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ABSTRACT
Most systems contain software with yet-to-be-discovered se-
curity vulnerabilities. When a vulnerability is disclosed,
administrators face the grim reality that they have been
running software which was open to attack. Sites that
value availability may be forced to continue running this
vulnerable software until the accompanying patch has been
tested. Our goal is to improve security by detecting intru-
sions that occurred before the vulnerability was disclosed
and by detecting and responding to intrusions that are at-
tempted after the vulnerability is disclosed. We detect when
a vulnerability is triggered by executing vulnerability-specific
predicates as the system runs or replays. This paper de-
scribes the design, implementation and evaluation of a sys-
tem that supports the construction and execution of these
vulnerability-specific predicates. Our system, called Intro-
Virt, uses virtual-machine introspection to monitor the exe-
cution of application and operating system software. Intro-
Virt executes predicates over past execution periods by com-
bining virtual-machine introspection with virtual-machine
replay. IntroVirt eases the construction of powerful predi-
cates by allowing predicates to run existing target code in
the context of the target system, and it uses checkpoints
so that predicates can execute target code without perturb-
ing the state of the target system. IntroVirt allows pred-
icates to refresh themselves automatically so they work in
the presence of preemptions. We show that vulnerability-
specific predicates can be written easily for a wide variety
of real vulnerabilities, can detect and respond to intrusions
over both the past and present time intervals, and add little
overhead for most vulnerabilities.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—in-
vasive software (e.g., viruses, worms, Trojan horses); K.6.5
[Management of Computing and Information Sys-
tems]: Security and Protection—invasive software (e.g.,
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viruses, worms, Trojan horses), unauthorized access (e.g.,
hacking, phreaking)
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1. INTRODUCTION
Imperfect application and operating system software is a

fact of life in today’s computing. Users have grown accus-
tomed to running software that is found later to have se-
curity flaws, and software vendors have grown accustomed
to creating and distributing patches for security flaws after
they become aware of them. Figure 1 shows the life cycle of
a vulnerability [2]: a vulnerability on a system is born when
flawed software is installed; the vulnerability eventually dies
when a patch is installed that corrects the flaw.

Users who run software with a security flaw are thus vul-
nerable to attack through this flaw until a fix to the software
is installed on their computers. Vendors try to minimize
this window of vulnerability by issuing patches as quickly
as possible and encouraging users to install these patches
immediately, perhaps through automatic updates.

Unfortunately, while timely creation and dissemination of
patches certainly help, they cannot eliminate the window of
vulnerability entirely. Even diligent vendors encounter two
limitations in shrinking the window of vulnerability.

First, software vendors cannot fix a flaw until after they
are aware of it. In Figure 1, the user is vulnerable to attack
at least from the time the vulnerability is introduced until
it is discovered, and this interval may be quite long. An
attacker who discovers the vulnerability before the vendor
does can compromise numerous computers before the vendor
becomes aware of the problem and fixes it, and stealthy
attacks may occur before the fix and go undiscovered even
after the patch is applied. Upon applying a patch, an astute
user may well wonder if her system was compromised before
the patch was installed.

Second, for good reasons and bad, many users do not in-
stall patches until weeks or months after they are released
[2, 22, 30]. While some of this phenomenon is due to users
who do not administer their systems carefully, there are also
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Figure 1: Life cycle of a vulnerability. Our goal is to improve security over both major time intervals (past
and present) during which a system is vulnerable due to a specific software bug.

more fundamental reasons that cause users to be reluctant
or unable to install a patch immediately. One reason is that
a vendor’s rush to release a patch often precludes thorough
testing and leads to buggy patches. Users may be under-
standably reluctant to install a patch until after the patch
is proven to be stable [4]. Operational organizations usually
test vendor patches before deploying them to ensure that the
patches do not cause undesirable side effects [7]. Another
reason is that installing a patch usually requires a system or
service to be shut down and restarted, which causes users to
defer patch installation until a more convenient time (say,
the next scheduled maintenance).

Thus, when a vulnerability is discovered, users are con-
fronted with the grim reality that they have been running—
and may continue to run—software that is open to attack.

Our goal is to improve security in light of these realities
through vulnerability-specific, perturbation-free predicates.
A predicate tests the state of a target system as it executes
and detects when the vulnerability is triggered. We use
predicates to test for the triggering of vulnerabilities over
both major time intervals in Figure 1: (1) the interval from
when the vulnerability was installed until a patch (and pred-
icate) for the vulnerability is released and (2) the interval
from when the patch was released until the patch is installed.

First, by combining vulnerability-specific predicates with
virtual-machine replay [13], we enable a user to determine
whether a specific vulnerability was exploited at some point
in the past. While discovering an intrusion that occurred
in the past cannot prevent the intrusion from occurring, it
is vital for limiting and reversing the damage done during
past intrusions.

Second, by combining vulnerability-specific predicates
with a response strategy, we enable a user to prevent
or be alerted to ongoing attacks that exploit known-but-
unpatched vulnerabilities. By informing a user about when
attackers are trying to exploit a known vulnerability, we en-
able users to defer safely the installation of a patch until it
is truly needed. This deferral buys time for the organiza-
tion to test patches before installing them. Stopping attacks
that exploit specific vulnerabilities may even enable a user
to avoid installing the patch altogether.

2. VULNERABILITY-SPECIFIC
PREDICATES

Our overall goal is to detect intrusions by executing
vulnerability-specific predicates as the system runs or re-
plays. Predicates take advantage of the knowledge learned
when a specific vulnerability is discovered. In our experi-
ence, predicates are easy to write once one understands the
vulnerability. We expect a predicate to be written by a pro-
grammer at the same time he writes the patch.

Because predicates are specific to a vulnerability, they can
detect the triggering of that vulnerability with perfect ac-
curacy. In other words, a correct predicate generates no
false positives or false negatives. At worst, a vulnerability-
specific predicate will alert an administrator to a triggering
of the vulnerability that fails to accomplish the purpose in-
tended by the attacker (e.g., the buffer overflowed but did
not lead to a root shell). In contrast to vulnerability-specific
detectors [30], exploit-specific detectors look for known ex-
ploits of a vulnerability and hence miss new exploits of those
vulnerabilities.

As a simple example, consider the code shown in Fig-
ure 2a. This code is vulnerable to a buffer overflow when
the length of some string exceeds BUFSIZE. The predicate
for this vulnerability is (len >= BUFSIZE at line 4). A
slightly more complicated predicate would be needed if the
code in Figure 2a did not include the call to strlen because
the predicate would need to compute for itself the number
of bytes before the first null character in the array starting
at str.

Figure 2b shows a common race condition that would re-
quire a more complicated predicate. The code tries to check
if the owner has write permission to the file before it deletes
the file. This code is vulnerable to a time-of-check to time-
of-use (TOCTTOU) exploit: a malicious process can change
the target of a symbolic link and trick the user into checking
the access permissions of one file but deleting another file
[10]. A predicate for this vulnerability should re-check the
access permissions of file atomically with deleting it.

An even more complicated predicate would be needed to
check the vulnerability in Figure 2c, in which a program for-
gets to authenticate a user as being part of the right group.
The predicate for this vulnerability would execute the miss-
ing authentication, such as by reading a file containing the
membership of groups or by sending a message to an au-
thentication process.

3. GOALS
This paper describes a system called IntroVirt that sup-

ports the construction and execution of vulnerability-specific
predicates. We have five goals for the system.

