
Abstract

Recent results in the Rio project at the University
of Michigan show that it is possible to create an
area of main memory that is as safe as disk from
operating system crashes. This paper explores
how to integrate the reliable memory provided by
the Rio file cache into a database system. We pro-
pose three designs for integrating reliable mem-
ory into databases: non-persistent database buffer
cache, persistent database buffer cache, and per-
sistent database buffer cache with protection.
Non-persistent buffer caches use an I/O interface
to reliable memory and require the fewest modifi-
cations to existing databases. However, they
waste memory capacity and bandwidth due to
double buffering. Persistent buffer caches use a
memory interface to reliable memory by mapping
it into the database address space. This places
reliable memory under complete database control
and eliminates double buffering, but it may
expose the buffer cache to database errors. Our
third design reduces this exposure by write pro-
tecting the buffer pages. Extensive fault tests
show that mapping reliable memory into the data-
base address space does not significantly hurt
reliability. This is because wild stores rarely
touch dirty, committed pages written by previous
transactions. As a result, we believe that data-
bases should use a memory interface to reliable
memory.
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1 Introduction
Current database systems store data on disk and in

memory. Disks are considered stable storage—they are
assumed to survive system crashes and power outages. On
the other hand, database systems traditionally assume that
the contents of main memory (RAM) are lost whenever
the system crashes [Gray81, Haerder83], an assumption
that appears to have its roots in the switch from core mem-
ories to volatile DRAM [Gray78].

Memory is considered unreliable for two reasons:
power outages and software crashes. Memory’s vulnera-
bility to power outages is straightforward to understand
and fix. A $100 uninterruptible power supply can keep a
system running long enough to dump memory to disk in
the event of a power outage [APC96], or one can use non-
volatile memory such as Flash RAM [Wu94]. Critical
database installations often use uninterruptible power sup-
plies to protect against power failure. Memory’s vulnera-
bility to software crashes is more challenging to fix; thus
database systems assume the contents of buffers in mem-
ory are lost when either the operating system or database
system crashes.

The assumption that memory is unreliable hurts data-
base performance and complicates database system
design. Systems use strategies such as logging and group
commit to minimize disk I/O, but these strategies compli-
cate locking and recovery and do not improve commit
response time. Even with logging and group commit, disk
bandwidth is a significant and growing bottleneck to high
performance (Figure 1) [Rosenblum95].

Recent results in the Rio project at the University of
Michigan show that it is possible to create memory that is
as safe as disk from operating system crashes [Chen96].
This paper explores how to integrate the reliable memory
provided by the Rio file cache into a database system. In
particular, we examine how different software designs
expose the memory to database crashes. We evaluate the
reliability of three designs:
• I/O interface (non-persistent database buffer

cache): Hide the reliable memory under the file system
interface and use file-system operations (read/write) to
move data to the reliable memory. Databases see the
standard I/O interface to stable storage, and hence this
design should be as safe as a standard database from
database crashes. This design is attractive as it requires
no database changes.
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• Memory interface (persistent database buffer
cache): Map the reliable memory into the address
space of the database system, and allocate the data-
base’s buffer cache (or log) from this region. This
increases the exposure of reliable memory to database
crashes but eliminates the double buffering experi-
enced by the I/O interface design. We can also achieve
better performance than the first design as the database
manages the buffer cache directly.

• Memory interface with protection (persistent, pro-
tected database buffer cache): Map the reliable mem-
ory into the address space of the database system, and
use virtual memory protection at the user level to pro-
tect reliable memory from database crashes. This
design offers more protection than the first two
designs, but manipulating protections may slow perfor-
mance.

Our main conclusion is that mapping reliable memory
into the database address space does not significantly
decrease reliability. To our knowledge, this is the first
work that measures how often data is corrupted by data-
base crashes.

2 Benefits of Reliable Memory
This section summarizes the main benefits of reliable

memory, which have been discussed and quantified by
many studies [Copeland89, Bhide93, Lowell97].

