
Aggregation of Partial Rankings, p-Ratings and Top-m Lists∗

Nir Ailon†

Abstract

We study the problem of aggregating partial rankings. This problem is motivated by applica-
tions such as meta-searching and information retrieval, search engine spam fighting, e-commerce,
learning from experts, analysis of population preference sampling, committee decision making
and more. We improve recent constant factor approximation algorithms for aggregation of full
rankings and generalize them to partial rankings. Our algorithms improved constant factor
approximation with respect to all metrics discussed in Fagin et al’s recent important work on
comparing partial rankings. We pay special attention to two important types of partial rank-
ings: the well-known top-m lists and the more general p-ratings which we define. We provide
first evidence for hardness of aggregating them for constant m, p.

1 Introduction

Rank aggregation (see [4, 10, 14, 16, 17, 18, 19, 20, 21] and references therein) is the problem of
finding a ranking (permutation) π of a ground set V of n elements combining information from
a list π1, . . . , πk of input rankings (votes). This problem is motivated by many applications such
as meta-searching and information retrieval, search engine spam fighting, e-commerce, learning
from experts, analysis of population preference sampling, committee decision making and more. In
addition to the practical motivation, there is a long history of theoretical interest in the mathematics
arising from the problem (some classic milestones are [9, 11, 13, 25, 26]). For a nice survey, refer
to [24].

Top-m rankings.

One of the main drawbacks of considering full rankings is that expecting full ranking information
of V from all voters can be too much to ask for [16, 17, 18, 19, 20]. In the search engine example,
it is unlikely that a search engine would provide a ranking of the entire set V of all web pages
matching a given query. Instead, only the first m � n top-ranked pages are returned. If we
denote the full ranking (implicitly) computed by the search engine by π : V → {1..n} (π(v) is the
rank of v, smaller numbers meaning further “ahead” in the list), then the search engine returns
only π−1(1), . . . , π−1(m) to the client. Lacking rank information among the elements π−1(m +
1), . . . , π−1(n), the next best option is to assume they belong to one big tie, which is itself ranked
in position m + 1.

∗Most of this work done while author was a student in the Department of Computer Science at Princeton University,
and part while a member of the Institute for Advanced Study, supported by the National Science Foundation under
agreement No. DMS-0111298. Any opinions, findings and conclusions or recommendations expressed in this material
are those of the author and do not necessarily reflect the views of the National Science Foundation.

†Institute for Advanced Study, Princeton NJ

1

Partial rankings.

This last example together with others we present shortly motivate the consideration of rankings
with ties, or, following more common terminology, partial rankings1. Note that there is nothing
special about the number m+1 used in the example above except that it is strictly greater than m,
the number we naturally (yet still arbitrarily) chose as the rank of the last page displayed by the
search engine. A partial ranking can be abstracted as a mapping π from V to any totally ordered
universe U , which we call the rank universe. What we call ties are simply collisions in the function.
A full ranking is a collision-free mapping (an injection). The objective functions we define below
will be independent of the actual choice of the rank universe. Our approach is comparison based
(in contrast with score based aggregation which we do not consider here), and the rankings can be
modeled as a list of comparisons between π(u) and π(v) for all unordered pairs (u, v) of elements
in V . Using pairwise information has many advantages in problems related to both ranking and
clustering [3, 22, 23, 28, 30].

Partial rankings arise naturally in many other problems. In many sports tournaments, ties
are possible outcomes of single matches. In an election system, each voter can provide a partial
ranking of the set V of candidates, where tying together a subset of candidates is a way of expressing
neutrality with respect to that subset.

Ratings.

Another very important case of partial rankings are ratings. We define a p-rating to be a mapping
from the ground set V to a rank universe U of size p for some fixed p (we may assume that
U = {1, . . . , p}). Some good examples are: (i) Each hotel in a set V of hotels is rated as ?, ??,
? ? ?, ? ? ??, or ? ? ? ? ? by hotel critics (p = 5). (ii) Financial experts advise to either sell,hold
or buy each stock in some set V (p = 3). (iii) A company identifies its strengths and weaknesses
in customer service by distributing questionnaires to its clients. The questionnaire is a table with
rows (V) corresponding to different customer service aspects, and columns (U) correspond to a
range of p satisfaction levels. Each participating client marks an ’×’ in a single box in each row,
corresponding to their opinion2.

