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Abstract

Given dissimilarity data on pairs of objects in a set,
we study the problem of fitting a tree metric to this data
so as to minimize additive error (i.e. some measure
of the difference between the tree metric and the given
data). This problem arises in constructing an M -level
hierarchical clustering of objects (or an ultrametric on
objects) so as to match the given dissimilarity data –
a basic problem in statistics. Viewed in this way, the
problem is a generalization of the correlation clustering
problem (which corresponds to M = 1). We give a very
simple randomized combinatorial algorithm for the M -
level hierarchical clustering problem that achieves an
approximation ratio of M+2. This is a generalization of
a previous factor 3 algorithm for correlation clustering
on complete graphs. The problem of fitting tree metrics
also arises in phylogeny where the objective is to learn
the evolution tree by fitting a tree to dissimilarity data
on taxa. The quality of the fit is measured by taking the
`p norm of the difference between the tree metric con-
structed and the given data. Previous results obtained
a factor 3 approximation for finding the closest tree tree
metric under the `∞ norm. No non-trivial approxima-
tion for general `p norms was known before. We present
a novel LP formulation for this problem and obtain an
O((log n log log n)1/p) approximation using this. En
route, we obtain an O((log n log log n)1/p) approxima-
tion for the closest ultrametric under the `p norm. Our
techniques are based on representing and viewing an ul-
trametric as a hierarchy of clusterings, and may be use-
ful in other contexts.
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1. Introduction

We consider the problem of finding a tree metric to
fit dissimilarity data on pairs of objects from a given set
X . A tree metric is defined by a weighted tree spanning
X , with distances between a pair of objects determined
by the sum of edge weights along the unique path in the
tree connecting them. The main problem we consider is:
How well can we construct a tree metric to fit the given
data ? A special kind of tree metric is an ultrametric,
where the underlying tree has a special structure: all el-
ements of X are leaves of the tree and all leaves are at
the same distance from the root. Ultrametrics naturally
correspond to a hierarchy of clusterings of the data. An-
other question of great interest is: How well can we con-
struct an ultrametric to fit the given data ?

Such problems referred to as numerical taxonomy
arise naturally in numerous disciplines: in statistics –
for clustering data into hierarchies, and in sciences such
as linguistics and biology (see the survey [14]), where
tree metrics represent evolutionary branching processes
that give rise to the observed data. Consequently, such
problems have been studied quite extensively. (see the
paper of Agarwala etal [1] and the references therein).

When the given data can be realized exactly by a tree
metric (or an ultrametric), it is well known that the un-
derlying tree structure can be reconstructed. In fact, suc-
cinct necessary and sufficient conditions are known for
checking whether a given dissimilarity function can be
exactly realized thus, involving checking a certain crite-
rion on all sets of 3 points (for ultrametrics) or 4 points
(for tree metrics).

While the exact problem is well solved, finding the
best fitting tree metric when none fits exactly is a much
harder problem. In order to quantify the quality of the
fit, we view a distance function on n objects as a vec-
tor with

(

n
2

)

coordinates corresponding to pairwise dis-
tances. The fit between a given dissimilarity function D



and a tree metric dT is then measured by the `p norm
‖D − dT ‖p. The goal is to find a tree metric dT so as to
minimize this quantity.

1.1. Related Work

Farach etal [9] showed that under the `∞ norm,
an optimal ultrametric can be computed in polynomial
time. Unfortunately, these fitting problems are NP-
Hard for various other norms of interest `1, `2 (for trees
and ultrametrics) and `∞ (for tree metrics). In fact the
`∞ problem (for tree metrics) and the `1 problem for
tree metrics and ultrametrics are APX-Hard (see Ware-
ham [17, 1]). The only non-trivial approximation result
is the 3-approximation of Agarwala etal [1] for the clos-
est tree metric under the `∞ norm. Their work makes
an interesting connection between the closest tree met-
ric and closest ultrametric problem. They show that an
α-approximation for a restricted version of the closest
ultrametric problem yields a 3α approximation for the
closest tree metric problem for any `p norm. This is the
basis for their 3 approximation for `∞ and we use this
later in our results for `p. Recently, connections have
been made between these results for the `∞ best ultra-
metric and some classical results in mathematics [3, 13].
Ma etal [15] considered the problem of finding the best
`p fit by an ultrametric where distances in the ultrametric
are no smaller that the given data. For this problem, they
obtained an O(n1/p) approximation. Recently, Dhamd-
here [6] considered the problem of finding a line met-
ric to minimize additive distortion from the given data
(measured by the `1 norm) and obtained an O(log n) ap-
proximation. In fact, his motivation for considering this
problem was to develop techniques that might be use-
ful for finding the closest tree metric with distance mea-
sured by the `1 norm. Independently of our work, Harb,
Kannan and McGregor [12] recently developed a factor
O(min{n1/p, (k log n)1/p}) approximation for the clos-
est tree metric under the `p norm where k is the number
of distinct distances in the input. Of course, there is rich
literature on metric embedding problems where the mea-
sure of interest is the multiplicative distortion. Several
such problems have been studied in the context of ap-
proximating metric spaces via tree metrics (e.g. [8]).
Researchers have also studied reconstruction of phylo-
genies under stochastic models of evolution (see Mossel
etal [16] and the references therein).

