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Abstract
Deterministic record-replay has many useful applications, ranging
from fault tolerance and forensics to reproducing and diagnosing
bugs. When choosing a record-replay solution, the system admin-
istrator must choosea priori how comprehensively to record the
execution and at what abstraction level to record it. Unfortunately,
these choices may not match well with how the recording is eventu-
ally used. A recording may contain too little information tosupport
the end use of replay, or it may contain more sensitive information
than is allowed to be shown to the end user of replay. Similarly,
fixing the abstraction level at the time of recording often leads to a
semantic mismatch with the end use of replay.

This paper describes how to remedy these problems by adding
customizable replay stages to create special-purpose logsfor the
end users of replay. Our system, called Crosscut, allows replay logs
to be “sliced” along time and abstraction boundaries. Usingthis
approach, users can create slices that include only the processes,
applications, or components of interest, excluding parts that handle
sensitive data. Users can also retarget the abstraction level of the
replay log to higher-level platforms, such as Perl or Valgrind. Exe-
cution can then be augmented with additional analysis code at re-
play time, without disturbing the replayed components in the slice.
Crosscut thus uses replay itself to transform logs into a more effi-
cient, secure, and usable form for replay-based applications.

Our current Crosscut prototype builds on VMware Worksta-
tion’s record-replay capabilities, and supports a varietyof differ-
ent replay environments. We show how Crosscut can create slices
of only the parts of the computation of interest and thereby avoid
leaking sensitive information, and we show how to retarget the ab-
straction level of the log to enable more convenient use during re-
play debugging.
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1. Introduction
Deterministic replay systemsprovide the ability to record the ex-
ecution of a computing entity (e.g., a virtual machine, process, or
script) and reproduce that execution at a later time. Deterministic
replay systems can recreate the complete state of the recorded en-
tity at any point during the recorded execution. The abilityenables
a wide variety of compelling applications, such as softwarefault
tolerance [2], forensics [5], precise reproduction of crashes, diag-
nosis and debugging [11, 23, 24], and offloading and parallelization
of dynamic program analysis [4].

Deterministic replay systems record an execution efficiently by
checkpointing the computing entity, then logging all external data
or events that the entity receives. Deterministic replay systems can
be built for entities at any level of abstraction, as long as the com-
puting entity at that abstraction level behaves as a deterministic
finite-state machine given sufficient recorded inputs. For example,
one can record the execution of a virtual machine efficientlyby
checkpointing the state of the virtual machine, then logging inter-
rupts, incoming network packets, and user input. Or one can record
the execution of a process by checkpointing the process’s address
space, then logging data returned by operating system calls.

Current replay systems require users to choosea priori the
scope of recording (what entities to record and during whichtime
periods) and at what abstraction level to record it. These decisions
affect how much information is captured in the recording andhow
convenient and efficient it is to replay the recording. Inevitably
these decisions make trade-offs with respect to record overhead,
replay overhead, and log space.

Making these decisions is easiest if the user knows at the time of
recording exactly how the recording will be used during replay. For
instance, a programmer who is debugging a program will generally
know approximately which processes, time intervals, and abstrac-
tion levels may be needed to debug a problem. In these cases, the
user can choose the comprehensiveness and abstraction level of the
recording solution to best fit the end use of replay.

Unfortunately, in many situations, the user does not know in
advance how the recording will be used during replay; rather, the
specifics of what is needed during replay are learned later (i.e.,
at the time of replay). Examples of such situations are recording
a computer’s execution to enablepost hocanalysis of intrusions,
or recording a suite of communicating applications to provide an
execution trace to the developer when one of these applications
crashes. In these situations, the user cannot make an optimal choice
at the time of recording as to when, what, and at what abstraction
level to record, and must instead record so as to enable a broad
range of potential uses.

For example, consider the question of what abstraction level to
record. If the end use of replay is not known, fixing the abstraction
level at the time of recording may lead to a semantic mismatch



during replay. E.g., if the system records at the level of machine
instructions, it is difficult to use the log to conduct replaydebugging
at the level of interpreted languages [10]. On the other hand, if the
system records at the level of an interpreted language, it may miss
important behavior at lower levels of abstraction. Simultaneously
recording at multiple levels of abstractions allows a variety of uses
later but increases overhead during recording.

Similarly, consider the question of which entities to record (say,
among several processes). A simple strategy is to record each en-
tity separately, then replay the set of entities once the requirements
for replay are known. A better strategy is to record the entities as
a group, since this can reduce storage and time overhead during
recording by avoiding the need to record communication between
the entities. However, if the end use of replay is not known, the user
cannot pre-determine which group to record. The user could choose
to record all processes individually, but this increases recording
overhead. The user could also record all processes as a single set,
but this increases replay overhead, which can be particularly prob-
lematic when replaying multiple times (for example when replay
debugging emulates a reverse breakpoint with repeated forward re-
play steps[11]).

Additionally, consider the question of when to take a checkpoint
during recording. Since replay always starts from a checkpoint,
having more checkpoints allows an end user of replay to more
quickly replay to the point of interest. Checkpoints also allow end
users of replay to skip over an interval of execution, and this can
be used to elide confidential information from a recording (which
may need to be done before sharing a recording with developers or
analysts). If the end use of replay is not known, the system must
guess when to take a checkpoint. Guessing incorrectly make the
resulting recording less convenient or less useful during replay. To
preserve ultimate flexibility during replay, the system should take
checkpoints frequently during recording, but this greatlyincreasing
time and space overhead during recording.

These problems are caused by the two-stage (log and replay)
design of today’s record-replay solutions, in which the final replay
stage takes as input the log that was captured originally. This forces
the end use of replay to match the logging system in the scope being
replayed and the abstraction level at which replay takes place.

Our goal is to provide a recording and replay system that can
record and replay efficiently, even if the end use of replay isnot
known until after the recording. Our insight is that, while the
comprehensiveness and abstraction level ofrecordingmust be fixed
a priori, the comprehensiveness and abstraction level ofreplaycan
be determined later, i.e. when it is better known what information
and abstraction levels are required during replay.

We present a system called Crosscut that leverages this insight
by taking a multi-stage approach. Crosscut first records theexecu-
tion comprehensively and efficiently at the level of machineinstruc-
tions. Comprehensive replay systems are attractive because they
can record the state of an entire system (e.g., an entire virtual ma-
chine [2, 5]), which enables analysis of all activity on the system.
Further, because they only need to record non-deterministic inputs
that enter the system from the external world, recording overheads
can be remarkably low (often under 5% [28]). Crosscut thus pre-
serves all information until it is known which information is needed
during replay.

Later, once the end use of replay is known, Crosscut transforms
the log before it is shipped to the end user of replay. This transfor-
mation takes advantage of the user knowledge that exists at the time
of replay but that did not exist while recording, such as whatpro-
cesses, files, and semantic levels need to be examined. The trans-
formations between the initial recording step and the final replaying
step allow Crosscut to avoid the problems typically encountered by
comprehensive record-replay systems, such as including sensitive

information and semantic mismatch with the end user of replay. A
transformation step accepts as input one log and generates anew
log that is optimized toward a particular use of replay.

Crosscut can transform a log in several ways. First, Crosscut
can selectivelyslice out portions of execution that are not of in-
terest, such as time periods, applications, or components not be-
ing analyzed. Crosscut can slice out execution contexts that handle
sensitive data, helping to mitigate the privacy concerns associated
with sharing and storing replay logs. Crosscut can also slice the
log along abstraction boundaries, such as the kernel/user boundary,
or interpreter/program boundary, or even individual module bound-
aries, resulting in a log that can be replayed on a higher-level replay
system, thus more easily facilitating high level analysis (e.g. leak
and memory error detection) and debugging.