Reliable memory can be used to store the log (or the
tail of the log). Keeping the log in reliable memory
removes all synchronous disk writes from the critical path
of a transaction [Copeland89]. This decreases transaction
commit time and can help to reduce lock contention and
increase concurrency [DeWitt84]. It also removes the need
for group commit, which improves log throughput at the

cost of increased transaction commit time. Storing the log
in reliable memory can also decrease disk bandwidth due
to logging, because many log records can be removed
before being written to the log disk [DeWitt84,
Hagmann86]. For example, undo records may be removed
if they belong to transactions that have committed, and
redo records may be removed if they belong to transac-
tions that have aborted. Finally, critical information may
be stored in the stable memory to help improve recovery
time. For example, storing an appropriate pointer in reli-
able memory can save scanning the log to find the last
checkpoint [DeWitt84].

A more aggressive use of reliable memory is to store
the database buffer cache, or to store an entire main-mem-
ory database [GM92, Bohannon97]. This makes all buffer
cache changes permanent without writing to disk. Like the
force-at-commit policy, this eliminates the need for check-
points and a redo log in recovering from system crashes
(partial redo) [Haerder83, Akyurek95]. This simplifies and
accelerates recovery, because there is no need to redo
incomplete operations; each commit is a transaction-con-
sistent checkpoint. Recovering from media failures (global
redo) still requires a redo log; however, redundant disk
storage makes this scenario less likely [Chen94]. Since
undo records can be eliminated after a transaction com-
mits, removing the redo log implies thatno log records
need be written to disk if memory is large enough to con-
tain the undo records for all transactions in progress
[Agrawal89]. In addition, storing the database buffer cache
in reliable memory allows the system to begin operation
after a crash with the contents present prior to the crash (a
warm cache) [Sullivan93, Elhardt84, Bhide93].

Storing the log and/or the buffer cache in reliable
memory can thus simplify and accelerate database sys-
tems. A recent study shows that using a persistent database
buffer cache can yield a system 40 times faster than using
a non-persistent buffer cache, even when both run on reli-
able memory [Lowell97]. Figure 2 compares the perfor-
mance of three systems on a workload based on TPC-B.
RVM is a simple transaction system with a redo log and
achieves about 100 transactions/second without reliable
memory [Satyanarayanan93]. Running RVM on Rio with
an I/O interface to reliable memory speeds it up by a factor
of 13. Vista is a transaction system tailored to run on Rio.
By using a persistent buffer cache, Vista achieves a factor
of 40 improvement over RVM, even though both run on
Rio. Vista achieves this remarkable performance by elimi-
nating the redo log, all system calls, and all but one copy.
Vista also avoids the double buffering that causes RVM-
Rio performance to drop at 100 MB. The performance
improvement resulting from the simplicity of Vista—Vista
is roughly 1/10 the size of RVM—is hard to quantify but is
probably also significant.

3 The Rio File Cache
The Rio file cache is an area of memory, maintained by

the operating system, that buffers file system data
[Chen96]. It is protected from operating system crashes by
virtual memory protection, and this protection is enhanced
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Figure 1: Database Execution Time Profile on Next-
Generation Machines. This figure is taken from
[Rosenblum95] and shows execution time of a database
workload (Sybase SQL server running the TPC-B benchmark)
on three machine models. The time is normalized to the speed
of the 1994 model. Without reliable memory, disk I/Os will be
the first-order bottleneck to higher performance.



by configuring the processor to force all addresses through
the translation-lookaside buffer. Protection adds negligible
overhead when writing to a file using write system calls
and does not affect the performance of mmap’ed files at
all, because it changes only the kernel’s protection map.
Upon reboot, the file cache is restored to the file system on
disk, a technique called warm reboot. Six machine months
of continuously crashing the operating system (about 2000
crashes) showed that these techniques make the Rio file
cache even safer from operating system crashes than a
disk-based (write-through) file system. 1.1% of the
crashes corrupted some data in a disk-based (write-
through) file system, and 0.6% of the crashes corrupted
some data in a file system using the Rio file cache. See
[Chen96] for more details on these experiments and subse-
quent improvement in performance.

The goal of this paper is to explore how to use the Rio
file cache to provide reliable memory for databases. Data-
base systems traditionally encounter two problems in try-
ing to use buffer caches managed by the operating system
(the file cache) [Stonebraker81].

First, buffer caches managed by the file system make it
difficult for the database to order updates to disk. These
writes to disk need to be done in order to obey the con-
straints imposed by write-ahead logging [Gray78]. To
order updates to disk, databases either use fsync or bypass
the file cache entirely using direct I/O. The Rio file cache
solves this problem completely, because data is persistent
as soon as it enters the file cache. Thus, databases control
the order of persistence by controlling the order that I/O is
done to the file cache; no fsync is needed.

