
The Impact of Recovery Mechanisms on the
Likelihood of Saving Corrupted State

Subhachandra Chandra
Cosine Communications

Peter M. Chen
University of Michigan

Motivation

� Computer software is not reliable

� Recovery from failures is vital for usability and availability

� Successful recovery requires that the system does not save
data that has been corrupted by the fault

� The recovery system itself may increase the chances of
saving corrupted state

Main factors

� Quality of error detection

� Location of the fault

� Frequency of state saves

� Comprehensiveness of state saved

Comprehensiveness / Frequency of State
Commits

Less More

Comprehensiveness

little

visible

less likely

automatic state reconstruction
failure transparency

commits of corrupt state

more

transparent

more likely

Frequency

Recovery System Determines
Comprehensiveness and Frequency

� Generic mechanisms

� have to save all state

� have to save state for all visible events

� e.g. checkpointing, logging

� Application-specific mechanisms

� know which state is important

� know which visible events are important

� e.g. auto-save

Strategies for Saving State

� Three strategies by varying comprehensiveness and
frequency

� LC/LF - Less Comprehensive / Less Frequent
application-specific recovery

� C/LF - Comprehensive / Less Frequent
modified generic recovery

� C/F - Comprehensive / Frequent
generic recovery like Discount Checking

Obtaining Faulty Runs

� Inject faults either into the source code or dynamically into
the process address space during execution

� Detect failures by comparing output of the run into which
faults have been injected with output from a good run

� If the run did not complete or completed with faulty output
then it is counted as a failure or faulty run

Detecting Corrupted Committed State:
Application-Specific Recovery

� Have a reference run generate all the possible states saved by
the application on the disk

� Compare the final state saved by the faulty run on the disk
with the list of reference states

� If the final state does not match any of the reference states
then corrupted state was committed by the recovery
mechanism

Detecting Corrupted Committed State:
Generic Recovery

� Recover the application from the last saved checkpoint

� If the application does not complete with the correct results
then the run recovered from corrupted state

� Another way to detect if the committed state was corrupted is
to check if the last checkpoint was committed after the
activation of the fault

Workload and Fault Models

nvi, postgres, oleo

Fault Type Example of Programming Error
stack flip random bit
allocation move use(ptr) to after free(ptr)
heap flip random bit
off-by-one substitute < with <=
initialization delete i=0;
delete branch substitute "if" for a "while"
delete random instruction delete a simple statement "i=j+k;"
destination variable substitute one dest. variable with another

Results for nvi - Application Faults

Fault Faulty Runs App-specific App-Generic
Stack 50 0 0 0 0
Alloc 50 24 40 50 0
Heap 50 6 12 35 8

Off by One 50 6 7 9 12
Init Errors 50 0 2 2 0

Delete Branch 50 25 27 34 8
Delete Inst 50 12 14 24 3

Change Dest Var 50 1 5 8 5
Total 400 74 (19%) 107(27%) 162(41%) 36(9%)

Low Freq
App-Generic

Undetected
Errors

Results for postgres - Application Faults

Fault Faulty Runs App-specific App-Generic
Stack 50 0 16 17 1
Alloc 50 0 22 24 0
Heap 50 0 0 44 2

Off by One 50 0 0 0 8
Init Errors 50 0 2 3 2

Delete Branch 50 0 0 38 6
Delete Inst 50 1 2 6 5

Change Dest Var 50 2 2 3 0
Total 400 3(1%) 44(11%) 135(34%) 24(6%)

Low Freq
App-Generic

Undetected
Errors

Results for oleo - Application Faults

Fault Faulty Runs App-specific App-Generic
Stack 50 0 0 3 0
Alloc 50 0 2 34 9
Heap 50 0 0 12 19

Off by One 50 0 0 10 7
Init Errors 50 0 3 15 8

Delete Branch 50 0 0 19 7
Delete Inst 50 0 2 9 18

Change Dest Var 50 3(1%) 3 5 20
Total 400 3(1%) 10(3%) 107(27%) 88(22%)

Low Freq
App-Generic

Undetected
Errors

Faults in the Operating System

Hardware

OS

Recovery Mech.

Application

System
Call

Fault
Error

Fault

Results for nvi - OS Faults

Fault Faulty Runs App-specific App-Generic
Stack 50 0 1 6 0
Alloc 50 1 5 19 0
Heap 50 2 3 4 0

Off by One 50 0 6 11 0
Init Errors 50 3 2 8 1

Delete Branch 50 1 2 12 0
Delete Inst 50 0 1 6 0

Change Dest Var 50 2 0 5 0
Total 400 9(2%) 20(5%) 71(18%) 1(0%)

Low Freq
App-Generic

Undetected
Errors

Results for postgres - OS Faults

Fault Faulty Runs App-specific App-Generic
Stack 50 0 5 5 0
Heap 50 1 3 3 0

Off by One 50 0 0 0 0
Init Errors 50 0 0 0 0

Delete Branch 50 1 2 2 0
Delete Inst 50 0 1 2 0

Change Dest Var 50 0 0 0 1(0%)
Total 350 2(1%) 11(3%) 12(3%) 1(0%)

Low Freq
App-Generic

Undetected
Errors

Results for oleo - OS Faults

Fault Faulty Runs App-specific App-Generic
Stack 50 4 0 3 0
Alloc 50 0 0 0 0
Heap 50 1 1 1 0

Off by One 50 3 0 0 0
Init Errors 50 0 1 1 0

Delete Branch 50 1 3 4 0
Delete Inst 50 5 0 1 0

Change Dest Var 50 3 4 4 0
Total 400 17(4%) 9(2%) 14(3%) 0(0%)

Low Freq
App-Generic

Undetected
Errors

Conclusions

� Generic recovery mechanisms are of little use in the presence
of application-level faults as they save corrupted state very
frequently

� The increased frequency seems to be more due to the
frequency of state saves than the comprehensiveness

� When the faults are in the operating system layer the
likelihood of saving corrupt state is reduced significantly.
Generic recovery mechanisms can be useful in such cases.