Crosscut transformation steps are implemented using a novel
technique calledrelogging, where execution is replayed using one
log and filters are applied during replay to generate a new log.
Thus, Crosscut uses replay itself to transform a recording into a
more efficient, secure, and usable form for later downstreamuses
of replay.

Our work makes three main contributions. First, we develop the
idea of multi-stage replay, which generalizes the two-stage design
used by prior replay systems. Second, we show how to userelog-
ging to take a recording and create a new recording that is cus-
tomized for a particular abstraction level, scope, and timeinterval.
Third, we demonstrate multi-stage replay by implementing two ba-
sic transformations (time slicing and abstraction slicing), and we
compose these basic transformations to create a variety of cus-
tomized recordings, such as a pruned snapshot and log, a subset
of processes that can be replayed without OS support, a Perl-level
recording, a omniscient debugging log, and a log in which sensitive
information has been redacted.

The next section explains how deterministic replay systems
record and replay an executing system, and we describe how to
generalize the replay workflow by transforming the log via relog-
ging stages. Section 3 describes how a recorded computationcan
be graphed in two dimensions of time and abstract level and how
we can create slices along these dimensions to create meaningful
subsets of the computation. Section 4 presents our current imple-
mentation, exploring how slicing, recording and replayingare sup-
ported at various abstraction levels (virtual machine, process and
scripting language). Section 5 evaluates how well Crosscutmeets
our goals of reducing the size of a recorded computation, speed-
ing up replay, supporting replay at higher levels of abstraction, and
ensuring privacy. Section 6 describes related work, and Section 7
concludes.

2. Multi-stage replay
Deterministic replay systems reproduce a machine’s computation
by leveraging the fact that if a machine is deterministic, and one
can record its initial state and all non-deterministic inputs, then
one can exactly reproduce the machine’s execution, state bystate.
This method applies to machines at many different levels, such as
a physical processor [27], a virtual machine [2, 5], a JVM [16], a
process [23], or a Perl interpreter.

Current replay systems work in two stages (Figure 1a). The first
stage captures a recording of a system’s computation, and the sec-
ond stage replays the captured recording to regenerate the compu-
tation. For recording, the initial state of the machine is captured
before execution starts. Once execution starts, all inputsto the ma-
chine are recorded along with timing information that specifies the
exact point at which the input arrived. Replay works by restoring
the machine from the captured snapshot and restarting the computa-
tion. When the computation reaches a state that matches the timing
information stored in the log, inputs from the recorded run are sup-
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Figure 1. Two-stage and multi-stage replay. Thicker lines denote
larger logs.

plied to the computation. The result is that the replayed execution
proceeds exactly as it did the first time.

Limitations of two-stage replay While the simplicity of this de-
sign is appealing, it suffers from two major weaknesses. Thefirst
weakness is that a two-stage replay system uses a single, general-
purpose log, rather than one that is customized to any particular use
of replay. This single log works well only when the designersof the
system knowbefore the capture stage runswhat information will
be needed during replay, such as what time period and execution
features are of interest to the user of the replay system. With such
knowledge, the designers can tailor the capture stage to save only
the information that will be needed during replay.

However, if the designers do not know, before the capture stage
runs, what information will be needed during replay, the single,
general-purpose log forces a designer to choose between suffi-
ciency and efficiency. If the designers want to guarantee sufficiency,
they can err on the side of capturing more information than might
be needed. This extra information increases the size of the check-
point and replay log, slows replay, and leaks more sensitiveinfor-
mation from the logged system to the replaying site. On the other
hand, if the capture stage errs on the side of being more efficient, it
risks not capturing the information that is needed during replay.

In several important uses of deterministic replay, it is difficult
or impossible to anticipate beforehand what information will be
needed during replay. For example, when using replay for computer
forensics, it is not generally known before the intrusion what infor-
mation will be needed to analyze the intrusion, determine how the
attacker broke into the system, or determine what damage occurred
during the intrusion. Similarly, when using replay for debugging
transient or non-deterministic bugs, it is not generally known what
information will be needed to track down the bug.

The second weakness of a two-stage replay system is that all
the work of generating the recording takes place during the initial
capture stage, and this work may add significant overhead to the
system being recorded. If this overhead is high enough, it may
render the recorded system unusable, or it may slow the recorded
system so much that the recorded computation is no longer realistic.
For example, the Chronicle tool for Valgrind, which recordsthe
detailed execution of a program, slows a program by 100-300x[12,
20].

Adding transformations To fix these weaknesses, we add pro-
cessing stages between the capture stage and the final replay
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Figure 2. Two-dimensional graph of a recorded computation.

stage (Figure 1b). Each intermediate processing stage transforms
a recording in some way, tailoring it for the final use of replay.

Adding processing stages between the capture stage and final
replay stages benefits the system in two ways. First, it resolves
the conflict between efficiency and comprehensiveness. The initial
capture stage can record the computation as comprehensively as
possible. Later, when it is known what information will be needed
during the final use of replay, processing stages can then tailor
the recording appropriately. The tailored recording can bemuch
smaller, faster and more flexible to replay. E.g., in our evaluation
(Section 5.1), Crosscut reduced the snapshot size for a server work-
load from 4 GB to 4 MB (which reduces the time needed to ship to
a remote site), and Crosscut reduced the replay time for IIS from
226 seconds to 19 seconds. The tailored recording also leaksless
sensitive information to the replay site. E.g., Crosscut can remove
all or part of the execution of processes that handle passwords.

Second, tailoring the recording after the initial capture stage can
often reduce the overhead of the initial capture stage. The work to
tailor the recording occurs after the initial capture stageand can
be done at a later convenient time, e.g., when the system is idle.
This decoupling of work works especially well when it is possible
to capture an initial comprehensive recording with little overhead,
as is the case with virtual-machine recording [4]. For example,
deferring the use of Chronicle until replay can reduce the overhead
during recording by 100-300x.

With multi-stage replay, the goal of each processing stage is to
tailor the recording for a specific end use of replay. The input to a
stage is a recording of some computation. The output of a stage is
a new recording, either of the same computation or of a subsetof
the original computation.

We implement each processing stage using a technique we call
relogging. The idea in relogging is to structure each processing
stage as a replay of the prior recording. As the prior recording is
being replayed, the processing stage captures or generatesinfor-
mation for the new recording. The next section describes thetypes
of transformations that can be done in a processing stage andhow
a stage generates or captures a new recording during relogging.

3. Replay transformations
This section describes two types of transformations that can be per-
formed on a recorded computation: time slicing and abstraction
slicing. The goal of these transformations is to create a newrecord-
ing that is smaller and faster to replay than the original one, leaks
less sensitive information, and can be used more flexibly.

To understand the two types of transformations, it is helpful
to graph the recorded computation as a layered stack of running
abstract machines (Figure 2). The X axis of the graph represents
time. The Y axis of the graph represents the level of abstraction:
higher Y values in the graph represent the execution of a higher-
level abstract machine. For example, the lowest level couldbe



x86 instructions. The next level up could be user-level processes,
which supplement thex86 instruction set with system calls to the
operating system kernel. The next higher abstract machine could
be a Java VM, which provides the abstraction of Java bytecode
instructions. Still higher levels can also be imagined, such as a
Java program that implements an SQL or Perl interpreter, or a
Python program that implements a Web server, which executes
HTTP requests.