First, predicates must not perturb the target state. One of
the main reasons for using predicates in the present time in-
terval is because administrators may not trust the patch [4]
and so may not want to install the patch until it is actually
needed (i.e., until attacks start occurring). If the predicate
is allowed to perturb the target state, a bug in the predi-
cate might break the system in the same way that a buggy
patch might break the system. In addition, our evaluation
of the past time interval depends on virtual-machine replay
[13], and this replay depends on the state being exactly the



1 char *str = some_string;
2 int len = strlen(str);
3 char buf[BUFSIZE];
4 strcpy(buf, str);

1 if (access(file, W_OK)) {
2 unlink(file);
3 }

(a) Buffer overflow (b) Race condition

1 uid = getuid();
2 /* forgot to check

group membership */
3 perform privileged

action

(c) Missing authentication

Figure 2: Example vulnerabilities.

same as it was during the original run. By avoiding any
perturbations to the target state, we prevent the predicate—
even a buggy one—from causing any adverse side effects on
the target, other than effects from the configurable response
strategy such as false alarms.

Second, predicates should be able to check for the trig-
gering of vulnerabilities in both application and operating
system software, since bugs appear in both these types of
software.

Third, it should be possible to add new predicates without
shutting down and restarting the software being evaluated,
both for application and operating system level software.
The ability to add a predicate seamlessly is one of the main
advantages of installing a predicate over installing the patch.
The combination of this goal with the guarantee that pred-
icates do not perturb the state of the target system allows
administrators to configure their systems to automatically
download and install predicates.

Fourth, predicates should be easy to write. The concep-
tual knowledge needed to write a predicate is roughly equiv-
alent to that needed to write the patch. Our system should
preserve this equivalence: once the programmer writes the
patch, he should be able easily to write even general-purpose
predicates, such as those that read files or interact with other
processes on the machine.

Finally, predicates should execute with low overhead, even
if multiple predicates are enabled. A slow predicate might
discourage its use during the present time interval because
an administrator may not be willing to sacrifice the speed
of a production system to execute the predicates. Also, the
interval of time in the past over which a vulnerability existed
may be lengthy, and slow predicate execution will reduce the
period of time over which an administrator can check for the
triggering of the vulnerability.

This paper describes the design, implementation and eval-
uation of a system that achieves these goals. IntroVirt uses
virtual-machine introspection [15] to examine the state of
application and operating system software running in a vir-
tual machine. IntroVirt eases the construction of general
predicates by allowing predicates to run existing code in
the context of the target system. IntroVirt executes predi-
cates without perturbing the state of the target system by
using low-overhead methods for checkpointing and rolling
back the state of the virtual machine. We leverage research
on virtual-machine replay [13] to execute predicates over the
time period when the vulnerability existed but had not yet
been discovered, as well as the time period when the vulner-
ability has been discovered but has not yet been patched.
The next section describes our overall design for achieving
these goals.

4. GENERAL-PURPOSE,
PERTURBATION-FREE PREDICATE
EXECUTION

This section describes our design for a system that sup-
ports the construction and execution of vulnerability-specific
predicates. We lay out four challenges that arise when de-
signing such a system and our solution for each challenge.

4.1 Challenge: Where do Predicates Execute?
The first challenge is where to execute the code that imple-

ments the predicate. On a normal computer, software runs
either as a user-level application or in the operating system
kernel. Neither of these locations is suitable for executing
predicates because predicates should run outside the target
system to avoid perturbing its state. If the target system
were solely user-level applications, then the predicate could
execute in a separate user-level process. However, one of our
goals is to execute predicates that check for the triggering of
vulnerabilities in the operating system, and predicates that
run in a user-level process (or in the kernel itself) cannot
execute without perturbing the operating system.

One possible solution is to add extra hardware to support
the predicate’s execution. For example, the target system
could run on a dedicated computer, and a second computer
could evaluate the state of the target system, possibly with
the aid of an in-circuit emulator. However, we would prefer
a solution that needs no extra or custom hardware.

4.2 Solution: Virtual-Machine Introspection
Our solution to the first challenge is to run the target

software inside a virtual machine and to run the predicate
outside this virtual machine. The predicate can examine
the comprehensive state of the virtual machine, including
the state of the operating system and all applications. This
structure enables the predicate to execute simple probes
without perturbing the state of the target system. Analyz-
ing software running in a virtual machine by examining its
state from outside the virtual machine is known as virtual-
machine introspection [15].

The virtual-machine system we use is User-Mode Linux1

[11], primarily because it supports virtual-machine replay
[17]. The virtual-machine monitor (VMM) for User-Mode
Linux is integrated with a host operating system, and pred-
icates run in a separate process on this host operating sys-
tem (Figure 3). The ideas in this paper would work also for
VMMs that run directly on the hardware, such as Xen [3].
With these types of VMMs, the predicate would likely run
within a second virtual machine.

1We use the skas (separate kernel address space) version of
UML.
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Figure 3: IntroVirt system structure. User-Mode
Linux runs as two host processes: one for the guest
kernel and one for the guest applications. The pred-
icate engine executes in a separate process on the
host operating system.

The threat model we assume is that the attacker can com-
promise the target state arbitrarily, but that he cannot break
out of the target and corrupt the virtual machine monitor
itself. Virtual machine monitors are relatively harder for
attackers to compromise, because their code base is smaller
and more stable than the code in the target system. This
assumption is consistent with other research projects on vir-
tual machines and security [21, 15, 14, 13].

By running all target software in a virtual machine, we are
able to examine the state of the target from outside the tar-
get and thus avoid perturbing it. This strategy is sufficient
to construct and execute simple predicates. For example,
a predicate could check for the triggering of some vulnera-
bilities (e.g., the vulnerability in Figure 2a) by monitoring
values in the virtual machine’s physical memory or on the
virtual machine’s disk.

4.3 Challenge: Semantic Gap
Encapsulating the target software in a virtual machine

leads to a second significant challenge: there is a large
semantic gap between the level of abstraction a predicate
writer would naturally use and the level of abstraction that
is exposed by a virtual machine. A predicate expresses some
condition of the vulnerable software, so the most natural
level of abstraction for a predicate writer is the abstractions
used in the vulnerable software.

A simple example of this is the language a predicate writer
would use to access variables in a user process. Accessing
program variables is the natural level of abstraction for ex-
pressing predicates about the program. However, the virtual
machine exposes state at a much lower level of abstraction,
i.e. the guest’s physical memory image and disk. Mapping
between these levels of abstraction is possible but tedious.
Translating application variables to guest physical memory
addresses requires two steps: first translate from variable
name to a guest application virtual address by using the
symbolic information in the program executable, then trans-
late the guest application virtual address to a guest phys-
ical memory address by using the guest application’s page
table. This second translation may lead to a guest virtual
page that has been swapped out to disk, in which case the
predicate would be forced to walk the guest OS’s memory-
management data structures.

Another example emphasizes the complications caused by
the semantic gap between the virtual machine abstractions
and the natural abstractions of predicate writers. Consider
a vulnerability in a user application that is caused by forget-
ting to authenticate a user as being part of the right group.

In this scenario, assume the group information is stored in
a file (e.g., /etc/group). The predicate to check this vul-
nerability is conceptually straightforward: simply read the
file and see if the user is part of the right group. However,
it is extremely complicated to express this task in the lan-
guage of guest memory and guest disk addresses. First, the
predicate would need to calculate the user ID of the cur-
rent process by looking up this information in the process
structure in the kernel. Second, the predicate would need to
translate this user ID to a user name, which requires read-
ing a file (e.g., /etc/passwd). To read the file, the predicate
would need to understand and traverse numerous operating
system structures, such as the data structures that translate
and cache hierarchical path names, the data structures that
cache files, and the various file system structures on disk.
The same procedure would need to be followed to read the
file that defines group membership.