1.2. Our Results

We make significant improvements to the state of the
art for fitting ultrametrics and tree metrics to given data

so as to minimize additive distortion according to the `p

measure of fit. We present two main results.
First we consider the problem of fitting an ultrametric

to dissimilarity data specified as integers in {1, . . . , M+
1}. This naturally corresponds to finding an M -level hi-
erarchical clustering to best match the given data. In
fact, the M = 1 problem is exactly the correlation clus-
tering problem on complete graphs [4, 5]. This problem
has received a lot of attention recently. We generalize
the algorithm of [2] to obtain a simple randomized com-
binatorial algorithm for fitting an M -level hierarchical
clustering with an approximation ratio of M + 2.1 The
algorithm is quite intuitive and proceeds by recursively
modifying the given data so as to eventually produce an
ultrametric. Even though the algorithm is completely
combinatorial, the analysis proceeds by constructing a
dual solution to a certain LP and the values in this dual
solution are defined in terms of the probability distri-
bution over the algorithm’s actions. We describe these
results in Section 2.

Secondly, we consider the problem of fitting ultra-
metrics and tree metrics to general dissimilarity data.
For the problem of fitting an ultrametric, we introduce
a novel LP formulation which arises from viewing an
ultrametric as a hierarchy of clusterings (see Section 3).
The closest ultrametric problem now becomes a hierar-
chy of correlation clustering problems which are depen-
dent in a certain way. In Section 3.1, we show how to
round the LP solution, consisting of a hierarchy of met-
rics, to obtain an O((log n log log n)1/p) approximation
for the `p norm. (This follows from a Seymour-style
analysis of the divide and conquer approach). The LP
based method is fairly flexible, allowing imposing upper
and lower bounds as well as equality constraints on cer-
tain pairs of distances in the final ultrametric obtained.
This flexibility enables us to use the ultrametric result
to obtain an O((log n log log n)1/p) approximation for
fitting tree metrics in Section 3.3 via the results of Agar-
wala etal [1].

2. Hierarchical Clustering

Let X be a ground set of n elements, and let M > 0
be a constant integer. A level M hierarchical clustering
of X is a rooted tree with the elements of X as leaves
and a path of length exactly M + 1 from the root to any
leaf. For M = 1 this is the standard definition of a clus-

1When viewed as an M level hierarchical clustering, it makes
sense to use small values of M not exceeding O(log n). This has
a precise information-theoretic motivation which we will not pursue
in this version.



tering of X : the children of the root can be viewed as the
clusters. For M = 2 we have a standard clustering, with
the additional structure that every cluster is further par-
titioned into clusters. This nested clustering generalizes
to any M .

For a level M hierarchical clustering C we define a
distance function dC between distinct pairs i, j ∈ X .
The distance dC(i, j) is the height of the subtree rooted
by the lowest common ancestor of i and j. So if i, j
share a parent, the distance is 1. If i, j do not share a par-
ent but they share a grandparent, the distance is 2, and so
on, where the maximal distance is M +1. Depending on
the clustering application, this distance would measure
the extent to which i and j are dissimilar. Note that this
is exactly half the tree distance between i and j. Abus-
ing notation, we denote by dC the

(

n
2

)

coordinate vector
of distances.

Let G be the complete undirected graph on X , with
an integer weight function 1 ≤ D(i, j) ≤ M + 1, rep-
resenting dissimilarity between pairs of elements in X .
We view D as an

(

n
2

)

-coordinate vector. The general-
ized correlation clustering problem is defined as finding
a level M clustering of X , C, minimizing ‖D − dC‖1 .

For M = 1, this is exactly the correlation cluster-
ing problem on a complete graph. Here D(i, j) = 1
represents a + edge between i and j, and D(i, j) = 2
indicates a − edge.

Claim 1 (Ultrametric property) The distance function
dC satisfies the following strong triangle inequal-
ity property: For any distinct i, j, k, dC(i, j) ≤
max{dC(i, k), dC(j, k)}.

Note that the strong triangle inequality implies that
dC(i, j) = max{dC(i, k), dC(j, k)} if dC(i, k) 6=
dC(j, k).

Claim 2 Any ultrametric d : X ×X → {1, . . . , M +1}
is induced by some level M clustering C.

The proof of Claim 2 is by simple induction: It is easy
to verify that the relation RM ⊆ X × X of all i, j such
that d(i, j) ≤ M is an equivalence relation. Using in-
duction on M , we build (M −1)-level clusterings (trees)
on the equivalence classes and connect them as children
of a new root, thus obtaining a clustering Cd. It is im-
mediate to verify that d = dCd

. Note that this proof is
constructive. Claims 1 and 2 thus give us a local charac-
terization of the distance functions induced by level M
hierarchical clusterings.

Algorithm HCLUST-PIVOT (Figure 1) builds a level-
M hierarchical clustering represented by an ultrametric
z so as to fit a given dissimilarity function D. Before

HCLUST-PIVOT(X)

if X = ∅ return
pick random pivot k ∈ X.
for t = 1, . . . , M + 1

set Xt = {i ∈ X : z(k, i) = t}
for all 1 ≤ t1 < t2 ≤ M + 1

for all i ∈ Xt1 , j ∈ Xt2

(1) change z(i, j) = t2
for all 1 ≤ t ≤ M + 1

for all distinct i, j ∈ Xt

(2) change z(i, j) = min{z(i, j), t}

for t = 2, . . . , M + 1
run HCLUST-PIVOT(Xt)

Figure 1. Algorithm HCLUST-PIVOT. Before
calling, set z = D. After execution, z is
solution.

running the algorithm we set2 z = D and the algorithm
progressively mutates z, converting it into an ultramet-
ric. The hierarchical clustering Cz can be easily derived
from the vector z after the algorithm returns.