Aggregation of partial rankings is hence a very natural and useful generalization of rank aggre-
gation.

1.1 Choice of objective function

One of the challenges in this problem is to define a measure of disagreement (which we minimize)
between the output and the input votes. The most natural question to ask before defining this
measure is, what kind of object is the output σ? Should it be a member from the same space
as π1, . . . , πk? In the following example we argue against this approach. Assume V = {A,B,C},
and we wish to aggregate an input consisting of a list of ratings, where the rank universe is U =
{good, bad} (with good < bad). There are two voters, where the first rates A,B as good and C as
bad, and the second rates A as good and B,C as bad. We write π1 = [AB,C] and π2 = [A,BC] as

1The term ”partial ranking” used here should not be confused with two other standard objects: (1) Partial order,
namely, a reflexive, transitive anti-symmetric binary relation; and (2) A ranking of a subset of V . In the search engine
example, although only a subset of top m elements of V are returned, the remaining n − m are implicitly assumed
to be ranked behind.

2We assume no column is labeled ”not applicable”.

2

shorthand for this voting outcome. If we restrict the aggregation output to be a rating π : V → U ,
then the two reasonable outputs are π = [AB,C] and π = [A,BC]. The former misses the fact that
in the greater scheme of things, A is better than B. The latter misses the fact that in the greater
scheme of things, B is not worse than C. Also, the former solution cannot answer the question
“who is the best?”, and the latter cannot answer the question “who is the worst?”. Intuitively,
the output [A,B,C] (i.e. a full ranking of V) seems to capture more pairwise information in this
simple example. We therefore restrict the aggregation output in this work to be a full ranking
of V (this approach was also assumed in [16]). We choose a measure of distance between partial
rankings3 generalizing the Kendall-τ measure [27] (originally defined as a metric on full rankings).
The distance d(σ, π) between partial rankings σ, π is the number of distinct u, v ∈ V such that u
is ranked strictly ahead of v in π and v is ranked strictly ahead of u in σ. Our goal is to minimize
the sum of distances between the output and the individual partial rankings. This is the Kemeny
approach to the aggregation problem and is considered to have many advantages [16, 17]. (See
Section 7 for solution to a possible problem arising from top-m aggregation under this approach.)

Comparison with other choices: Fagin et al [18, 19, 20] provide a comprehensive picture on
how to compare partial rankings In their work, they suggest different natural measures of distance
between two partial rankings, extending the well known Kendall-τ and Spearman’s footrule [15]
metrics on full rankings. Their main contribution is in showing that all the extensions they study
belong to a class D of metrics that are equivalent up to global constants, and hence by optimizing
or approximating with respect to one we approximate with respect to all. The measure of distance
d suggested in this abstract is, in fact, a special case of a family of generalizations they study.
Alas, our choice of d is the black sheep in the family: it does not belong to class D. In fact, it is
not a proper distance function, because d(σ, π) may be zero for two distinct σ, π. Luckily, in spite
of the apparent difficulty in using an improper distance function, our results imply approximation
algorithms4 with respect to all metrics in class D as well! (this is shown in Section 6). Nevertheless,
we argue that the apparent drawback in using d in many cases can be viewed as inherent to the
problem itself and not to the choice of d. A voter tying together u, v ∈ V may be incapable
of providing comparison information due to infeasibility (as in the search engine top-m example)
or coarseness of the rank universe (as in the p-rating example). Each voter implicitly has a full
ranking π̂i, but provides us with only a projection πi = Pi(π̂i) onto a lower-dimensional space5

Si. What d(σ, πi) does is, in fact, measure the distance between the output full ranking σ and
the preimage set P−1

i (πi), that is, the distance to the closest full ranking in the preimage. The
fact that the distance between a full-ranking and a partial-ranking may be zero is, in our view,
analogous to the fact that two distinct points in Euclidean space may project onto the same point
in a low-dimensional space: lack of information blurs distinction. The hope is that different voters
project onto different subspaces, and hence, aggregation can recover a good consensus full ranking.
(See Section 6 for further discussion.)