Other examples are easy to construct that make predi-
cate writing arbitrarily complicated, such as predicates that
would need to invoke other processes in the target system or
decrypt data. In general, it is infeasible to expect a predicate
writer to express predicates in terms of virtual-machine level
abstractions (guest memory, guest disk, guest registers).

4.4 Solution: Leverage Guest Functionality
We next describe how to address the semantic gap be-

tween predicate and virtual-machine abstractions. To ad-
dress this challenge, we observe that the functionality
needed to bridge the semantic gap already exists in the guest
software in our target system. In the first example of access-
ing memory state, the guest OS already translates from a
guest virtual address to a guest physical address by using
the page table stored in the guest operating system for this
application and by faulting in the page if it is paged out.
In the second example of authenticating a user, the guest
already provides the functionality needed to return the user
ID for the current process, map this user ID to a user name,
and read files for user names and groups.

In general, a predicate for a vulnerability should require
roughly the same knowledge and complexity needed to write
a patch for that vulnerability. To preserve this equivalence,
we would like to allow predicates to leverage the same ex-
isting functionality in the guest software that patches can
leverage.

Leveraging existing guest functionality means allowing
predicates to invoke code that already exists in the guest.
For example, a predicate for a vulnerable application can
make a read system call to read the group-membership file,
then call a function in the guest application to see if the cur-
rent user is in the right group. Similarly, a predicate for the
operating system can call a kernel function to carry out some
task. For the existing code to work properly, it must execute
in its native address space, i.e. the address space of the ap-
plication process (or kernel thread) that contains the code.

4.5 Challenge: Avoiding Perturbations to
Target State

The next challenge that arises in executing predicates is
the need to avoid perturbing the target state. Recall that
one of our primary goals is to execute predicates without
perturbing the target state.

Simple predicates can examine the state of the target
without perturbing it by reading memory and disk values.



However, by allowing predicates to invoke existing code in its
native address space, we make it inevitable that predicates
perturb the target state because existing code inevitably
changes memory or disk state. For example, invoking the
read system call will change the contents of the file cache,
the access times for that file on disk, and the kernel stack.
It may also evict or prefetch other disk blocks or change
the state of the guest’s device driver. It may generate inter-
rupts and allow other processes to be scheduled. Even pure
functions modify the stack (and changing even the unused
portion of the stack may have side effects due to bugs). In
short, there are numerous side effects from invoking func-
tionality in the guest. Predicates may also ask the VMM to
modify guest state directly; this capability is used to set up
the guest to invoke a particular guest function.

A predicate may perturb the target state in two ways
other than modifying target state. A predicate may cause
the target to send a message outside the system, and this
may cause inconsistencies between the computer that re-
ceived the message and the target system. Also, a predi-
cate may cause the target to hang, either by hanging in the
predicate engine without returning control to the target or
by invoking guest functionality that enters an infinite loop.

4.6 Solution: Checkpoint and Rollback
Our main solution for perturbations is to automatically

track and rollback any changes to the target state. The
VMM requires the predicate to take a checkpoint of the vir-
tual machine before the VMM will carry out a modification
to the target state or invoke a guest function. After the pred-
icate has been executed, the predicate rolls back to the saved
checkpoint. This reverses any effects the predicate had on
the state of the target system, including physical memory,
disk blocks, and registers. For efficiency, these checkpoints
can be implemented using copy on write, both for memory
pages and for disk blocks [17]. This approach is similar to
using transactions to clean up after misbehaving kernel ex-
tensions [25]. We refer to the execution phase of the target
between taking a checkpoint and rolling back to the check-
point as its speculative phase.

Rolling back to a checkpoint reverses any perturbations
of state within the target system. Next we describe how to
prevent other types of perturbations. First, the predicate
may try to send a message outside the system. Since we
may not be able to roll back the computer that received
this message, it may be left in a state that is inconsistent
with target after the target is rolled back. To prevent this,
IntroVirt allows an administrator to specify that the VMM
should prevent the target from sending messages outside the
system while in its speculative phase.

IntroVirt also seeks to prevent predicates from hanging
the target. The VMM enforces a timeout on the execution
of a predicate and will abort the predicate engine if it takes
too long or causes the target system to speculate for too
long without rolling back.

4.7 Challenge: Preemptions between the
Predicate and the Bug

The final challenge relates to a race condition that could
occur between executing the predicate and executing the
vulnerable code that is being checked by the predicate. For
example, recall that a predicate to check the bug in Figure
2b should re-check the access permissions of file atomically

with deleting it. Simply checking the predicate when libc’s
unlink is called is not sufficient, because another process
could re-target the symbolic link after the predicate executes
but before libc’s unlink makes the system call to delete
the file. In general, the state checked by the predicate can
change after the predicate executes but before the state is
used by the vulnerable code.

These races may involve solely program(s) distributed by
a single vendor. For example, a race may occur between
multiple threads of a single program due to an improperly
locked shared data structure. In this case, the solution is
to install predicates around the critical sections of code rel-
evant to the race. This mirrors the patches for this type
of vulnerability, which would generally involve adding locks
around these critical sections.

A harder scenario is when the race involves a program,
script, or user that is not under the control of the software
vendor. The vulnerability in Figure 2b falls into this cate-
gory because the other process might be an interactive shell
with a user issuing commands to relink the files. In this
case, the shared state exists in the file system. Since any
program can manipulate this state, it is difficult to install a
predicate around all the relevant code.

4.8 Solution: Predicate Refresh
In general, race conditions can be addressed by prevent-

ing the race from occurring or by detecting if a race occurs
and responding appropriately. IntroVirt cannot prevent race
conditions because prevention techniques perturb the sys-
tem, such as by reordering lock acquisitions or by blocking
threads from running.

Instead, we detect when a race occurs and re-execute the
predicate in case the state it is checking has changed. We
call this technique predicate refresh. After the predicate is
executed the first time, we set a breakpoint in the guest OS
that traps each process scheduling event. When the target
process (the process evaluated by the predicate) is switched
to, the breakpoint causes the predicate to be re-evaluated.
The predicate will then detect if the state has changed and
the bug is being triggered.

One difficulty for predicate refresh is detecting if the state
has been changed by the target process itself, especially if
that process is executing code in the guest kernel. For ex-
ample, consider if the predicate in Figure 2b checked that
the file existed before deleting it. At some point in the ex-
ecution of unlink, the file would be deleted. If, after this
point, the predicate is refreshed, the predicate may mistak-
enly believe that another process had deleted the file. One
could solve this by finding the exact point in the kernel when
the file was deleted and disabling predicate refresh at that
point, but we do not want to require application program-
mers to understand the internals of the guest kernel. We
solve this by refreshing the predicate when the target pro-
cess is scheduled out and when it is scheduled back in. The
race condition is deemed to have been triggered if the predi-
cate value changed from false to true while the target process
was suspended.

5. THE PREDICATE ENGINE
This section describes the implementation of the engine

that executes predicates. The predicate engine is imple-
mented as a separate host process (Figure 3). Predicates
run within this process and use library functions provided



by the engine. Predicates execute as event-driven handlers;
they are invoked as the target system runs (or replays) op-
erating system or application software with vulnerabilities
that have been discovered.