Theorem 1 Algorithm HCLUST-PIVOT is an expected
2 + M approximation algorithm for generalized corre-
lation clustering.

The techniques we use in the proof are similar to the
ones used in the proof of Theorem 1 in [2].
Proof: We first prove correctness, in other words, that
the vector z after the execution of the algorithm is an ul-
trametric. Fix a triple T = {h, i, j} ⊆ X . There are two
possible important events in the life of T . The first event
is that one of its vertices (say, h) is chosen as pivot when
the other two are input to the same recursive call. But
then either line (1) or (2) will fix the value of z(i, j) so
that z has the ultrametric property on {h, i, j}. (In fact,
the algorithm will change the value of z(i, j) in a greedy
way that minimizes the size of the change.) Now it is
immediate to verify that the values of z(h, i) and z(h, j)
are frozen until termination, and that no future change of
z(i, j) will violate the ultrametric property on t. Indeed,
the only way z(i, j) will change in recursive calls is if
z(h, i) = z(h, j) = l, in which case z(i, j) is set in line

2Think of z as a global variable



(2) to be ≤ l, and in the recursion on Xl its value can-
not climb above l (see Observation 1 below). The other
event is that a fourth vertex k /∈ T was chosen as pivot
when all four h, i, j, k are in the same recursive call, and
the vertices of T are split between more than one re-
cursive calls (in other words z(k, h), z(k, i), z(k, j) are
not all equal). It is not hard to verify that the work of
lines (1) and (2) will enforce the ultrametric property on
t. There are three subcases. First subcase: z(k, h) <
z(k, i) = l1 < z(k, j) = l2. In this subcase, z(i, j) and
z(h, j) are mutated and frozen as l2 in line (1), z(h, i)
is mutated and frozen as l1 in line (1). Second subcase:
z(k, h) = z(k, i) = l1 < z(k, j) = l2. Then z(h, j),
z(i, j) are frozen as l2 in line (1), and z(h, i) is mutated
in line (2) to a value not exceeding l1, above which it will
not climb in the recursion (see Observation 1 below).
Third subcase: z(k, h) = l1 < z(k, i) = z(k, j) = l2.
Then z(h, i) and z(h, j) are frozen as l2 and z(i, j) is
mutated to a value not exceeding l2, above which it will
not climb in the recursion (see Observation 1 below). In
all three subcases triangle T now satisfies the strong tri-
angle inequality and will not violate it in the recursion.
We conclude the proof of correctness by stating the obvi-
ous claim that either the first or the second event occurs
(exactly once) on all triples T .

We start the approximation factor guarantee proof
with the following:

Observation 1 For all distinct i, j ∈ X the value of
z(i, j) can either increase or decrease during the execu-
tion of the algorithm, but not both.

To see this, assume that the value of z(i, j) increased
during the execution. The only possible increase of
z can occur in line (1), after which i and j are sepa-
rated into two different recursion branches. Therefore,
the value of z(i, j) will not change from that point and
on. Assume that the value of z(i, j) was decreased
to z′ at some point. If the decrease occurred in line
(1), then again, the value of z(i, j) will never change
again because of the splitting of i, j into two recursion
branches. If it occurred in line (2), then the new value
of z(i, j) = z′ will be maximal among all values of z in
the recursive call corresponding to Xz′ . Consequently,
the value of z(i, j) will not climb above z′.

Let T be the set of triples {i, j, k} such that the
largest D-value among the three values D(i, j), D(i, k),
D(j, k) is strictly larger than the second largest value.
(We call such triples “violating triples”). For T ∈ T
let λ1(T ) denote the largest D-value of T , λ2(T ) the
second largest D-value of T , and λ3(T ) the lowest z-
value of T (arbitrarily breaking ties between λ2(T ) and

λ3(T )). Let L(T ) = λ1(t) − λ2(t) > 0. For an integer
1 ≤ b < M + 1, let Tb ⊆ T denote the set of T ∈ T
such that λ2(T ) ≤ b and λ1(T ) > b. Clearly, any so-
lution has to pay at least L(T ) on the edges of T (that
is, ‖DT − zT ‖1 ≥ L(T ) for any solution z, where zT

is the restriction of a vector in
(

X
2

)

to coordinates
(

T
2

)

).
Also, if T ∈ Tb, then in any solution the value of at least
one edge e ∈

(

T
2

)

has to “cross” b. In other words, if it
started < b it will be ≥ b and vice-versa. The following
two LPs capture this:

LP 1: Minimize
∑

e∈(X

2 )
αe, s.t.

∑

e∈(T

2)
αe ≥

L(T ) for all T ∈ T and αe ≥ 0 for all e ∈
(

X
2

)

.
In the corresponding IP, the variable αe (w.r.t. a
feasible ultrametric solution d) tell us the amount
of change of the value of e ∈

(

X
2

)

(contribution to
the `1 distance, which is |De − de|). Note that a
solution to the corresponding IP does not necessar-
ily encode a feasible ultrametric (there are missing
constraints). The important point is that its optimal
value is a lower bound to the optimal solution to the
ultrametric problem.

LP 2: Minimize
∑

e∈(X

2 )
∑M

b=1 γb
e s.t.

∑

e∈(T

2)
γb

e ≥ 1 for all 1 ≤ b < M + 1, T ∈ Tb,
and γb

e ≥ 0 for all e ∈
(

X
2

)

, 1 ≤ b < M + 1. In the
corresponding IP, the meaning of indicator variable
γb

e (w.r.t. a feasible ultrametric problem solution
d) is as follows. If γb

e = 1 then the value of e
crosses b when changing from De to de (therefore
contributing 1 to the objective function). Again,
the corresponding IP formulation does not contain
all the ultrametric constraints.