The two types of transformations we use each create a subset,or
slice, of a recorded computation along one of its two dimensions.
A slice is a new, standalone recording of some abstract machine,
capturing a continuous portion of the execution history of that
abstract machine. Like all recordings, a slice requires an initial
snapshot and a log of inputs. We generate the snapshot and input
log for the new slice of execution by relogging a prior recording
(which could itself be a slice).

3.1 Time slicing

The first type of transformation,time slicing, extracts the time inter-
vals of interest from a recording. This transformation yields a vari-
ety of potential benefits. The starting snapshot can be substantially
smaller, making it easier to store and transport. Restoringsnapshots
can be faster because a snapshot is smaller, and replay can befaster
because the time slice can be customized to only include the time
period of interest. By reducing the size of the snapshot and replay
log, time slicing can reduce the amount of sensitive information
leaked by replay. To meet specific privacy goals, additionalanaly-
ses can be applied to slice out intervals that handle sensitive data.

Time slicing works using a simple twist on replay. As usual with
deterministic replay, the system replays a slice by starting from a
snapshot and executing forward using the portion of the log from
that slice. The twist comes by noting that because a slice contains
a finite, known interval of execution we can determine exactly
which state (e.g. disk blocks, memory pages) is accessed during
the interval of interest, and include only that state in the snapshot.
In contrast, the snapshot for the original, comprehensive log must
include all state because it cannot pre-determine (when it takes the
snapshot) what state will be accessed in the future.

A computation of interest may be spread over several slices,and
treating each as a separate, standalone recording is cumbersome.
The initial snapshot of each slice can represent a large amount of
state, and in many cases, much of this state will be redundantwith
nearby slices.

These problems can be alleviated bystitchingthe slices together
to form a single, coherent recording. Instead of having separate
initial snapshots for each slice, we can encode the snapshotof
each slice relative to the ending state of the previous slice. In other
words, by applying the difference between states, we can getfrom
the ending state of one slice to the starting state of the nextslice.

By recording these differences in a log entry that joins the logs
of the two slices, we can create a single recording, with one initial
snapshot, and a set of log entries that represents a coherentbut
discontiguous computation.

3.2 Abstraction slicing

The second type of transformation,abstraction slicing, transforms
the level of a recording so that it describes the execution ofa
higher-level abstract machine. For example, a VM-to-process filter
would transform a recording at the level of a virtual machineinto a
recording at the level of an operating system process. Whereas the
original recording would describe the state of the virtual machine
and log the non-deterministic inputs to the virtual machine, the
new recording would describe only the state of the process and the
inputs to that process.

Abstraction slicing reduces the comprehensive of a recorded
computation in two ways. First, it eliminates from the computation
all state and input that pertain to lower abstract machines.For
example, the VM-to-process filter would eliminate all inputs to
the virtual devices; instead, it would include only inputs to the
operating system process.

Second, abstraction slicing will usually include only a subset of
the peer entities running at the level of a given abstract machine.
For example, a VM-to-process filter will usually retain the history
of only some operating system processes.

Reducing the comprehensiveness of a recorded computation
is helpful in several ways. Perhaps the most important benefit is
improving the flexibility of replay. Because lower-level abstract
machines are not included in the transformed history, theselevels
can be modified during replay without perturbing the replay of
the higher-level abstract machine. For example, a VM-levelhistory
forces the replay system to replay the entire virtual machine exactly
as before, and this makes it difficult to perform tasks such as
attaching a debugger or running in-system analysis tools (e.g.,
Valgrind). In contrast, a process-level history requires the replay
system to replay only the process, and this allows a user of replay
to attach a debugger or use other tools, as long as those toolsdo not
perturb the execution history of that process.

In addition, abstraction slicing reduces the size of the initial
snapshot, since the states of the lower-level abstract machines and
other peer entities are no longer needed. It may also reduce the size
of the input log, since some non-deterministic inputs to thelower-
level abstract machine may not result in non-deterministicinput to
the higher-level abstract machine.1

Third, abstraction slicing reduces replay time. Restoringthe
snapshot is faster because the snapshot is smaller, and replay is
faster because only the higher-level abstract machine needs to be
replayed.

Finally, abstraction slicing can reduce the amount of sensitive
information contained in an execution history, since it contains state
only of the higher-level abstraction machines of interest.

Generating an abstraction slice requires a system that under-
stands the higher-level abstract machine in two ways. First, the
system must understand the state representation of the higher-level
abstract machine, since this is required to take a snapshot of the ma-
chine. Second, the system must understand which inputs are non-
deterministic with respect to the higher-level abstract machine.

Extracting the state and non-deterministic inputs of an abstract
machine can be implemented in two ways. The first way (reflection)
is to enlist the help of the layer that implements the higher-level
abstract machine (e.g., a VMM implements a virtual machine or
an operating system that implements a user-level process).We
call the layer that implements the higher-level abstract machine its
interpreter. Reflection is the easiest way to extract the state and
non-deterministic inputs of a higher-level abstract machine. For
example, since the operating system implements the abstraction
of user-level processes, the operating system can easily extract
the state of a process and log all non-deterministic inputs to that
process. We use reflection to generate a slice at the level of aPerl
script.

The disadvantage to using reflection is that all code to extract the
state and non-deterministic input must already be present and active
in the original execution history of the interpreter. This is because

1 On the other hand, it may increase the size of the input log, since input data
that is non-deterministic with respect to the higher-levelabstract machine
may be deterministic with respect to the lower-level abstract machine. For
example, the data returned by read system calls is non-deterministic from
the point of view of a single operating system process (sinceother processes
may change the file), but it may be deterministic from the point of view of
the entire machine.



abstraction slicing is implemented via relogging, which involves re-
playing the lower-level abstract machine (including the interpreter)
exactly as before. When we use reflection to generate an abstrac-
tion slice, we discard the extracted state and non-deterministic input
during the original run, but save it during the relogging phase.

The second way (introspection) to extract the state and non-
deterministic input of an abstract machine is by adding codeout-
side the domain of the lower-level abstract machine [6, 10].For
example, code running outside a virtual machine can peek inside
the running virtual machine and extract information about that vir-
tual machine without perturbing its state. Introspection allows one
to add the functionality to extract state and non-deterministic input
after the original execution is logged. However, introspection can
be cumbersome to implement and slow to run. We use introspection
to generate a slice at the level of a operating system process.

4. Implementation
Our current Crosscut prototype is built on the VMware record-
replay stack, which enables replay for x86-based uniprocessors.
Using Crosscut begins by using the VMware VMM to capture a
virtual machine-level recording [28]. Crosscut can then generate
a new recording containing only the time interval, individual OS
processes, or Perl scripts of interests. Using pattern matching or
dynamic taint analysis, it can remove portions of executiontime
and state that might reveal sensitive data. Once we have sliced
our log appropriately, it can be replayed in a variety of replay
environments, including modified versions of Valgrind, VMware,
or Perl.

While our current implementation supports a limited set of slic-
ing policies, extending it is straightforward. The infrastructure for
slicing Perl is directly applicable to other languages suchPython or
Java. For example, one can extract the activity of particular func-
tions, modules, or components simply by specifying to Crosscut
which time quanta to preserve.

