

Peter M. Chen & David A. Patterson Unix I/O Performance in Workstations and Mainframes 1

Unix I/O Performance in Workstations and Mainframes

Peter M. Chen

Computer Science and Engineering Division
Electrical Engineering and Computer Science Department

University of Michigan

David A. Patterson

Computer Science and Engineering Division
Electrical Engineering and Computer Science Department

University of California at Berkeley

Abstract

: Rapid advances in processor performance have shifted the performance bottleneck to I/O sys-
tems. The relatively slow rate of improvement in I/O is due in part to a lack of quantitative performance
analysis of software and hardware alternatives. Using a new self-scaling I/O benchmark, we provide such
an evaluation for 11 hardware conÞgurations using 9 variations of the Unix operating system. In contrast to
processor performance comparisons, where factors of 2 are considered large, we Þnd differences of factors
of 10 to 100 in I/O systems. The principal performance culprits are the policies of different Unix operating
systems; some policies on writes to the Þle cache will cause processors to run at magnetic disk speeds
instead of at main memory speeds. These results suggest a greater emphasis be placed on I/O performance
when making operating system policy decisions.

Keywords

: Input/Output, I/O, performance, evaluation, disk, Þle cache, main memory, bus, workstation,
minisupercomputer, mainframe, benchmark, Unix, Sprite, Alpha AXP/3000, Convex C2, DECStation
5000, HP 730, IBM 3090, RS/6000, SPARCStation 1, SPARCStation 10.

1 Introduction

Input/output has long been the orphan of computer architecture, receiving little attention or respect.
Processor performance has improved spectacularly thanks to focussed efforts, but Amdahl's Law tells us
that neglecting any portion of the computation will ultimately limit overall performance. We see the impact
of these limits today, with massively parallel processors unable to deliver the promised performance on
some applications due to I/O bottlenecks. This I/O bottleneck looms for workstations as well. Without
advances in I/O performance, advances in processor design will be wasted.

The Þrst step in improving I/O performance is to understand what really affects performance. Alas,
there is little quantitative evaluation of I/O. The main purpose of this paper is to provide such quantitative
information for Unix I/O. A second purpose is to explore some of the folklore of I/O performance. Cer-
tainly one popular saying is that mainframe computers have outstanding I/O performance. This last point is
particularly topical, as many customers are considering replacing their mainframes with networks of work-
stations.

Table 1

 shows the machines and operating systems evaluated in this paper. They were selected to be
representative of operating systems and hardware systems in use today. This selection was bounded by the
systems available at the University of Michigan and the University of California at Berkeley and by the
generosity of volunteers at other sites willing to run our benchmark.

 Our evaluation shows that I/O performance is limited by the weakest link in the chain between the
disk and the operating system. The hardware determines potential I/O performance, but the operating sys-
tem determines how much of that potential is delivered. In particular, for Unix systems the Þle cache per-
formance is critical to I/O performance. Our main observations are that Þle cache performance of Unix on
mainframes and minisupercomputers is no better than workstations, and that Þle caching policy is of over-
riding importance. Optimized memory systems can increase read performance, but the operating system
policy on writes can result in orders of magnitude differences in Þle cache performance.

These results are found in the next three sections. Sections 2 and 3 of this paper evaluate the perfor-
mance of disks and Þle caches, both assuming a workload of only reads. Section 4 shows that operating
system policies for writes drastically affect I/O performance.

Section 5 describes the new I/O benchmark that we used to collect performance data for this paper.
This benchmark has two components: self-scaling and predicted performance. As a quick overview, this

University of Michigan CSE-TR-200-94

Peter M. Chen & David A. Patterson Unix I/O Performance in Workstations and Mainframes 2

benchmark tailors a series of workloads for each system that exercises the memory system and the disks.
(Previous publications have recorded the accuracy and usefulness of this benchmark; this paper relies on
that accuracy and focuses on using this benchmark to evaluate I/O performance.) Sections 2 to 4 use a 32
KB average access size, with half of the accesses being sequential, and the accesses being generated by a
single process. Multiple runs determine performance for varying balances of reads and writes, with each
section picking the appropriate mix. Readers with more questions about the experimental method should
see Section 5 or read [Chen93a].

We conclude this paper with a summary of results, a recommendation that more emphasis in operat-
ing systems be given to I/O performance, and a short section on future directions.

2 Disk Subsystem Performance

A comprehensive evaluation of disk performance is problematic. To see why, letÕs review how I/O
works. The data written to disks comes from main memory, and main memory is also the destination of
data read from disks. Figure 1 shows there are many component between memory and disks. I/O perfor-
mance is limited by the slowest component between memory and disks: it can be the main memory, the
CPU-memory bus, the bus adapter, the I/O bus, the I/O controller, or the disks themselves. The trend
towards open systems exacerbates the complexity of measuring I/O performance, for a particular machine
can be conÞgured with many different kinds of disks, disk controllers, and even I/O busses. In addition to

Table 1: Machines and operating systems evaluated in this paper. Note that the oldest machines is the
Convex C240, which Þrst shipped in 1988. AIX/ESA is run under VM because there are not enough
people at that installation to justify running it native. For cache parameters, the Þrst level 1 (l1) number is
the instruction cache size and the second l1 number is the data cache size; a single number means a
uniÞed cache

Computer
Alpha

AXP 3000

Dec-
Station

5000

Dec-
Station

5000
HP 730

IBM
RS/
6000

Sun
Sparc-

Station 1

Sun
Sparc-

Station 10

Convex
C2

IBM 3090

Operating
System

OSF/1

1.2(10)