5.1 Supporting Predicate Execution
The predicate engine supports predicates in five main

ways: translating symbolic information to numeric val-
ues, controlling virtual machine execution, examining tar-
get state, invoking guest functions, and checkpointing and
rolling back the virtual machine. The engine implements
these capabilities by calling four low-level functions provided
by the VMM: read/write guest memory, read/write guest
registers, checkpoint/rollback, and event delivery.

First, the predicate engine supports predicates by trans-
lating symbolic program names (function names, source
code line numbers, variables, data structure members) to
numeric names (instruction addresses, data addresses, data
structure offsets). The predicate engine uses debugging in-
formation to perform this translation. Our current proto-
type parses debugging information when predicates are com-
piled and supports standard executables as well as position-
independent code used by shared libraries. Although most
binaries ship without the debugging information included,
it could be compiled in with the binary and simply stripped
out before the executable is released. This technique does
not affect the resulting executable code and works with or
without compiler optimizations.

Second, the predicate engine supports predicates by allow-
ing them to control virtual-machine execution. The predi-
cate engine provides the ability to trap the execution of guest
kernel or application code; these execution traps are referred
to as VMM events. Predicate writers register for event no-
tification using either function names or source code line
numbers. When the specified function or line of code exe-
cutes, the VMM traps the event and transfers control to the
predicate engine. The engine then invokes the event han-
dler registered for that instruction. The VMM suspends the
virtual machine while the event handler executes to avoid
race conditions. A VMM event is implemented by replacing
the appropriate instruction with an x86 software breakpoint
instruction. An event is disabled by replacing this software
breakpoint instruction with the original instruction.

The third area of support provided by the predicate en-
gine is examining guest state. When the engine invokes an
event handler, the predicate has access to local and global
variables and data structures for the guest code. Predi-
cates access local and global variables by name. In addi-
tion to program-level data, predicates can access machine-
level components through the predicate engine. Predicates
can access guest memory using the copy from guest and
guest strcpy functions and can examine registers using the
get regs function.

The fourth area of support provided by the predicate
engine is calling guest functions. IntroVirt allows pred-
icates to call guest functions to bridge the semantic gap
between the predicate and guest code. To enable guest
function calls, the predicate engine understands the calling
conventions used in guest code. The predicate engine
places arguments on the guest stack or in guest registers,
depending on the calling convention used for the particular
function. As a result, IntroVirt works for both exported
and local functions. The engine invokes guest functions by

manipulating the instruction pointer and registers of the
virtual machine and resuming execution.

The fifth area of support provided by the predicate engine
is checkpointing and rollback, which are used to remove any
perturbations caused by the execution of predicates. We use
techniques from other virtual machine projects to speed up
checkpoints [17, 32]. We use standard copy-on-write tech-
niques to track and reverse any changes made to guest mem-
ory and a logging disk suitable for fast checkpointing and
rollback. A major source of checkpointing overhead is mod-
ifying the page table contents for the kernel address space
(which is large) in order to implement copy-on-write mem-
ory. We reduce this overhead by write protecting entries
in the 1st-level page table2 and modifying the page table
entries lazily.

5.2 Predicates for Applications
The capabilities listed in the prior section are sufficient

to implement predicates for the guest kernel. However,
predicates for guest applications require additional support.
First, application processes are created and destroyed, and
this makes it more complicated to enable breakpoints for an
application. Second, an application virtual page may not be
mapped to a physical page, and this makes it more compli-
cated to access application data. This section describes the
support needed to handle these complications. We imple-
ment the support needed for application predicates by using
the capabilities discussed above and by adding supporting
kernel predicates.

We first discuss the support needed to enable applica-
tion breakpoints. The predicate engine must maintain these
breakpoints across the creation and destruction of applica-
tion processes. For example, if there is a bug in a web
server, the engine must detect when a server process is cre-
ated so it can set a breakpoint in the new address space.
The predicate engine supports this by adding predicates on
the guest kernel’s fork and exec calls. When the guest
kernel creates a new process using one of these functions,
these supporting predicates add any breakpoints needed for
the new process. Similarly, the predicate engine cleans up
breakpoints when a process exits by adding a predicate on
the guest kernel’s exit functions. It also removes break-
points for a process when that process executes a different
program via the exec call.

Breakpoints in shared libraries are more complicated be-
cause the predicate engine does not know a priori where the
shared library will be mapped in the application virtual ad-
dress space. Instead, the engine monitors all calls to mmap

and detects when and where shared libraries are mapped
into a process’s address space. At that point the engine
computes the address of the breakpoint using the base ad-
dress of the shared library and the offset of the instruction
within the shared library executable file.

Demand paging further complicates the setting of applica-
tion breakpoints because the engine cannot set breakpoints
on a guest virtual page until it is mapped to a guest physical
page. In order to overcome this, the engine defers setting
breakpoints until the guest kernel maps the guest virtual
page that contains the breakpoint. The engine implements
this by adding a kernel predicate on the guest kernel’s low-

2x86 checks the protection bits in both the page table entry
and the enclosing 1st-level page table. A trap occurs on
writes if either write protection bit is set.



level MMU mapping function. The guest MMU mapping
function is executed frequently, so the engine enables this
kernel predicate only when it runs a process that has a de-
ferred breakpoint. To support this optimization, the predi-
cate engine monitors all calls to the guest kernel’s schedule
function when there are deferred breakpoints for any pro-
cess. Finally, the predicate engine detects when a code
page containing breakpoints is swapped out (by adding a
predicate to the guest kernel’s try to swap out function)
and places the unmapped breakpoints back in the deferred
breakpoint queue.

Finally, we describe the support needed for predicates to
be able to access application virtual pages. Application
pages will usually already be mapped to a physical page
when a predicate tries to read them. The predicate engine
performs the following sequence for the rare case in which
a predicate tries to read an address that is not yet mapped
to a physical page. It takes a checkpoint, then injects and
invokes code in the guest that causes it to read the address
in question. This causes a memory exception and the guest
kernel brings the page in. At this point, the predicate engine
reads the result and passes the value back to the predicate.
Finally, the predicate engine rolls back to the checkpoint it
took, which reverses the perturbations caused by handling
the memory exception.

A common theme in how we support application predi-
cates is the use of kernel predicates and lower-level function-
ality provided by the predicate engine, such as checkpoint-
ing. This is especially prominent in how we set breakpoints
on unmapped pages: we add a predicate on the guest ker-
nel’s MMU mapping function; then, to reduce overhead, we
dynamically enable and disable the MMU-mapping predi-
cate by installing another predicate on the guest kernel’s
scheduling function.

6. USING PREDICATES TO DETECT AND
RESPOND TO INTRUSIONS

This section describes how we anticipate predicates be-
ing used by system administrators. When a software ven-
dor discovers a vulnerability, it will produce and distribute
a predicate to test for the triggering of the vulnerability.
IntroVirt allows an administrator to install or remove new
predicates on a running system without rebooting the target
system. IntroVirt supports the ability to register multiple
predicates, even in the same piece of code. When an admin-
istrator receives a predicate from a vendor, she may use it
over the past and/or present time intervals.

First, an administrator may execute the predicate over
the past time interval when the vulnerability existed on the
system. This requires that the administrator log the execu-
tion of her system to enable it to be replayed later [5]. We
accomplish this by using the ReVirt virtual-machine replay
system [13]. Measurements indicate that the logging needed
to enable replay adds less than 10% time overhead. Logging
volume is small enough (e.g., 1 GB per day) that a single
disk can store the log for several months of execution [13].
Replay of a fully utilized system takes place at the same
speed as the original run. Replay can be 1-2 orders of mag-
nitude faster than the original run if the system was mostly
idle or blocked on I/O, because the replay system skips over
idle periods.

