
Language-level persistency
Aasheesh Kolli Vaibhav Gogte Ali Saidi Stephan Diestelhorst Peter M. Chen

Satish Narayanasamy Thomas F. Wenisch
University of Michigan ARM

{akolli,vgogte,pmchen,nsatish,twenisch}@umich.edu,{ali.saidi,stephan.diestelhorst}@arm.com

ABSTRACT
The commercial release of byte-addressable persistent memories,
such as Intel/Micron 3D XPoint memory, is imminent. Ongoing
research has sought mechanisms to allow programmers to implement
recoverable data structures in these new main memories. Ensuring
recoverability requires programmer control of the order of persistent
stores; recent work proposes persistency models as an extension
to memory consistency to specify such ordering. Prior work has
considered persistency models at the abstraction of the instruction
set architecture. Instead, we argue for extending the language-level
memory model to provide guarantees on the order of persistent
writes.

We explore a taxonomy of guarantees a language-level persistency
model might provide, considering both atomicity and ordering con-
straints on groups of persistent stores. Then, we propose and evaluate
Acquire-Release Persistency (ARP), a language-level persistency
model for C++11. We describe how to compile code written for ARP
to a state-of-the-art ISA-level persistency model. We then consider
enhancements to the ISA-level persistency model that can distinguish
memory consistency constraints required for proper synchronization
but unnecessary for correct recovery. With these optimizations, we
show that ARP increases performance by up to 33.2% (19.8% avg.)
over coding directly to the baseline ISA-level persistency model for
a suite of persistent-write-intensive workloads.

CCS CONCEPTS
• Computer systems organization → Architectures; • Software
and its engineering → Software notations and tools;

KEYWORDS
Persistent memories, memory persistency, language-level models

ACM Reference format:
Aasheesh Kolli Vaibhav Gogte Ali Saidi Stephan Diestelhorst Peter
M. Chen Satish Narayanasamy Thomas F. Wenisch. 2017. Language-level
persistency. In Proceedings of ISCA ’17, Toronto, ON, Canada, June 24-28,
2017, 13 pages.
https://doi.org/10.1145/3079856.3080229

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’17, June 24-28, 2017, Toronto, ON, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4892-8/17/06. . . $15.00
https://doi.org/10.1145/3079856.3080229

1 INTRODUCTION
Persistent Memories (PMs), such as Intel’s upcoming 3D XPoint
memory [22], offer many desirable properties, such as the durability
of disk, better density & energy efficiency than DRAM, and DRAM-
like performance. These properties have spawned myriad efforts
to adopt PM in different areas of computer science, ranging from
data structures [23, 51], to software systems [10, 13, 14, 18, 53], to
computer architecture [25, 30, 41]. One of the most disruptive po-
tential use cases for PM is to host in-memory recoverable data struc-
tures. PMs blur the traditional divide between a byte-addressable,
volatile main memory and a block-addressable, persistent storage.
This memory allows programmers to directly manipulate recoverable
data structures using processor loads and stores, rather than relying
on performance-sapping software intermediaries like the operating
system and file system [13, 53].

Ensuring the recoverability of data structures requires program-
mers to have the ability to control the order stores reach PM [5, 14,
18, 41, 59]. With write-back caching, stores may reach PM out of
order, compromising data structure recoverability. Existing systems
do not provide efficient mechanisms to enforce the order in which
stores are written back [5, 29]. Recent work has proposed persis-
tency models to provide programmers an interface to control the
order persistent stores write to PM [3, 14, 21, 25, 41]. Like prior
work, we refer to the act of writing a store durably in PM as a persist.

Various persistency models have been proposed, but all of them
have been specified at the instruction set architecture (ISA) level.
That is, programmers must reason about recovery correctness at
the abstraction of assembly instructions, an approach which is error
prone and places an unreasonable burden on the programmer. The
programmer must invoke ISA-specific mechanisms (via library calls
or inline assembly) to ensure persist order, and often must reason
carefully about compiler optimizations that may affect the relevant
code. Since the ISA mechanisms differ in sometimes subtle ways, it
is hard to write portable recoverable programs.

In this paper, we argue for a language-level persistency model
that provides mechanisms to specify the semantics of accesses to PM
(including with respect to program failures) as an integral part of the
programming language, just as language-level memory consistency
models enable precise specification of the semantics of memory ac-
cesses from concurrent threads. A language-level persistency model
provides a single, ISA-agnostic framework for reasoning about per-
sistency and can enable portability of recoverable software across
language implementations (compiler, runtime, ISA, and hardware).
Furthermore, a language-level model prescribes precise requirements
on the implementation, allowing implementers to reason about the
correctness of compiler and hardware optimizations.

We consider how to specify a persistency model that extends
the data-race-free (DRF) consistency model [1] that is espoused by

https://doi.org/10.1145/3079856.3080229
https://doi.org/10.1145/3079856.3080229

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada A. Kolli et al.

popular high-level programming languages like C++11 and Java.
The DRF model is appealing for programmers because DRF guar-
antees a sequentially consistent (SC) execution for data-race-free
programs [7], a guarantee often called “SC for DRF”. At the same
time, the DRF model admits compiler and hardware optimizations
that reorder and optimize memory accesses between (and, in certain
cases, across) synchronization. Such reorderings and optimizations
are invisible to the programmer, because they cannot be observed
without a data race.

One might hope that the simplicity of “SC for DRF” might extend
naturally to memory persistency. Unfortunately, DRF is insufficient
to define semantics for the PM state that recovery code may observe
after a failure. The fundamental problem is that failures, such as
operating system crashes, hardware lockups, or power disruptions,
may occur at any time, and thereby introduce a data race into an
otherwise race-free program: loads performed during recovery in-
herently race with stores before the failure. A failure may interrupt
the atomicity of a critical section, exposing a partial (and possibly
reordered) set of updates to PM to recovery code.

In this paper, we consider how a language-level persistency model
might be specified to provide semantics for the PM state after a
failure. In Section 3, we explore a taxonomy of guarantees that a
language-level persistency model might provide. Stronger guaran-
tees (e.g., failure-atomicity of critical sections) make writing re-
coverable software easier but impose substantial requirements on
the implementation, which entail performance penalties. Weaker
guarantees complicate reasoning about recovery, but provide greater
implementation freedom and performance. The weaker guarantees
relax atomicity of critical sections and instead provide only order-
ing guarantees for individual persists. Ordering individual persists
allows synthesis of higher granularities of atomicity via logging.

Based on our taxonomy, in Section 4, we propose a concrete
model, Acquire-Release Persistency (ARP), to extend the C++11
memory model. We describe how to compile ARP to an existing
ISA-level persistency model [30]. Ideally, the language and ISA per-
sistency models work in concert to enforce only the minimal guaran-
tees required for correct recovery. However, we find that mismatch
between ARP and the ISA-level model lead to extra constraints that
hamper performance. In Section 5, we propose modifications to the
C++11 language, compiler, ISA, and hardware to resolve these mis-
matches, increasing available persist concurrency and scheduling
flexibility. The greater flexibility allows the PM controller to reduce
page miss rates, improving application performance.

In summary:

• We make a case for language-level rather than ISA-level
persistency models.

• We explore a taxonomy of guarantees that a language-level
persistency model might provide.

• We propose acquire-release persistency as an extension to
the C++11 memory model. We demonstrate that writing
applications to ARP rather than the ISA-level persistency
model improves performance by up to 18.5% (8.9% avg.).

• We show that, with small extensions to C++11 and the
ISA-level persistency model, we can eliminate further un-
necessary persist constraints, leading to speedups of up to
33.2% (19.8% avg.).

2 BACKGROUND
In this section we briefly cover relevant background.

2.1 Memory persistency models
PM technologies can maintain recoverable data structures in main
memory. However, to ensure correct recovery, programmers need the
ability to control the order in which stores persist. To this end, mem-
ory persistency models have been proposed, both in academia [14,
25, 41] and in industry [3, 21]. Persistency models provide ISA-level
primitives that programmers can use to communicate the desired or-
der of persists to the hardware. It is the responsibility of the hardware
to ensure that the specified order of persists is enforced.

2.2 Delegated persist ordering
Delegated persist ordering (DPO) is an implementation strategy for
ISA-level persistency models, like the relaxed consistency buffered
strict persistency (RCBSP) model proposed in [30]. DPO implemen-
tations augment the cache hierarchy to record dependencies among
stores to PM and later communicate these stores and the depen-
dencies among them to the PM controller. For relaxed consistency
models, recording dependencies among stores involves recording not
only the stores themselves but also the fences that order the stores.
All recorded stores and fences are orchestrated to drain into the write
queue at the PM controller in an order legal with respect to the per-
sistency model. The responsibility of persisting the stores is left with
the PM controller. The PM controller is the system component most
aware of the device level characteristics of the PM and hence can
make the best scheduling decisions (e.g., scheduling read-to-write
bus turnarounds [59]).

The effect of draining both stores and fences to the memory
controller is that the fences divide the stores in the write queue
into epochs. The PM controller persists stores respecting the epoch
order (i.e., stores within the same epoch may persist concurrently).
When more persists fall into an epoch, the memory controller enjoys
greater flexibility to make better scheduling decisions [4, 27, 28,
32, 59], resulting in better performance. In Section 5, we show how
to leverage the flexibility of the C++11 memory model to increase
persists per epoch at the PM controller.