Sprite
LFS

Ultrix
4.2A 47

HP/UX
9.01

AIX
3.1.5

SunOS
4.1

Solaris 2.1
ConvexOS

 10.1
AIX/ESA

on VM

Processor
Model

400 200 200 730 550 1+ 30 C240 600J VF

Year Proc.
Shipped

1993 1990 1990 1991 1991 1989 1992 1988 1990

Approx. $
as tested

$30k $20k $15k $35k $30k $15k $20k $750k $1,000k

Proc.
Clock Rate

133 MHz
25

MHz
25

 MHz
66

 MHz
41.7
MHz

25
MHz

33
MHz

25
MHz

69
MHz

Proc. Perf.
SPECint92

75 19 19 48 34 12 45 » 10Ð20 » 35Ð45

Cache
Size (Lev-
els 1 & 2)

l1:8+8 KB
l2: 512

KB

l1:64+64

KB
l1:64+6
4 KB

l1: 128
+256
KB

l1:8+64
KB

l1: 64 KB
l1: 20+16

KB
 l2: 1 MB

l1: 8+4
KB

Memory
Size

64 MB 32 MB 32 MB 64 MB 64 MB 28 MB 128 MB 1024 MB
128 MB

VM parti-
tion

 Memory
Perf.

284-426
MB/s

100
 MB/s

100
 MB/s

264
MB/s

222
MB/s

80
 MB/s

88
 MB/s

200
MB/s

I/O bus
Turbo-
channel

SCSI-I SCSI-I
Fast

SCSI-II
SCSI SCSI-I SCSI-I IPI-2

IBM
Channel

Disk(s)
1 SCSI
DEC
RZ26

3 CDC
Wren

(RAID 0)

1 DEC
RZ55

1 HP
1350SX

1 IBM
93x
2355

1 CDC
Wren IV

1 Seagate
Elite (5400

RPM)

4 DKD-
502

(RAID 5)

1 IBM
3390

Peter M. Chen & David A. Patterson Unix I/O Performance in Workstations and Mainframes 3

the hardware components, the policies of the operating system affect I/O performance of a workload.The
sheer number of combinations of components leads to less than satisfying results, for the conclusions we
can draw from a few data points are limited.

If we were interested in comparing I/O performance of hardware-software systems, then ideally we
would use many of the same components to reduce the number of variables. This ideal has several practical
obstacles. First, few workstations manufacturers share the same operating system, CPU, or CPU-memory
bus, so they may be unique to each machine. And a different CPU-memory bus requires a different bus
adaptor. This leaves the I/O bus, I/O controller, and disks to be potentially in common. The problem now is
that there is no standard conÞguration of these components across manufacturers, so it is unlikely that cus-
tomers would normally buy the same conÞguration from different manufacturers. This leaves the evaluator
the unattractive alternative of purchasing computer systems with common I/O subsystems simply to evalu-
ate performance; few organizations have the budgets for such an effort.

Practical hope for more general results depends on an I/O benchmark becoming so popular that many
combinations of components on each machine would be tested, possibly requiring dozens of different con-
Þgurations per model of processor. Until an I/O benchmark becomes nearly universal, we wonÕt have
enough data points to generalize safely about classes of computers. Section 5 describes one I/O benchmark
that has the potential to evaluate many different I/O systems.

We can now present our results in proper context. Figure 2 shows disk performance when reading for
the machines in Table 1. The Convex minisupercomputer, with the RAID of four disks and the fast IPI-2
I/O bus, is at the top of the chart; the SPARCStation 10 is second due to its the fast single disk. The 3090
mainframe, with its single 3390 disk, comes in a surprisingly low sixth place.

Given the warnings above, we

cannot

 say that IBM mainframes have lower disk performance than
workstations, nor that Convex has the fastest disk subsystem. We

can

 say that the IBM 3090-600J running
AIX/ESA under VM performs 32 KB reads to a single IBM 3390 disk drive much more slowly than a Con-
vex C240 running ConvexOS 10 reads 32 KB blocks from a 4-disk RAID. It is not clear what would hap-
pen, for example, if many disks were used on the IBM mainframe or if another operating system ran on the
mainframe. The conclusions we draw from Figure 2 are that many workstation I/O subsystems can sustain
the performance of a high-speed single disk, that a RAID disk array can deliver much higher performance,
and that the performance of a single mainframe disk on a 3090 model 600J running AIX/ESA under VM is
no faster than many workstations.

Figure 1: Basic components of an I/O subsystem. The I/O bus is also called a string, with the I/O
controller called a string controller. The lowest performance component between memory and disks
limits disk performance seen by the application.

Cache

I/O bus

I/O
controller

Disk Disk Graphics
output

Network

I/O
controller

I/O
controller

CPUÐmemory bus

CPU

Bus
adapter Main

memory

Peter M. Chen & David A. Patterson Unix I/O Performance in Workstations and Mainframes 4

3 Basic File Cache Performance

For Unix systems the most important factor in I/O performance is not how fast the disk is, or how efÞ-
ciently it is used, but

whether

 it is used. Unix systems use a

Þle cache

Ña buffer in main memoryÑto
reduce accesses to disks. [Baker91] found that in one Unix workstation environment Þle caches fulÞll 60%
of the data read requests, depending on the size of Þle cache. [McKusick84] found that accesses to Þle
meta data had even higher success rates. Since main memory is much faster than disks, Þle caches yield a
substantial performance improvement, and are found in every Unix operating system.

One portion of our benchmark varies its workload to be sure to access only the Þle cache when mea-
suring performance of a system; Figure 3 shows this Þle cache performance for the machines of Table 1.
The Þrst thing to notice is the change in scale of the chart: machines read from their Þle caches 3 to 25
times faster than from their disks. The performance of the Þle cache is determined by the processor, cache,
CPU-memory bus, main memory, and operating system. Except for the size of memory and perhaps the
operating system, there is little choice in these components when selecting a computer. Hence observations
about commercial systems can be drawn about Þle cache performance with much more conÞdence than
with the disks, since this portion of the system will be common at most sites.