This combination of vulnerability-specific predicates and
VM replay enables one to pose and answer a question that
may not have been asked before but that should be of press-
ing concern for sites with high security needs. Namely,
when these sites discover that they have been running soft-
ware that is vulnerable to attack, they can ask and answer
the question “Did anyone exploit this vulnerability before I
found out about it?”. While answering this question can-
not prevent the attack, it can enable the administrator to
take corrective measures. These corrective measures include
taking precautions if confidential data is leaked (e.g., banks
can cancel credit cards), undoing damage incurred in the
attack (e.g., removing any backdoors that were added), and
notifying downstream clients of attacks the system has prop-
agated.

Second, an administrator can use a predicate to moni-
tor the present time interval, i.e. the ongoing execution of
the system. By detecting or preventing intrusions on the
live system, predicates afford an administrator more time
to test patches without compromising the security of the
system. An administrator can safely allow the predicate to
be installed automatically because installing the predicate
does not require restarting the service and because the pred-
icate is guaranteed to not perturb the system. This differs
significantly from installing patches automatically, which is
not effective until the software is restarted and may disrupt
the system due to buggy patches or unanticipated side ef-
fects.

Various responses are possible when the predicate detects
that a vulnerability has been triggered. For the past time
interval, the predicate can only alert the administrator to
the fact that the vulnerability has been triggered. For the
present time interval, an administrator can choose from a
greater variety of responses. If the administrator is unwill-
ing to perturb the system, she may configure the response
strategy to simply alert her to a break-in. If the admin-
istrator trusts the predicate and is willing to perturb the
system, she may allow the predicate engine to perturb the
system to prevent the attack from succeeding. For example,
the predicate engine may automatically install the patch
(just-in-time patching), perform functionality equivalent to
a patch, halt the virtual machine until the administrator
can conduct further analysis, drop the network connection
that triggered the vulnerability, or kill or slow down [26] the
process that executed the vulnerability.

Each predicate may have a customized response. For some
bugs and programs, it may be sufficient to close the connec-
tion that delivered a remote attack. For other bugs, closing
the connection may not prevent the attack from succeeding
because the malicious data may have already been received.
A response strategy can seek to recover the application to a
consistent and safe point before the attack started [6]. We
have implemented and used the following general response
strategies: alerting the administrator, halting or suspend-
ing the virtual machine, killing the process that executed
the vulnerable code, and performing patch-like functional-
ity (truncating a string to the appropriate length to pre-
vent occurrence of a buffer overflow). Regardless of the re-
sponse strategy, knowing that her system is under attack
will allow an administrator to make more-informed decisions
about the relative risk of installing or not installing a patch
[4].



7. EVALUATION
Section 3 listed five goals for IntroVirt: (1) predicates

should not perturb target state; (2) predicates should be
able to check for the triggering of vulnerabilities in operat-
ing system and application software; (3) predicates should
be able to be added without shutting down the system;
(4) predicates should be easy to write; and (5) predicates
should execute with low overhead. Goals 1 and 2 are met
by design. Predicates can check OS and application vulner-
abilities without perturbing target state because they run
outside the target and because the VMM uses checkpoints,
output suppression and timeouts. We measured the time to
install a new predicate on a running system at less than 500
µs, which meets our third goal of availability. This section
describes our experience with writing and executing predi-
cates for real vulnerabilities to evaluate how well IntroVirt
meets goals 4 and 5.

7.1 Example Predicates
This section describes several real vulnerabilities and their

corresponding predicates. We start with two simple exam-
ples to show the details of how to write predicates. The
first bug involves a missing bounds check in the Linux ker-
nel’s do brk function (CAN-2003-0961). do brk is called by
the sys brk system call, which a process calls to expand its
heap. The buggy do brk neglects to check for integer over-
flow and to check if the process is trying to expand its heap
above the address TASK SIZE. The patch consists of the fol-
lowing code, inserted before line 1044 of mmap.c, near the
beginning of do brk:

if ((addr + len) > TASK_SIZE || (addr + len) < addr)
return -EINVAL;

The predicate contains one event handler:

#define TASK_SIZE 0xc0000000

void brkEventHandler() {
unsigned long addr = readVar("addr");
unsigned long len = readVar("len");

if ((addr+len) > TASK_SIZE || (addr+len) < addr)
// Use "alert" response strategy
cout << "brk bug triggered" << endl;

}

The predicate installs this event handler by registering
a breakpoint at line 1044 of mmap.c (the same location as
the patch). To install the event handler, the predicate adds
the following line to the startup routine of the predicate
engine:

registerBreak("mmap.c:1044:begin", brkEventHandler);

brkEventHandler reads the guest variables addr and len,
then checks the same condition as is tested by the patch.
The predicate alerts the user (or invokes some other response
strategy) if the condition is true, just as the patch would
cause the function to return with an error. Because the
predicate mirrors the essential logic of the patch, the two
have comparable complexity.

The second bug is a buffer overflow in the openssl shared
library, which is used by programs such as the Apache web
server. The Slapper worm propagated by exploiting this
vulnerability (CAN-2002-0656). The buggy code resides in

a server-side function, get client master key, which parses
a packet received from the client as part of the SSLv2 hand-
shake. Here is an excerpt from that function:

static int get_client_master_key(SSL *s) {
...

s->session->key_arg_length=i; // line 419
s->state=SSL2_ST_GET_CLIENT_MASTER_KEY_B;

...
}

The patch consists of the following code, inserted imme-
diately following line 419:

if(i > SSL_MAX_KEY_ARG_LENGTH) {
SSLerr(SSL_F_GET_CLIENT_MASTER_KEY,

SSL_R_KEY_ARG_TOO_LONG);
return -1; }

The predicate contains one event handler:

#define SSL_MAX_KEY_ARG_LENGTH 8

void sslEventHandler() {
unsigned long i = readVar("i");
if(i > SSL_MAX_KEY_ARG_LENGTH)
// "kill process" response strategy
introvirt.killCurrentProcess();

}

The predicate installs this event handler by registering a
breakpoint at the same line of code as the patch:

registerBreak("s2_srvr.c:419:end", sslEventHandler);

As with the brk example, the event handler reads some
guest variables and checks the same condition as the patch.
Although the underlying machinery for application predi-
cates is more complicated than for kernel predicates, this is
transparent to the predicate writer.

The third predicate checks a vulnerability in the squid web
proxy cache (CAN-2005-0173). Squid’s LDAP authentica-
tion function fails to check usernames for strange patterns of
whitespace and this leads to ACLs being bypassed in some
cases. The patch consists of a new function, validUsername,
to perform this check, and one call to this function. As
with the brk and openssl examples, the squid predicate uses
a single event handler and contains the same logic as the
patch. The event handler reads the username variable from
the guest and passes it to its own copy of validUsername,
which is a cut-and-pasted copy of the patch’s validUsername
function.

Our fourth example is similar but slightly more compli-
cated. The vulnerability (CAN-2004-0109) is a buffer over-
flow in the ISO 9660 file system code of the Linux kernel, in
the function that reads symbolic links (get symlink chunk).
The buggy get symlink chunk takes two parameters. The
patch computes a pointer (plimit) to the end of the buffer
being copied into and passes this as a third parameter to
get symlink chunk. The fixed get symlink chunk checks
this new parameter to prevent a buffer overflow.