2.3 Language-level persistency models
All memory persistency models proposed to date [3, 14, 21, 25, 30,
41] have been specified at the ISA level. These models vary in the se-
mantics they provide. To use these models, programmers must reason
about and annotate their programs with assembly instructions to en-
sure correct persist order. Whereas the challenge of reasoning using
assembly instructions might be mitigated by encapsulating assem-
bly annotations in persistency-model-specific libraries, there is no
easy way for programmers to develop portable recoverable software.
Moreover, without a precise definition of language-level persistency
semantics, otherwise legal compiler optimizations could render data
structures unrecoverable. These challenges are reminiscent of the
motivation for portable language-level memory consistency mod-
els [1]. Similarly, we argue for a language-level persistency model,
so that programmers do not have to reason about ISA-specific as-
sembly code while developing recoverable software.

Language-level persistency ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

2.4 Failure and recovery
A persistency model imposes requirements on the fault-free execu-
tion of a program that writes to PM to ensure that, in the event of
a failure, a programmer can rely on some set of guarantees on PM
state. These guarantees then make it possible to develop recovery
software that can repair data structure inconsistencies caused by
interrupted updates. Past work on ISA-level persistency models has
focused primarily on power failures (since PM state survives power
failure). In this work, we consider fail-stop failures more broadly,
e.g., program, run-time and operating system crashes, and hardware
failures in addition to power failures. Notably, the trivial solution
of providing battery backup to drain in-flight persist operations is
not sufficient to tolerate all fail-stop failures. For example, an OS
crash might expose that the compiler has reordered two persists
and may compromise recovery. (We set aside PM media failures, as
orthogonal mechanisms are required to tolerate these, e.g., [16]).

After a failure, we assume the contents of all volatile state (pro-
cessor registers including program counters, cache contents, volatile
memory) as well as incomplete persists are lost, but the contents of
persistent memory are retained. Recovery software then examines
the persistent data structure, repairing it if necessary, so that normal
operation may resume. In some cases, normal operation may be
able to resume without any recovery. For example, prior work has
demonstrated that wait-free concurrent data structures are inherently
recoverable [24, 38]. We discuss the difficulty of writing recovery
code under various persistency guarantees in Section 3.

2.5 DRF Consistency
Popular high-level programming languages like C++11 and Java
espouse the data-race free (DRF) memory model to enable parallel
programming. One of the key advantages of the DRF memory model
is that, for DRF programs, it allows programmers to reason about
memory access interleaving at the granularity of synchronization-
free regions, rather than individual accesses. The lack of any data
races implies that programmers are assured that the writes in any
synchronization-free region will become visible atomically to other
threads. Compilers exploit this guarantee to perform optimizations
that reorder memory accesses within a region [7], which wouldn’t
be permissible otherwise.

In addition to its sequentially consistent synchronization oper-
ations, C++11 also provides low-level atomics, which allow the
programmer to label individual synchronization operations with
specific memory ordering semantics. A program that uses relaxed
atomics has well-defined memory semantics, but loses the “SC for
DRF” guarantee. That is, programs with low-level atomics do not
necessarily exhibit SC execution [7]. We consider how persistency
models might interact with C++11 programs both with and without
low-level atomics.

3 DESIGN EXPLORATION
In this section, we explore possible approaches to design a language-
level persistency model.

3.1 Atomicity and ordering
A language-level persistency model has to provide programmers
with guarantees on two orthogonal properties: (a) the granularity of

failure-atomic regions (i.e., persists from one region are committed
to PM atomically) and (b) the ordering of these regions. Program-
mers need both these guarantees to write correct recoverable soft-
ware. Figure 1 (a) shows the various options that a language may
choose to provide for each of these guarantees and places existing
academic and industrial proposals for persistent programming within
this taxonomy. The granularity of failure atomicity can vary from an
individual persist (8-byte atomic writes) to a synchronization free
region (code between two synchronization accesses) to an outer criti-
cal section (code between the first lock acquired by a thread until the
thread holds no locks). It is important to note that if a programmer
desires a larger granularity of failure atomicity than what is natively
provided by the language, she can achieve it through undo or write-
ahead logging mechanisms [29]. Furthermore, the language may
guarantee that these atomic units may be ordered sequentially (SC
order) or provide a more relaxed ordering mechanism. For example,
the language may provide sequence points that the programmer can
use to break a thread into epochs. Failure-atomic units within an
epoch are unordered, but epochs are sequentially ordered ([14, 41]).

3.1.1 DRF Persistency?
One might argue that it is natural to extend the SC for DRF con-

sistency guarantee to recovery code that executes after failure. That
is, it would help programmers in writing recovery code to provide a
failure-atomicity guarantee for regions of persists. Such a guarantee
would hide compiler or hardware memory access reordering from
the programmer, and recovery code need only consider memory
states that can arise at synchronization points.

However, arbitrary fail-stop failures make such atomicity chal-
lenging to enforce. If writes may persist from a synchronization-free
region incrementally, recovery code may observe intermediate mem-
ory state within the region, breaking the atomicity guarantee that
is core to the DRF model: recovery code is not guaranteed to ob-
serve sequentially consistent state. Two ways to resolve the conflict
between arbitrary failures and DRF are:

• Enforce atomicity: Programming languages may demand
that the implementation provide a programmer-transparent
mechanism to ensure failure-atomicity (e.g., undo logging
in the hardware or runtime).

• Forego atomicity and provide only ordering: Alterna-
tively, languages may forego guarantees that program re-
gions appear atomic to post-fault recovery code, and instead
guarantee only the relative order of persists, much like ISA-
level persistency models. (Note that, in fault-free execution,
the SC for DRF guarantees still apply).

Since all persists may be externally visible (to recovery code upon
failure), a compiler may not introduce spurious persists or elide exist-
ing ones. Effectively, persistent variables must be treated like volatile
variables in C++11. Next, we explore design alternatives and their
implications for the programmer, compiler, and implementation.

3.2 A Taxonomy of Persistency Guarantees
We use a running example to highlight how alternative guarantees
can be used to ensure recovery correctness. Consider a program with
two shared objects, A and B, each with record fields (R) protected
by a lock (Fig. 1 (b)). Suppose the correctness requirement is that
the fields of each object must be updated atomically with respect to

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada A. Kolli et al.

1. A.lockAcq();
2. A.updateRecordStart();
3. B.lockAcq();
4. B.updateRecordFull();
5. B.lockRel();
6. A.updateRecordFinish();
7. A.lockRel();

Outer
Critical
Section

SFR-3

(e)

(d)

R

R
B

A

(b)

(g)

R

B

A

(a)

C

R C

Epoch
Order

Epoch
Order

13,17,32,33,53,58

Stricter
Ordering

Persist

Epoch
Order Seq. Cst.

More
Atomicity

Sync. Free
Region

Outer
Critical
Section

[8,10]

3,14,21,25,30 [14,25,30,45]

1. A.lockAcq();
2. A.updateCopyStart();
3. B.lockAcq();
4. B.updateCopyFull();
5. B. updatePtr();
6. B.lockRel();
7. A.updateCopyFInish();
8. A.updatePtr();
9. A.lockRel();

SFR-1

SFR-2

1. A.lockAcq();
2. A.updateCopyStart();
3. B.lockAcq();
4. B.updateCopyFull();
5. B. updatePtr();
6. B.lockRel();
7. A.updateCopyFInish();
8. A.updatePtr();
9. A.lockRel();

Program
Order

Program
Order

(f)

1. A.lockAcq();
2. A.updateCopyStart();
3. B.lockAcq();
4. B.updateCopyFull();
5. SeqPt();
6. B. updatePtr();
7. B.lockRel();
8. A.updateCopyFInish();
9. SeqPt();
10. A.updatePtr();
11. A.lockRel();

(c)

Figure 1: (a) Design space of persistency guarantees explored along two dimensions, atomicity and ordering. (b) Two objects (A,B),
each with a record (R) and lock assuming the language provides failure-atomicity of outer critical sections. (c) Two objects (A,B),
each with a record (R), a lock, a shadow copy (C), and a pointer to ensure failure-atomicity assuming the language does not provide
failure-atomicity of outer critical sections. (d) Code and failure-atomic region when the language guarantees sequentially consistent
failure-atomic outer critical sections. (e) Code and failure atomic regions when the language guarantees sequentially consistent failure-
atomic synchronization free regions. (f) Code and orderings when the language guarantees sequentially consistent persists. (g) Code
and orderings when the language guarantees epoch ordered persists.

failures and with respect to other threads. Now, consider code that
acquires the lock for object A, starts modifying it, and then must also
modify B, which it does within a nested critical section (Fig. 1 (d)).
The two locks assure atomicity with respect to concurrent access
from other threads in fault-free execution. The persistency model
must enable the programmer to write code that can recover to a
correct state (i.e., each object to either its initial or final state) in the
event of failure.

For languages that do not guarantee the failure-atomicity of the
entire update of objects A and B, we provide alternative designs
for A and B that rely on shadow logging, shown in Fig. 1 (c). The
update is performed on a shadow copy (C) of the object (rather
than an in-place update in the object itself). Once the shadow copy
has been updated, a pointer is atomically switched to indicate that
the copy is committed. For this approach to be correct with respect
to recovery, the language must guarantee that the pointer switch
persists no earlier than the updates to the shadow copy (assuming
appropriate annotations from the programmer). We next consider
four different sets of guarantees that a language may provide to
enable such recovery. We discuss them in the order of decreasing
constraints on persists.

3.2.1 Seq. consistent, failure-atomic outer critical sections
Description: All the persists from an outer critical section (from

first lock acquire till no locks are held) are guaranteed by the lan-
guage implementation to be failure atomic. Further, different outer
critical sections must persist in sequentially consistent order.

Example: Fig. 1 (d) shows code which updates both objects in
nested critical sections. As the entire outer critical section (from line
1 to 7) is failure-atomic, the condition for correct recovery (each
element is individually atomically updated) is trivially met.