Second, databases can manage memory more opti-
mally than a file system can, because databases know
more about their access patterns. Our second software
design (Section 5.2) addresses this problem by mapping
the Rio file cache into the database address space. This
exposes reliable memory to database crashes, and we
quantify the increased risk posed by this design.

4 The Postgres Storage System
We use the Postgres95 database management system

developed at U.C. Berkeley as the database in our experi-
ments [Stonebraker87]. Postgres has a few unique features
which are relevant to this paper, but our results should
apply to more conventional databases as well.

One novel aspect of Postgres is that itappends new
data at commit. In contrast, conventional databases with
write-ahead logs write undo/redo records at commit, then
later write new data in-place over the old version of the
data. Postgres’ scheme forces new data to disk at commit,
whereas a conventional scheme forces only the log at com-
mit (a no-force policy for the actual data). A force-at-com-
mit policy decreases the amount of time database buffers
are vulnerable to database crashes (Section 5.2).

As with nearly all database systems, Postgres keeps a
database buffer cache in main memory to store frequently
used data. Transactions modify the buffer cache data, then
force the modified data to disk on commit. Because Post-
gres appends new data rather than overwriting it, a steal
policy may be used without an explicit undo log. If a trans-
action aborts, the old copy of the data can be recovered
from disk. Our second software design (Section 5.2)
makes the database buffer cache persistent and hence
delays writing data to disk until after commit.

5 Software Designs for Integrating Reliable
Memory

In this section, we describe three ways databases can
include reliable memory and the implication of each
design on reliability and performance.

5.1 I/O Interface to Reliable Memory (Non-Persistent
Database Buffer Cache)

Our first design minimizes the changes needed to the
database system by hiding the reliable memory under the
file system interface (Figure 3). The Rio file cache is used
automatically when accessing the file system, so the data-
base need only write persistent data to the file system
instead of to the raw disk (or via direct I/O). No fsync is
needed, because all file system writes to Rio are persistent
immediately as soon as the data enters the file cache. In
fact, Rio implements fsyncs as null operations. This
removes all synchronous writes from the critical path of
any transaction. This design requires no changes to the
database; it needs only run on top of the Rio file system.

Because the interface to stable storage has not
changed, this design is as safe as a standard database from
database crashes. Recall that the Rio file cache is responsi-
ble for protecting and restoring the file system data if the

Figure 2: Performance Improvements with Reliable
Memory. This figure shows the performance of three different
transaction systems on a DEC 3000/600 with 256 MB memory,
running a workload based on TPC-B. RVM is a simple
transaction system without reliable memory. Running RVM on
Rio (RVM-Rio) provides an I/O interface to reliable memory
and speeds RVM up by a factor of 13. Vista uses a memory
interface to reliable memory and achieves a factor of 40 speedup
over RVM, even though both run on Rio.
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operating system should crash. This transparency and reli-
ability incurs some costs, however.

Using an I/O interface to reliable memory partitions
main memory between the Rio file cache and the database
buffer cache. The operating system would like the Rio file
cache to be large so it can schedule disk writes flexibly and
allow the largest number of writes to die in the file cache.
But larger file caches reduce the size of memory available
to the database. This partitioning creates two copies of
data in memory (double buffering), one in the Rio file
cache and one in the database buffer cache. Not only does
this waste memory capacity, it also causes extra memory-
to-memory copies.

One possible solution to these problems is to eliminate
the database buffer cache and have the database use the file
cache to store frequently used data. This is likely to make
memory less effective at buffering database data, however,
because a database can manage its buffer cache more
effectively than file systems can (databases have more
information on usage patterns). Researchers have pro-
posed various ways for applications to control memory
[Harty92, Patterson95, Bershad95, Seltzer96], and eventu-
ally this may enable the file cache to be as effective as a
database buffer cache. At least for now, however, the best

performance will be achieved by databases that wire down
memory in their buffer caches and control it completely.

5.2 Memory Interface to Reliable Memory (Persistent
Database Buffer Cache)

Our second design maps the Rio file cache directly into
the database system’s address space using the mmap sys-
tem call (Figure 4). The database system allocates the
database buffer cache (or redo log) from this area and
wires these pages in memory. This design allows the data-
base to manipulate reliable memory directly using ordi-
nary load/store instructions.