The biggest surprise is that the mainframe and minisupercomputers did not dominate this chart, given
their much greater cost and reputation for high-bandwidth memory systems and CPU-memory busses. The
four top performers are DEC Alpha, IBM RS/6000 model 550, HP 730, and IBM 3090 running AIX, all
with Þle cache performance of approximately 30 MB/s. This chart also shows rapid Þle cache improve-
ment in workstations. For example, both the SPARCStation 10 and DEC Alpha AXP/3000 are more than
four times faster than their predecessors, the SPARCStation 1 and the DECStation 5000.

In addition, Figure 3 shows the impact of operating systems on I/O performance; the Sprite operating
system offers 1.8 times the Þle cache performance of Ultrix running on the same DECStation 5000 hard-

Figure 2: Disk performance for the machines in Table 1. These results are for reads of 32 KB. Except
where otherwise noted in the Þgure, the machines use SCSI I/O buses, SCSI controllers, and SCSI disks
that rotate at 3600 RPM. Read performance is from 1.5 to 2.8 times faster than write performance,
except for the Sprite system. SpriteÕs Log-Structured File System is optimized for writes, which are 1.3
times faster than reads on the DS 5000. (Section 5 explains the measurement method of data collection;
we started with the measured 100% read performance at nominal access sizes and then interpolated to
determine performance for a common 32 KB access size. The only numbers adjusted by more than 15%
was for the Convex; Table 3 shows the multipliers used for interpolation.)

M
a
ch

in
e

a
n
d

O
p
e
ra

ti
n
g

S
y
st

e
m

Megabytes per Second

0.0 1 .0 2 .0 3 .0 4 .0 5 .0

DS5000,Sprite

DS5000,Ultr ix

Sparc1+,SunOS
4.1

3090,AIX/ESA

HP 730, HP/UX 9

RS/6000,AIX

AXP/4000, OSF1

SS 10, Solaris 2

Convex C240,
ConvexOS10

0.5

0 .6

0 .7

1 .1

1 .4

1 .6

2 .0

2 .4

4 .2

IPI-2, RAID

5400 RPM SCSI-II disk

IBM Channel, IBM 3390 Disk

Peter M. Chen & David A. Patterson Unix I/O Performance in Workstations and Mainframes 5

ware. Sprite does fewer copies when reading data from the Þle cache than does Ultrix [Kay92], hence its
higher performance.

4 The Impact of Operating System Policies on File Cache Performance

Given that Unix systems have common ancestors, we expected that the operating system policies
towards I/O to be the same on all machines. Instead, we Þnd that different systems have very different I/O
policies, and some policies alter I/O performance by factors of 10 to 100. These machines are aimed
largely at the same customers running the same applications, which calls into question the low perfor-
mance of some of these policies. One reason for this wide variation may be the sparsity of published
results comparing Þle cache performance on several workstations and operating systems ([Ousterhout90]
is one of the few recent examples), and so there has been little quantitative input into these decisions.

4.1 File Cache Size

Since main memory must be used for running programs as well as for the Þle cache, the Þrst policy
decision is how much main memory should be allocated to the Þle cache. The second is whether or not the
size of the Þle cache can change dynamically. Early Unix systems give the Þle cache a Þxed percentage of
main memory; this percentage is determined at the time of system generation, and is typically set to 10%.
More recent systems allow the barrier between Þle cache and program memory to vary, allowing Þle
caches to grow to be virtually the full size of main memory if warranted by the workload [Tanenbaum85,
Stern94]. File servers, for example, will surely use much more of their main memory for Þle cache than
will most client workstations.

Our benchmark varies the amount of data and measures performance to determine the maximum Þle
cache size for each system. Figure 4 shows these maximum Þle cache sizes, both in absolute size and as a
percentage of main memory The reason for the large variation in percentage of main memory is the Þle
cache size policy. HP/UX version 8, Ultrix, and AIX/ESA all reserve small, Þxed portions of main memory

Figure 3: File cache performance for machines in Table 1. This plot is for 32 KB reads with the
number of bytes touched limited to Þt within the Þle cache of each system. (Section 5 explains the
measurement method of data collection; we started with the measured 100% read performance for
accesses within the respective Þle caches at nominal access sizes and then interpolated to determine
performance for a common 32 KB size. Table 3 shows the factors; the only numbers adjusted by more
than 10% were for the Convex.)

M
a
ch

in
e
s

a
n
d

O
p
e
ra

ti
n
g

S
y
st

e
m

s

Megabytes per Second

0.0 10.0 20.0 30.0 40.0

Sparc1+,SunOS
4.1

DS5000,Ultr ix

DS5000,Sprite

Convex C240,
ConvexOS10

SS 10, Solaris 2

3090,AIX/ESA

HP 730, HP/UX 9

RS/6000,AIX

AXP/4000, OSF1

2.8

5 .0

8 .7

9 .9

11.4

27.2

27.9

28.2

31.8

Peter M. Chen & David A. Patterson Unix I/O Performance in Workstations and Mainframes 6

for the Þle cache. HP/UX version 9, in contrast, supports dynamically varying Þle cache size, leading to an
10-fold larger Þle cache for the HP 730.

[Baker91] demonstrated that Unix workloads beneÞt from larger Þle caches, so this Þxed-size policy
surely hurts I/O performance. Note that Sprite, running on the same hardware as Ultrix, has more than six

Figure 4: File cache size. The bar graph shows the maximum percentage of main memory for the Þle
cache in the I/O workload of Section 5, while the line graph shows the maximum size in MB using the log
scale on the right. Thus the HP 730 HP/UX version 8 uses only 8% of its 32 MB main memory for its Þle
cache, or just 2.7 MB, and the Convex C240 uses 87% of its 1024 MB main memory, or 890 MB, to be its
Þle cache. (Section 5 explains that the Sprite Þle cache really has two components; 63% is the size of the
larger one.)