The predicate for the ISO 9660 bug mimics the patch by
creating, passing and checking the new plimit parameter.
This requires two event handlers. The first event handler
is installed at the point where get symlink chunk is called.
This event handler computes plimit (just as the patch does)
and saves its value. The second event handler is installed
at the points within get symlink chunk where the patch



# lines in
Application Reference Description of bug Type of bug pred patch

Linux kernel CAN-2003-0961 integer overflow in do brk integer overflow 8 2
OpenSSL CAN-2002-0656 SSL2 client master key arg buffer overflow buffer overflow 7 3
squid CAN-2005-0173 squid ldap auth incorrectly handles usernames w/ spaces malformed input 27 20
Linux kernel CAN-2004-0109 ISO9660 fs long symlink buffer overflow buffer overflow 41 17
find [20] TOCTTOU race condition race condition 63 N/A
bind CAN-2005-0033 buffer overflow in q usedns buffer overflow 16 2
emacs CAN-2005-0100 format string vulnerability in movemail utility format string 9 1
gv CAN-2002-0838 unsafe call to sscanf buffer overflow 4 2
imapd CAN-2005-0198 incorrect logic in CRAM-MD5 authentication logic error 6 1
Linux kernel CVE-2003-0985 mremap zero-area VMA remapping vulnerability missing validation 8 2
Linux kernel CVE-2004-0077 mremap missing do munmap return value check missing validation 15 7
Linux kernel CAN-2004-0415 file offset pointer race condition race condition 107 90
osCommerce CAN-2005-0458 cross-site scripting vulnerability in contact us.php malformed input 27 1
phpBB CAN-2004-1315 code injection via highlight parameter malformed input 30 1
smbd CAN-2003-0201 buffer overflow in call trans2open buffer overflow 10 1
squid CAN-2005-0094 buffer overflow in gopherToHTML buffer overflow 8 4
util-linux CVE-2002-0638 chsh/chfn temporary file race condition race condition 25 1
wu-ftpd CVE-2000-0573 format string vulnerability in lreply format string 16 4
wu-ftpd CAN-2003-0466 off-by-one bug in fb realpath off-by-one 11 1
xpdf/cups CAN-2005-0064 decryption function buffer overflow vulnerability buffer overflow 7 2

Table 1: Predicates we have written

checks plimit. The second event handler reads the neces-
sary variables from the guest and performs the same com-
parison against plimit that the patch performs.

Our final predicate checks for a time-of-check to time-of-
use (TOCTTOU) race condition that can occur when root

calls the find program to clean up old files [20], as in:

find /tmp -atime +3 -exec rm -f -- {} \;

find is subject to a race condition in the following sce-
nario: an attacker creates an old file, say /tmp/etc/passwd.
The find program sees this file, verifies its age using the
lstat system call, and invokes rm to delete it. How-
ever, before rm runs, the attacker removes /tmp/etc and
/tmp/etc/passwd and creates a symbolic link from /tmp/etc

to /etc. Hence when rm runs, it will delete /etc/passwd.
It is extremely difficult to fix this race condition com-

pletely using current Linux file system abstractions. One
partial fix is to change the effective user to the owner of the
file being removed before calling rm. This fix prevents root
from deleting a system file. However, under some extreme
circumstances, an attacker can still cause find to remove a
file other than the one it intended to remove. For example,
if /tmp/x/y is an old file owned by user z, and /tmp/x and
/tmp/x/y are world-writable, then the attacker can delete
these files just before rm is called, link /tmp/x to /home/z,
and cause find to delete the file /home/z/y.

Our predicate checks for this race condition by verifying
that the file that is being removed is the same one that
was returned by find’s call to lstat [18]. The predicate
installs one breakpoint in find after its call to lstat. The
event handler for this breakpoint saves the filename and de-
vice/inode for the file descriptor examined by lstat. The
second breakpoint is also installed in find and runs in the
child process when it is first created through fork. The
event handler for this breakpoint checks that the saved file-
name still points to its saved device/inode, i.e. that a race
has not occurred. The event handler performs this check by
copying the saved filename to the guest and calling the guest
function stat to get the current device/inode for that file-

name. The event handler takes a checkpoint before copying
the saved filename to the guest and restores to that check-
point after getting the device/inode. Next it compares the
newly-obtained inode number with the saved inode number.
If they do not match, the bug has been triggered; if they do,
the bug has not been triggered—yet. Finally, the event han-
dler installs a predicate refresh to detect if the race occurs
later.

The event handler for this predicate refresh is invoked
when the child process is scheduled out and scheduled in.
The refresh event handler calls stat on the saved filename.
When the process is scheduled out, the event handler checks
if the rm process has already unlinked the file and, if so, dis-
ables this predicate refresh. When the process is scheduled
back in, the event handler compares the device/inode re-
turned by stat with the saved ones; if they differ, the race
condition has been triggered. This predicate refresh remains
in effect until it explicitly cancels itself or the rm process ex-
its.

The predicate for the find race condition demonstrates
how IntroVirt enables complex predicates by allowing them
to call guest functions and to undo any perturbations
through checkpoint/rollback. It also demonstrates how to
use predicate refresh to check a condition safely in the pres-
ence of race conditions; in fact, the bug is caused conceptu-
ally by the same race condition.

Table 1 summarizes the bugs for which we have written
predicates. These bugs cover a wide variety of errors and
include a sampling of bugs discovered in the past 6 months,
as well as several older, high-impact bugs. We tested most
of these predicates by writing an exploit for the vulnera-
bility, running the exploit on the target, and seeing if the
predicate detected the attempt. We tested predicates over
the past and present time intervals. In each of our tests, the
predicate successfully detected the attempted exploit (no
false negatives). As expected, we encountered no false pos-
itives while running these predicates. We also verified that
multiple predicates may be installed in the predicate engine
at one time.



The table lists the number of new, non-comment lines
each patch adds or modifies in the program and the num-
ber of new, non-comment lines each predicate adds to the
predicate engine. These counts are a rough measure of the
complexity of writing predicates. Most predicates are com-
parable in complexity to their respective patches (as seen in
the examples above), although there is a minor expansion
in code size due to the syntax of accessing variables and the
need to install and uninstall breakpoints.

Three predicates have unusually large degrees of code ex-
pansion: util-linux, osCommerce and phpBB. Util-linux is a
race condition that occurs when two chsh or chfn processes
create the same file by calling open with the O CREAT flag.
The patch detects the conflict by adding the O EXCL flag
when creating the file. The predicate checks that the file
does not exist, then it uses predicate refresh to ensure that
the file continues to not exist. This predicate calls a guest
function to check the existence of the file and uses check-
point/rollback to undo the perturbations caused by calling
this function. The predicates for phpBB and osCommerce
are longer than their corresponding patches because the pro-
gram (and therefore the patch) is written in an interpreted
language (Section 9 discusses this point further). The pred-
icates for these bugs gain control when the php script is
about to be executed and evaluate the input to the php
script (much as Shield would [30]).

Our largest patch and predicate (filepos) is for a race con-
dition involving a pointer to the file position; this bug occurs
in many file system functions in the Linux kernel. The patch
fixes this by changing each affected function to operate on
a local copy of the file position. The predicate saves a local
copy of the file position at the start of each affected func-
tion; it then uses predicate refresh to check whether that
local copy is still consistent with the global version of the
file position.