Using a memory interface to reliable memory has sev-
eral advantages over the first design. First, management of
this area of memory is completely under database control.
Hence no special support is required from the operating
system to allow the database to determine replacement and
prefetching policies.

Second, this design eliminates double buffering and
extra memory-to-memory copies. The database simply
manipulates data in its buffer cache, and these changes are
automatically and instantly permanent. Hence this design
performs better than the non-persistent buffer cache (Fig-
ure 2).

Third, this design can simplify databases by eliminat-
ing the need for redo logs and checkpoints (Section 2).

Making the database buffer cache persistent leads to a
few changes to the database. These changes are the same
as those needed by a database using a steal policy
[Haerder83]. The steal policy allows dirty buffers to be
written back to disk (that is, made persistent) at any time.
In particular, buffers may be made persistent before the
transaction commits. This policy requires an undo log so
the original values may be restored if the transaction
aborts. Persistent database buffer caches require an undo
log for the same reason, becauseall updates to the buffer
cache are instantly persistent, just as if they had been sto-
len immediately.

Other designs are possible that map the Rio file cache
into the database address space. For example, the database
log could be stored in reliable memory. Or an entire data-
base could be mmap’ed, and the database could trust the
virtual memory and file system of the operating system to
page in and out appropriate pages. This latter approach
may be appropriate for situations where the database pro-
gram is one of several concurrent jobs (perhaps a machine
running a client database program). In general, however,
we believe that databases prefer to manage their own
memory. Because of this, we mmap only the database
buffer cache, and we lock these pages in memory to pre-
vent paging.

The main disadvantage to using a memory interface to
reliable memory is an increased vulnerability to software
errors. The interface to stable storage with this design is
now much simpler: load/store instructions instead of
read/write system calls. Hence it is easier for a software
bug in the database to accidentally overwrite persistent
data [Rahm92, Sullivan91a]. This section discusses the
increased vulnerability conceptually, and Section 6 com-
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Figure 3: I/O Interface to Reliable Memory. This design
hides the reliable memory under the file system interface. The
database uses read() and write() system calls to write data to the
reliable memory. This design uses a traditional, non-persistent
database buffer cache and thus requires change to the database.
Because the interface to stable storage has not changed, this
design is as safe as a standard database system from database
crashes.
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pares quantitatively the chances of data corruption among
the different designs.

Consider the possible states of a database buffer. It
may be clean or dirty, where dirty means the memory ver-
sion of the buffer is different than the disk version. Dirty
buffers may contain committed or uncommitted data. In
our modification of Postgres95, we keep commit and dirty
flags for each database buffer. After a database crash, we
restore to disk only those pages that are marked as com-
mitted and dirty. Dirty pages that are not yet committed
are restored to their before-image using the undo log. The
following compares the vulnerabilities of different buffer
states for persistent and non-persistent database buffer
caches.
• clean: This state occurs when a piece of data is read

from disk or when a dirty buffer is written back to disk.
Buffers in this state are safe from single errors for both
designs. To corrupt stable storage with a non-persistent
buffer cache, the system would need to corrupt the
buffer and later force it to disk (a double error). To cor-
rupt stable storage with a persistent buffer cache, the
system would need to corrupt the buffer and mark it as
dirty (a double error). With either design, errant stores

to buffers in this state may lead to corruption if other
transactions read the corrupted data.

• dirty, uncommitted : This state occurs when a buffer
has been modified by a transaction that is still in
progress. Buffers in this state are equally vulnerable
for both designs. In either design, stable storage will be
corrupted if and only if the buffer is corruptedand the
transaction commits.

• dirty, committed : This state indicates the buffer has
been changed by a transaction and that the transaction
has committed, but that the data has not yet been writ-
ten to disk.

Dirty, committed buffers can exist in a persistent data-
base buffer cache, because data is not written to disk
until the buffer is replaced. Buffers in this state are vul-
nerable to software corruption; any wild store by
another transaction can corrupt these buffers, and any
change is instantly made persistent.