%

M
a
in

M

e
m

o
ry

fo

r
F
Ile

C

a
ch

e

0 %

1 0 %

2 0 %

3 0 %

4 0 %

5 0 %

6 0 %

7 0 %

8 0 %

9 0 %

H
P7

30
,

H
P/

U
X

 8

D
S

50
00

,

U
lt

ri
x

30
90

,
 A

IX
/E

SA

D
S

50
00

,

S
pr

it
e

S
pa

rc
1+

,
S

un
O

S
 4

.1

S
S

 1
0,

S
ol

ar
is

 2

A
lp

ha
,

 O
S

F1

R
S

/6
00

0,

 A
IX

H
P7

30
,

H
P/

U
X

 9

C
on

ve
x

C
24

0,

C
on

ve
xO

S
10

8 1 %
8 0 %

7 7 %
7 4 %

7 1 %

6 3 %

2 0 %

1 0 %
8 %

1

1 0

1 0 0

1 0 0 0

F
ile

C

a
ch

e

S
iz

e

(M
B

)

8 7 %

Peter M. Chen & David A. Patterson Unix I/O Performance in Workstations and Mainframes 7

times the Þle cache size, and that the SPARCStation 1 has a Þle cache almost as large as the IBM 3090,
even though the mainframe has four times the physical memory of the workstation. When the ßexible Þle
cache boundary policy is combined with large main memories, we can get astounding Þle caches: the Con-
vex C240 Þle cache is almost 900 MB! Thus workloads that would require disk accesses on other
machines will instead access main memory on the Convex.

4.2 Write Policy

Thus far we have unrealistically left the O out of I/O. There is often some confusion about the deÞni-
tion and implications of alternative write strategies for caches. To lessen that confusion, we Þrst review
write policies of processor caches. (Readers interested in more about caches can consult textbooks such as
[Hennessy90].)

The simplest write policy is

write-through

; writes update the cache and the next level of the memory
hierarchy behind the cache. To offer reasonable write performance, almost all write-through caches use a

write buffer

; the write buffer allows the processor to continue immediately after writing the data to the
cache and the buffer; the buffer then writes to the next level of the memory hierarchy while the processor
does other work. The operating systems community uses the terms

asynchronous writes

 or

delayed writes

for writes that allow the processor to continue after updating the write buffer. If writes occur infrequently
then this buffer works well; if writes are frequent, then the processor may eventually have to stall until the
write buffer empties, limiting the speed to that of the next level of the memory hierarchy. Note that a write-
buffer does not reduce the number of writes to the next level; it just allows the processor to continue while
I/O is in progress, provided the write-buffer is not full. Because all writes must go to disk in a write-
through Þle cache, we expect the write throughput of such a system to be limited by disk speeds.

The alternative write policy to write-through is called

write-back

; writes simply update the cache
block, setting a dirty bit so that the processor knows it must write the block to memory when it is replaced.
Multiple updates to the same location simply re-write the appropriate Þle cache blocks, cancelling earlier
writes to that location; write-through caches, in contrast, send every write to the next level of the memory
hierarchy.

1

 Because this ability to cancel writes drastically changes system performance for writes, and
because there has been confusion about the distinction between write-through with write buffers versus
write-back, we categorize systems as being either

write-through

 (all writes must go through to disk) or

write-cancelling

.
The effectiveness of caches for writes also depends on the policy of ßushing dirty data to the disk; to

protect against losing information in case of failures, a ßushing process (also called a write-back, update,
or sync daemon) will occasionally issue a command that forces modiÞed data out of the cache and onto the
disk. Most Unix operating systems have a policy of periodically writing dirty data to disk to limit the
amount of data that can be lost in a crash; typically, the window is 30 seconds [Lefßer89]. Though the
ßushing process causes more data to be written to disk, it should not have a major effect on the perfor-
mance of applications that stay in the Þle cache. This is because such applications touch only Þle cache
blocks, while the ßushing process, operating in the background, mainly uses the disk. That is, the applica-
tion should never have to wait for the ßushing process.

Figure 5 shows the Þle cache performance as we vary the mix of reads and writes

2

. Clearly HP/UX
(both with a 30 second and inÞnite ßushing interval), Sprite, and OSF/1 with write-cancellation use a
write-cancelling cache because they perform writes at a speed faster than the disk system can sustain.
While it is hard to see using this Þgure, the Sun OS 4.1 write performance is nearly as fast as reads and
much faster than disks, so it also cancels writes. We can tell that the other operating systems use write-
through because their write performance matches disk speed. Note that three of the highest performers in
Figure 3ÑRS/6000, IBM 3090, and Alpha AXP/3000 (with write-through)Ñfall to the back of the pack
unless the percentage of reads is over 90%.

A write-cancelling cache (independent of the ßushing interval) should perform at memory speeds for
both reads and writes, hence their lines should be fairly ßat in Figure 5. Of the systems in Figure 5 that
cancel writes, this holds true for Sprite, SunOS 4.1, and HP/UX with an inÞnite ßushing interval. The oth-
ers (HP/UX with 30-second ßushing and OSF/1 with write-cancellation and inÞnite ßushing interval) per-

1. (The confusion alluded to above concerns the difference between write buffers and write-back; some of the devel-
opers we talked to insisted that their systems were using write-back, when they were using write-through with a write
buffer.)
2. For OSF/1, we show performance with the system conÞgured to be write-through (the default) and also conÞgured
as write-cancelling.