4.1 Virtual machine record and replay

Crosscut supports whole-machine replay: the instruction-for-
instruction replay of allx86 machine instructions executed on a
computer. The state of a whole-computer’s computation is captured
completely by the runtime state of the CPU, memory, and devices
connected to the machine. Non-deterministic inputs are those that
cause the CPU or devices to behave in a way not determined by
the machine instructions that are replaying. The arrival ofa packet
on the wire to a network card or the delivery of an interrupt onthe
CPU are two examples of non-deterministic input.

Crosscut uses virtual machines to record the operation of a
whole computer [2, 5, 11, 28], building on the replay supportin
the VMware VMM [28]. VM replay systems are highly efficient
in time and space [5, 28]. A study [28] of VMware’s replay im-
plementation showed recording overheads as low as 0.7% and an
average of 5% for SPEC benchmarks. Other implementations have
shown similar performance [5] with logging rates on the order of
KB/s.

The replay of thex86 computer as an abstract machine is a basic
capability in Crosscut and an important one—though abstraction
slicing can generate new recordings at many different abstraction
levels from a single recording, it can only generate recordings for
abstraction levels above or equal to the original source material.
It cannot faithfully generate recordings for abstraction levels be-
low the base level; that data is lost. Consequently, replay systems
that operate at lower levels guarantees a broader level of software
support with a correspondingly greater capacity to generate new
recordings of higher-level abstractions with diminishingneed to an-
ticipate what needs recording (that is, reducing the need topredict

and possibly over-or-under estimate the need for enabling record-
ing).

Supporting all machine instructions in a computer is the lowest
level of software recording we can support, and therefore provides
the greatest capacity for doing abstraction slices with theleast
anticipatory need. In other words, all software on a computer can be
recorded, from device driver to Javascript, and all the information
needed for faithful new recordings ofany higher-level abstract
machines exists in a single machine-level recording.

4.2 Process slicing

Crosscut allows a collection of processes to be sliced from arecord-
ing and later replayed in either a modified virtual machine monitor
(VMware workstation), or process level replay environment(Val-
grind). Process slicing combines ideas from abstraction slicing and
time slicing: it raises the abstraction level from a virtualmachine to
an operating system process, and it eliminates periods of execution
during which processes of interest are not executing.

We begin by looking at how processes are sliced out of a VMM,
then discuss replay support.

4.2.1 Process recording

Crosscut represents the computation of an individual OS process
with two notions: process checkpoints and state injections. An im-
portant aspect of these abstractions is that they are independent of
the specific OS or OS version being recorded. Crosscut maintains
this property by focusing on the process and the hardware: itis the
process’s execution on the hardware that is replayed, not the under-
lying OS it ran on. This allows Crosscut to replay a recordingof a
process running in one OS on top of a different OS (Windows on
Linux, for example).

Process checkpoints Process checkpoints fill the role of the ini-
tial snapshot of computation needed by recordings of an abstract
machine as described in Section 2. Crosscut’s process checkpoints
are similar to traditional process checkpoints [13] but differ in an
important way: Crosscut’s process checkpoints don’t include OS
state for the process’s used resources, such as open file descriptors
or sockets; they only include state accessed by the process itself.

Process checkpoints store the contents of the process’s user-
addressable memory and the contents of user-visible state in the
CPU (for example, the instruction pointer and general purpose
registers) at an instant in the process’s computation. Thisis similar
to the state contained in a process’s core dump.

However, an important part of the runtime state needed in pro-
cess checkpoints isn’t included in traditional core dumps:the map-
ping of virtual addresses for the process. The mappings mustbe
included in the compute state for the process because, though
they aren’t directly observed or manipulated by the process(which
doesn’t have access to the tables directing the hardware MMU), the
process can observe their effect: physical pages that are mapped
multiply times in the virtual address space effectively mirror mod-
ifications done to any single page to all pages in the set. Trying to
emulate this behavior per operation at replay time without mapping
information would be costly.

State injections Crosscut props up the replaying execution of a
process whenever the process expects to receive state from the
outside: although the checkpoint will include mapped memory at
the start of computation, during the course of execution, a process
can swap or map more memory into its address space, it can make
calls to libraries not in its address space (that is, make system calls
to the OS), and it can read write-shared memory directly mapped
and written to by other processes.

Crosscut replays these events throughstate injections, which are
based on the observation that all sources of non-determinism visi-



ble to the process can be summarized by their effect on its compute
state: the contents of addressable memory, registers, or memory
mappings. State injections store these modifications: the results of
system calls, pages swapped or mapped in, and modifications to
write-shared memory by other processes are simply recordedas
data so they can be supplied later on during replay.

An important property of state injections is that they can be
completely represented as a manipulation of the process’s runtime
state: they do not depend on the OS or the OS version the process
runs on. The replaying system need not understand anything of the
semantics of paging or system calls, only that the result of one of
these operations was that some state was injected at a particular
time.

Slicing a process All of the state for creating a process check-
point and the state injections for a process exists in the recorded
whole machine execution. The VMM extracts this information
from the recorded computation via introspection to generate a
process-level recording.

Recording can begin at any point of a process’s lifetime at which
it is actually executing on the CPU. Process recording begins with
creating a process checkpoint by walking the hardware page tables
of the process: Crosscut saves the contents of user-addressable
memory, the address space mapping specified by the page tables,
and the CPU state of the process.

Although recording can begin at any instruction boundary
within the process, some instruction boundaries are more interest-
ing than others. Crosscut can identify particularly interesting events
like process creation and destruction with the help of a driver added
to the guest (on Windows) or a modified kernel (on Linux).

State injections occur as the result of some OS-specific activity,
such as responding to a system call, or swapping in a page. A key
observation allows Crosscut to detect them without hookingthe
OS: the process can only observe these modifications when it runs,
and these external modifications to process state only occurwhile
the process is not running on the CPU. This allows Crosscut toboil
the execution of the process down to periods where it runs on the
CPU and periods where it isn’t running on the CPU. In between
these periods, state may be injected.

When the process runs on the CPU, no injection events oc-
cur. When control flow exits the process, Crosscut detects injected
memory state by trapping on writes to the process’s address map-
pings (its hardware page tables) and writes to its addressable mem-
ory contents, and observing changes to the registers on entry back
into the process. The VMM accumulates these writes and outputs
them to the log when control returns back to the process. The VMM
inserts itself on every hardware fault, interrupt, and system call path
to detect all possible exits and entries from the process.

4.2.2 Process replay

Crosscut currently supports targeting sliced processes totwo dif-
ferent execution environments, a process level replay environment
in the form of Valgrind and a whole system replay environment,
in the form of VMware. Each environment has its own benefits.
Valgrind supports a wide range of dynamic program analysis and
debugging tools at some cost in performance. The VMware VMM
is a less friendly environment for developing fine-grained dynamic
instrumentation, but it provides excellent performance and a replay
debugging environment with a variety of unique capabilities. Both
support replaying Windows and Linux processes.

Replay in Valgrind Valgrind [18] is an open-source dynamic bi-
nary instrumentation tool that executes compiled binarieson Linux
and dynamically instruments them for the purpose of runtimeanal-
ysis. In Crosscut, Valgrind is a execution target for replaying pro-
cess recordings. An important property of Crosscut processrecord-

ings is that they are independent of OS semantics, and this istaken
advantage of in our Valgrind replay environment: it can replay
recordings of Windows or Linux processes even though Valgrind
itself only runs on Linux and is only designed to run Linux pro-
grams.