Most predicates operate by reading a few application or
kernel variables. A few predicates are larger because they
duplicated code from the patch. Two predicates (util-linux
and find) explicitly used IntroVirt’s ability to invoke guest
functions (and used checkpoint/rollback to reverse the en-
suing perturbations). In addition, all application predicates
may invoke guest functions implicitly to read virtual pages
that are not yet mapped to a physical page. This latter
use of guest function invocation is ideal: it saves the predi-
cate from adding a large amount of code to mimic how the
OS finds and loads a non-resident page, yet it adds little
overhead because it invokes the function only rarely.

Overall, we found it quite easy to write predicates. Nearly
all the time for each predicate was spent studying the patch
in order to understand the vulnerability. Once we under-
stood the vulnerability, writing the predicate was trivial.

As a final test, we set up an IntroVirt honeypot with
three predicates (OpenSSL, smbd, and wu-ftpd CVE-2000-
0573) installed. We configured the response strategy for
each predicate to kill the guilty process, which in each case
was a helper process that had been created to handle a sin-
gle connection. Killing the process dropped the malicious
connection while allowing the service to continue. Over a
period of about three weeks, two attempts were made to ex-
ploit the OpenSSL vulnerability and one attempt was made
to exploit the smbd vulnerability. IntroVirt detected and
thwarted each of these attacks.

7.2 Performance
Next we measure the overhead added by IntroVirt. All

overhead results are relative to a UML guest on ReVirt run-
ning the same workload without predicates or the predicate
engine. The total overhead versus a standard production
system would also include the overhead due to the virtual
machine and virtual-machine replay. The virtual machine
we use (UML) adds 15-76% overhead on system-call inten-
sive workloads (SPECweb99 and compiling a kernel) [17].
We are implementing replay and IntroVirt on the Xen vir-
tual machine monitor [3], which has much lower virtualiza-
tion overhead. The overhead of virtual-machine replay is
less than 10% (Section 6).

All experiments are run on a 3 GHz Pentium 4 unipro-
cessor machine with 1 GB of memory and a 120 GB disk.
The host OS is Linux 2.4.18 with ReVirt functionality and
the skas extensions needed by UML. The guest OS is Linux
2.4.20 ported to UML. The guest is configured to have 256
MB of memory and an 8 GB disk, which is stored on a host
raw disk partition. Each result represents the average of five
runs.

Most security vulnerabilities we have examined occur on
code paths that are executed infrequently, perhaps because
these code paths are tested less thoroughly. For example,
the buggy code path in imapd is executed once when a
user starts a mail session; the ISO 9660 bug occurs only
when resolving a symbolic link that is not yet in the file
cache; and the util-linux bug is invoked only when calling
chsh/chfn. IntroVirt adds no measurable overhead for these
infrequently executed predicates.

We measure the overhead of IntroVirt on three predicates
that may execute frequently in real use. First, we measure
the overhead of the predicate for the kernel’s do brk func-
tion, which is called when a process increases the size of its
heap (e.g., on calls to malloc). We compile the Linux 2.4
kernel (make clean; make) and measure performance with
and without the brk predicate. The predicate executes ap-
proximately 810 times per second when running this work-
load. The predicate adds 4% overhead, both in the past
time interval (using ReVirt to replay the virtual machine)
and in the present time interval.

Second, we measure the overhead of the openssl predi-
cate, which is called each time a secure connection is initi-
ated. The workload is a simple program that serves 2500
secure web pages, each 4 KB in size. Under this workload,
the predicate executes approximately 96 times per second.
Overhead in the past and present time intervals is 1%.

Third, we measure overhead for the find predicate. The
predicate for this bug is called each time a file is found that
meets the criterion for deletion. We measure the overhead
of calling find on a directory with 500 1 KB files, each of
which is then removed by find. The predicate executes 21
times per second and adds 25% overhead. The main source
of overhead is taking and restoring to a checkpoint, the com-
bination of which takes 5 ms on our system. Although the
find predicate adds more overhead than the others, it pro-
tects the system from a race condition that is difficult to
solve using existing Linux file system abstractions.

Finally, we evaluate the overhead of running the combi-
nation of the above three workloads with the above three
predicates enabled. Overhead for the combination of the
three predicates and workloads is 10%, which corresponds
to the average of the overheads for each individual predicate.



Overall, we found the overhead of IntroVirt to be low—
most predicates added no overhead because they were on
infrequently executed code paths, and most predicates that
executed frequently were simple and fast.

8. RELATED WORK
Three areas of work related to this research are systems

that provide or use virtual-machine introspection, systems
that use vulnerability-specific or user-supplied probes, and
dynamic software updating.

The ability to introspect on the execution of a virtual
machine has been provided in prior virtual machines and
whole-machine simulators. SimOS allows users to specify
annotations, which are Tcl scripts that users can register on
specific hardware events [24]. These annotations can exam-
ine the low-level state of the virtual machine; they can also
identify state symbolically by parsing the symbol table of
the guest kernel and guest applications. Similarly, the Sim-
ics whole-machine simulator allows users to specify handlers
that can be invoked on certain events or times [19]. A recent
project explores the construction of general-purpose services
by interposing on the execution of virtual machines [31].

The most similar use of virtual-machine introspection was
done by Garfinkel and Rosenblum [15]. As with our re-
search, they apply virtual-machine introspection to detect
intrusions. Our work differs from this work in four ways.
First, we use precise predicates that indicate the exploita-
tion of known vulnerabilities, while [15] uses general rules
that indicate likely intrusions. Second, we apply the idea
of virtual-machine introspection to detect intrusions in the
past and present time interval, whereas [15] applies the idea
only to the present time interval. Third, we leverage code
that already exists in the target system to bridge the seman-
tic gap between machine-level state and application or oper-
ating system level abstractions, whereas [15] re-implements
code to bridge this gap in an OS interface library. We are
able to execute code in the target system without perturb-
ing its state by tracking and rolling back any state changes
caused by invoking guest functionality. Fourth, we use pred-
icate refresh to tolerate preemptions that occur between the
initial predicate evaluation and the buggy code that is being
checked.

The idea of detecting intrusion attempts in a
vulnerability-specific manner was articulated recently
by the Shield project [30]. As with our project, Shield
argues for using vulnerability-specific filters to protect a
computer in the time interval from when the vulnerability-
specific filter is available until the patch for the vulnerability
is applied. While [30] focuses on preventing intrusions in
the present time interval, Shield could also be used to
detect intrusions in the past time interval by logging and
replaying network packets. The fundamental difference
between Shield and IntroVirt is that Shield analyzes the
network input into the system, while IntroVirt analyzes
the execution and state of the system itself. To predict
the effects of a network packet on the application, Shield
sometimes must maintain a mirror copy of some application
state, and this requires a Shield filter to duplicate the
application’s logic. In addition, if the application or vul-
nerability behaves non-deterministically, it may be difficult
for Shield to predict accurately the effect of the packet.
IntroVirt makes it easy to construct accurate and powerful
predicates because IntroVirt predicates can leverage and

analyze the live state of the application and operating
system and can invoke functions in the target software.
One advantage of Shield’s network-oriented approach is
that Shield filters detect the intrusion when the packet is
received and can thus stop the intrusion easily by simply
dropping the packet. IntroVirt predicates generally detect
the intrusion later (at the point the packet is processed by
the application). While this allows IntroVirt to diagnose
the packet more easily and accurately, it also makes it more
complicated to excise the effects of the packet from the
system.