Programmability: The idea of sequentially consistent failure-
atomic outer critical sections was first explored by Chakrabarti [8,
10]. The central appeal of this guarantee is that, by ensuring failure-
atomicity of entire critical sections, the state of persistent memory
post-recovery always reflects a state that would have arisen in fault-
free execution and when no thread holds a lock. When no locks are
held, shared data structures are always in a consistent state. So, no
recovery code is needed; the programmer is assured that her data
structures are always in a consistent state post-recovery.

Implementation: Chakrabarti [10] provides a software undo-
logging mechanism to ensure failure-atomicity of critical sections.
Note that the software logging occurs outside of the language’s
memory model and must be implemented by the runtime system
using ISA-level memory persistency.

Compiler optimizations: Since critical sections persist atom-
ically, any compiler optimizations valid within a critical section
under fault-free execution remain valid; optimization is unaffected
by the persistency guarantee.

Challenges: While failure-atomic critical sections provide an
intuitive guarantee, several challenges must be addressed:

(1) Guarantees for programs without critical sections: This ap-
proach provides no semantics for programs without critical
sections (e.g., single-threaded programs). It is unclear how
system calls within critical section should be addressed.

(2) Implementation complexity: Overlapping critical sections
introduce considerable complexity to the logging and log-
pruning mechanisms. They may cause cyclic dependencies,
which must be carefully resolved [10].

(3) Large critical sections: Providing atomicity guarantees over
large regions increases the forward progress loss upon a fail-
ure. Large and nested critical sections introduce hardware

Language-level persistency ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

logging challenges similar to those seen with unbounded
transactional memory designs [2].

(4) Alternatives to logging: Many data structures can be made
recoverable without logging (e.g., wait-free data structures [24,
38]). Furthermore, logging can often be optimized for spe-
cial cases to improve efficiency (e.g., static transactions [29]).
A generic, programmer-transparent logging mechanism will
miss these optimization opportunities.

3.2.2 Seq. consistent, failure-atomic synchronization free regions
Description: All persists from a synchronization free region (SFR)

are guaranteed to be failure-atomic. Regions must persist in a se-
quentially consistent order. An SFR is defined as code on the same
thread separated by two synchronization accesses, or two system
calls, or a synchronization access and a system call [34, 40, 47]. For
transaction-based code, the outer critical section is from transaction
begin to transaction end. For nested transactions, we assume that
inner transactions are flattened into a single outer transaction.

Example: As the modifications to object A span SFRs (due to
nested locking), we must use shadow logging to achieve failure-
atomicity (Fig. 1 (c)). Fig. 1 (e) shows the code required to ensure
that the pointer switch does not persist earlier than the shadow copy
update under sequentially consistent failure-atomic SFRs. For object
B, since the shadow copy update and pointer update are in the same
SFR (SFR-2), the update is failure-atomic. For object A, since the
pointer update cannot persist earlier than the partial copy update in
SFR-1 (program order of SFRs) or the partial copy update in SFR-3
(failure-atomicity of an SFR), failure-atomicity is preserved.

Programmability: For transaction-based programs or programs
without overlapping critical sections, SFRs and critical sections are
the same. However, for programs which have overlapping critical
sections (as in Fig. 1 (e)), a critical section may span multiple SFRs.
For such programs, partially completed critical sections may be
visible post-recovery. While developing recovery software, the pro-
grammer must be cognizant of this possibility. If failure-atomicity of
outer critical sections is desired, the programmer must add roll-back
mechanisms for partially completed critical sections.

Implementations: Various logging proposals can provide failure-
atomicity for SFRs. However, most focus only on transaction-based
code [13, 32, 53, 58]. While transactions simplify logging, they are
not general enough to be provided as a language guarantee [8].

Compiler optimizations: Since SFRs persist atomically, opti-
mizations within an SFR remain valid.

Challenges: Several challenges remain under this model:

(1) Large SFRs: Large SFRs pose the same challenges as large
outer critical sections, as discussed above.

(2) Alternatives to logging: As with failure-atomic critical sec-
tions, the implementation must provide a generic logging
mechanism that will miss data-structure-specific optimiza-
tion opportunities.

3.2.3 Seq. consistent persists (SCP)
Description: Individual stores persist atomically. All stores persist

in sequentially consistent order.
Example: Fig. 1 (f) shows the code required to ensure that the

pointer switch does not persist earlier than the shadow copy update
under SCP. Since the shadow copy update precedes the pointer

switch in program order (lines 4-5 and 7-8 in Fig. 1 (f)), failure-
atomicity of the object is preserved.

Programmability: Since only the atomicity of individual persists
is guaranteed, the programmer must implement failure-atomicity
mechanisms if larger granularities are required. The programmer
can rely on the sequentially consistent order of persists while imple-
menting the logging mechanisms.

Implementation: Under SCP, the implementation is no longer
required to provide a logging mechanism; it is expected that the pro-
grammer will implement mechanisms needed for failure-atomicity
in software. Persists drain incrementally to PM, but, the compiler
and hardware must ensure that they drain in program order. Under
some ISA-level persistency models, stores may need to be flushed
individually with explicit instructions [3, 21] or by inserting fence in-
structions after each store [14, 30]. Hardware can also guarantee SCP
via hardware logging [25] or via transparent checkpointing [45].

Compiler optimizations: A consequence of the sequential con-
sistency requirement on stores is that compiler or hardware opti-
mizations that reorder persistent writes are no longer allowed. An
implementation may provide atomicity over some regions to allow
intra-region reordering, as in speculative consistency implementa-
tions [6, 9].

Challenges: While SCP does not require any annotations to en-
sure persist order, it entails the following challenges:

(1) In-program logging: The programmer must implement
failure-atomicity mechanisms. However, she is also free
to leverage data-structure specific recovery optimizations.
Notably, some (e.g., wait-free) data structures require no
logging at all [24, 38].

(2) ISA-level persistency mismatch: The ISA-level persistency
models proposed to date require persistent stores to be
flushed individually and fence/barrier instructions to en-
force order. For such ISAs, the compiler must insert copious
(and performance-sapping) annotations.

(3) Lost compiler optimizations: Straight-forward implementa-
tion of SCP precludes all compiler and hardware optimiza-
tions that reorder writes.

(4) Performance: Prior works [14, 41] observe that preserv-
ing program order is expensive (due to high PM access
latencies) and often unnecessary. Instead they argue for an
epoch-based ordering of persists, where programmers use
special barrier instructions to indicate required ordering.

3.2.4 Epoch ordered persists (EOP)
Description: This guarantee is derived from ISA-level epoch per-

sistency models [14, 25, 41] proposed in prior research. Special
sequence point (SP) annotations may be used by a programmer to
break a thread into epochs; persists across epochs are ordered, but
may be reordered within epochs. Persists on different threads are
still governed by synchronization order.

Example: Since the shadow copy update is ordered before the
pointer switch via an intermediate SP (lines 5 and 9 in Fig. 1 (g)),
the failure-atomicity of each object is ensured.

Programmability: Similar to programming under SCP, program-
mers may have to implement failure-atomicity mechanisms in soft-
ware. However, the programmer may no longer rely on program

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada A. Kolli et al.

order, but instead must issue explicit sequence points when order-
ing guarantees are required, complicating the implementation of
recoverable data structures.

Compiler optimizations: The compiler (and hardware) may re-
order persists within epochs (e.g., between two sequence points), but
may not allow persists to reorder across epochs.

Implementation: Many approaches to implement epoch-persistency
models in hardware have been proposed [14, 25, 30]. Any of these
satisfy the requirements of EOP.

Challenges: While EOP alleviates many challenges that arise
under SCP, some challenges remain:

(1) In-program logging: The programmer must use explicit
sequence points to ensure recovery correctness rather than
simply relying on program order.

(2) Compiler optimizations: The compiler may not reorder
persists across sequence points.

3.3 Discussion
Each of the four sets of guarantees analyzed in the previous section
have their own advantages and disadvantages. Ignoring performance
concerns, programmers would clearly want to choose sequentially
consistent failure-atomic outer critical sections as the guarantee that
languages should provide, as it requires no logging from the program-
mer. Instead the compiler, runtime or hardware are responsible for
providing failure-atomicity of critical sections. However, indications
from hardware vendors (e.g., Intel [21], ARM [3]) are that future
processors are only going to guarantee the atomicity of individual
persists. Because compiler or runtime logging mechanisms [10] re-
quired to ensure failure-atomicity must be general, they cannot take
advantage of data-structure-specific optimizations (e.g., wait-free
recoverable data structures [24], static transactions [29]).

Given that all the other sets of guarantees would require pro-
grammers to implement some in-program logging, we argue that the
language should provide the most fundamental atomicity guaran-
tee (individual persists); software solutions (e.g., in expert-crafted
libraries) for larger atomic regions can be layered on top to reduce
programmer burden. In the rest of this paper, we focus on analyzing,
designing, and evaluating implementations of SCP and EOP.

4 ACQUIRE-RELEASE PERSISTENCY
We next propose acquire-release persistency (ARP), a persistency
model for C++11 based on the EOP approach.

4.1 Definition
We formally define ARP as an ordering relation over memory events—
loads and stores on data variables, acquire and release operations on
atomic variables—and sequence points. By “thread”, we refer to ex-
ecution contexts—cores or hardware threads. We use the following
notation:

• Ai
x: An acquire operation from thread i on atomic variable x

• Ri
x: A release operation from thread i on atomic variable x

• SPi: A sequence point from thread i
• Mi

x: A data load/data store/acquire/release/sequence point
by thread i (on variable x)

We use the following notation for ordering dependencies between
memory events:

• Mi
x

po−→ Mi
y: Mi

x is program ordered before Mi
y

• Ri
x

sw−→ A j
x: A release operation on atomic variable x in

thread i “synchronizes with” [7] an acquire operation on
atomic variable x in thread j.