One of our goals is to retain Valgrind’s ability to add instrumen-
tation and runtime analysis to running (for us, replaying) programs,
so long as the instrumentation doesn’t mutate the computation of
the process (a design goal for Valgrind tools [18]).

Because Valgrind knows only how to execute programs, not re-
play them, we modified the normal workings of Valgrind in three
ways: constructing address spaces, branch counting, and event han-
dling.

Replaying a process recording bypasses Valgrind’s usual startup
sequence, which implements its own program binary loader. The
modified sequence recreates the recorded process’s addressspace
on startup bymmap’ing the pages from the process checkpoint
at appropriate places in the process address space. A caveatto
this is that Valgrind and its binary translation code cache also
live in the process’s address space, which raises the possibility
of collision. However, this problem already exists in Valgrind’s
normal operation [18], and Valgrind’s usual solution to this also
applies: allow the user to recompile Valgrind to occupy someother
free spot in the address space (about 2.5MB) if the carefullychosen
default location doesn’t work.

Another issue to recreating the address space occurs with
recorded Linux processes. One Linux user-level page cannotbe
recreated because even an otherwise empty address space hasa
non-overwritable copy of the page: thevsyscall page, which is
a shared page the kernel maps into the process to accelerate some
system calls. One option is to modify the kernel on the replaying
host to allow the user to supply their own copy of this page, but we
have found that the page and its entry points don’t change enough
that the host’s copy needs to be replaced. Moreover, collisions with
thevsyscall page aren’t a problem with Windows programs re-
playing in Valgrind, because 32-bit Windows programs don’tuse
address space above the 2GB mark where thevsyscall page
lives.

State injections happen at specific points in the replayed instruc-
tion stream. Process recordings use a tuple of branch counts, in-
struction pointer, and loop counter to identify these points, a strat-
egy that has been described by other replay systems [5]. Perfor-
mance counters won’t suffice to provide branch counts in Valgrind,
since dynamic instrumentation, which we want to allow to augment
replaying execution, can add an arbitrary amount of branches to
the original execution. Instead, our system counts branches in soft-
ware [14]. When branches are translated, the code cache contains a
small translation for branch instructions that incrementsa software
branch counter.

Each branch translation also checks the next event to see if a
state injection should be delivered. When it is, Valgrind replays a
modification to the process’s compute state: either programmem-
ory, the address space mappings, or the CPU. Because state injec-
tions completely encapsulate the process’s interaction with the OS,
Valgrind never has to execute an actual system call on behalfof
the process. This allows a process to be replayed on a different ma-
chine, with a potentially different OS.

Replay in VMware Crosscut can also replay process recordings
in the VMware VMM. However, the state for replaying a VM
doesn’t exist in a process recording. To fix this, Crosscut uses a
“shell” VM state to provide a environment for replaying the pro-
cess recording. The initial VM state provides basic initialization of
the CPU: for example, putting it into protected mode, or turning on
paging (currently Crosscut uses a normal VM checkpoint for this
purpose, included when the process recording is created, but with-



out the full contents of machine memory). The stub initialization
provides an environment for loading the process checkpointinto
VM memory: process pages load into machine memory, the map-
pings of the process are written into hardware page tables, and the
user-visible portions of the CPU are loaded. At this point the VM
is ready to run.

Replaying the process is just a matter of allowing it to run, and
delivering state injections at appropriate times. These injections use
VM replay delivery mechanisms based on counting of performance
events to trigger delivery. When triggered, the VMM reads data
from the recording and modifies the VM state accordingly, by
writing to the page contents, the page tables, and the CPU.

An important aspect of replaying the process is that most state
normally associated with whole VM execution doesn’t exist while
replaying process recordings. For example, the interrupt vector
table and the OS memory are neither present nor needed—state
injections by the VMM take the place of all faults, interrupts, or
system calls that the process relies on. Execution never depends on
these hardware events occurring during guest execution. Thus, the
VMM supplants the OS’s role when running the process.

4.3 Perl slicing

Crosscut’s Perl slicer accepts as input a recorded computation of an
entire virtual machine and produces the recorded computation of a
Perl script that was running in that virtual machine. The resulting
Perl slice can be replayed apart from the original virtual machine.
This makes the Perl slice much easier to use in debugging than
the original recording, because the execution of the rest ofthe
system can be modified without affecting replay. In particular, the
Perl interpreter’s execution can vary from the original run, and
this allows the programmer to use the debugging features of the
interpreter, such as breakpoints.

As always, a recorded computation or slice consists of a check-
point and a log of non-deterministic inputs. To simplify theimple-
mentation, Perl slices produced by Crosscut always start atthe in-
vocation of a script. This restriction allows Crosscut to use the Perl
interpreter’s script-invocation code as its method for restoring from
a checkpoint, so the script program file functions as the checkpoint.

Crosscut captures the log of non-deterministic inputs by relog-
ging the original virtual machine recording and using reflection to
extract the state and non-deterministic inputs for the Perlscript. The
non-deterministic inputs to the script are represented as inputs into
the Perl interpreter, which cause it to recreate the script-level enti-
ties (script variables and values) that allow the script to progress.
External inputs to a script come from library calls that are imple-
mented by the Perl runtime. A property of this is that the script
recordings never refer to script-level entities or their representation
in memory themselves. Instead, these entities are regenerated (in
whatever representation the script’s interpreter desires) as the inter-
preter replays its execution based on the recorded input. Crosscut
records and replays input to the interpreter at the system call level,
such as the results ofread or stat.

Crosscut must distinguish between two sources of system calls.
System calls that are caused by the script are part of the recorded
computation and must be recorded or replayed. System calls that
are caused by other actions of the Perl interpreter are not part of
the recorded computation, may vary during replay (e.g., dueto
debugging operations), and mustnot be recorded or replayed. This
allows Crosscut to record and replay the execution of the Perl script
without recording or replaying the Perlinterpreter, which allows
the script to be replayed on an interpreter whose execution varies
due to debugging, or on a different interpreter instance entirely.

To distinguish between these sources of system calls, we added
a constrain bitto the Perl interpreter. It remains on as long as the
script is executing, i.e. the Perl interpreter is executinga script

instruction. It is turned off while performing other tasks in the
interpreter’s execution. Only system calls executed whilethe bit
is enabled are recorded.

In addition to system calls, the interpreter records signals that
are delivered to the script. The interpreter identifies asynchronous
delivery points for these signals with the addition of a Perlinstruc-
tion counter to the interpreter.

Replay forking For deterministic replay to work, the instructions
and state of a replaying virtual machine must match exactly those
executed during the original run. This requirement would bevio-
lated if we ran the reflection code inside the replaying virtual ma-
chine during relogging but not during the original run. We consid-
ered two ways to meet this requirement during Crosscut’s relogging
step.

The first way is to embed and run the reflection code in the Perl
interpreter during the original run. During the original run, the cap-
tured data can be discarded, since it can regenerated and preserved
during relogging if needed. Although this idea is straightforward, it
may degrade performance during the original run.

To avoid degrading performance, we do not run the reflection
code during recording; the code is present but not active. During
relogging, the reflection code is activated and captures theneces-
sary data, then the changes made to the virtual machine’s state by
the reflection code are rolled back, and execution continues. We
call this approachreplay forking.

An important aspect of replay forking is that it leverages code
already compiled and contained within the guest VM. This code
can directly access higher-level abstractions (e.g., program-level
variables), which otherwise would need to be reconstructedby the
VMM at considerable effort.