The Vigilante system also seeks to detect intrusions in
the present time interval in a vulnerability-specific manner,
but it attempts to do so with automatically generated filters
rather than handcrafted predicates [9]. Like IntroVirt, Vig-
ilante filters can access application state and be installed
without restarting the application [8]; however, the filters
described in [9] solely examine data in incoming messages.
Vigilante uses two types of filters to detect multiple ex-
ploit variations from a single exploit sample. Vigilante’s
specific filters detect all exploits that, independent of ap-
plication state, generate a given execution path in the vul-
nerable program. These filters have no false positives but
allow false negatives. Vigilante’s general filters use heuris-
tics to try to detect exploits that deviate from the given
execution path. These filters reduce false negatives but may
allow false positives. An open challenge is how to gener-
ate filters automatically that can detect more exploits of a
given vulnerability without leading to false positives. Unlike
IntroVirt predicates, Vigilante filters are installed in an ap-
plication’s address space and thus may (but are unlikely to)
affect the behavior of the application. This structure makes
Vigilante filters incompatible with virtual-machine replay,
which prohibits any change to the target system’s state or
instruction sequence. IntroVirt enables handcrafted pred-
icates with arbitrary functionality to execute without per-
turbing the target system. IntroVirt also implements predi-
cate refresh, which enable predicates to work in the presence
of multi-process race conditions.

Like IntroVirt, the Chronus tool examines the past time
interval with user-supplied probes (similar in spirit to our
predicates) [32]. Chronus differs from our work in its goal
and the scope of state it examines. Chronus seeks to
find when a misconfiguration of the system first appeared,
whereas we seek to detect if a software vulnerability is being
(or has been) triggered. This focus on system misconfigura-
tion allows Chronus to limit its recovery to only the persis-
tent (i.e. disk) state; in contrast, our predicates examine the
entire target state. Chronus tests specific points to narrow
down the time in which the misconfiguration first appeared,
which works only when the misconfiguration appears and
persists. In contrast, IntroVirt evaluates predicates contin-
uously while executing through an execution interval (past
or present), and this allows IntroVirt to detect transient
problems (such as intrusion attempts).

Researchers have examined how to update running soft-
ware without restarting it, both for applications [16] and
operating systems [28, 27]. These dynamic updates pro-
vide the ability to patch software without waiting for sched-
uled maintenance. However, patches may still be incorrect
or have unintended side effects (in fact, dynamic patches
are harder than traditional patches because they must im-
port active state into the updated system), so administra-



tors must still wait for patches to be tested or risk system
instability.

More broadly, our research complements prior work in the
general area of intrusion detection [1]. Our approach differs
from most of the broader field of intrusion detection in two
ways. First, because current intrusion detectors try to de-
tect general classes of attacks, they use broad signatures
or anomaly-based methods that often lead to false nega-
tives and/or false positives. In contrast, we detect attempts
to exploit specific known vulnerabilities. We can thus use
predicates that are tailored to these specific bugs and can
be written to generate no false negatives or positives. Sec-
ond, our research combines vulnerability-specific predicates
with virtual-machine replay to answer a question that has
not been posed or answered in prior work, which is “was this
vulnerability exploited on my system before I learned of the
vulnerability?”.

9. LIMITATIONS AND FUTURE WORK
This section describes some limitations of the current In-

troVirt prototype and how we plan to address some of these
limitations in future work.

While we strive to avoid perturbing the target system,
predicates in the current IntroVirt implementation do in-
troduce some minor perturbations. First, predicates may
change the timing of the target system’s execution, and these
may expose existing race conditions present in the target
software. Second, an artifact of our present implementation
is that we use software breakpoints. Software breakpoints
are implemented on the x86 platform by temporarily over-
writing instructions, and this could change the execution of
the target software if it reads its own code segment.3 One
way to prevent software breakpoints from perturbing the
target system is to disable reads on the pages with soft-
ware breakpoints installed and to emulate instructions and
reads on those pages. A simpler solution is to use hardware
breakpoints, but current x86 processors support only four
hardware breakpoints.

A second limitation is that, while executing over the past
time interval, predicates can access only information that
was present in the system at that time. For example, a
predicate cannot query the hardware clock while executing
in the past because the replay system does not know the
value of the hardware clock except when it was read. Pred-
icates can, however, read any information that was read or
present during the past execution, such as the contents of
any software variables that maintained the time. In practice,
predicates for all bugs we have examined can be expressed in
terms of values that exist on the system. The only bugs we
can conceive of that would require information outside the
target system are missing authentication checks, in which
the missing information is authentication data on another
server. A predicate could access this information by being
allowed to query the state of the authentication server.

Third, IntroVirt is not yet integrated with interpreted lan-
guages, such as php or perl. Instrumenting an interpreted
language differs from instrumenting compiled languages (we
currently support C and C++) because instructions and

3An attacker cannot easily leverage these perturbations be-
cause we detect intrusions at the vulnerable code; at this
point, the the attacker has not yet gained the ability to ex-
ecute arbitrary code in the monitored process.

variables are executed and accessed in the interpreter rather
than in the hardware. For example, the most natural way to
implement breakpoints for an interpreted language would be
to instrument the interpreter’s fetch/execute loop. Rather
than instrument the interpreter, our predicates for the two
php bugs in Table 1 (osCommerce and phpBB) gain control
when the php script is about to be executed and evaluate the
input to the php script. This approach is similar to Shield
[30] and works well for simple tests on the input. More sub-
tle bugs may depend on the internal state of the php script
as it runs, and this may require predicates to mirror the
logic of the php script. A better approach for these bugs
(and one more consistent with the IntroVirt philosophy) is
to express predicates in terms of the interpreted language
abstractions. We plan to implement this approach by inte-
grating IntroVirt with the debuggers available for languages
like perl, python and php.

Fourth, IntroVirt is limited by the replay system when
executing over the past time interval. The replay system we
use, ReVirt, can currently replay only uniprocessor virtual
machines. Researchers are investigating ways to support
replay on multiprocessors through hardware modifications
[33] or software support [12]. Researchers are also imple-
menting support for virtual-machine replay on faster virtual
machines, including Xen and virtual machines for processors
with Intel’s Vanderpool technology [29].

Fifth, predicate refresh is currently limited to uniproces-
sors because it assumes that processes are interleaved by
the kernel’s schedule function. Predicate refresh could be
implemented on a multiprocessor by refreshing the predi-
cate when the kernel acquires and releases locks that protect
shared kernel state such as files. This works because pred-
icate refresh is used for races around accesses to files and
other shared kernel state.

Finally, we hope to explore methods for deriving predi-
cates automatically from the distributed patch, such as by
running both patched and unpatched versions of the soft-
ware and detecting when results differ. We may be able
to use conformance wrappers [23] to hide differences due to
non-determinism and thus highlight differences due to the
triggering of a vulnerability.

10. CONCLUSIONS
We have explored how predicates can detect intrusions

that exploit specific vulnerabilities in operating system and
application software. Vulnerability-specific predicates can
help improve security for both the past and present time in-
terval. When combined with virtual-machine replay, pred-
icates can answer a question that should be asked by any-
one administering a high-security site: “Was my system
compromised through the vulnerability that was just dis-
closed?”. When installed on a live system, predicates can
detect or prevent a system compromise through known-but-
unpatched vulnerabilities.

Predicates are easy to express because they are written in
terms in program abstractions, can examine the live state
of the executing target, and can call native functions in the
target. Predicates are safe to install and run: IntroVirt pro-
tects the system from predicates with bugs or adverse side
effects by using virtual-machine introspection, checkpointing
and timeouts. We implemented predicates for a wide vari-
ety of real vulnerabilities. We found that predicates were
easy to write, detected intrusions over both the past and



present time intervals, and added little overhead for most
vulnerabilities.
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