Fix any solution z∗ (i.e. an ultrametric on V ) with
cost c = ‖D − z∗‖1. The following are the duals to
LP 1 and 2. Therefore, any feasible solutions are lower
bounds for c∗.

Dual LP 1: Maximize
∑

T∈T βT L(T ), subject to
∑

T∈T :e⊆t βT ≤ 1 for all e ∈
(

X
2

)

and βT ≥ 0 for
all T ∈ T .

Dual LP 2: Maximize
∑M

b=1

∑

T∈Tb
δb
T , subject to

∑

T∈Tb:e⊆T δb
T ≤ 1 for all e ∈

(

X
2

)

, 1 ≤ b < M +

1, and δb
T ≥ 0 for all 1 ≤ b < M + 1, T ∈ Tb.

Notice that throughout the execution of the algorithm
no new violating triples are created. Fix a triple T =
{i, j, k} ∈ T . The triple will be charged if one of its
vertices, say i, was chosen as pivot when the other two
were in the same recursive call, and the value z(j, k) was



mutated. The amount of charge is the size of the change.
Every unit of cost paid by the solution returned by the
algorithm is charged to exactly one triple in T . By Ob-
servation 1, the total cost of the solution returned by the
algorithm is exactly the total amount of charge over all
triples (the observation ensures that there are no cancel-
lations). Every triple can be charged at most once. Not
all triples T ∈ T are necessarily charged: some may be
“fixed” during a choice of a pivot outside T . Addition-
ally, note that if a triple T ∈ T is charged, the amount of
charge is not necessarily λ1(T ) − λ2(T ). For example,
fix a triple T = {h, i, j} with3 z(h, i) = λ1(T ) = 10,
z(i, j) = λ2(T ) = 5 and z(j, h) = λ3(T ) = 1. So
L(T ) = 5. Assume h, i, j are input to the same recur-
sive call, and one of them is chosen as pivot. If i is
chosen, then the value of z(j, h) will be changed to 10,
in which case the charge is 9. We will treat the first 4
units of charge (i.e. change λ3(T ) → λ2(T )) and the
last 5 (i.e. the remaining climb up to λ1(T )) separately
(B-type charge and A-type charges, respectively). If h
is chosen, then the value of z(i, j) will change to 10, and
the total charge will be 5 (only A-type charge). If j is
chosen, then the value of z(i, j) will change to 5, incur-
ring an A-type cost of 5. One more event we must be
aware of: If a vertex k /∈ T was chosen as pivot (when
all of h, i, j, k were in the same recursive call), then the
values on T might be mutated. The case is interesting
only if at that moment z(k, i) = z(k, j) = z(k, h) = l,
because otherwise the triple T = (i, j, k) will be bro-
ken into at least two recursion branches and will not
be charged. So assume this is the case. Then λ1(T )
can decrease (and therefore L(T ) decreases). Note that
λ2(T ) can also decrease but in that case we will have
λ1(T ) = λ2(T ) = l (after the mutation), and T is no
longer a violator.

By the above discussion, the sets T and Tb can de-
crease during the execution of the algorithm, and as long
as T ∈ T , its λ3 and λ2 values are fixed.

For integer 1 ≤ b < M + 1 and T ∈ T , let Ab
T de-

note the event that T was charged, and T ∈ Tb at that
point. In other words, one of T ’s vertices was chosen as
pivot when the other two were in the same recursive call,
and also λ2(T ) ≤ b < λ1(T ) at that point. This event
captures an A-type charge. For 1 ≤ b < M let Bb

T de-
note the event that T was charged, λ3(T ) ≤ b < λ2(T ),
and the vertex not incident to the strictly lowest valued
edge was the pivot (this captures a B-type charge). Let
pb

T = Pr[Ab
T ] and qb

T = Pr[Bb
T ].

By Observation 1 and the above discussion, the total

3The original definition of λs for s = 1, 2, 3 used the D-values,
but their values are mutated with the z-values.

cost of the algorithm is therefore

∑

T∈T

M
∑

b=1

χ(Ab
T ) +

∑

T∈T

M−1
∑

b=1

χ(Bb
T ),

where χ(·) is the indicator variable for an event. The
expected cost is

∑

T∈T

M
∑

b=1

Pr[Ab
T ] +

∑

T∈T

M−1
∑

b=1

Pr[Bb
T ]

=
∑

T∈T

M
∑

b=1

pb
T +

∑

T∈T

M−1
∑

b=1

qb
T .

It is easy to see that for a given e ∈
(

X
2

)

and two
distinct T1, T2 ∈ T such that e ⊆ T1, T2, the events
“Ab

T1
when T1 \ e is pivot” and “Ab

T2
when T2 \ e is

pivot” are mutually exclusive. Why? Because by Ob-
servation 1 we know that the value ze can cross b only
once. Conditioned on Ab

T1
, all three vertices of T1 are

equally likely to be the pivot (and the same for T2).
Therefore, summing up probabilities of pairwise disjoint
events gives

∑

T∈T :e⊆T pb
T /3 ≤ 1 for all e ∈

(

X
2

)

and
1 ≤ b < M + 1.