There are three important parts to replay forking:in situ, device-
less VM fork, and triggering. Replay forking in Crosscut is donein
situ: the state and thread of execution of the parent VM is temporar-
ily reused by the child to go along a new fork of execution. No new
VM state (including devices) is created for the child, except that
memory written by the child is stored in temporary copy-on-write
buffers. The child is prevented from modifying devices or much of
the privileged CPU state (such as disabling protected mode); it pro-
duces output only throughhypercalls(system calls that trap directly
to the virtual machine monitor). The fact that so little VM state can
be modified by the child means that reverting back to the parent
VM is substantially simpler than a full VM checkpoint/restore, and
is a extremely fast process: COW memory is thrown away, the CPU
is pointed back to the fork point, and the parent VM continues. A
whole roundtrip of VM fork, child execution, and returning to the
parent takes only 100 microseconds on our machines.

Replay forks are triggered by a few extra machine instructions,
which are added during compilation at sites where reflectioncode
needs to run. These instructions are simple memory operations
and branches and have minimal impact during recording. During
replay, the VMM sets the page table protections so the MMU
traps on these instructions, then the VMM initiates a replayfork.
We explored other ways to trigger the replay fork, such as using
hypercalls. However, these other methods incur trap and context
switch overheads duringrecording and relogging, whereas our
mechanism incurs these overheads only duringrelogging.

Perl replaying The execution target for replaying extracted Perl
recordings is the Perl interpreter. The same interpreter used in
the VM during recording is used outside the VM to replay the
generated script recording. The fresh interpreter is pointed to a copy
of the Perl program to run, and inputs are fed in from the recorded
log.

The same constrain bit that directed the saving of the inter-
preter’s system calls also directs the loading of these values from



the recording. Because the constrain bit constrains only certain sys-
tem calls done by the interpreter on behalf of the script to befixed
by the log, the rest of the interpreter’s execution is fresh,and is
free to change. For example, we can use the running interpreter’s
debugging facilities to break the replaying execution of the script
and inspect variables and values, all of which occurs newly during
replay without being present in the recording.

4.4 Time slicing and stitching

Crosscut implements time slicing to carve periods of execution out
of a recorded computation. Crosscut can then stitch together several
time slices into a single recording.

Time slicing in Crosscut is implemented at the level of operating
system processes. To create a time slice, Crosscut must capture a
snapshot at the beginning of the time slice, then capture thenon-
deterministic inputs during the interval. Both these tasksleverage
the framework implemented for process slicing. Crosscut captures
the snapshot by replaying the computation until the beginning of
the time slice, then saving the state of the process as described
in Section 4.2. Crosscut captures the non-deterministic inputs by
logging the state injections issued during the target interval.

To stitch two time slices together, we must transform the state
at the end of the earlier time slice into the state at the beginning
of the later time slice. The simplest way to do this is to storethe
entire state for the snapshot of the later time slice, but this method
stores much more state than necessary because most of the state is
likely the same (e.g., the disk is unlikely to change much between
slices). Instead, while relogging, Crosscut computes and stores the
difference between these states. The current Crosscut prototype
can compute the difference between two states at page or byte
granularities. To compute the difference at the granularity of pages,
Crosscut uses page protections to track the set of pages modified
from the end of one slice to the beginning of the next. To compute
the difference at the granularity of bytes, Crosscut computes the
byte-by-byte exclusive-or on the pages modified between theend
of the first slice and the beginning state of the second slice,the
compresses the difference using run-length encoding.

4.4.1 Slicing for privacy

We use time slicing to implement two information-redactingpoli-
cies in our current version of Crosscut. One, substring redaction, is
a fully automatic “best-effort” approach similar to current data leak
prevention tools. The other, taint redaction, is a semi-automatic ap-
proach, whereby developers can annotate their programs to indicate
which data is private, and these annotations will subsequently be
used by a dynamic taint analysis to infer which execution intervals
to cut from the log.

Substring redaction With substring redaction, we want to elimi-
nate periods of time where a particular string exists in memory. For
example, we can eliminate the processing of a private key or pass-
word from the recorded execution of a login handler, such as an
SSH daemon. Doing so can preserve some interesting computation
that is useful to replay, but eliminate aspects of the computation
that are sensitive.

Substring redaction monitors both the entry of sensitive infor-
mation (from an external input) and its exit (when the value is gone)
while replaying and re-generating a log. When a string of inter-
est is found within the external state being delivered to a recorded
computation (such as the result of a system call in a process slice),
subsequent computation is removed through a time slice. Theslice
ends when an inspection of memory reveals the string no longer
appears (performed when the system reaches a replay event).The
finished time slices are stitched together as they are generated to
form a complete recording.

Taint redaction Crosscut also implements redaction based on
taint analysis [17]. Taint policy is driven by developers, who iden-
tify sensitive data in their programs by tainting them with apro-
vided API. Crosscut ensures that generated process recordings will
not have have the tainted data present.

Crosscut splits taint redaction into a multi-stage process: it first
extracts a process, identifies the taints using a taint analysis tool
built on top of Valgrind [17, 18, 22], and applies the analysis results
back to refine the process recording.

The API has two tainting operations:taint(A) taints a piece
of dataA, untaint(A) removes taint on a piece of data. Untaint-
ing balances the need for privacy with the desire to preservean
interesting, debuggable recording. It can allow us to retain more
of the original recorded computation in the final redacted record-
ing. This may be desirable for example, when computing a crypto-
graphic one-way function on sensitive data: though the result will
be tainted, we may choose to untaint it because the output preserves
the privacy of the source data.

Crosscut ensures the absence of tainted data in the recording
by time slicing the computation from a point identified by the
programmer using the API (at some point before tainted data is first
read) extending to the last use of the tainted data as determined by
the taint analysis. The tainted memory existing after the time slice
is overwritten with zeroes in the redacted recording. This doesn’t
impugn the determinism of replay because there are no further
accesses to this memory.2

Multi-stage replay is an important property in taint redaction.
It allows codereuse: a maintained, purpose-built process-based
taint tracking implementation already exists in Valgrind and can
be reused to track sensitive data taints, while process extraction
and time slicing can run in the VMM. Splitting the operation up
as a composition of reusable, specialized tools makes multi-stage
replay more flexible and powerful, much like a series of commands
connected via Unix pipes.

4.5 Snapshot pruning

Crosscut can prune state required in the initial snapshot ofrecord-
ings to include only state actually used during the recording. For
VM recordings, both the disk and main memory image can be
pruned; for process slices, the process address space can bepruned.

Crosscut identifies disk blocks read and written by a VM record-
ing by replaying the VM, whose initial snapshot includes a com-
plete copy of the virtual disk. After the profile is collected, the
recording’s virtual disk can be pruned with a read-before-write rule:
only disk blocks read during the recording before being written to
are included in the virtual disk. If a disk block isn’t read atall, or
if it is written to before being read from, then they need not be in-
cluded in the recording’s snapshot of the disk—they either aren’t
needed, or they will be deterministically generated duringreplay.

Memory, for process or VM snapshots, must be handled dif-
ferently. Memory usage can be tracked efficiently by protecting
pages in the MMU. However, unlike disk blocks, memory pages
are typically only partially written on a write. Consequently, the
read-before-write rule doesn’t work: because most writes to a page
don’t fully overwrite the page, the program can read data from the
page that isn’t satisfied by a recorded write. Therefore, memory is
pruned slightly more conservatively: all accessed (read orwritten)
pages are included in the initial snapshot for the VM or process.
Pages not accessed can be eliminated.