We reason about an ordering relation over all memory events,
persist memory order (PMO), denoted as ≤p. An ordering relation
between stores in PMO implies the corresponding persist actions are
ordered; that is,

A ≤p B → B may not persist before A.
Memory events can be ordered in PMO using a combination of
intra-thread and inter-thread ordering relations. Programmers can
use the following guarantees to ensure a desired event order in PMO.

Ensuring intra-thread ordering: Based on the ordering guarantees
provided by the language (via sequence points 3.2.4) intra-thread
ordering can be achieved as follows:

Sequence point guarantee: If two memory events on the same
thread are separated by a sequence point in program order, then they
are ordered in PMO. Formally:

Mi
x

po−→ SPi po−→ Mi
y → Mi

x ≤p Mi
y (1)

Note that we use the existing std::atomic_thread_fence in-
struction in C++11 as our sequence points.

Ensuring inter-thread ordering: Inter-thread ordering is achieved
using the “synchronizes with” [7] relationship between a release and
a subsequent acquire operation.

Synchronization guarantee: If two memory events are ordered via
synchronization accesses, then they are ordered in PMO. Formally:

Mi
x

po−→ Ri
s

sw−→ A j
s

po−→ M j
y → Mi

x ≤p M j
y (2)

Furthermore, PMO is a transitive (and irreflexive) ordering relation-
ship, that is:

Transitivity guarantee: If A is ordered before B in PMO and B
is ordered before C in PMO, then A is ordered before C in PMO.
Formally:

Mi
x ≤p M j

y ∧M j
y ≤p Mk

z → Mi
x ≤p Mk

z (3)

A programmer can use the above three guarantees to express
the desired order of persists. It is the responsibility of the compiler
to translate these constraints to machine code using the ISA-level
persistency model, and it is the responsibility of the hardware to
enforce these constraints. Enforcing constraints on persists is expen-
sive (due to the high access latencies of PMs), so, it is important to
co-design language-level persistency models, ISA-level persistency
models, and hardware implementations such that only the necessary
constraints are enforced.

4.2 Mapping to ISA-level persistency
While ARP can be translated to any epoch-based ISA-level persis-
tency model [14, 21, 25, 30, 41], in this paper, we provide mappings
to the state-of-the-art RCBSP model [30]. One of the advantages of
RCBSP is that it is a strict persistency model; that is, if the compiler

Language-level persistency ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

ARP memory events RCBSP mapping Ideal mapping

Data load/store on addr a ldr/str a; ld/st a;
Seq. Pt. (SP) dmb ish; full;
Store Release on addr a dmb ish; str a; rel a;
Load Acquire on addr a ldr a; dmb ish; acq a;

Table 1: Mapping from ARP memory events to RCBSP [30],
which is based on ARMv7a. Ideal mappings from ARP are for
an ISA that supports release consistency.

St p_C

St p_A

St p_B

Acq

Rel

RCBSP constraints

A

Ideal constraints

CB

A

B

C

RCBSP constraints

A

Ideal constraints

B

A

B

p_thread

St v_X

St v_Y

v_thread

St p_A

St p_B

Acq

p_thread

(b)(a)

Figure 2: (a) Unnecessary constraints enforced due to hard-
ware being oblivious to fence directions. (b) Unnecessary con-
straints enforced due to lack of language-level semantics to ex-
press volatile fences.

ensures that two stores are ordered by the ISA-level consistency
model, then the corresponding persists are ordered as well.

Table 1 lists four important kinds of memory events in ARP and
how they map to the machine ISA under RCBSP. Non-synchronization
data accesses translate to regular loads and stores. A sequence point
is translated to a full fence instruction (DMB ISH in ARM). A store
release operation is translated to a full fence followed by a regular
store instruction. A load acquire operation is translated to a regular
load followed by a full fence instruction.

4.3 Fence directionality
We next discuss two sources of unnecessary persist constraints that
arise when mapping ARP to RCBSP. The first arises because of the
differences between the underlying consistency models of ARP and
RCBSP. While ARP (and the C++11 memory model) is based on
release consistency [19], RCBSP is based on the more conservative
ARMv7 consistency model. Hence, RCBSP is oblivious to uni-
directional acquire and release operations that are available in C++11
and ISAs based on release consistency (e.g., ARMv8).

ARP allows programmers to use uni-directional synchronization
operations (acq and rel) to order memory accesses. Both acq and
rel operations are usually used to ensure memory accesses within
a critical section do not “leak out”, however, they allow memory
accesses from outside the critical section to “leak into” the critical
section. However, as ARMv7 does not distinguish between an acq
and a rel, compilers are forced to use a full fence (DMB ISH [48],
which precludes memory access reordering in both directions) for
both of them. Figure 2 (a) shows the unnecessary ordering constraints
caused by using a full fence instead of uni-directional acq or rel.
A thread performs stores to three persistent addresses, A, B, and

Benchmark Fence directionality Volatile annotations

cq 1.4× 2.1×
pc 1.9× 5.7×
sps 1.7× 2.9×
TATP 2.7× 3.6×
TPCC 1.6× 13.1×
YCSB_A 1.8× 5.9×

Table 2: Increase in persists per epoch when the memory con-
troller is aware of fence directionality and volatile fences.

C. The stores to A and B are separated by an acq, while stores to
B and C are separated by a rel. As per the semantics of ARP, all
three of A, B and C are considered concurrent and may execute
and persist in any order. However, replacing the acq and rel with
a full fence requires that persists to A, B, and C are serialized.
So, persist order is overconstrained by RCBSP. Table 2 shows the
increase in persists per epoch possible by distinguishing the required
directionality of a fence. Such over-constraints on persist order are
not specific to RCBSP, but arise whenever the ISA-level persistency
model is stricter than the language-level persistency model.

Table 1 also shows the mapping of the four C++11 memory events
to an ISA that provides uni-directional acquire and release operations
(e.g., ARMv8). A store release is translated to a corresponding
release instruction and a load acquire to an acquire instruction.

4.4 Conflating sync. with recoverability
The second set of unnecessary constraints are caused by the lack of
mechanisms to allow programmers to annotate constraints that are
required for concurrency control, but not for recoverability. Consider
the case in Figure 2 (b), where two unrelated threads (p_thread
and v_thread) issue memory accesses. RCBSP serializes persists
and fences from all cores into the write queue at the PM controller.
So, if the acq from v_thread happens to arrive at the PM controller
between the two persists requests from p_thread, then the PM con-
troller will place them in different epochs, introducing an unneces-
sary constraint.

Ideally, we would like the hardware to enforce only constraints
required for recovery, however, accurately tracking these persist
constraints over multiple cores is challenging. Instead, we observe
that programmers can identify acq and rel memory operations that
have no persist semantics (i.e., they are required for concurrency
control but were never meant to order persists). For example, some
threads may never issue any persist operations and communicate
only among themselves [59]. With minor extensions to the C++11
memory model, programmers can annotate acq and rel that do not
have persist semantics as non-persistent or “volatile”. And, with
appropriate extensions to the machine ISA, this information can
be passed to hardware, avoiding unneeded persist constraints to
improve performance. Table 2 shows the increase in persists per
epoch possible by making sure that volatile acq and rel are not sent
to the PM controller.

Discussion: Mitigating the two sources of unnecessary persist
constraints allows more persists to join each epoch. Larger epochs
in turn provide the PM controller greater flexibility to schedule and
batch persist operations, improving persist concurrency, leading to
substantial performance gains since PM write latencies are so high.

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada A. Kolli et al.

Algorithm 1 Epoch allocation in PM controller
Input: type of barrier barrierType, persists S, wait for acquire flag waitForAcq

1: if waitForAcq && barrierType == p_acq then
2: epoch = epoch + 1
3: waitForAcq.reset()
4: else if barrierType == p_rel then
5: waitForAcq.set()
6: else if barrierType == p_full then
7: epoch = epoch + 1
8: else
9: S.epoch = epoch

10: end if

5 EXTENDING RCBSP FOR ARP
We extend RCBSP [30] to support ARP with unidirectional and
volatile fences. The key change to the RCBSP hardware is to allow
a single persist buffer entry to represent both a persist and a fence
for store-release and store-fence operations. However, the PM con-
troller’s epoch-based scheduling mechanism must be redesigned to
account for the fence-directionality that ARP provides.

5.1 Enforcing unidirectional fences
In RCBSP, the PM controller tracks persists in epochs and main-
tains a current epoch number, to which newly arriving persists are
assigned. The PM controller drains persists in epoch order. Since
RCBSP only supported full fences, the PM controller increments
the current epoch number upon each fence. We extend RCBSP to
support ARP’s unidirectional fences by changing the algorithm for
incrementing the current epoch number. The current epoch number
is incremented only: (1) upon receiving a full fence, or (2) upon
receiving the first acq after a rel. A full fence always creates a new
epoch, since it orders all persists that precede/follow it. However, the
respective directionalities of an acq and a rel mean that only a (rel +
acq) combination disallows persists prior to the rel from reordering
with persists after the acq. Successive acqs and rels do not impact
the current epoch number. Algorithm 1 provides pseudo-code for the
epoch management algorithm, which uses the waitForAcq flag to
indicate whether the next acquire operation should open a new epoch.
We illustrate the assignment of epochs for the following scenarios:

Conflicting acquire-release blocks: Figure 3 (a) illustrates two
threads updating a conflicting address P_X in persistent memory.
Core-0 acquires a lock that resides in volatile memory V _A0 (L0

A),
sets the persistent location P_X (S0

X), and then releases the lock (S0
A).