Using a similar argument, it is not hard to see that
for a given e ∈

(

X
2

)

and 1 ≤ b < M , the events
Bb

T1
and Bb

T2
are mutually exclusive for distinct T1, T2

such that e ⊆ T1, T2. Therefore,
∑

T∈T :e⊆T qb
T ≤ 1

for all e ∈
(

X
2

)

, 1 ≤ b < M (we do not need to
divide by 3 here because there is only one choice of
pivot among the vertices of T ⊇ e that causes Bb

T ).
Thus,

∑

T∈T :e⊆T

∑M−1
b=1 qb

T /(M − 1) ≤ 1 for all e ∈
(

X
2

)

. By setting δb
T = pb

T /3 we get a feasible solu-
tion to Dual LP 2, and therefore

∑M
b=1

∑

T∈Tb
pb

T /3 is
a lower bound for c∗ (Tb as defined before execution,
as in the definition of Dual LP 2 - note that pb

T = 0

for T /∈ Tb). Thus,
∑M

b=1

∑

T∈T pb
T is at most 3c∗.

Also, by setting βT =
∑M−1

b=1 qb
T /(M − 1) we get a

feasible solution to Dual LP 1, and thus c∗ is at least
∑

T∈T βT L(T ) ≥
∑

T∈T βT (note that βT = 0 if
T is not a violating triangle before execution) and we
conclude that

∑

T∈T

∑M−1
b=1 qb

T is at most (M − 1)c∗.
Therefore, the total expected approximation ratio is at
most 3 + (M − 1) = 2 + M , as required.

3. A Linear Programming Approach

In this section, we describe our LP relaxation for the
closest ultrametric. We first consider the closest ultra-
metric under the `1 norm and later generalize the ideas
to general `p norms.



It will be useful to restrict the solution to only include
ultrametrics with distances in the set {D(i, j)|i, j ∈ X}.
By Lemma 1(a) from [12], this does not change the value
of the optimal solution. Let {D1 < D2 < · · · < DM}
denote the sorted set of values {D(i, j)} where M =
O(n2). Let Lt = Dt − Dt−1, for 1 < t ≤ M and
L1 = D1. Then an ultrametric with distances in the set
{Dt} can be viewed as an M -level tree where the edges
at level t have length Lt as in Figure 2. (We number
levels in increasing order from the leaves to the root.)

L

L

L

1

2

M

Figure 2. M -level tree with weighted levels.

Equivalently, such an ultrametric on X can be viewed
as a hierarchy of M clusterings (i.e. partitions of X)
with length Lt associated with the clustering at level t.
Our LP relaxation for the closest ultrametric is based on
this view. We model the clustering at level t by a {0, 1}
distance function xt

ij . We relax this to allow xt
ij to be a

[0, 1] distance function that satisfies triangle inequality.
We impose the constraint that the clustering at level t is
a refinement of that for t + 1, by specifying that the dis-
tance function between two vertices i and j decreases as
t increases. The constraints are summarized in Figure 3.

xt
ik ≤ xt

ij + xt
jk ∀t, i, j, k (1)

xt
ij ≥ xt+1

ij ∀t, i, j (2)
0 ≤ xt

ij ≤ 1 ∀t, i, j (3)

Figure 3. The closest ultrametric LP con-
straints. The t’s are integers from
{1, . . . , M} and the i, j, k’s are from X .

An integer solution x̂t
ij to the LP is interpreted as an

ultrametric U as follows: U(i, j) =
∑M

t=1 Ltx̂
t
ij . For a

fixed t, a {0, 1} solution x̂t
ij corresponds to a clustering

of X , because of the triangle inequality constraints (1).

Further, the constraints (2) imply that the clustering at
level t is a refinement of the clustering at level t + 1.
This leads to a weighted tree structure on X where all
points in X are at the leaves of the tree and edges at
level t of this tree have length Lt. Note that x̂t

ij denotes
whether i and j are separated at level t or not. The dis-
tance function U(i, j) =

∑M
t=1 Ltx̂

t
ij is (half) the short-

est path distance in this weighted tree, and thus indeed
an ultrametric. Modeling an ultrametric in this way as
a hierarchy of clusters seems more useful than trying to
work with an LP formulation that has variables corre-
sponding to ultrametric distances directly.

In order to specify the LP objective function, we de-
fine constants Dt

ij where Dt
ij = 1 if D(i, j) ≥ Dt and

Dt
ij = 0 if D(i, j) < Dt. The LP objective function is

min
M
∑

t=1

Lt(
∑

ij:Dt
ij

=0

xt
ij +

∑

ij:Dt
ij

=1

(1 − xt
ij)) . (4)

Note that D(i, j) =
∑M

t=1 LtD
t
ij . Thus |D(i, j) −

U(i, j)| =
∑M

t=1 Lt|Dt
ij − x̂t

ij |. This is the contribution
of pair (i, j) to the objective function (see Figure 4).

2 k M−1 t...
k−1

...

1

...
...

t=M
... ...

x t
ij

D

D(i,j)

L L L L

t=1

ij
t

1 2 k M

Figure 4. LP contribution from pair (i, j)

We note that the LP relaxation is quite flexible and
easily allows incorporating additional constraints such
as different weights on pairs (i, j), and allowed ranges
for pairwise distances. This will be important later when
we adapt the ideas for other `p norms and use the near-
est ultrametric algorithm to solve the nearest tree metric
problem.

