipe also per-
forms aggregation sequentially. It is unclear how sym-
bolic tracking can scale efficiently to millions of labels
and dependencies.

JetStream focuses on after-the-fact analysis, while
prior DIFT parallelization has focused on live analysis
during execution. Live analysis runs only a single pre-
defined query, but it is suitable for security use cases in
which sensitive actions such as sending network output
need to be blocked based on the DIFT results (Speck and
Ruwase et al. delay output to support this functional-
ity, while TaintPipe does not). In contrast, after-the-fact
analysis is suitable for tasks like forensics [12], debug-
ging [20], configuration troubleshooting [1, 2], analysis
of privacy leaks [7], and provenance [6]. No prior system
has parallelized after-the-fact DIFT.

Many systems have explored how to make DIFT it-
self faster. One promising idea is decoupled execution,
in which the DIFT work is split into an instrumenta-
tion thread and an analysis thread. ShadowReplica [8]
combines decoupled execution with static analysis to re-
duce the amount of instrumentation that Pin must per-
form. TaintPipe combines decoupled execution with an-
other form of static analysis: taint abstractions for com-
monly used function. libdft [10] provides several low-
level optimizations for accelerating Pin-based DIFT. Pro-
filing and/or static analysis can also reduce the cost of
dynamic instrumentation [3, 9, 18].

These ideas are orthogonal to the speedups that Jet-
Stream provides through parallelization. In fact, our
evaluation shows that Pin dynamic instrumentation is of-
ten the scalability bottleneck after JetStream paralleliza-
tion, so incorporating these optimizations into JetStream
is a very promising direction for future work.

7 Conclusion

JetStream enables interactive DIFT over past execu-
tions by parallelizing queries across a cluster. It uses
deterministic record and replay to divide an execution
into epochs and execute a local DIFT for each epoch on
a separate core. It aggregates results from local DIFTs
by arranging epochs in a sequential chain according to
the order of program execution and using a pipeline-like
stream processing algorithm to pass information about
global sources and sinks along the chain. For future
work, we plan to explore novel debugging and forensics
applications enabled by JetStream.

Acknowledgments

We thank the anonymous reviewers and our shepherd,
Shan Lu, for their thoughtful comments. We also thank
Mike Chow and Xianzheng Dou for their help under-
standing the Arnold code base. We thank the CloudLab
team which helped us deploy our system on their exper-
imental platform. This work has been supported by the
National Science Foundation under grants CNS-1513718
and CNS-1421441. Any opinions, findings, conclusions,
or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of
the National Science Foundation.

References

[1] Mona Attariyan, Michael Chow, and Jason Flinn.
X-ray: Automating root-cause diagnosis of perfor-
mance anomalies in production software. In Pro-
ceedings of the 10th Symposium on Operating Sys-
tems Design and Implementation, Hollywood, CA,
October 2012.

[2] Mona Attariyan and Jason Flinn. Automating con-
figuration troubleshooting with dynamic informa-
tion flow analysis. In Proceedings of the 9th Sym-
posium on Operating Systems Design and Imple-
mentation, Vancouver, BC, October 2010.

[3] Walter Chang, Brandon Streiff, and Calvin Lin. Ef-
ficient and extensible security enforcement using
dynamic data flow analysis. In Proceedings of the
15th ACM Conference on Computer and Commu-
nications Security (CCS), Alexandria, VA, October
2008.

[4] Shimin Chen, Michael Kozuch, Theodoros
Strigkos, Babak Falsafi, Phillip B. Gibbons,
Todd C. Mowry, Vijaya Ramachandran, Olatunji
Ruwase, Mchiael Ryan, and Evangelos Vlachos.
Flexible hardware acceleration for instruction-
grain program monitoring. In Proceedings of
the 35th International Symposium on Computer
Architecture (ISCA), Beijing, China, June 2008.

[5] Brian F Cooper, Adam Silberstein, Erwin Tam,
Raghu Ramakrishnan, and Russell Sears. Bench-
marking cloud serving systems with ycsb. In Pro-
ceedings of the 1st ACM symposium on Cloud com-
puting, pages 143–154, 2010.

[6] David Devecsery, Michael Chow, Xianzheng Dou,
Jason Flinn, and Peter M. Chen. Eidetic systems. In
Proceedings of the 11th Symposium on Operating
Systems Design and Implementation, Broomfield,
CO, October 2014.

[7] William Enck, Peter Gilbert, Byung gon Chun,
Landon P. Cox, Jaeyeon Jung, Patrick McDaniel,
and Anmol N. Sheth. TaintDroid: An information-
flow tracking system for realtime privacy monitor-
ing on smartphones. In Proceedings of the 9th Sym-
posium on Operating Systems Design and Imple-
mentation, Vancouver, BC, October 2010.