It then sets a persistent location P_Y (S0
Y) after releasing the lock.

Core 1 then proceeds to acquire lock V _A0 (L1
A) and updates location

P_X (S1
X). It then releases the lock and sets persistent location P_Z

(S1
Z). Assume that the current epoch number is 0 at the start of this

code sequence and is incremented to 1 upon the first acq.
The dependency tracking mechanism at the persist buffers pre-

serves the happens-before ordering between the release of lock S0
A

by core-0 and acquire of lock L1
A by core-1, and drains the stores

to the PM controller in the order shown in Figure 3 (a). At the PM
controller, upon receiving the lock release by core-0 rel S0

A, the PM
sets waitForAcq, indicating that the next acquire must initiate a new
epoch. The next persist, S0

Y , is still assigned to ongoing epoch 1.
Upon receiving p_acq L1

A by core-1, because waitForAcq is set, the
current epoch is incremented to 2. Subsequent persists S1

X and S1
Z

arrive and are assigned to epoch 2. Note that persists lying between a
release and subsequent acquire may join either epoch. To minimize

re-ordering complexity, we assign these persists to the prior epoch.
The persists in epoch 2, S1

X and S1
Z , cannot be re-ordered with the

persists in epoch 1, S0
X and S0

Y . As a result, the shared address X
is updated in the persistent memory in the order the stores were
executed.

Interleaved acquire-release blocks: The example in Figure 3
(b) depicts two threads accessing separate regions of persistent mem-
ory by acquiring distinct locks. As in the previous example, the
PM controller increments the epoch number to 1 upon receiving
acq L0

A0 and resets the waitForAcq flag. As core 1 then acquires a
different lock, acq L1

A1 has no dependency in the persist buffer and
drains immediately to the PM controller. Since there has been no
release since the last acquire (waitForAcq is clear), acq L1

A1 does not
increment the epoch number. Upon receiving rel S1

A1 from core 1,
the waitForAcq flag is set. The subsequent release operation rel S0

A0
has no effect; the arriving persist S0

Y is assigned to epoch 1. Note
that the persists within both critical sections are concurrent and join
the same epoch.

5.2 Extensions for volatile annotations
To allow programmers to annotate acq and rel as being “volatile-
only”, we propose to add an argument to C++11 sync (std::atomic)
variable accesses. In addition to the memory order argument for
atomic accesses (std::memory_order), we introduce a new argu-
ment that identifies if the memory access has persistent semantics
(bool is_persistent). By default, sync accesses are labeled as
persistent (is_persistent = true). For instance, the new defini-
tion of a load on an atomic variable (x), is then:

x.load(std::memory_order,
bool is_persistent = true);

This new load operation is synchronized with other variables in
the program as per the specific memory order, however, the newly
introduced is_persistent flag is used to inform the hardware
whether the load operation is intended to have any impact on the
order of persists. Similarly, in the machine ISA, we add “volatile”
(non-persistent) versions of acq, rel, and fence instructions, allowing
the compiler to map persistent/volatile sync accesses to the ISA.
The persistent and volatile variants of acq, rel, and fence have the
same behavior, except that the volatile versions are not sent to persist
buffers and have no effect on subsequent persists.

6 EVALUATION
We study the relative performance of five different persistency mod-
els: (a) SCP (from section 3.2.3), (b) ISA-level RCBSP, (c) our
hardware design for ARP, (d) our hardware design for ARP with
volatile annotations (ARP+VA), and (e) an idealized performance
limit model (Ideal). Under the ideal case, we artificially maintain a
constant 64 (size of write queue) persists per epoch to estimate an
upper bound on performance. Note that, under Ideal, data structures
are not recoverable in the event of failure; we include it only as a
limit study.

Configuration: We model persistent memory using the timing
model from Xu et al. [56] to represent phase-change memory op-
erating at 533MHz with a 1KB row buffer. We model a persistent
memory controller with a 64-entry write queue and schedule persists

Language-level persistency ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

a) Back-to-back acquire-release blocks b) Interleaved acquire-release blocks

Core 0

L0
A: V_A0.ld(mem_order_acq)

S0
X: St P_X = x

S0
A: V_A0.st(1,mem_order_rel)

S0
Y: St P_Y = y Core 1

L1
A: V_A0.ld(mem_order_acq)

S1
X: St P_X = x

S1
A: V_A0.st(1,mem_order_rel)

S1
Z: St P_Z = z

Core 0

L0
A0: V_A0.ld(mem_order_acq)

S0
X1: St P_X1 = x1

S0
Xn: St P_Xn = xn

S0
A0: V_A0.st(1,mem_order_rel)

S0
Y: St P_Y = y

Core 1

L1
A1: A1.ld(mem_order_acq)

S1
Z: St Z = z

S1
A1: A1.st(1,mem_order_rel)

Ordering at PM
controller

L0
A: p_acq

S0
X

S0
A: p_rel

S0
Y

L1
A: p_acq

S1
X

S1
A: p_rel

S1
Z

Ordering at PM
controller

L0
A0: p_acq

S0
X1

L1
A1: p_acq

S0
Xk,S

1
Z

S1
A1: p_rel

S0
Xn

S0
A0: p_rel

S0
Y

Epoch 2Epoch 1

Figure 3: Allocation of epochs for unidirectional fences in the PM controller.

Core

8-cores, 2GHz OoO
6-wide Dispatch, 8-wide Commit
40-entry ROB
16/16-entry Load/Store Queue

I-Cache 32kB, 4-way, 64B
1ns cycle hit latency, 2 MSHRs

D-Cache 64kB, 8-way, 64B
2ns hit latency, 6 MSHRs

L2-Cache 8MB, 16-way, 64B
16ns hit latency, 16 MSHRs

Memory controller 64/32-entry write/read queue,
(DRAM, PM) 1kB row buffer
DRAM DDR3, 800MHz
PCM 533MhZ, timing from [56]

Table 3: Simulator Specifications.

using an FR-FCFS policy [46], subject to persist ordering constraints.
We extend our compiler’s std::atomic implementation to support
our C++11 extensions with volatile annotations in the ARP+VA
model. Table 3 provides a summary of our system configuration.

Benchmarks: We study a suite of three PM-centric multithreaded
micro-benchmarks, described in Table 4. Our Concurrent Queue
(cq) is similar to that of Pelley [41], Array Swap (sps) is similar
to that in NV-Heaps [13], and Persistent Cache (pc) is a persistent
hash table similar to [25]. In addition, we also consider three write-
intensive benchmarks. TATP [39] and TPCC [39] execute “update
location” and “new order” transactions, respectively, on top of a
transactional storage manger designed for persistent memory, similar
to [29]. YCSB A [15] (YCSB_A) is a write intensive key-value store
workload with 50% reads and 50% updates. It runs on a custom
key-value store that has been designed to support all five of our
persistency models.

We select these benchmarks specifically because of their PM
write-intensiveness. As a measure of “write-intensive”-ness, we re-
port the number of persists issued per 1000 cycles (PKC) in Table 4.

Benchmark Description PKC

Conc. queue Insert/Delete entries in a queue 17.4
Persistent Cache Persistent hash table 22.7
Array Swaps Random swaps of array elements 41.8
TATP Update location trans. in TATP [39] 30.8
TPCC New Order trans. in TPCC [49] 11.7
YCSB_A YCSB Workload A [15] 17.4

Table 4: Benchmarks. PKC = persists per 1000 cycles

Array swap is our most write-intensive micro-benchmark while con-
current queue is the least, so we expect them to show the most and
least sensitivity to different persistency models. Similarly, TATP
and TPCC are respectively the most and least write-intensive bench-
marks.

All workloads run with eight worker threads that update the un-
derlying persistent data-structure. In all the benchmarks, we run an
additional work allocator thread [50] and two volatile antagonist
threads to evaluate the proposed volatile annotations. Each worker
thread has a 64-entry work queue that resides in the volatile memory.
The work allocator thread distributes tasks from a shared work queue
to the eight worker threads. Since the work queue resides in volatile
memory, the acquire and release fences required to order work queue
accesses are volatile fences. This work queue structure represents
the request dispatch of a typical network application and illustrates
how threads that issue no accesses to persistent memory can never-
theless impact persist performance indirectly due to synchronization
operations. Each workload also includes two antagonist threads to
simulate the traffic of background threads polling for events. The
two threads contend on a lock to a shared counter in volatile mem-
ory, increment it, and release the lock. These antagonists represent
synchronization activity by unrelated application threads and do not
interact directly with the eight worker threads.

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada A. Kolli et al.

0

0.2

0.4

0.6

0.8

1

1.2

cq pc sps geomean TATP TPCC YCSB_A geomean

SCP RCBSP ARP ARP+VA Ideal

Micro-benchmarks Benchmarks

Figure 4: Execution time normalized to SCP: The graph com-
pares execution time of ARP and ARP+VA with SCP and
RCBSP for micro-benchmarks and benchmarks.

Benchmark SCP RCBSP ARP ARP+VA

cq 1 1.7 2.3 3.5
pc 1 2.2 3.9 12.3
sps 1 4.6 8.1 13.2
TATP 1 1.7 4.5 6.0
TPCC 1 1.7 2.7 22.1
YCSB_A 1 2.1 3.8 12.5

Table 5: Persists per epoch

6.1 Performance comparison
We first present the opportunities ARP and ARP+VA have to improve
performance and then show the realized gains.

Persists per epoch: Table 5 shows the persists per epoch un-
der each persistency model. More persists per epoch allow greater
reordering opportunity and better persist scheduling at the PM con-
troller. ARP exploits unidirectional acquire and release operations
to reduce the number of epochs at the PM controller and increase
persists per epoch. ARP provides a 3.9× and 1.8× increase in persists
per epoch relative to SCP (which by definition places each persist
in its own epoch) and RCBSP, respectively. Further, ARP+VA dis-
tinguishes volatile and persistent fences using programmer inserted
volatile annotations and achieves a 9.9× and 4.6× increase in persists
per epoch relative to SCP and RCBSP.