3.1. Rounding algorithm for closest Ultrametric

In describing the algorithm, it is useful to keep in
mind the equivalence between an ultrametric and a hi-
erarchy of clusterings. Algorithm HIERARCHICAL-



CLUSTER (see Figure 5) constructs a hierarchical clus-
tering in a top down fashion. One can also view the
algorithm as constructing an integer solution by setting
the LP variables to 0-1 in a recursive fashion. The al-
gorithm constructs the clusterings at higher levels and
then proceed to lower levels. At each stage, the algo-
rithm works with a subset Z of points of the original
point set, at a particular level t ∈ {1, M}. The algorithm
partitions Z into clusters (possibly just one – leaving Z
unchanged) and constructs a hierarchical clustering for
each cluster starting at level t − 1. It is intiated by call-
ing HIERARCHICAL-CLUSTER(X, M). We begin with
some definitions we will need in describing the algo-
rithm and its analysis. We start by defining ρ = LP/n,
where LP is the optimum value of the linear program.
We also define the following variables:

Definition 1

At
Z = ρ|Z| +

t
∑

s=1

Ls

∑

ij∈Z:Ds
ij

=0

xs
ij

W t
ij =

t
∑

s=1

Ls(1 − Ds
ij)

= max((

t
∑

s=1

Ls) − Dij , 0)

V t
Z(c, r) = {i ∈ Z : xt

ci ≤ r}

δt
Z(c, r) = {(i, j)|i ∈ V t

Z(c, r), j ∈ Z \ V t
Z(c, r)}

W t
Z(c, r) =

∑

(i,j)∈δt
Z

(c,r)

W t
ij

At
Z(c, r) = ρ|V t

Z(c, r)| +
∑

i,j∈V t
Z

(c,r)

∑

s≤t

Ds
ij

=0

Lsx
s
ij

+
∑

i∈V t
Z

(c,r)

j∈Z\V t
Z

(c,r)

∑

s≤t

Ds
ij

=0

Ls(r − xt
ci)

The ρ-terms in the definition of the A-variables (At
Z and

At
Z(c, r)) are used to simplify our analysis. Without the

term, it is easy to see that the A-variables are simply
portions of the LP cost. Our main argument will show
how to charge the algorithm cost (captured by the W -
variables) to the A-variables. By our definitions, and
since

∑t
s=1 Ls

∑

ij∈Z:Ds
ij =0 xs

ij ≤ LP and |Z| ≤ n,
we have

Observation 2 (i) At
Z/ρ ≤ 2n, (ii) At

Z(c, r) ≥ ρ, and
(iii) AM

X ≤ 2LP ,

We now show that the algorithm outputs a valid solu-
tion.

HIERARCHICAL-CLUSTER(Z, t)
(1) call CLUSTER-PARTITION(Z, t)

obtaining partition of Z:
Z = Z1 ∪ . . . ∪ Zm

(2) for i, j ∈ Zl, 1 ≤ l ≤ m
set x̂t

ij = 0
(3) for 1 ≤ l < l′ ≤ m, 1 ≤ s ≤ t, i ∈ Zl, j ∈ Zl′

set x̂s
ij = 1

(4) for l = 1, . . . , m
call HIERARCHICAL-CLUSTER(Zl, t − 1)

(5) return

− − − − − − − − − − − − − − − − − − − − − − −
CLUSTER-PARTITION(Z, t)
(1) set m = 1
(2) if ∀i, j ∈ Z : (xt

ij ≤ 2/3 ∨ Dt
ij = 0) then

set Zm = Z
return Z1, . . . , Zm

(3) pick ij ∈ Z s.t. xt
ij > 2/3 & Dt

ij = 0
(4) if At

Z(i, 1/3) ≤ At
Z/2 then

c = i
else

c = j
(5) pick r ∈ [0, 1/3] s.t.

W t
Z(c, r) ≤ O(log log n)At

Z(c, r) ×
ln(At

Z/At
Z(c, r))

(6) set Zm = V t
Z(c, r), Z = Z \ Zm

(7) set m = m + 1
(8) goto (2)

Figure 5. Algorithm HIERARCHICAL-
CLUSTER and procedure CLUSTER-
PARTITION. Note that the precise ex-
pression of the O(log log n) in line (5) of
CLUSTER-PARTITION is ln ln(At

z/ρ) − ln ln 2.

Lemma 1 The solution x̂t
ij produced by Algorithm

HIERARCHICAL-CLUSTER is a valid integer solution to
the LP (1)-(3).

Proof: It is easy to see that each x̂t
ij is set exactly once

in the algorithm. We show that the values of x̂t
ij satisfy

the constraints of the LP. Since the values are 0-1, the
only possible violation of inequality (2) is x̂t+1

ij = 1

and x̂t
ij = 0. Step (3) ensures that this does not hap-

pen. Also, the only possible violation of inequality (1)
is x̂t

ik = 1, x̂t
ij = 0 and x̂t

jk = 0. Consider the recursive
call of the algorithm where x̂t

ik was set to 1. Note that



i ∈ Zl, j ∈ Zl′ , l 6= l′. x̂t
ij = 0 implies that j ∈ Zl and

x̂t
jk = 0 implies that j ∈ Zl′ , giving a contradiction. 2

Lemma 2 In Step (4) of algorithm CLUSTER-
PARTITION, At

Z(c, 1/3) ≤ At
Z/2.

Proof: We claim that At
Z(i, 1/3)+At

Z(j, 1/3) ≤ At
Z .

It is easy to see this, by verifying that for every pair
i, j ∈ Z, the total contribution to the LHS is at most
the contribution to the RHS. The choice of c in Step (4)
now ensures that the lemma holds. 2

Lemma 3 In Step (5) of algorithm CLUSTER-
PARTITION, there exists r ∈ [0, 1/3]
such that W t

Z(c, r) ≤ (ln ln(At
Z/ρ) −

ln ln 2)At
Z(c, r) ln(At

Z/At
Z(c, r)).