2 Crosscut actually implements a small variant of this schemewhere the
time slice extends not to the last use of the tainted data, butto the last
branch that depends on a comparison on tainted data. Taintedmemory can
be overwritten with zeroes after the time slice, but replay determinism isn’t
affected because no branches occur on the tainted data.



Process Log SnapshotLog/Relog Replay
recording (MB) (MB) time (sec.) time (sec.)

VM recording 31 4403 285 210.1
VM recordingpruned 31 419 285 186.1
Internet Explorer 896 271 1766 56.2
MS Word 684 247 2127 63.4
PowerPoint 301 234 1325 36.7
verclsid.exe 3.7 95 340 4.1
ctfmon.exe 5.5 215 352 10.2
verclsid.exe 3.7 5 289 1.7
svchost.exe 6.3 134 346 4.2
verclsid.exe 3.7 97 324 2.6

Figure 3. Space and time savings from snapshot pruning and pro-
cess slicing (desktop workload).

Process Log SnapshotLog/Relog Replay
recording (MB) (MB) time (sec.) time (sec.)

VM recording 14.8 11610 214 226
VM recordingpruned 14.8 725.7 214 226
IIS 68.8 13.6 470 19
php-cgi 477.9 463.8 4295 740
mysqld 90.1 135 654 220

Figure 4. Space and time savings from snapshot pruning and pro-
cess slicing (server workload).

An important part of multi-stage replay is that it allows pruning
expenses, such as MMU faulting, to move off the critical path
of recording. To be fast, traditional two-stage record and replay
conservatively overestimates what state is required in theinitial
snapshot of computation that starts recording: not knowingwhat
state may be needed by the recording, all possible state is included.
For a VM, this means all of main memory, or the whole virtual disk.

Tracking use of these resources during relogging allows us to
prune the snapshot without paying the cost of tracking theiruse
during recording. The snapshot pruning mechanism can also be
applied to generated abstraction or time slices, since these subsetted
computations typically use only a subset of the initial data.

5. Evaluation
In this section, we show how Crosscut uses multi-stage replay to
leverage information about the end replay that is learned after the
original recording. We show how multi-stage replay can shrink the
recording to that needed during a specific replay period, slice out
processes that are not relevant during replay (and may contain sen-
sitive information), support replay at higher levels of abstraction,
and ensure privacy.

We use a variety of workloads to evaluate Crosscut. To evaluate
snapshot pruning and process slicing, we use two general-purpose
workloads. The first workload represents a typical desktop environ-
ment, in which a Windows XP user browses the web using Internet
Explorer and creates Microsoft Word and PowerPoint documents.
The second workload represents a typical web server environment,
in which a IIS web server runs the php-based MediaWiki appli-
cation and responds to HTTP POST requests for a series of wiki
pages. The MediaWiki application communicates with a MySQL
database server to process the requests. We use specializedwork-
loads to evaluate Perl slicing, offloading, and privacy redaction.

5.1 Snapshot pruning

The original recording provided by VMware Workstation recon-
structs the entire state of a virtual machine. While this feature is

quite powerful (e.g., it enables one to resume a replayed virtual ma-
chine and continue live execution), it requires a much larger snap-
shot than needed for many situations. For example, to diagnose a
crash, developers would usually need only to replay a finite time
interval, which can be done by reconstructing only the stateread or
written in that time interval. As described in Section 4.5, Crosscut
can prune the state required in the initial snapshot to include only
state actually needed during the recording.

We evaluate the effectiveness of snapshot pruning on a general-
purpose desktop and server workload. The top sections of theta-
bles in Figures 3 and 4 show how snapshot pruning can reduce
the size needed to represent a recorded computation and the time
needed to replay this computation. The unpruned snapshot for this
recording includes the entire disk and memory of the virtualma-
chine. By pruning the snapshot to include only the state needed by
the recorded portion of computation, Crosscut is able to reduce the
size of the snapshot by 90% in the desktop workload and 94% in the
server workload. Replay times are usually shorter than the original
recording because less computation is being replayed. However,
replay of specific processes may be slower because injectingthe
results of a system call using the VMM may be slower than having
the operating system re-execute the system call inside the VM.

5.2 Process slicing

We next evaluate Crosscut’s multi-stage replay approach and com-
pare it to a two-stage approach that logs at the process level. For
each workload (desktop and server), we assume the end-user of
replay (e.g., intrusion analysis) is interested in examining the exe-
cution of some of the processes running on the system, but that the
end-user does not knowa priori which processes are of interest and
so must log them all.

In the prior two-stage approach, the system must log all pro-
cesses during the original run. The bottom sections of each table in
Figures 3 and 4 show that this approach requires storing and trans-
porting a large amount of log and snapshot data, even after pruning
(3202 MB for the desktop workload’s log and snapshot; 1249 MB
for the server workload’s log and snapshot).

In contrast, Crosscut needs only to save the pruned VM log and
snapshot for this time interval, which saves 86% of the log and
snapshot space for the desktop workload and 41% of the log and
snapshot space for the server workload. Crosscut saves space by
not logging the interprocess communication between processes. In-
stead, Crosscut can regenerate this data by replaying the processes
and the operating system. Crosscut also saves space by eliminating
redundancy in the data stored multiple times in process snapshots.

While Crosscut saves space over two-stage process-level log-
ging, it can also regenerate the same final recording that is saved by
two-stage process-level logging. Crosscut can defer the work and
storage needed to create the process-level log to after the original
run, and Crosscut need only generate the recording for the pro-
cesses that are of interest during post-execution analysis.

The cost for achieving this flexibility is that Crosscut mustpost-
process the original recording through relogging, which takes 1.1-
20x as long as the original execution time. However, the relogging
step can be done offline so it does not slow the original execution.

Process slicing can also reduce the leaking of private data.
Crosscut can create a slice that includes only the process that needs
to be debugged, while leaving out other processes that may contain
sensitive data. For example, Crosscut can create a slice containing
all processes launched in a remote ssh session, but exclude the
sshd process because it handles private encryption keys.

The privacy and size reductions may make it possible to replace
core dumps with fully replayable process level logs. A 4 GB VM
would take over 6 hours to send over a T1 line while raising sub-
stantial privacy concerns. Figures 3 and 4 show that the process



logs generally save more than 70% compared to an unpruned VM
recording (log plus snapshot) while simultaneously providing ad-
ditional privacy benefits.

5.3 Perl debugging

Interpreted languages such as Perl are difficult to debug with com-
prehensive replay logs [10]. Accessing internal state can require
trapping to the virtual machine monitor on every interpreted in-
struction, and this slows performance substantially. By raising the
level of abstraction being replayed, we can use the Perl debugger
without perturbing the Perl interpreter, and thereby allowa pro-
grammer to interact more naturally with the recorded execution.

For this particular example, we use a VM that runs
SPECweb2005 and AWstats. We recorded a section of its execu-
tion during which SPECweb was executing, and both legitimate
and malicious requests were dispatched to AWstats. We then ex-
tracted all of the Perl script execution into individual logs, and were
able to analyze each in turn to determine first which specific instan-
tiation of AWstats had been attacked, and finally the specificline
that, as a result of improper input sanitization, had allowed the ex-
ploit to produce a file in the/tmp directory.