Peter M. Chen & David A. Patterson Unix I/O Performance in Workstations and Mainframes 8

form writes much slower than reads. To investigate this further, we lengthened the ßushing interval for
HP/UX to inÞnity; this caused a huge increase in write performance: from 8 MB/s to 30 MB/s! Note that
both these numbers are higher than disk performance, yet somehow the ßushing process slows perfor-
mance by a factor of four. In further measurements, we found that this phenomenon is less pronounced

Figure 5: File cache performance vs. read percentage. 0% reads means 100% writes. Note that the
high performance of the Þle caches of the RS/6000, 3090, and AXP/3000 (write-through) are only
evident for workloads with ³ 90% reads. Systems with write-cancelling performance are shown in bold
with underlined labels. Access sizes are 32 KB. (Section 5 explains the measurement method of data
collection; we started with the measured performance for accesses within the respective Þle caches at
nominal access sizes and then interpolated to determine performance for a common 32 KB size. The only
numbers adjusted by more than 10% was for the Convex; Table 3 shows the multipliers. Section 5 also
explains the Sprite Þle cache really has two components; this is performance for the smaller one.)

OSF/1 write-cancelling,

OSF/1

Solaris (SS-10)

HP/UX

HP/UX, inÞnite ßushing interval (HP 730)

Convex

Sprite (DS5000)

Ultrix (DS5000)

Sun OS (SS1)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

% Reads

M
eg

ab
yt

es
 p

er
 S

ec
on

d inÞnite ßushing interval
(AXP 3000)

(AXP 3000)

AIX
(RS/6000
& 3090)

write-through

Peter M. Chen & David A. Patterson Unix I/O Performance in Workstations and Mainframes 9

when touching less MB (Figure 8). We hypothesize that once the ßushing process schedules a block to be
written to disk, it locks the Þle cache block and any future application writes to that block must wait for the
disk write to complete. Applications that touch less MB create less work for the ßushing process to do,
hence the ßushing process does not slow those application as drastically.

The short lives of Þles means that Þles will be deleted or overwritten and so their data need not be
written to disk. Baker

et al

 found that this 30-second window captures 65% to 80% of the lifetimes for all
Þles [Baker91]. Their paper claims this percentage represents only small Þles and so almost all data is writ-
ten through. In a correction to that claim, Hartman and Ousterhout reported that 36% to 63% of the bytes
written do not survive a 30 second window; this number jumps to 60% to 95% in a 1000 second window
[Hartman93]. According to another study, a small, non-volatile Þle cache can reduce write trafÞc by 50%
[Baker92]. Given that such short lifetimes mean that Þle cache blocks will be rewritten, we recommend
that all operating system developers consider using a write-cancellation policy, enabling writes to the Þle
cache to perform at memory speeds.

4.3 Write Policy for Client/Server Computing

Thus far we have been ignoring the network and the possibility that the Þles exist on a Þle server. We
tested this performance with two experiments: one experiment used one SPARCStation 1+ as client and
another as a server, and a second experiment using a HP 720 as a client and a HP 730 as a server. Both cli-
ent-server pairs were connected by an Ethernet local area network. Figure 6 shows Þle cache performance
versus the percentage of reads when the Þles are reached over the networks.

This experiment brings us to the issue of consistency of Þles in multiple Þle caches. The concern is
that multiple copies of Þles in the client caches and on the server create the possibility that someone will
access the wrong version of the data. This brings us to a policy decision: how to ensure that no one
accesses stale data. The NFS solution, used by SunOS, is to make all client writes go to the serverÕs disk
when the Þle is closed [Sandberg85]. Taking an outsiderÕs perspective, it seems inconsistent that a 30 sec-
ond delay would be satisfactory for writes to local disk but not for writes to the server disk. Hence HP/UX
offers an alternative network protocol, called DUX, which allows client-level caching of writes. The server
keeps track of potential conßicts and takes the appropriate action only when the Þle is shared and someone
is writing it. Using a shared bus multiprocessor as a rough analogy to our workstations on the local area
network, DUX offers write-cancellation with cache coherency while NFS does write through without write
buffers. Readers interested in more details of Þle cache policies should see [Nelson88].

Figure 6: File cache performance vs. percentage of reads for client-server computing. Using a
SPARCStation 1+ for both a client and the Þle server running NFS is literally a hundred times slower
than a HP 720 client using a HP 730 server running the DUX network Þle system. (These are results as
measured, with nominal average access sizes of 11 KB for Sparc and 22 KB for HP. Interpolating to a
common 32 KB size would increase performance of Sparc by 8% and HP by 6%.)

DUX

NFS

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

% Reads

M
eg

ab
yt

es
 p

er
 S

ec
on

d

Peter M. Chen & David A. Patterson Unix I/O Performance in Workstations and Mainframes 10

The 100% read caseÑthe rightmost portion of the graphÑshows the differences in performance of
the HP and Sparc hardware, where HP is 6 times faster. The rest of the graph shows the differences in per-
formance due to the write policies of their operating systems. The HP system is the clear winner; it is liter-
ally 100 times faster than the Sparc system in workloads with mostly writes, and still 25 times faster even
when only 20% of the accesses are writes. Put another way, for all but the most heavily read-oriented
workloads, the SPARCStation client operates at disk speed while the HP client runs at main memory
speed. Adding non-volatile RAM such as Legato SystemÕs Prestoserve board, would increase NFS perfor-
mance somewhat [Lyon90]. However, writing through to NVRAM on a server is still limited by network
speeds. In this experiment, Ethernet would limit write performance of NFS to 1 MB/s.

5 A New I/O benchmark: Self-scaling and Predicted Performance

This section describes the I/O benchmark used to collect the data seen in the prior sections.
Current I/O benchmarks suffer from several chronic problems: they quickly become obsolete, they do

not stress the I/O system, and they do not help in understanding I/O system performance [Chen93b]. This
led to a new approach to I/O performance analysis [Chen93a].