Micro-benchmarks: The left set of bars in Figure 4 contrast the
execution time for micro-benchmarks under RCBSP, ARP, ARP+VA,
and Ideal ordering models normalized to SCP. Array swap (sps) gains
the most from ARP+VA with 51.7% performance improvement over
SCP and 33.2% over RCBSP. As evident from the ideal result, ar-
ray swap is sensitive to the increase in persists per epoch. Concur-
rent queue (cq) gains the least. In this microbenchmark, entries are
pushed or popped from the queue serially by the worker threads;
there is limited thread concurrency. As a result, it is not sensitive
to the number of persists per epoch and gains little performance
even under the ideal case. In fact, due to inopportune read-write bus
turnarounds, performance with ARP+VA slightly degrades relative
to RCBSP. Overall, ARP+VA improves micro-benchmark execu-
tion time by 32.4% as compared to SCP and 21.2% as compared to
RCBSP.

0

0.2

0.4

0.6

0.8

1

1.2

cq pc sps geomean TATP TPCC YCSB_A geomean

SCP RCBSP ARP ARP+VA Ideal

Micro-benchmarks Benchmarks

Figure 5: Page miss rate normalized to SCP: Lower page miss
rate in the PM controller implies better persist scheduling.

Benchmarks: Figure 4 also contrasts the execution time of the
TATP, TPCC, and YCSB_A benchmarks under each persistency
model. YCSB_A is the most sensitive, gaining 17.8% and 29.2% per-
formance, respectively, under ARP and ARP+VA. Further, ARP+VA
improves execution time of TATP by 25.5%, and TPCC by 23% as
compared to SCP. It is interesting to note that unidirectional fences
in ARP do not provide substantial performance gain over RCBSP in
TATP even though the ideal case outperforms SCP by 70.2%. TATP
includes numerous small critical sections containing full fences to
log values before updating the persistent database, limiting potential
performance gains. The majority of the gain for TATP is achieved
by annotating volatile fences explicitly. Overall, ARP+VA improves
execution time of the three benchmarks by 24.3% and 15.5% over
SCP and RCBSP respectively.

6.2 Persist scheduling
Finally, we report the impact of PM scheduling policies on the page
miss rate of the PM controller in Figure 5. The PM controller’s
FR-FCFS policy seeks to maximize page hits within each persistent
memory bank. As described earlier, increasing the number of per-
sists per epoch improves the scheduling flexibility available to the
controller. Owing to the unidirectional fences in ARP, the page miss
rate drops on average by 17.9% relative to SCP and 8.2% relative
to RCBSP. This improvement is the result of the increase in the
number of persists that can be scheduled to write to different PM
banks concurrently. ARP+VA further relaxes persist ordering con-
straints by distinguishing volatile and persistent fences, achieving a
further 13.0% improvement in page miss rate relative to ARP. The
ideal model lowers page miss rate by 76.3% over SCP, indicating
the upper bound on PM bank-level parallelism available in these
workloads. However, it should be noted that this model does not
maintain ordering between the persists and data structures are not
recoverable in the event of failure.

7 RELATED WORK
We discuss related work on future system support for PM.

Software-based persistency solutions: A variety of works offer
interfaces for programming persistent data structures. NV-Heaps [13]
and Mnemosyne [53] offer abstractions for building persistent ob-
jects using a set of primitives like memory allocation and atomic

Language-level persistency ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

sections. REWIND [11] proposes a user-mode library that can di-
rectly perform transactional updates to underlying persistent data
structures. SCMFS [55] and Aerie [52] propose file systems for
storage-class memory. Atlas [10] provides durability semantics for
lock-based code. It employs undo-logging to provide atomicity of
updates in FASE, the failure atomic critical sections. Our work adds
persist semantics to the language memory model and facilitates
portability of these software proposals.

Hardware-based persistency solutions: Several works extend
ISAs with epoch-based abstractions and epoch barriers to order per-
sists. Pelley et al. [41] proposes memory persistency models closely
associated with hardware consistency models that allow program-
mers to describe persist order constraints. BPFS [14] uses epoch bar-
riers to divide program execution into different epochs; stores within
an epoch are concurrent while those in different epochs persist in or-
der. Joshi et al. [25] proposes efficient persist barriers that minimize
the number of cache line write-backs on the critical path. HOPS [36],
like DPO [30], extends the cache hierarchy to separately enforce the
ordering constraints between persists from their respective durability
constraints. Izraelevitz et al. [24] provides an automatic transforma-
tion technique for non-blocking data structures to convert them to
recoverable data structures under various persistency models. Our
work is instead focused on exploring the design space for persistent
memory programming primitives at the language level and designing
hardware to implement these primitives. Bhandari et al. [5] show that
write-through caching sometimes provides better performance than
write-back caching. Kiln [58], LOC [33], and ATOM [26] provide a
storage transaction interface (providing atomicity, consistency and
durability) to PM, wherein the programmer must ensure isolation.
Our work builds on delegated ordering [30], which seeks to increase
overlap between program execution and persist operations.

Ordering at the PM controller: Doshi et al. [17] propose a
non-intrusive PM controller that provides atomicity of persistent
memory transactions. It builds a victim cache to hold the evictions
from caches and a redo-logging mechanism to provide atomicity.
FIRM [59] proposes persist-aware memory scheduling to improve
bank-level parallelism for persistent updates. Other works, such
as [32, 44, 60], optimize resource allocation at PM controller for
application fairness while maintaining persist order guarantees. Our
work may compose with their proposals, exposing greater scheduling
freedom from the language memory model to the memory controller.

Periodic checkpoint-based solutions: ThyNVM [45] proposes
a checkpointing mechanism to provide crash consistency support.
ThyNVM uses dynamically adaptable checkpoint granularity and
pipelining to improve checkpointing efficiency. Survive [35] is a
novel DRAM architecture for efficient checkpointing in systems
with PM.

PM write endurance and latency: Other works focus on other
aspects of PM devices, such as scalability or energy savings. Some
works [31, 61] seek to replace DRAMs with PCM-based memories
to improve capacity scalability while addressing challenges like write
endurance and longer write latency. Other works, such as [42, 43], ad-
dress write endurance challenges through wear-leveling techniques,
while [12, 20, 56, 57] accelerate writes to the PM. These important
concerns are orthogonal to our focus.

Other: A group of studies considers persistent memory in the
context of systems with persistent caches, i.e., stores become durable
as soon as they execute. Cache persistence can be achieved using
non-volatile devices [54, 58], by ensuring that a battery backup is
available to flush the contents of caches to PM upon power fail-
ure [37, 38], or by not caching PM accesses [54]. Integrating non-
volatile devices and high-perfor-mance logic poses manufacturability
challenges. It is unclear if mechanisms that flush the cache upon
power failure are viable for systems with large caches. Our work
assumes volatile cache hierarchies.

8 CONCLUSION
Past work requires programmers to reason about ISA-level persis-
tency models to develop recoverable software for persistent mem-
ory systems, hurting software portability. We examined extending
the language-level memory model to provide ordering guarantees
on persists. We presented a taxonomy of differing guarantees that
a language-level persistency model might provide and proposed
acquire-release persistency, a language level persistency model for
C++11. We then co-optimized ARP with an underlying ISA-level
persistency model, RCBSP, to minimize the number of persist con-
straints the PM controller must enforce, substantially increasing PM
bank-level parallelism and performance.

9 ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their valu-
able feedback. This work was supported by ARM and the National
Science Foundation under the award NSF-CCF-1525372.

REFERENCES
[1] Sarita V. Adve and Kourosh Gharachorloo. 1996. Shared Memory Consistency

Models: A Tutorial. Computer 29, 12 (Dec. 1996), 66–76. https://doi.org/10.
1109/2.546611

[2] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiserson,
and Sean Lie. 2005. Unbounded Transactional Memory. In Proceedings of
the 11th International Symposium on High-Performance Computer Architecture
(HPCA ’05). IEEE Computer Society, Washington, DC, USA, 316–327. https:
//doi.org/10.1109/HPCA.2005.41

[3] ARM. 2016. ARMv8-A architecture evolution. (2016). https://community.arm.
com/groups/processors/blog/2016/01/05/armv8-a-architecture-evolution.

[4] Rachata Ausavarungnirun, Kevin Kai-Wei Chang, Lavanya Subramanian,
Gabriel H. Loh, and Onur Mutlu. 2012. Staged Memory Scheduling: Achiev-
ing High Performance and Scalability in Heterogeneous Systems. In Proceed-
ings of the 39th Annual International Symposium on Computer Architecture
(ISCA ’12). IEEE Computer Society, Washington, DC, USA, 416–427. http:
//dl.acm.org/citation.cfm?id=2337159.2337207

[5] Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-J. Boehm. 2012. Implica-
tions of CPU Caching on Byte-addressable Non-Volatile Memory Programming.
Technical Report HPL-2012-236. Hewlett-Packard.