Crosscut’s Perl relogger generated slices of all Perl processes
in a single replay of the VM. We were able to replay the resulting
Perl slices on our Perl interpreter and modify the executionof the
Perl interpreter (e.g., by adding breakpoints) without perturbing the
faithful replay of the Perl script. In addition, the Perl-level slices
generated by Crosscut were much smaller than the original VM-
level recording (7.5KB vs. several GB), which again highlights
the need for multi-stage replay to achieve both comprehensive
recording of the entire system and space-efficient recordings of the
entities that are later of interest.

5.4 Chronicle debugging

This section evaluates how Crosscut can offload the work to gener-
ate heavyweight recordings from a logged machine to a secondary
analysis machine.

Omniscient debugging [12, 20, 21] is a form of debugging
where all execution history for a program invocation (including all
writes to variables and all function calls) is recorded in a database,
and debugging the program becomes purely a series of indexed
database queries, such as “when was the last write to location X
before time T”, or “ when was location X executed between times
T1 and T2.” Fast access to this database via indexing can make this
an attractive way to debug when compared to normal debuggingor
even traditional replay debugging.

Unfortunately, recording and indexing this execution history
is extremely slow and generates vast amounts of data. Debugged
programs are typically slowed down 100-300x [12, 20], and log
data is generated at a rate of 100s of MB to GBs per second. This
expense makes omniscient debugging impractical to use on normal,
live execution.

Multi-stage replay and abstraction slicing enables omniscient
debugging to be used on production runs by deferring the ex-
pense of recording and indexing until it is actually needed,such
as when there’s a crash to be debugged. Only the relatively small
overhead of VM-level recording needs to be incurred on the pro-
duction machine. Using abstraction slicing, Crosscut can take a
VM-level recording, create a slice that includes only the process to
be debugged, and retarget that process to a omniscient debugging
platform where domain knowledge allows in-depth examination.
Crosscut retargets sliced processes to run on the Chronicledebug-
ger [20, 21], which has three parts: an indexer written as a Valgrind
tool, a query engine, and a Eclipse UI front-end.

To measure the savings of this approach, we used a 32-bit
Ubuntu 8.10 guest running the Apache 2.2.9 web server, with web

requests handled by a CGI program. A specially crafted web re-
quest triggers a buffer overflow in the CGI program, causing it
to malfunction and need debugging. In our experiment, VMware
Workstation records the whole system during this execution, then
Crosscut creates a slice of the failing CGI program and runs it
through the normal Chronicle indexer in our replay-enabledVal-
grind. Using the Eclipse UI front-end, we are able to walk back-
wards and forwards in the recorded execution and perform queries
that pinpoint the injected overflow.

Crosscut saves substantial time and space during the original
recording by deferring work to later, offline stages. With VM-level
recording, the CGI script runs in less than one second. Chronicle
indexing of the same execution takes 6 minutes 33 seconds and
produces a database 405MB in size.

5.5 Redacting sensitive data

Searching for a specific data pattern is an unsound but commonly
used method for detecting and preventing data leakage. Crosscut
provides a transformer to scan a VM and remove all execution time
that requires the use of memory containing sensitive state.

We validated this transformation with a pattern that would
match the contents of password hashes in standard unix format.
We applied our transformer with this pattern to a VM running a
workload that used/etc/shadow. Our transformer successfully
sliced out execution from when password data was returned from
a system call, to when a scan of memory confirmed that it was
no longer present. The resulting sliced log prevented the leak of
sensitive information, while still including 99.986% of the original
recording.

For a more sophisticated example of removing sensitive data,
we applied our taint based redaction to remove all executiontime
that was spent handling a private key used by OpenSSL in a simple
signing program. We observed our test program loading a private
key on disk, creating a signature on some file data, freeing the
private key, verify the signature using the public key, and noted
that the taint system precisely identified the uses and copies of the
private key and memory, and successfully removed the time slices
containing tainted key data.

6. Related work
Deterministic replay has been used to record and replay the exe-
cution of many different entities in computing systems, including
processors [1, 8, 15, 27], virtual machines [2, 5, 28], processes [23],
Java virtual machines [16], and code that runs on libraries [7]. Each
of these systems chooses a specific entity to record and makesthe
corresponding tradeoff between comprehensiveness on one hand,
and efficiency, flexibility, and privacy on the other. In contrast,
Crosscut seeks to provide the best of both worlds by recording the
original run comprehensively, then transforming the log through
multiple stages of replay to provide efficiency, flexibility, and pri-
vacy.

Researchers have used deterministic replay to reproduce and
then analyze the execution of a system. This analysis has been done
while the system is being logged [19, 25] or after the loggingis
complete [5]. We envision Crosscut being used primarily after the
logging is complete, though it could also be used during logging.
Aftersight uses deterministic replay to offload the work of analysis
from the logged machine [4]. Crosscut uses this idea to offload
the work of transforming the captured recording from the logged
machine. Aftersight also introduced the idea of relogging and used
it to remove dependencies on specific I/O devices. Crosscut applies
relogging to transform the recording in many more ways, such
as preserving privacy, reducing the size and replay time of the
recording, and targeting different abstraction levels.



The issue of minimizing loss of privacy while providing helpful
information to developers was examined by Castro, et al. [3]. They
describe a system that preserves privacy by generating new user
inputs that make a program follow a failed execution path. Crosscut
handles privacy concerns at a coarser granularity by slicing out
entities (e.g., processes, interpreters, operating systems) and time
periods that contain sensitive data. [3] can be viewed as a sanitized
form of deterministic replay that preserves only the execution path
(rather than all data) and is concerned only with explicit program
input (rather than all non-deterministic events, such as timing).

Crosscut uses replay transformers to bridge the semantic gap
between different levels of replay. These replay transformers may
leverage functionality that is already present in higher levels of
software, as was done in the IntroVirt system [10], or may leverage
hardware or operating system interfaces to reconstruct thehigher
level abstractions, as was done in VMwatcher [9].

Replay forking is similar to the checkpointing/rollback that
IntroVirt uses to perform introspection [10]. The main difference
is in how the extra code is invoked. IntroVirt triggers the code by
alerting an external entity via breakpoints, which then modifies the
registers to initiate a function call. Crosscut invokes theextra code
by setting page protections that trigger a control transferwithin the
replayed domain. Crosscut’s approach eliminates numerouscontext
switches between the replayed domain and other processes.

The termabstraction slicingwas inspired in part by past work
on program slicing [26], which seeks to isolate the part of a pro-
gram that influence the value of a variable.

7. Conclusions
Comprehensive deterministic replay systems provided by platforms
such as virtual machine level record-replay provide many com-
pelling properties such as low recording overhead and a complete
view of system state. Unfortunately, current systems suffer from
several major drawbacks. Recordings can be very large, and these
make transportation and replay unwieldy and raise concernsabout
privacy. In addition, the “semantic-gap” between whole system re-
play and the process or language level that a programmer works at
can hinder usability.

We presented a system called Crosscut that addresses these
problems by allowing recorded computations to be “sliced” along
time and abstraction boundaries before being replayed by end
users. Using this approach we can transform replay logs to con-
tain only the processes, applications, and portions of execution time
that are of interest at the time of replay. Slicing recordings in this
manner saves space, improves replay performance, and can exclude
sensitive data. In addition, abstraction slicing allows usto retarget
our recordings to different higher-level replay platforms, such as
Perl or Valgrind, thus bridging the semantic gap that can hinder
programmer understanding. This also allows execution to beaug-
mented with additional analysis code at replay time, without dis-
turbing the replayed components in the slice.

In our experiments, our current Crosscut prototype can reduce
the size of an execution history by an order of magnitude, speed
replay by several-fold, and substantially improves usability.
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