With non-persistent buffer caches, dirty, committed
buffers can exist if the database uses a no-force policy.
Buffers are dirty and committed until being forced to
disk, at which time they are marked as clean. However,
non-persistent buffer caches keep these buffers safer
than persistent buffer caches. This is because the
recovery process for non-persistent buffer caches dis-
cards memory buffers and uses the redo log to recover
the data. Hence if the database system corrupts a buffer
in this state and crashes soon afterwards, the corrupted
data will not be made persistent. Corruption occurs
only if the system stays up long enough to write the
affected buffer to disk.

Dirty, committed buffers make systems with persistent
buffer caches more vulnerable to software corruption
than systems with non-persistent buffer caches. Dirty,
committed buffers are vulnerable for a longer period of
time in a system with persistent buffer caches, particu-
larly compared to systems using a force policy (such as
Postgres). And systems with non-persistent buffer
caches experience corruption due to these buffers only
if the system remains up long enough to propagate
them to disk.

5.3 Memory Interface to Reliable Memory with
Protection (Persistent, Protected Database Buffer
Cache)

Our third design also uses a memory interface to reli-
able memory but adds virtual memory protection to pro-
tect against wild stores to dirty, committed buffers (this
scheme was suggested in [Sullivan91a]). In this system,
clean or committed buffers are kept write protected. When
a transaction locks an object, the page containing the
object is unprotected; when the transaction commits, the
page is reprotected. If multiple transactions use objects on
the same page, the system reprotects the page when all
transactions release their locks.

This scheme protects the dirty, committed buffers that
are more vulnerable with persistent buffer caches. It also
protects clean pages, so this scheme can make persistent

Figure 4: Memory Interface to Reliable Memory. This design
maps the Rio file cache directly into the database system’s
address space using the mmap system call. The database system
can allocate its buffer cache from this region to make a
persistent buffer cache. Access to stable storage (the persistent
database buffer cache) takes place using load/store instructions
to memory. This design eliminates double buffering and can
simplify database recovery. However, database crashes can
more easily corrupt stable storage than in the I/O interface
design.
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buffer cachessafer than non-persistent buffer caches.
Because the virtual memory hardware uses a page granu-
larity, this scheme exposes unrelated objects that happen
to be on the same page as the locked object. The scheme
does not prevent object-level locking, however, since this
locking can be accomplished independently from our pro-
tection mechanism.

Section 6 measures how effectively the virtual memory
protection scheme protects dirty, committed, pages from
wild stores. The disadvantage of this scheme is that the
extra protection operations may lower performance.

6 Reliability Evaluation
Persistent database buffer caches solve the double

buffering problem by placing stable storage under data-
base control. As discussed in Section 5.2, however, this
design may be more vulnerable to database crashes. This
section compares the reliability of the different designs
quantitatively by injecting software bugs into Postgres to
crash it, then measuring the amount of corruption in the
database. We detect database corruption by running a
repeatable set of database commands modeled after TPB-
B [TPC90] and comparing the database image after a
crash with the image thatshould exist at the point at which
the crash occurred.

6.1 Fault Models

This section describes the types of faults we inject. Our
primary goal in designing these faults is to generate awide
variety of database crashes. Our models are derived from
studies of commercial databases and operating systems
[Sullivan92, Sullivan91b, Lee93] and from prior models
used in fault-injection studies [Barton90, Kao93,

Kanawati95, Chen96]. The faults we inject range from
low-level hardware faults such as flipping bits in memory
to high-level software faults such as memory allocation
errors. We classify injected faults into three categories: bit
flips, low-level software faults, and high-level software
faults. Unless otherwise stated, we inject 5 faults for each
run to increase the chances that a fault will be triggered.
Most crashes occurred within 10 seconds from the time
the fault was injected. If a fault did not crash the database
after ten minutes, we restarted the database (and measure
the amount of corruption as usual). This happened about
1/3 of the time and led to one instance of corruption.

The first category of faults flips random bits in the
database’s address space [Barton90, Kanawati95]. We tar-
get three areas of the database’s address space: thetext,
heap, andstack. These faults are easy to inject, and they
cause a variety of different crashes. They are the least real-
istic of our bugs, however. It is difficult to relate a bit flip
with a specific error in programming, and most hardware
bit flips would be caught by parity on the data or address
bus.