Proof: Note that At
Z(c, r) is a nondecreasing function

of r. It has at most n linear pieces with possible dis-
continuities for values of r = xt

ci for i ∈ Z. Let
R = {r : At

Z(c, r) is differentiable at r}. For all r ∈ R,

dAt
Z(c, r)

dr
= W t

Z(c, r)

Assume for contradiction, that the statement of the
lemma is false. Then, for all r ∈ [0, 1/3] ∩ R,

dAt
Z(c, r)

dr
> (ln ln(At

Z/ρ) − ln ln 2)×

At
Z(c, r) ln(At

Z/At
Z(c, r)) .

Therefore,

1

At
Z(c, r) ln(At

Z/At
Z(c, r))

dAt
Z(c, r)

dr

> (ln ln(At
Z/ρ) − ln ln 2)

−
d ln ln(At

Z/At
Z(c, r))

dr
> (ln ln(At

Z/ρ) − ln ln 2) ,

giving by integration over [0, 1/3],

ln ln(At
Z/At

Z(c, 0)) − ln ln(At
Z/At

Z(c, 1/3))

> (ln ln(At
Z/ρ) − ln ln 2) .

By Observation 2 (ii), ln ln(At
Z/At

Z(c, 0)) ≤
ln ln(At

Z/ρ). Also, At
Z(c, 1/3) ≤ At

Z/2 (by the
choice of c in Step (4)). Therefore, the maximum possi-
ble value of the LHS in the last inequality derived above
is ln ln(At

Z/ρ) − ln ln 2. This gives a contradiction. 2

Theorem 2 The cost of the solution x̂t
ij produced by the

algorithm HIERARCHICAL-CLUSTER is within a factor
of O(log n log log n) times the value of the LP solution.

Proof: We will bound the cost of the solution pro-
duced by separately bounding the contribution of x̂t

ij set
to 0 and x̂t

ij set to 1. Note that whenever we set x̂t
ij = 0,

either Dt
ij = 0 or xt

ij ≤ 2/3. In the former case, the
contribution of x̂t

ij to the solution produced is 0. In the
latter case, the contribution to the solution produced is at
most 3 times the contribution of xt

ij to the LP solution.
Note that if x̂s

ij is set to 1 for s ∈ {1, . . . , t}
in Step (3) of algorithm HIERARCHICAL-CLUSTER,
w.l.o.g. i ∈ Zl, j ∈ Zl′ , l < l′ in the partition of
Z produced by procedure CLUSTER-PARTITION. The
total contribution to the solution is W t

ij . We bound
this contribution by considering the condition ensured
in Step (5) of CLUSTER-PARTITION when i ∈ Zl is
separated from j:

W t
Z(c, r) ≤ O(log log n)At

Z(c, r) ln(At
Z/At

Z(c, r)) .

Note that W t
ij is included in the W t

Z(c, r) term in the
LHS, by definition. This inequality ensures that the cost
W t

Z(c, r) can be charged to At
Z(c, r), which is a por-

tion of AM
X . In fact, each unit of At

Z(c, r) is charged
O(log log n) ln(At

Z/At
Z(c, r)) times.

Now we show that every piece of AM
X is charged to

an extent of at most O(log n log log n). In virtue of Ob-
servation 2 (iii), this would imply the statement of the
theorem. Consider a pair i, j and s with Ds

ij = 0. The
contribution to AM

X is xs
ij (multiplied by Ls). Each time

this piece of AM
X is charged, i, j are in some set Zl that

is partitioned at some level tl by growing a ball of radius
rl around center cl. The charge to this piece of the LP
is O(log log n) ln(Atl

Zl
/Atl

Zl
(cl, rl)). Either i and j are

separated by this partitioning, or i and j are in the same
partition as cl, in which case the LP contribution could
be charged further. Suppose that there are a total of q
such charges, for l = 1 . . . q. The total charge to this
piece of the LP solution is at most

O(log log n)

q
∑

l=1

ln(Atl

Zl
/Atl

Zl
(cl, rl))

= O(log log n)

q
∑

l=1

(ln Atl

Zl
− ln Atl

Zl
(cl, rl)) .

Note that A
tl+1

Zl+1
≤ Atl

Zl
(cl, rl) (since the LHS includes

fractional contributions of edges cut by Zl+1 and the
algorithm might skip a few levels before partitioning
again). Therefore, the total charge to a piece of LP is
at most

O(log log n)(ln Aq1

Z1
− ln A

tq

Zq
(cq , rq)) .

By Observation 2 (i) and (ii), the last expression is at
most O(log n log log n), as required. 2



Corollary 3 Algorithm HIERARCHICAL-CLUSTER
yields an O(log n log log n) approximation for the
problem of finding the closest ultrametric under the `1

norm.

We remark that our LP based method can be modified
to incorporate additional constraints on the pairwise dis-
tances. In particular, we can upper and lower bound cer-
tain pairwise distances by constants and hence also spec-
ify that certain distances should be equal to constants.
This is done by constraining the appropriate xt

ij vari-
ables in the LP to be either 0 or 1. Note that the rounding
procedure has the property that xt

ij = 0 ⇒ x̂t
ij = 0 and

xt
ij = 1 ⇒ x̂t

ij = 1.