[6] Colin Blundell, Milo M.K. Martin, and Thomas F. Wenisch. 2009. InvisiFence:
Performance-transparent Memory Ordering in Conventional Multiprocessors. In
Proceedings of the 36th Annual International Symposium on Computer Architec-
ture (ISCA ’09). ACM, New York, NY, USA, 233–244. https://doi.org/10.1145/
1555754.1555785

[7] Hans-J. Boehm and Sarita V. Adve. 2008. Foundations of the C++ Concurrency
Memory Model. In Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’08). ACM, New
York, NY, USA, 68–78. https://doi.org/10.1145/1375581.1375591

[8] Hans-J. Boehm and Dhruva R. Chakrabarti. 2016. Persistence Programming
Models for Non-volatile Memory. In Proceedings of the 2016 ACM SIGPLAN
International Symposium on Memory Management (ISMM 2016). ACM, New
York, NY, USA, 55–67. https://doi.org/10.1145/2926697.2926704

[9] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. 2007. BulkSC:
Bulk Enforcement of Sequential Consistency. In Proceedings of the 34th Annual
International Symposium on Computer Architecture (ISCA ’07). ACM, New York,
NY, USA, 278–289. https://doi.org/10.1145/1250662.1250697

https://doi.org/10.1109/2.546611
https://doi.org/10.1109/2.546611
https://doi.org/10.1109/HPCA.2005.41
https://doi.org/10.1109/HPCA.2005.41
https://community.arm.com/groups/processors/blog/2016/01/05/armv8-a-architecture-evolution
https://community.arm.com/groups/processors/blog/2016/01/05/armv8-a-architecture-evolution
http://dl.acm.org/citation.cfm?id=2337159.2337207
http://dl.acm.org/citation.cfm?id=2337159.2337207
https://doi.org/10.1145/1555754.1555785
https://doi.org/10.1145/1555754.1555785
https://doi.org/10.1145/1375581.1375591
https://doi.org/10.1145/2926697.2926704
https://doi.org/10.1145/1250662.1250697

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada A. Kolli et al.

[10] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014. Atlas:
Leveraging Locks for Non-volatile Memory Consistency. In Proceedings of the
2014 ACM International Conference on Object Oriented Programming Systems
Languages & Applications (OOPSLA ’14). ACM, New York, NY, USA, 433–452.
https://doi.org/10.1145/2660193.2660224

[11] Andreas Chatzistergiou, Marcelo Cintra, and Stratis D. Viglas. 2015.
REWIND: Recovery Write-Ahead System for In-Memory Non-Volatile Data-
Structures. PVLDB 8, 5 (2015), 497–508. http://www.vldb.org/pvldb/vol8/
p497-chatzistergiou.pdf

[12] Sangyeun Cho and Hyunjin Lee. 2009. Flip-N-Write: A Simple Determinis-
tic Technique to Improve PRAM Write Performance, Energy and Endurance.
In Proceedings of the 42Nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 42). ACM, New York, NY, USA, 347–357. https:
//doi.org/10.1145/1669112.1669157

[13] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,
Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Making Persistent Objects
Fast and Safe with Next-generation, Non-volatile Memories. In Proceedings of
the Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XVI). ACM, New York, NY, USA,
105–118. https://doi.org/10.1145/1950365.1950380

[14] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Ben-
jamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O Through Byte-
addressable, Persistent Memory. In Proceedings of the ACM SIGOPS 22Nd Sym-
posium on Operating Systems Principles (SOSP ’09). ACM, New York, NY, USA,
133–146. https://doi.org/10.1145/1629575.1629589

[15] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing (SoCC ’10). ACM, New York,
NY, USA, 143–154. https://doi.org/10.1145/1807128.1807152

[16] Timothy J Dell. 1997. A white paper on the benefits of chipkill-correct ECC for
PC server main memory. IBM Microelectronics Division (1997), 1–23.

[17] Kshitij Doshi, Ellis Giles, and Peter J. Varman. Atomic persistence for SCM with
a non-intrusive backend controller. In 2016 IEEE International Symposium on
High Performance Computer Architecture, HPCA 2016, Barcelona, Spain, March
12-16, 2016.

[18] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz,
Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System Software
for Persistent Memory. In Proceedings of the Ninth European Conference on Com-
puter Systems (EuroSys ’14). ACM, New York, NY, USA, Article 15, 15 pages.
https://doi.org/10.1145/2592798.2592814

[19] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop
Gupta, and John Hennessy. 1990. Memory Consistency and Event Ordering in
Scalable Shared-memory Multiprocessors. In Proceedings of the 17th Annual
International Symposium on Computer Architecture (ISCA ’90). ACM, New York,
NY, USA, 15–26. https://doi.org/10.1145/325164.325102

[20] Andrew Hay, Karin Strauss, Timothy Sherwood, Gabriel H. Loh, and Doug Burger.
2011. Preventing PCM Banks from Seizing Too Much Power. In Proceedings
of the 44th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-44). ACM, New York, NY, USA, 186–195. https://doi.org/10.1145/
2155620.2155642

[21] Intel. 2014. Intel Architecture Instruction Set Extensions Programming Reference
(319433-022). (2014). https://software.intel.com/sites/default/files/managed/0d/
53/319433-022.pdf.

[22] Intel and Micron. 2015. Intel and Micron Produce Breakthrough Memory Tech-
nology. (2015). http://newsroom.intel.com/community/intel_newsroom/blog/
2015/07/28/intel-and-micron-produce-breakthrough-memory-technology.

[23] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. 2016. Failure-Atomic Per-
sistent Memory Updates via JUSTDO Logging. In Proceedings of the Twenty-First
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’16). ACM, New York, NY, USA, 427–442.
https://doi.org/10.1145/2872362.2872410

[24] Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. 2016. Lin-
earizability of Persistent Memory Objects Under a Full-System-Crash Fail-
ure Model. In Distributed Computing: 30th International Symposium, DISC
2016, Paris, France, September 27-29, 2016. Proceedings, Cyril Gavoille and
David Ilcinkas (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 313–327.
https://doi.org/10.1007/978-3-662-53426-7_23

[25] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. 2015. Efficient
Persist Barriers for Multicores. In Proceedings of the 48th International Sympo-
sium on Microarchitecture (MICRO-48). ACM, New York, NY, USA, 660–671.
https://doi.org/10.1145/2830772.2830805

[26] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. 2017. ATOM:
Atomic Durability in Non-volatile Memory through Hardware Support for Log-
ging. In 23rd International Conference on High-Performance Computer Architec-
ture (HPCA-23 2017). 1–12.

[27] Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter. 2010. ATLAS:
A scalable and high-performance scheduling algorithm for multiple memory

controllers. In 16th International Conference on High-Performance Computer
Architecture (HPCA-16 2010), 9-14 January 2010, Bangalore, India. 1–12. https:
//doi.org/10.1109/HPCA.2010.5416658

[28] Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter. 2010.
Thread Cluster Memory Scheduling: Exploiting Differences in Memory Access
Behavior. In Proceedings of the 2010 43rd Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO ’43). IEEE Computer Society, Washington,
DC, USA, 65–76. https://doi.org/10.1109/MICRO.2010.51

[29] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F. Wenisch.
2016. High-Performance Transactions for Persistent Memories. In Proceedings
of the Twenty-First International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS ’16). ACM, New York,
NY, USA, 399–411. https://doi.org/10.1145/2872362.2872381

[30] Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven Pelley, Sihang
Liu, Peter M. Chen, and Thomas F. Wenisch. 2016. Delegated persist ordering. In
49th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO
2016, Taipei, Taiwan, October 15-19, 2016. 1–13. https://doi.org/10.1109/MICRO.
2016.7783761

[31] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting
Phase Change Memory As a Scalable Dram Alternative. In Proceedings of the
36th Annual International Symposium on Computer Architecture (ISCA ’09).
ACM, New York, NY, USA, 2–13. https://doi.org/10.1145/1555754.1555758

[32] Ren-Shuo Liu, De-Yu Shen, Chia-Lin Yang, Shun-Chih Yu, and Cheng-
Yuan Michael Wang. 2014. NVM Duet: Unified Working Memory and Persistent
Store Architecture. In Proceedings of the 19th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS

’14). ACM, New York, NY, USA, 455–470. https://doi.org/10.1145/2541940.
2541957

[33] Youyou Lu, Jiwu Shu, Long Sun, and Onur Mutlu. 2014. Loose-Ordering Con-
sistency for persistent memory. In 32nd IEEE International Conference on Com-
puter Design, ICCD 2014, Seoul, South Korea, October 19-22, 2014. 216–223.
https://doi.org/10.1109/ICCD.2014.6974684

[34] Brandon Lucia, Luis Ceze, Karin Strauss, Shaz Qadeer, and Hans-J. Boehm.
2010. Conflict Exceptions: Simplifying Concurrent Language Semantics with
Precise Hardware Exceptions for Data-races. In Proceedings of the 37th Annual
International Symposium on Computer Architecture (ISCA ’10). ACM, New York,
NY, USA, 210–221. https://doi.org/10.1145/1815961.1815987

[35] Amirhossein Mirhosseini, Aditya Agrawal, and Josep Torrellas. 2016. Survive:
Pointer-based In-DRAM Incremental Checkpointing for Low-Cost Data Persis-
tence and Rollback-Recovery. IEEE Computer Architecture Letters (2016).

[36] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris Volos, and
Kimberly Keeton. 2017. An Analysis of Persistent Memory Use with WHISPER.
In Proceedings of the 22nd International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’17).

[37] Dushyanth Narayanan and Orion Hodson. 2012. Whole-system Persistence. In
Proceedings of the Seventeenth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS XVII). ACM, New
York, NY, USA, 401–410. https://doi.org/10.1145/2150976.2151018

[38] Faisal Nawab, Dhruva Chakrabarti, Terence Kelly, and Charles B. Morey III. 2014.
Procrastination Beats Prevention: Timely Sufficient Persistence for Efficient Crash
Resilience. Technical Report HPL-2014-70. Hewlett-Packard.

[39] Simo Neuvonen, Antoni Wolski, Markku Manner, and Vilho Raatikka. 2011.
Telecom Application Transaction Processing Benchmark. (2011). http:
//tatpbenchmark.sourceforge.net/.