The second category of fault changes individual
instructions in the database text segment. These faults are
intended to approximate the assembly-level manifestation
of real C-level programming errors [Kao93]. We corrupt
assignment statements by changing thesource or destina-
tion register. We corrupt conditional constructs by deleting
branches. We also deleterandom instructions (both
branch and non-branch).

The last and most extensive category of faults imitate
specific programming errors in the database [Sullivan91b].
These are more targeted at specific programming errors
than the previous fault category. We inject aninitialization
fault by deleting instructions responsible for initializing a

Table 1: Relating faults to programming errors. This table shows examples of how real-world programming errors can manifest
themselves as the faults we inject in our experiments. None of the errors shown above would be caught during compilation.

Fault Type
Example of Programming Error

Correct Code Faulty Code

destination reg. numFreePages = count(freePageHeadPtr) numPages = count(freePageHeadPtr)

source reg. numPages =physicalMemorySize/pageSize numPages =virtualMemorySize/pageSize

delete branch while (flag) {body} while (!flag) {body}

delete random inst. for (i=0; i<10; i++,j++) {body} for (i=0; i<10; i++) {body}

initialization function () {int i=0; ...} function () {int i; ...}

pointer ptr = ptr->next->next; ptr = ptr->next;

allocation ptr = malloc(N); use ptr; use ptr;free(ptr); ptr = malloc(N); use ptr;free(ptr) ; use ptr

copy overrun for (i=0; i<sizeUsed; i++) {a[i] = b[i]}; for (i=0; i< sizeTotal; i++) {a[i] = b[i]};

off-by-one for (i=0; i<size; i++) for (i=0; i<=size; i++)

synchronization getWriteLock;  write(); freeWriteLock; write();

memory leak free(ptr) ;

interface error insert(buf, index); insert(buf1,index);



variable at the start of a procedure [Kao93, Lee93]. We
inject pointer corruption by 1) finding a register that is
used as a base register of a load or store and 2) deleting the
most recent instruction before the load/store that modifies
that register [Sullivan91b, Lee93]. We do not corrupt the
stack pointer register, as this is used to access local vari-
ables instead of as a pointer variable. We inject analloca-
tion management fault by modifying the database’s malloc
procedure to occasionally free the newly allocated block
of memory after a delay of 0-64 ms. Malloc is set to inject
this error every 1000-4000 times it is called; this occurs
approximately every 10 seconds. We inject acopy overrun
fault by modifying the database’s bcopy procedure to
occasionally increase the number of bytes it copies. The
length of the overrun was distributed as follows: 50% cor-
rupt one byte; 44% corrupt 2-1024 bytes; 6% corrupt 2-4
KB. This distribution was chosen by starting with the data
gathered in [Sullivan91b] and modifying it somewhat
according to our specific platform and experience. bcopy
is set to inject this error every 1000-4000 times it is called;
this occurs approximately every 5 seconds. We injectoff-
by-one errors by changing conditions such as > to >=, < to
<=, and so on. We mimic commonsynchronization errors
by randomly causing the procedures that acquire/free a
lock to return without acquiring/freeing the lock. We inject
memory leaks by modifying free() to occasionally return
without freeing the block of memory. We injectinterface
errors by corrupting one of the arguments passed to a pro-
cedure.

Fault injection cannot mimic the exact behavior of all
real-world database system crashes. However, the wide
variety of faults we inject (15 types), the random nature of
the faults, and the sheer number of crashes we performed
(2250) give us confidence that our experiments cover a
wide range of real-world crashes. Table 1 shows examples
of how real-world programming errors can manifest them-
selves as the faults we inject in our experiments.

6.2 Reliability Results

Table 2 presents reliability measurements of our three
designs. We conducted 50 tests for each fault category for
each of the three systems; this represents 2 machine-
months of testing. Individual faults are not directly compa-
rable because of non-determinism in the timing of the
faults and differences in code between the different sys-
tems; instead we look primarily at trends between the dif-
ferent systems.

Overall, all three designs experienced few corrup-
tions—only 2-3% of the crashes corrupted permanent data
over 2250 tests. This argues that, even with research data-
base such as Postgres, software bugs may crash the system
but usually do not corrupt permanent data. There are sev-
eral factors contributing to Postgres’s robustness. First,
Postgres has many programmer assertions that stop the
system soon after a fault is activated. Detecting the fault
quickly and stopping the system prevents erroneous data
from being committed to the permanent database image.
Second, the operating system provides built-in assertions
that check the sanity of various operations. For example,

dereferencing a NULL pointer will cause the database to
stop with a segmentation violation. In general, faults that
left the system running for many transactions (such as off-
by-one and interface) tended to corrupt data more fre-
quently than faults that crashed the system right away
(such as heap and stack).