3.2. Other Objective Functions

The LP rounding algorithm HIERARCHICAL-
CLUSTER is analyzed in Section 3.1 for the problem of
minimizing the `1 distance of an ultrametric to a target
distance function D. We show in this section that the
techniques can be extended to any `p norm for p > 1.

More precisely, consider the problem of minimizing
‖d − D‖p = (

∑

ij(d(i, j) − D(i, j))p)1/p over all ul-
trametrics d. As in the `1 case, we will restrict the so-
lution to include only ultrametrics d with values in the
set {D(i, j)|i, j ∈ X}. By Lemma 1(b) from [12], this
increases the value of the optimal solution by a multi-
plicative factor of at most 2. In fact, we will consider
the objective function ||d − D||pp. For this objective, the
optimal value is increased by a factor of at most 2p.

Our LP relaxation uses the same variables and con-
straints as before (in Figure 3) with a different objective
function. Recall that {D1 < D2 < · · · < DM} are the
sorted set of values {D(i, j)}. In addition, define D0 =
0. In order to write down the objective function, we de-
fine constants Qt

ij and Rt
ij as follows (see Figure 6):

Qt
ij = max(|Dt − D(i, j)|p − |Dt−1 − D(i, j)|p, 0),

and Rt
ij = max(|Dt−1−D(i, j)|p−|Dt−D(i, j)|p, 0).

We now write the LP objective function for minimizing
||d − D||pp as follows:

min
∑

i,j∈X

M
∑

t=1

(

xt
ijQ

t
ij + (1 − xt

ij)R
t
ij

)

, (5)

Note that the sums in the definition of Qt
ijand Rt

ij are
telescoping. It is easy to verify that for an integer feasi-
ble solution xt

ij ∈ {0, 1} to the closest metric LP, the ob-
jective function (5) is exactly

∑

ij(dx(i, j) − D(i, j))p,
where dx is the ultrametric induced by the feasible so-
lution x (that is, dx(i, j) = Dt for the maximal t such

Rij
t’

Q
ij
t

|
p

x−D(i,j)|

L Lt’ t

D tt−1t’t’−1 D D DD(i,j)

Figure 6. Illustration of Qt
ij and Rt′

ij .

that xt
ij = 1). Also it is not hard to change the A and

W -variables in Definition 1 (and hence also CLUSTER-
PARTITION) in a suitable way so that the analysis lead-
ing to Corollary 3 will lead to

Corollary 4 Algorithm HIERARCHICAL-CLUSTER
yields an O(2p log n log log n) approximation for
the problem of finding the ultrametric d minimizing
‖d − D‖p

p and hence an O((log n log log n)1/p)
approximation for the problem of minimizing ‖d −D‖p.

We omit the required technical changes from this ab-
stract.

3.3. Closest tree metric

Agarwala etal [1] show that the closest tree metric
problem can be solved via a reduction to the closest a-
restricted ultrametric problem (a ∈ X). This is a vari-
ant of the closest ultrametric problem, which restricts
the space of permissible ultrametrics to those that sat-
isfy some additional distance properties expressed in
terms of distances from point a ∈ X . We first intro-
duce some notation to explain the additional restrictions
needed. Consider a ∈ X . Let ma = maxi{D(a, i)}.
Let li = ma −D(a, i). Consider the centroid metric Ca

where Ca(i, j) = li + lj = 2ma − D(a, i) − D(a, j).
Now consider the distance function D + Ca. Note that
the distance from a to any point i in this new distance
function is 2ma. An ultrametric U is said to be a-
restricted (with respect to distance function D) if it sat-
isfies the following constraints:

for all i, j 2 max(li, lj) ≤ U(i, j) ≤ 2ma

U(a, i) = 2ma

The variant of the closest ultrametric problem we need
to solve is the following: Given distance function D, a ∈



X , find an a-restricted ultrametric U so as to minimize
||U − (D + Ca)||p.

Note that the additional constraints imposed on the
ultrametric are simply upper and lower bounds for cer-
tain pairs of distances and equality constraints for cer-
tain pairs of distances. In fact our LP based method for
the nearest ultrametric can be easily modified to give an
O(log n log log n) approximation for this variant. (We
need to include the values {li} in the set of allowed dis-
tances in writing down our LP relaxation.) Combined
with the reduction of Agarwala etal [1], this implies the
following result.

Theorem 5 There is a polynomial time algorithm to ob-
tain an O((log n log log n)1/p) approximation for the
problem of finding the closest tree metric under the `p

norm.

4. Conclusion

It would be interesting to obtain a combinatorial
poly log(n) approximation for the closest ultramet-
ric/tree metric problem we consider. Determining
whether an O(1) approximation can be obtained is a fas-
cinating question. The LP formulation used in our work
could eventually lead to such a result. It would be in-
teresting to look at the problem of aggregating a given
set of hierarchical clusterings into a single representa-
tive one. A natural formulation of such a question is to
ask for a single hierarchical clustering that minimizes
the sum of distances from a given set of hierarchical
clusterings, akin to the formulation of aggregation prob-
lems in other settings [7, 10, 11]. A 2-approximation for
this problem is trivial (by picking the best of the given
clusterings). Going beyond factor 2 requires some non-
trivial combining of clusterings. For aggregating clus-
terings (i.e. the M = 1 case), Ailon etal [2] recently ob-
tained better algorithms and it is natural to ask whether
such results can be obtained for hierarchical clusterings
as well. The LP formulation we use seems to be a valu-
able tool for representing distributions on trees and may
have applications to other problems involving tree met-
rics.
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