The Þrst step is a

self-scaling benchmark

that automatically and dynamically adjusts aspects of its
workload according to the performance characteristics of the system being measured. By doing so, the
benchmark automatically scales across a wide range of current and future systems.This scaling is more
general than the scaling found in TPC-B [TPC90] and LADDIS [Wittle93], for scaling here varies more
than the load on the system.

This Þrst step aids in understanding system performance by reporting how performance varies accord-
ing to each of Þve workload parameters; these parameters determine the Þrst-order performance effects in
I/O systems. The benchmark reports throughput; however, response time can easily be calculated for any
given workload according to LittleÕs Law, since concurrency and request size are known. Here are the Þve
I/O parameters:
1.

Number of unique bytes touched

: This is the number of unique data bytes read or written in a workload;
essentially it is the total size of the data set. It models locality using the LRU stack model, with the
average access depth in the LRU stack set at half this parameter [Rau79]. The benchmark varies this
parameter to reveal Þle cache size (Figure 4).

2.

Percentage of reads

: The percentage of writes is 100% minus this percentage. Once the size of the Þles
cache were determined, we measured its performance as the read percentage varied to plot Figures 5
and 6. We also used the 100% read performance results for the disks and Þle caches to plot Figures 2
and 3.

3.

Average I/O request size

: We chose sizes from a Bernoulli distribution, with a coefÞcient of variation
equal to 1.

4.

Percentage of sequential requests

: This is the percentage of requests that sequentially follow the prior
request. When set at 50%, half of the accesses are to the next sequential address.

5.

Number of processes

: This is the concurrency in the workload, that is, the number of processes simulta-
neously issuing I/O. Load can further be adjusted by varying the amount of time a process thinks
between I/Os (CPU think time). For this paper, we set CPU think time to zero to maximally exercise the
I/O system. This allows us to look at how well these memory system designs and operating system pol-
icies will work with the much faster CPUs of the future.

The general idea of the benchmark is to vary a single parameter while the other four parameters
remain at a Þxed, nominal value.

For the machines reported in this paper, the nominal values are 50% reads, 50% sequential accesses,
and a single process issuing I/O requests. Because of the very different performance for Þle cache and disk
accesses, the benchmark automatically picks two values for number of bytes accessed. (If there were a
third region of very different performance, it would add that value to be explored; see [Chen93a] for more
details on picking parameters.) Table 2 shows the nominal values selected for the machines and operating
systems in this paper.

The parameters of Table 2 can be considered workloads that use the resources of the machine effec-
tively. For example, the 4-disk RAID system of the Convex achieves signiÞcantly higher bandwidth with
larger average access sizes, hence the larger nominal access size of 120 KB. Another example is the mod-
est size of main memory and Þxed Þle cache size policy of the DECStation 5000 running Ultrix are
reßected in the number of bytes touched: just 2 MB.

The resulting I/O performance is then plotted for each of the parameters. These plots can contain
some surprises. For example, Figure 7 plots performance versus the Þrst parameter, the number of unique
bytes, for the Sprite and Ultrix operating systems running on the DECStation 5000. The Sprite curve
shows

three

 performance plateaus: 0 to 5 MB, 5 to 20 MB, and > 20 MB. This middle plateau was auto-

Peter M. Chen & David A. Patterson Unix I/O Performance in Workstations and Mainframes 11

matically uncovered by the self-scaling benchmark; it discovered that reads were much faster than writes
in this plateau. This is due to the effective write cache of Sprite's Log Structure File System (LFS) being
much smaller than the read cache, so reads are cached in this region while writes are not. The write cache
of LFS is smaller because LFS limits the number of dirty cache blocks to avoid deadlock during cleaning.
For writes the effective Þle cache size is only 5-8 MB, while for reads it is 20 MB. This result surprised the
Sprite developers, and it demonstrates the value of a benchmark that automatically explores the parameter
space over a benchmark with a Þxed set of parameters.

Figure 8 shows the performance for recent workstations and mainframes using the nominal parame-
ters values collected by the self-scaling benchmark, once again as a function of unique bytes touched.
These plots give insights into appropriate workloads and resulting performance. The width of the high-per-
formance parts of the curves is determined by the size of the Þle cache. Under default operating system
conÞgurations, the HP 730 offers the highest performance for applications that touch a small amount of

Table 2: The values of the parameters selected automatically by the self-scaling benchmark for the
systems in Table 1. The nominal values of the other parameters are 50% reads, 50% sequential accesses,
and one process. (As explained below, the Sprite DS 5000 Þle cache has two sizes.)

DEC
AXP/
3000

DEC DS
5000,
Sprite

DEC
DS

5000,
Ultrix

HP 730
IBM

RS/600
0

Sun
SS 1+

Sun
 SS 10

Convex
C2

IBM
3090

Average Access
Size (KB)

21 32 13 40 32 20 27 120 19

No MB Touched:
File Cache

21 2, 15 2 39 26 12 48 450 13

No. MB
Touched: Disk

75 36 6 75 80 42 157 1376 42

Figure 7: I/O performance of two operating systems on the DECStation 5000 varying the number
of megabytes accessed. Note that the X axis is on a log scale. The small size and write-through policy of
the Ultrix Þle cache explain its low performance. The Sprite curve shows three performance plateau; see
the accompanying text for an explanation. (Results are as measured with 50% reads; adjusting for
common access sizes would make no relative difference in these two curves.)

SpriteUltrix

1 10 100
0

1

2

3

4

5

6

7

8

Number of MB Touched

M
eg

ab
yt

es
 p

er
 S

ec
on

d

Peter M. Chen & David A. Patterson Unix I/O Performance in Workstations and Mainframes 12

data

3

; yet workloads that would need to go to disk on other systems can be satisÞed by the very large Þle
cache of the Convex.