3By our assumption on the output, we care only about the distance between a full ranking and a partial ranking.
4Under our restriction of outputting full rankings only.
5Formally, the space of full rankings has

�
n

2 � coordinates encoding the order of all pairs using ±1, and the subspace
Si fixes 0’s in coordinates corresponding to tied pairs.

3

1.2 Our results and comparison with previous results

This work combines techniques from Ailon et al’s recent work on full rank aggregation6 [5] with
Fagin et al’s [18, 19] recent work on partial rankings. In addition to the methodological contri-
bution (Sections 1.1 and 6), our main results are two approximation algorithms for aggregating
partial rankings. The first (Section 3) is new a 2-approximation, generalizing a well-known [4]
2-approximation for full rank aggregation. We then present a new 3/2-approximation algorithm
in Section 4, generalizing a recent algorithm [4] for full rank aggregation to the problem of partial
rank aggregation. In addition to showing the applicability of the previous algorithm to the domain
of partial rankings, we improve it using a new technique of perturbing the variables of an optimal
solution to an LP relaxation before rounding it. In Section 6 we show that our algorithms also
imply constant factor approximation with respect to the important class D of metrics discussed by
Fagin et al in [18, 19]. They suggest a 3-approximation algorithm, but with respect to an objective
function we do not use here.

Dwork et al successfully experiment with several heuristics in [16, 17], some based on Markov
chains. They suggest a general scheme for aggregating partial rankings where a greedy post-
processing step (called local Kemenization) is applied to the output of any algorithm. Local Kem-
enization is shown to have many nice properties, and it could easily be applied as a final step for
our algorithms.

Finally (Section 5) we show that aggregation of partial rankings is in P when the rank universe
U consists of 2 elements, but becomes NP-hard already when it consists of 3 elements (even for
the special case of aggregation of top-2 lists). It was previously known that aggregation of partial
rankings is NP-hard because rank aggregation is a special case (shown to be NP-Hard by Dwork et al
[17]). Our result shows that the seemingly easier interesting cases of p-rating and top-m aggregation
are already NP-Hard for extremely small rank universe (rank aggregation is not a special case of
these problems). As far as we know, we are the first to define the problem of aggregating p-ratings
(as a natural generalization of top-m lists) in the context of aggregating partial rankings and to
provide evidence to both problems’ hardness for constant m, p.

2 Definitions

We use [n] to denote the integer set {1, . . . , n} equipped with the induced integer total order. We
assume V is some ground set of n elements. Let E denote the set

(

V
2

)

, that is, the set of all
unordered pairs {u, v} of elements u, v ∈ V .

Definition 1 A partial-ranking of V is a mapping π : V → U for some rank universe U equipped
with a total order relation. Two partial-rankings π : V → U, π ′ : V → U ′ of V are rank-equivalent
if π′ = f ◦ π for some strictly monotone7 f : π(V)→ π′(V) (hence π = f−1 ◦ π′). A full-ranking of
V is a partial-ranking that is an injection. A strict partial-ranking is a partial-ranking that is not
a full-ranking. A p-rating of V is (up to rank-equivalence) a partial-ranking with range [p]. For
m ≤ n, a top-m-ranking of V is (up to rank-equivalence) an (m + 1)-rating, where the preimages
of 1, . . . ,m are singletons. The trivial partial-ranking 1V is the constant mapping.

6By that we mean, aggregation of full (not partial) rankings.
7By π(V) we mean the image of π.

4

(The definition of a p-rating was inspired by an example suggested by Moses Charikar.) For the
sake of computation, we can always assume U = [n]. Given a partial-ranking π : V → U , we write
u <π v for u, v ∈ V if π(u) < π(v). We write u =π v if π(u) = π(v). Similarly, we define >π,≤π

and ≥π.

Definition 2 A shattering8 π′ ∗ π of π by π′ is the unique (up to rank-equivalence) partial-ranking
σ satisfying

u <σ v ⇐⇒ u <π v or (u =π v and u <π′ v) .

The following facts are immediate to verify:

• The element 1V is the identity with respect to ∗,

• the shattering operator ∗ is associative, and,

• the shattering π′ ∗ π can be computed in polynomial time (we omit the details of how to
represent partial rankings as data structures and how to compute the shattering).

We now define a measure of distance between a full-ranking and a partial-ranking.