We next compare the reliabilities of the three designs.
The amount of corruption in all three systems is about the
same. The differences are not large enough to make firm
conclusions distinguishing the three systems, however we
note that, as expected, the traditional I/O interface (non-
persistent buffer cache) is slightly more reliable than the
memory interface (persistent buffer cache) (2.5% corrup-

Table 2: Comparing Reliability. This table shows how often
each type of error corrupted data for three designs. We
conducted 50 tests for each fault type for each of three systems
using the TPC-B benchmark as the workload. We show the
corruption rate for three weightings: equal, DB2, and IMS. Even
without protection, the reliability of the persistent database
buffer cache is about the same as a traditional, non-persistent
buffer cache. We have observed similar results in an earlier
experiment using the Wisconsin benchmark [Bitton83] as the
workload.

Fault Type
I/O

Interface
Memory
Interface

Memory
Interface

with
Protection

text 1 1 1

heap 0 0 0

stack 0 0 0

destination reg. 4 5 5

source reg. 2 2 2

delete branch 1 1 0

delete random
inst.

2 2 2

initialization 0 1 1

pointer 0 0 0

allocation 0 0 0

copy overrun 0 0 0

off-by-one 5 5 3

synchronization 0 0 0

memory leak 0 0 0

 interface error 4 3 3

Total
19 of 750
(2.5%)

20 of 750
(2.7%)

17 of 750
(2.3%)

DB2 Weights 1.7% 1.8% 1.6%

IMS Weights 2.1% 2.1% 1.8%



tion rate versus 2.7%). Also as expected, adding protection
to the persistent buffer cache improves its reliability
(2.3%). Protection can increase reliability over an I/O
interface by trapping errant stores to clean buffers and
dirty, committed buffers.

As it is difficult to prove that our fault model repre-
sents real faults, we present two other interpretations of
the data by varying the weights associated with each fault
type according to fault distributions published on DB2 and
IMS [Sullivan92]. Sullivan’s study includes a detailed
breakdown of software errors according to the following
classification: deadlock and synchronization, pointer man-
agement, memory leak, uninitialized data, copy overrun,
allocation management, statement logic, data error, inter-
face error, undefined state, and other. Table 3 shows the
mapping between our fault categories and Sullivan’s stud-
ies, together with the resulting weights. Undefined state
and other are too vague to be precisely modeled, so we
distribute their weights evenly across other categories.

Our main conclusion is that mapping reliable memory
directly into the database address space has only a small
effect on the overall reliability of the system. This is con-

sistent with the estimates given in [Sullivan91a,
Sullivan93]. There are several factors that minimize the
reliability impact of persistent buffer caches. First, most
stores in Postgres are not to the buffer cache. Using the
ATOM program analysis tool [Srivastava94], we found
that only 2-3% of stores executed during a run were to the
buffer cache. Second, store instructions that are not
intended to access the buffer cache have little chance of
accidentally wandering into buffer cache space, especially
with the vast, 64-bit virtual address space on DEC Alphas.
As a result, most corruptions are due to corrupting thecur-
rent transaction’s data. These uncommitted buffers are
vulnerable to the same degree in all three systems (Section
5.2).

Thus, mapping reliable memory directly into the data-
base address space does not significantly lower reliability.
Combined with the advantages of persistent buffer caches
(reliable memory under database control, no double buff-
ering, simpler recovery), these results argue strongly for
using a memory interface to reliable memory. Stated
another way, the high-overhead I/O interface to reliable
memory is not needed, because wild stores are unlikely to
corrupt non-related buffers.

7 Related Work
Section 2 summarized the many benefits of using reli-

able memory. In this section, we describe prior studies that
have suggested methods for integrating and protecting
reliable memory in databases.