[8] Kangkook Jee, Vasileios P. Kermerlis, Angelos D.
Keromytis, and Georgios Portokalidis. Shad-
owReplica: Efficient parallelization of dynamic
data flow tracking. In Proceedings of the 20th ACM
Conference on Computer and Communications Se-
curity (CCS), Berlin, Germany, November 2013.

[9] Kangkook Jee, Georgios Portokalidis, Vasileios P.
Kermerlis, Soumyadeep Ghosh, David I. August,
and Angelos D. Keromyrtis. A general approach
for efficiently accelerating software-based dynamic
data flow tracking on commodity hardware. In Pro-
ceedings of the 19th Network and Distributed Sys-
tem Security Symposium, San Diego, CA, February
2012.

[10] Vasileios P. Kemerlis, Georgios Portokalidis,
Kangkook Jee, and Angelos D. Keromytis. Libdft:
Practical dynamic data flow tracking for commod-
ity systems. In Proceedings of the 8th ACM SIG-
PLAN/SIGOPS Conference on Virtual Execution
Environments, VEE ’12, 2012.

[11] Taesoo Kim, Ramesh Chandra, and Nickolai Zel-
dovich. Efficient patch-based auditing for Web ap-
plication vulnerabilities. In Proceedings of the 10th
Symposium on Operating Systems Design and Im-
plementation, Hollywood, CA, October 2012.

[12] Samuel T. King and Peter M. Chen. Backtracking
intrusions. In Proceedings of the 19th ACM Sympo-
sium on Operating Systems Principles, pages 223–
236, Bolton Landing, NY, October 2003.

[13] Michael A Laurenzano, Yunqi Zhang, Lingjia
Tang, and Jason Mars. Protean code: Achiev-
ing near-free online code transformations for ware-
house scale computers. In Proceedings of the
47th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 558–570, 2014.

[14] Chi-Keung Luk, Robert Cohn, Robert Muth, Har-
ish Patil, Artur Klauser, Geoff Lowney, Steven Wal-
lace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
Building customized program analysis tools with
dynamic instrumentation. In Proceedings of the
ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation, pages 190–
200, Chicago, IL, June 2005.

[15] Jiang Ming, Dinghao Wu, Gaoyao Xiao, Jun Wang,
and Peng Liu. TaintPipe: Pipelined symbolic taint
analysis. In Proceedings of the 24th Usenix Secu-
rity Symposium, Washington, D.C., August 2015.

[16] James Newsome and Dawn Song. Dynamic taint
analysis: Automatic detection, analysis, and sig-
nature generation of exploit attacks on commodity
software. In Proceedings of the 12th Annual Net-
work and Distributed System Security Symposium,
February 2005.

[17] Edmund B. Nightingale, Daniel Peek, Peter M.
Chen, and Jason Flinn. Parallelizing security
checks on commodity hardware. In Proceedings of
the 13th International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems, pages 308–318, Seattle, WA, March
2008.

[18] Feng Qin, Cheng Wang, Zhenmin Li, Ho seop Kim,
Yuanyuan Zhou, and Youfeng Wu. Lift: A low-
overhead practical information flow tracking sys-
tem for detecting general security attacks. In The
39th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO ’06), Orlando, FL,
2006.

[19] Robert Ricci, Eric Eide, and The CloudLab Team.
Introducing CloudLab: Scientific infrastructure for
advancing cloud architectures and applications.
USENIX ;login:, 39(6), December 2014.

[20] Olatunji Ruwase, Phillip B. Gibbons, Todd C.
Mowry, Vijaya Ramachandran, Shimin Chen,

Michael Kozuch, and Michael Ryan. Paralleliz-
ing dynamic information flow tracking. In Sym-
posium on Parallelism in Algorithms and Architec-
tures (SPAA), June 2008.

[21] Benjamin Wester, David Devescery, Peter M.
Chen Jason Flinn, and Satish Narayanasamy. Par-
allelizing data race detection. In Proceedings of
the 18th International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems, Houston, TX, March 2013.

	Introduction
	Motivation
	Background
	DIFT
	Deterministic replay

	Design and implementation
	Local DIFT
	Partitioning
	Aggregation
	Parallelizing aggregation: A failed attempt
	Backward pass
	Forward pass
	Pre-pruning
	Summary

	Evaluation
	Experimental Setup
	Benchmarks
	Scalability
	Analysis of first-query bottlenecks
	Analysis of second-query bottlenecks
	Optimizations

	Related work
	Conclusion