[40] Jessica Ouyang, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. 2013.
. . . And Region Serializability for All. In Presented as part of the 5th USENIX
Workshop on Hot Topics in Parallelism.

[41] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory Per-
sistency. In Proceeding of the 41st Annual International Symposium on Com-
puter Architecuture (ISCA ’14). IEEE Press, Piscataway, NJ, USA, 265–276.
http://dl.acm.org/citation.cfm?id=2665671.2665712

[42] Moinuddin K. Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srini-
vasan, Luis Lastras, and Bulent Abali. 2009. Enhancing Lifetime and Security
of PCM-based Main Memory with Start-gap Wear Leveling. In Proceedings of
the 42Nd Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO 42). ACM, New York, NY, USA, 14–23. https://doi.org/10.1145/1669112.
1669117

[43] Moinuddin K. Qureshi, Andre Seznec, Luis A. Lastras, and Michele M. Frances-
chini. 2011. Practical and Secure PCM Systems by Online Detection of Malicious
Write Streams. In Proceedings of the 2011 IEEE 17th International Symposium on
High Performance Computer Architecture (HPCA ’11). IEEE Computer Society,
Washington, DC, USA, 478–489. http://dl.acm.org/citation.cfm?id=2014698.
2014882

[44] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. 2009.
Scalable High Performance Main Memory System Using Phase-change Memory
Technology. In Proceedings of the 36th Annual International Symposium on
Computer Architecture (ISCA ’09). ACM, New York, NY, USA, 24–33. https:

https://doi.org/10.1145/2660193.2660224
http://www.vldb.org/pvldb/vol8/p497-chatzistergiou.pdf
http://www.vldb.org/pvldb/vol8/p497-chatzistergiou.pdf
https://doi.org/10.1145/1669112.1669157
https://doi.org/10.1145/1669112.1669157
https://doi.org/10.1145/1950365.1950380
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/2592798.2592814
https://doi.org/10.1145/325164.325102
https://doi.org/10.1145/2155620.2155642
https://doi.org/10.1145/2155620.2155642
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-technology
http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-technology
https://doi.org/10.1145/2872362.2872410
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1145/2830772.2830805
https://doi.org/10.1109/HPCA.2010.5416658
https://doi.org/10.1109/HPCA.2010.5416658
https://doi.org/10.1109/MICRO.2010.51
https://doi.org/10.1145/2872362.2872381
https://doi.org/10.1109/MICRO.2016.7783761
https://doi.org/10.1109/MICRO.2016.7783761
https://doi.org/10.1145/1555754.1555758
https://doi.org/10.1145/2541940.2541957
https://doi.org/10.1145/2541940.2541957
https://doi.org/10.1109/ICCD.2014.6974684
https://doi.org/10.1145/1815961.1815987
https://doi.org/10.1145/2150976.2151018
http://tatpbenchmark.sourceforge.net/
http://tatpbenchmark.sourceforge.net/
http://dl.acm.org/citation.cfm?id=2665671.2665712
https://doi.org/10.1145/1669112.1669117
https://doi.org/10.1145/1669112.1669117
http://dl.acm.org/citation.cfm?id=2014698.2014882
http://dl.acm.org/citation.cfm?id=2014698.2014882
https://doi.org/10.1145/1555754.1555760
https://doi.org/10.1145/1555754.1555760

Language-level persistency ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

//doi.org/10.1145/1555754.1555760
[45] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu, and Onur

Mutlu. 2015. ThyNVM: Enabling Software-transparent Crash Consistency in
Persistent Memory Systems. In Proceedings of the 48th International Symposium
on Microarchitecture (MICRO-48). ACM, New York, NY, USA, 672–685. https:
//doi.org/10.1145/2830772.2830802

[46] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter Mattson, and John D.
Owens. 2000. Memory Access Scheduling. In Proceedings of the 27th Annual
International Symposium on Computer Architecture (ISCA ’00). ACM, New York,
NY, USA, 128–138. https://doi.org/10.1145/339647.339668

[47] Aritra Sengupta, Swarnendu Biswas, Minjia Zhang, Michael D. Bond, and Milind
Kulkarni. 2015. Hybrid Static–Dynamic Analysis for Statically Bounded Region
Serializability. SIGARCH Comput. Archit. News 43, 1 (March 2015), 561–575.
https://doi.org/10.1145/2786763.2694379

[48] Jaroslav Sevcik and Peter Sewell. 2011. C/C++11 mappings to processors. (2011).
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html.

[49] Transaction Processing Performance Council (TPC). 2010. TPC Benchmark B.
(2010). http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5-11.
pdf.

[50] Ten H Tzen and Lionel M Ni. 1991. Dynamic Loop Scheduling for Share-Memory
Multiprocessors.. In ICPP (2). 247–250.

[51] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H.
Campbell. 2011. Consistent and Durable Data Structures for Non-volatile Byte-
addressable Memory. In Proceedings of the 9th USENIX Conference on File and
Stroage Technologies (FAST’11). USENIX Association, Berkeley, CA, USA, 5–5.
http://dl.acm.org/citation.cfm?id=1960475.1960480

[52] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam, Venkatanathan
Varadarajan, Prashant Saxena, and Michael M. Swift. 2014. Aerie: Flexible
File-system Interfaces to Storage-class Memory. In Proceedings of the Ninth
European Conference on Computer Systems (EuroSys ’14). ACM, New York, NY,
USA, Article 14, 14 pages. https://doi.org/10.1145/2592798.2592810

[53] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne:
Lightweight Persistent Memory. In Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS XVI). ACM, New York, NY, USA, 91–104. https://doi.org/10.
1145/1950365.1950379

[54] Tianzheng Wang and Ryan Johnson. 2014. Scalable Logging Through Emerging
Non-volatile Memory. Proc. VLDB Endow. 7, 10 (June 2014), 865–876. https:
//doi.org/10.14778/2732951.2732960

[55] Xiaojian Wu and A. L. Narasimha Reddy. 2011. SCMFS: A File System for
Storage Class Memory. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’11). ACM, New
York, NY, USA, Article 39, 11 pages. https://doi.org/10.1145/2063384.2063436

[56] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu, and Y.
Xie. 2015. Overcoming the challenges of crossbar resistive memory architectures.
In 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA). 476–488. https://doi.org/10.1109/HPCA.2015.7056056

[57] Jianhui Yue and Yifeng Zhu. 2013. Accelerating Write by Exploiting PCM
Asymmetries. In Proceedings of the 2013 IEEE 19th International Symposium on
High Performance Computer Architecture (HPCA) (HPCA ’13). IEEE Computer
Society, Washington, DC, USA, 282–293. https://doi.org/10.1109/HPCA.2013.
6522326

[58] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P. Jouppi. 2013.
Kiln: Closing the Performance Gap Between Systems with and Without Per-
sistence Support. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-46). ACM, New York, NY, USA, 421–
432. https://doi.org/10.1145/2540708.2540744

[59] Jishen Zhao, Onur Mutlu, and Yuan Xie. 2014. FIRM: Fair and High-Performance
Memory Control for Persistent Memory Systems. In Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-47).
IEEE Computer Society, Washington, DC, USA, 153–165. https://doi.org/10.
1109/MICRO.2014.47

[60] P. Zhou, Y. Du, Y. Zhang, and J. Yang. 2010. Fine-grained QoS scheduling for
PCM-based main memory systems. In 2010 IEEE International Symposium on
Parallel Distributed Processing (IPDPS). 1–12. https://doi.org/10.1109/IPDPS.
2010.5470451

[61] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. A Durable and Energy
Efficient Main Memory Using Phase Change Memory Technology. In Proceedings
of the 36th Annual International Symposium on Computer Architecture (ISCA ’09).
ACM, New York, NY, USA, 14–23. https://doi.org/10.1145/1555754.1555759

https://doi.org/10.1145/1555754.1555760
https://doi.org/10.1145/2830772.2830802
https://doi.org/10.1145/2830772.2830802
https://doi.org/10.1145/339647.339668
https://doi.org/10.1145/2786763.2694379
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5-11.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5-11.pdf
http://dl.acm.org/citation.cfm?id=1960475.1960480
https://doi.org/10.1145/2592798.2592810
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.14778/2732951.2732960
https://doi.org/10.14778/2732951.2732960
https://doi.org/10.1145/2063384.2063436
https://doi.org/10.1109/HPCA.2015.7056056
https://doi.org/10.1109/HPCA.2013.6522326
https://doi.org/10.1109/HPCA.2013.6522326
https://doi.org/10.1145/2540708.2540744
https://doi.org/10.1109/MICRO.2014.47
https://doi.org/10.1109/MICRO.2014.47
https://doi.org/10.1109/IPDPS.2010.5470451
https://doi.org/10.1109/IPDPS.2010.5470451
https://doi.org/10.1145/1555754.1555759

	Abstract
	1 Introduction
	2 Background
	2.1 Memory persistency models
	2.2 Delegated persist ordering
	2.3 Language-level persistency models
	2.4 Failure and recovery
	2.5 DRF Consistency

	3 Design Exploration
	3.1 Atomicity and ordering
	3.2 A Taxonomy of Persistency Guarantees
	3.3 Discussion

	4 Acquire-Release Persistency
	4.1 Definition
	4.2 Mapping to ISA-level persistency
	4.3 Fence directionality
	4.4 Conflating sync. with recoverability

	5 Extending RCBSP for ARP
	5.1 Enforcing unidirectional fences
	5.2 Extensions for volatile annotations

	6 Evaluation
	6.1 Performance comparison
	6.2 Persist scheduling

	7 Related work
	8 Conclusion
	9 Acknowledgements
	References