The study most closely related to this paper was done
by Mark Sullivan in the context of the Postgres project
[Sullivan91a, Sullivan93]. Sullivan implemented two gen-
eral methods for protecting database buffers from database
errors using virtual memory protection.Expose page
unprotects a page before writing to a record on the page
and reprotects the page after the write is done. Our protec-
tion model in Section 5.3 is very similar but does not
reprotect the page until the transaction commits. Our
method incurs fewer protection operations and is simpler
to implement, because reprotection operations are local-
ized to the commit function.Deferred write uses copy-on-
write to make a private copy of a page for a transaction,
then copies the data back on commit. Sullivan measures
the performance overhead of these protection mechanisms
for a debit-credit type workload to be 5-10% when manip-
ulating a database contained in non-volatile memory (no
disk activity) and 2-3% when manipulating a database too
large to fit in memory and forcing data to disk.

Sullivan evaluates the reliability impact of these pro-
tection schemes by examining prior failure studies and
estimating which fault categories were most likely to be
affected. [Sullivan93] concludes that only 5-7% of errors
are the type of error (wild stores) that would be prevented
by his protection mechanism, although this ignores sec-
ondary effects such as wild stores generated by other
errors. [Sullivan91a] mentions as future work the type of
fault injection studies performed in this paper. These fault
injection studies can provide more detailed data than

Table 3: Proportional Mapping. This table shows how we
map between the fault type in our study and those of
[Sullivan92], and the corresponding weight assigned to each
fault type.

Fault Type Classification
Weight

DB2 IMS

kernel text
statement

logic
2.8% 3.9%

kernel heap data error 3.3% 2.1%

kernel stack data error 3.3% 2.1%

destination reg. data error 3.3% 2.1%

source reg. data error 3.3% 2.1%

delete branch
statement

logic
2.8% 3.9%

delete random
inst.

statement
logic

2.8% 3.9%

initialization initialization 9.7% 11.1%

pointer pointer 15.9% 20.3%

allocation allocation 12.4% 9.3%

copy overrun copy overrun 8.3% 6.5%

off-by-one
statement

error
2.8% 3.9%

synchroniza-
tion

synchroniza-
tion

13.8% 8.3%

memory leak memory leak 5.5% 6.5%

interface interface 10.3% 13.9%



extrapolating from prior failure studies, because the
crashes are conducted under monitored environments.

Other general means to protect memory include using
separate processes [Bartlett81], replication [Liskov91,
Muller96], and software fault isolation [Wahbe93].

[Copeland89] discusses two organizations for integrat-
ing reliable memory (safe RAM) in databases. Aseparate
safe uses an I/O interface to reliable memory, while an
integrated safe is similar to our memory interface to reli-
able memory. [Copeland89] evaluates analytically the per-
formance of the separate safe, but does not evaluate the
effect on reliability of either organization.

[Rahm92] examines different technologies that can be
used as reliable memory (SSD, disk cache, extended mem-
ory) but assumes these are not directly addressable by the
processor. Hence he evaluates only the performance bene-
fits of using an I/O interface to reliable memory.

This paper extends the previous work in the following
ways:
• We discuss the performance and reliability tradeoffs of

different ways to integrate reliable memory provided
by an operating system into a database. We also dis-
cuss effects of persistent buffer caches on undo/redo
logging and cache policies (force, steal).

• We conduct fault experiments to measure the reliability
of the three designs (non-persistent buffer cache, per-
sistent buffer cache, persistent buffer cache with pro-
tection).

• Because the memory area we use is provided by the
Rio file cache, the reliable memory area survives both
database crashesand operating system crashes. Yet we
do this while providing persistence to individual stores
and without needing any extra disk activity. All other
work that has provided a memory-mapped interface to
reliable memory requires extra checkpoint/logging to
disk.

8 Conclusions
We have proposed three designs for integrating reliable

memory into databases. Keeping an I/O interface to reli-
able memory requires the fewest modifications to an exist-
ing database but wastes memory capacity and bandwidth
with double buffering. Mapping reliable memory into the
database address space allows a persistent database buffer
cache. This places reliable memory under complete data-
base control, eliminates double buffering, and simplifies
recovery. However, it also exposes the buffer cache to
database errors. This exposure can be reduced by write
protecting buffer pages.

Extensive fault tests show that mapping reliable mem-
ory into the database address space does not significantly
hurt reliability. This is because wild stores rarely touch
dirty, committed pages written by previous transactions.
Combined with the advantages of persistent buffer caches,
these results argue strongly for using a memory interface
to reliable memory.
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