Definition 3 Given two partial-rankings σ and π of V , the generalized Kendall-τ distance d(σ, π)
between the two is defined as the number of u, v ∈ V such that u <σ v and v <π u.

Note that we will only need the distance between a full-ranking σ (the output) and a partial-
ranking π (the votes). The distance between any partial-ranking and 1V is 0. Also note that d is
not even a pseudometric, because d([A,B], [AB]) = 0, d([B,A], [AB]) = 0 and d([A,B], [B,A]) = 1,
violating the triangle inequality. However, d restricted to full-rankings is a metric (in fact, an L1

metric).

We are now ready to define the optimization problems considered in this work.

Definition 4 PartRankAgg is the problem of, given a list π1, . . . , πk of partial-rankings of V
(votes), outputting a full-ranking π minimizing cost(π) = 1

k

∑k
i=1 d(π, πi) . RankAgg is Par-

tRankAgg with the restriction that the votes are full-rankings. pRatingAgg is PartRankAgg

with the restriction that the votes are p-ratings. TopmAgg is PartRankAgg with the restriction
that each vote πi is a top-mi-ranking for some mi ≤ m.

Given an input π1, . . . , πk to PartRankAgg and distinct u, v ∈ V , we say that u ≡ v if for all
i = 1, . . . , k, u =πi

v. We define wuv = 1
k |{i : u <πi

v}|. Clearly (i) wuv + wvu ≤ 1 for all u, v; (ii)
u ≡ v ⇐⇒ wuv = wvu = 0; (iii) For any full-ranking π of V , cost(π) =

∑

u<πv wvu.

3 A 2-Approximation Algorithm for PartRankAgg

It is well known that RankAgg admits a very simple randomized 2-approximation algorithm (called
pick-a-perm in [4]): simply output a choice of π1, . . . , πk uniformly at random. On expectation,
such a choice has cost at most twice the optimal solution. One way of proving this is by arguing
that d is a metric when restricted to the space of full-rankings. The 2-approximation argument

8In [18] the term refinement is used for the same operation. We follow their notation of ∗.

5

RepeatChoice (V, π1, . . . , πk)

set π ← 1V

set σ ← arbitrary ranking of V
set S ← ∅
while ∃u, v s.t. u =π v and u 6≡ v

choose i ∈ [k] \ S uniformly at random

set π ← πi ∗ π
set S ← S ∪ {i}

return σ ∗ π

Figure 1: Pseudocode for RepeatChoice

easily follows from this fact. In our case, d is not a metric, and moreover, it is not clear how to
turn some vote πi (which could be a strict partial-ranking) into a full-ranking.

Our remedy to these problems is inspired by the idea that repeated play between two non-
equivalent contenders will eventually be concluded (i.e. one will beat the other). Algorithm Re-

peatChoice (Figure 3) repeatedly chooses a random vote πi (without repetitions) and shatters the
current partial-ranking π until (almost) all ties are broken. We say “almost” because this scheme
cannot break a tie between distinct u, v if u ≡ v. These ties are broken arbitrarily as the final
step of the algorithm (equivalently, the result is shattered using an arbitrary full-ranking). If all
of π1, . . . , πk are full-rankings (i.e. we are given input to RankAgg), then RepeatChoice is, in
fact, equivalent to algorithm pick-a-perm.

Theorem 1 RepeatChoice is a randomized expected 2-approximation algorithm for PartRank-

Agg with expected polynomial running time. The algorithm can be derandomized.

Proof: The number of iterations is at most k and the running time is therefore clearly polynomial.
We show the approximation guarantee. Fix two distinct u, v ∈ V . If u 6≡ v, then it is obvious that
u <π v with probability wuv/(wuv + wvu) and v <π u with the remaining probability wvu/(wuv +
wvu). Hence, the total expected cost of the algorithm is

E[cost(π)] =
∑

u6≡v

(

wuv

wuv + wvu
wvu +

wvu

wuv + wvu
wuv

)

=
∑

u6≡v

2wuvwvu

wuv + wvu
.