The self-scaling benchmark increases our understanding of a system and scales the workload to
remain relevant as technology advances. It complicates the task of comparing results from two systems,
however. The problem is the benchmark may choose different workloads on which to measure each sys-

3. Without the ßushing process, applications on the HP 730 can get very high performance (30 MB/s) with up to 50
MB of Þle space.

Figure 8: Performance vs. megabytes touched for recent workstations and the mainframes in
this paper. Note the log-log scale. In contrast to other Þgures, these results use the nominal values
selected by the self scaling benchmark. The primary difference is the use of 50% reads and an
average access size of 120 KB for the Convex; adjusting for a common access size would halve
Convex performance but make little change to the other lines in this plot.

1 10 100 1000
0

1

10

100

Number of MB Touched

M
eg

ab
yt

es
 p

er
 S

ec
on

d

HP 730 (default)

HP 730, inÞnite ßushing interval

AXP 3000, write-cancelling,
inÞnite ßushing interval

AXP 3000 (default)

3090

RS/6000

SPARCStation 10

Convex

Peter M. Chen & David A. Patterson Unix I/O Performance in Workstations and Mainframes 13

tem. Also, although the output graphs from a self-scaling evaluation apply to a wider range of applications
than today's I/O benchmarks, they stop short of applying to all workloads.

Hence the second part of this new approach is to estimate performance of other workloads. We esti-
mate performance for unmeasured workloads by assuming the

shape

 of a performance curve for one
parameter is independent of the values of the other parameters. This assumption leads to an overall perfor-
mance equation of

where X, Y, Z, ... are the parameters. Thus to use the same average access sizes in Figures 2, 3, and 5
we adjusted performance in the self-scaling benchmark plot by the ratio of the performance at 32 KB to the
performance at the nominal access size (see Table 3 in the Appendix). [Chen93a] has shown that this tech-
nique yields accurate performance estimates, within 10% for most workloads.

This paper is a perfect example of the use of predicted performance. We came into this paper without
preconceived notions about what the results should be, much less what values to set the nominal parame-
ters. The results from a single run of the self-scaling benchmark were used to discover the problems about
write policy for Þle caches. Although it would be possible to go back to all 11 systems and rerun the work-
loads with a common block size and percentage of reads, thereby making the collection of data of other
parameters ÒunnecessaryÓ, there is little reason to do so. The numbers collected in the original pass are
close for all but one system. It seems difÞcult to justify such a new run: it would take weeks to arrange
time to remeasure 11 systems, and new measurements would not change our conclusions.

Readers interested in a copy of the self-scaling benchmark can obtain it via anonymous FTP from the
Internet host

ftp.cs.Berkeley.EDU

 under the directory

ucb/benchmarks/pmchen

.

6 Conclusion

Using a new approach to I/O benchmarkingÑself-scaling evaluation and predicted performanceÑwe
have evaluated I/O performance of 11 hardware/software systems. As mentioned in the introduction, I/O is
limited by the weakest link in the chain between the disk and the operating system. The hardware deter-
mines the potential I/O performance, but the operating system determines how much of that potential is
delivered. We have found differences of factors of 100; given processor battles are won or lost on factors
of 2, I/O seems ripe for attention and respect. This benchmark exercises I/O systems exclusively, and while
many systems are not yet I/O bound, the continuing 50%per year advance in processor speed suggests
most will soon become so.

As a result of the studies in this paper, we conclude:

¥

File cache performance in workstations is improving rapidly, with over four-fold improvements in three
years for DEC (AXP/3000 vs. DECStation 5000) and Sun (SPARCStation 10 vs. SPARCStation 1+).

¥

File cache performance of Unix on mainframes and minisupercomputers is no better than on worksta-
tions.

¥

Current workstations can take advantage of high performance disks.

¥

RAID systems can deliver much higher disk performance.

¥

File caching policy determines performance of most I/O events, and hence is the place to start when try-
ing to improve I/O performance.

Given the wide range of performance from systems aimed at the same market, we recommend that
operating system developers take a closer, quantitatively-based look at their policies concerning Þle cache
sizes and write-cancellation policies.

7 Future Directions

We hope that this paper inspires others to stress and evaluate the I/O system beyond the Þle cache. For
example, determining the maximum number of disks that each system could support would offer insight
into the capacity of these systems. As we mentioned in Section 2, this is no small effort. It would also be
important to understand which architectural optionsÑinterleaved memory, block copy hardware, high-per-
formance DRAMsÑwill give the highest potential Þle cache performance. And of course it would be
interesting to expand the study in this paper to more machines and operating systems.

One potential future direction for the benchmark is changing how manufacturers and users evaluate
I/O. If manufacturers published its results over a range of I/O options for a particular system, users could
use predicted performance to estimate,

without further measurements

, the I/O performance of their speciÞc
workloads. As the price of each conÞguration is easily calculated, the price/performance of systems that

Performance X Y Z ¼, , ,() Performance X
nominal

Y
nominal

Z
nominal

¼, , ,() f
X

´ X() f
Y

Y() f
Z

Z() ¼´´´=

Peter M. Chen & David A. Patterson Unix I/O Performance in Workstations and Mainframes 14

match the usersÕ needs are also easily calculated, simplifying the trade-off between number of disks, faster
disks, more main memory, and so on.

8 References

[Baker91] Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff, and John K.
Ousterhout. Measurements of a Distributed File System. In

Proceedings of the 13th ACM
Symposium on Operating Systems Principles

, pages 198Ð212, October 1991.

[Baker92] Mary Baker, Satoshi Asami, Etienne Deprit, John Ousterhout, and Margo Seltzer. Non-
Volatile Memory for Fast Reliable File Systems. In

Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-V)

,
pages 10Ð22, October 1992.

[Chen93a] Peter M. Chen and David A. Patterson. A New Approach to I/O Performance EvaluationÐ
Self-Scaling I/O Benchmarks, Predicted I/O Performance (conference version). In

Proceedings of the 1993 ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems

, pages 1Ð12, May 1993.

[Chen93b] Peter M. Chen and David A. Patterson. Storage PerformanceÐMetrics and Benchmarks.

Proceedings of the IEEE

, 81(8):1151Ð1165, August 1993.

[Hartman93] John H. Hartman and John K. Ousterhout. Letter to the Editor.

Operating Systems Review

,
27(1):7Ð9, January 1993.

[Hennessy90] John. L. Hennessy and David A. Patterson.

Computer Architecture: A Quantitative
Approach

. Morgan Kaufmann Publishers, Inc., 1990.

[Kay92] Jonathan Kay and Joseph Pasquale. A Performance Analysis of TCP/IP and UDP/IP
Networking Software for the DECStation 5000. Technical Report Sequoia Technical Report
92/18, University of California at Berkeley, December 1992.

[Leffler89] Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S. Quarterman.

The
Design and Implementation of the 4.3BSD Unix Operating System

. Addison-Wesley
Publishing Company, 1989.

[Lyon90] Bob Lyon and Russel Sandberg. Breaking Through the NFS Performance Barrier. Technical
report, Legato Systems, Inc., 1990.

[McKusick84] Marshall Kirk McKusick, William N. Joy, Samuel J. Leffler, and Robert S. Fabry. A Fast
File System for UNIX.

ACM Transactions on Computer Systems

, 2(3):181Ð197, August
1984.

[Nelson88] Michael N. Nelson, Brent B. Welch, and John K. Ousterhout. Caching in the Sprite Network
File System.

ACM Transactions on Computer Systems

, 6(1):134Ð154, February 1988.

[Ousterhout90] John K. Ousterhout. Why arenÕt operating systems getting faster as fast as hardware? In

Proceedings USENIX Summer Conference

, pages 247Ð256, June 1990.

[Rau79] B. Ramakrishna Rau. Program Behavior and the Performance of Interleaved Memories.

IEEE Transactions on Computers

, C-28(3):191Ð199, March 1979.

[Sandberg85] Russel Sandberg, David Goldbert, Steve Kleiman, Dan Walsh, and Bob Lyon. Design and
Implementation of the Sun Network Filesystem. In

Proceedings of the Summer 1985 Usenix
Conference

, 1985.

[Stern94] Hal Stern. Virtual Amnesia.

Advanced Systems (previously SunWorld)

, pages 17Ð20,
February 1994.

[Tanenbaum85] Andrew S. Tanenbaum and Robbert Van Renesse. Distributed Operating Systems.

Peter M. Chen & David A. Patterson Unix I/O Performance in Workstations and Mainframes 15

Computing Surveys

, 17(4):419Ð470, December 1985.

[TPC90] TPC Benchmark B Standard Specification. Technical report, Transaction Processing
Performance Council, August 1990.

[Wittle93] Mark Wittle and Bruce E. Keith. LADDIS: The next Generation in NSF File Server
Benchmarking. In

Proceedings of the Summer 1993 USENIX Technical Conference

, 1993.

9 Appendix: Other I/O Measurement

Table 3: These are the Þle cache and disk performance values at the nominal access size for 50%
reads, 50% sequential, one process.

 The multipliers in the fourth and last rows were used to adjust
Figures 2, 3, and 5 to determine performance at the same 32 KB average access size.The number of unique
bytes used to ensure Þle cache or disk accesses are listed in Table 2.

10 Acknowledgments

The work described here was supported in part by the National Science Foundation under grants
CCR-8900029 and MIP-8715235, and the National Aeronautics and Space Administration and the Defense
Advanced Research Projects Agency under contracts NAG2-591 and DABT63-92-C-0007.

We would like to thank the following people for either running the benchmark or giving us access to
the machines: Jon Forrest, Karem Sakallah, and Mike Riepe (Alpha AXP); Eugene Miya, Dave Tweten,
and Tom Woodrow (Convex); Carl Staelin (HP 730); Shashi Sathaye (IBM 3090); Sid Bytheway
(RS/6000); and Ed Kelly, Rajiv Khemani, and Jim Voll (SPARCStation 10). We would also like to thank
the following people for making helpful comments on a draft of this paper: Remzi Arpaci, Mary Baker,
Ann Drapeau, Mike Dahlin, John Hartman, John Ousterhout, Ken Shirriff, and Randy Wang

.

DEC
Alpha
AXP/3

000

DEC DS
5000,
Sprite

DEC
DS

5000,
Ultrix

HP
730

IBM
RS/600

0

Sun
SS 1+

Sun
SS 10

Convex
C2

IBM
3090

Nominal Average Access
Size (KB)

21 32 13 40 32 20 27 120 19

File Cache Performance at
nominal Size (MB/sec)

2.2 6.7 0.6 7.7 2.1 2.2 3.3 8.1 1.6

File Cache Performance at
32 KB Size(MB/sec)

2.4 6.7 0.7 8.1 2.1 2.2 3.3 3.6 1.8

File Cache Performance
Multiplier to adjust to 32

KB size
1.11 1.00 1.04 1.06 1.00 1.00 1.02 0.44 1.10

Disk Performance at nom-
inal Size (MB/sec)

1.1 0.5 0.3 1.1 0.8 0.4 1.6 4.3 0.6

Disk Performance at 32
KB Size(MB/sec)

1.2 0.5 0.4 .97 0.8 0.4 1.7 1.9 0.6

Disk Performance Multi-
plier to adjust to 32 KB

size
1.15 1.00 1.13 0.91 1.00 1.05 1.03 0.45 0.99