(1)

(Both summations are over unordered distinct pairs u, v). On the other hand, any optimal solution
π∗ satisfies cost(π∗) ≥

∑

u6≡v min{wuv , wvu}. Hence, E[cost(π)] ≤ 2 cost(π∗), as required.
We now show how to derandomize the choice of πi for iteration t. Assume we chose πi1 , . . . , πit−1

for distinct i1, . . . , it−1 ∈ [k] in the previous steps. Let π(t−1) denote the intermediate partial ranking
computed after the (t − 1)’th iteration of the main loop of RepeatChoice, namely, π (t−1) =

6

πit−1 ∗ · · · ∗ πi1 ∗ 1V . Clearly,

E[cost(π) | i1, . . . , it] =

k
∑

i=1

d(π(t−1), πk)

+
∑

(u,v)∈P<

wvu

+
∑

{u,v}∈P=

2
wuvwvu

wuv + wvu
,

whre P< denotes all ordered pairs (u, v) such that u =π(t−1) v and u <πt v, and P= denotes all un-
ordered nonequivalent pairs {u, v} such that u =π(t−1) v and u =πt v. Computing E[cost(π) | i1, . . . , it]
can be clearly done efficiently, and choosing it minimizing it at each step guarantees (by the principle
of conditional expectations) a deterministic 2-approximation, as required. 2

4 A (3/2)-Approximation Algorithm for PartRankAgg

The 2-approximation algorithm described in Section 3 took advantage of the fact that any optimal
solution had to pay the minimum of wuv and wvu for any pair u, v ∈ V . In this section we take
advantage of additional structure arising from considering triplets u, v, y ∈ V .

Fix three distinct elements u, v, y ∈ V . Clearly, wuv ≤ wuy + wyv, because any vote πi that
ranked u strictly before v must have either ranked u strictly before y or y strictly before v. This
inequality is known as the triangle inequality on the weights induced by π1, . . . , πk. In [4, 5], a
(4/3)-approximation algorithm is presented for RankAgg. The (rather complicated) analysis re-
lies heavily on the fact that the input is a list of full-rankings (and not just any partial-ranking).
The algorithm there involves (1) solving an LP relaxation for RankAgg and using a randomized
variant of the Quicksort algorithm for rounding it, (2) running pick-a-perm, and (3) outputting the
better of the two results. In this section we consider the same LP and present a more complicated
rounding technique, called LpKwikSorth. This will result in the (3/2)-approximation algorithm
for PartRankAgg. Our scheme does not involve taking the best of two algorithms, though it
is quite possible that the best of LpKwikSorth and RepeatChoice gives a (4/3)-algorithm for
PartRankAgg (we leave this as a conjecture for future work). Our new rounding technique
LpKwikSorth is, as far as we know, the first algorithm that beats the 2-approximation for Rank-

Agg by itself, without the need of running pick-a-perm and taking the best of the two. It is also the
first algorithm that beats the 2-approximation for general minimum feedback arc-set in weighted
tournaments with the triangle inequality [4].

To describe our improved algorithm, we first define a piecewise-linear function h mapping the
real interval [0, 1] onto itself. The function is defined as follows (see Section 7 for notes on the
function):

h(x) =

0 0 ≤ x ≤ 1
6

3
2x− 1

4
1
6 < x ≤ 5

6

1 5
6 < x ≤ 1

PSfrag replacements

h(x)

x

7

LpKwikSorth (V, x = {xuv}u,v∈V)

if V = ∅ then

return empty list

set L← ∅, R← ∅
pick pivot v ∈ V uniformly at random

for all u ∈ V , u 6= v
with probability h(xuv)
add u to L

else (with remaining probability 1− h(xuv) = h(xvu))
add u to R

return concatenation of:

LpKwikSorth (L, x), v, LpKwikSorth (R, x)

Figure 2: Pseudocode for LpKwikSorth

Note that for all x ∈ [0, 1], h(x) = 1 − h(1 − x) (in particular h(1/2) = 1/2). The function h
will be used in a rounding algorithm of the following standard LP relaxation of PartRankAgg.
The LP has a variable xuv for each ordered u 6= v:

minimize
∑

u6≡v

(xuvwvu + xvuwuv) s.t.

xuv + xvu = 1 ∀u, v

xuv ≤ xuy + xyv ∀u, v, y

xuv ≥ 0 ∀u, v

(2)

Clearly, if we could enforce xuv ∈ {0, 1} for all u, v, we would have an exact IP for PartRank-

Agg. Given an optimal fractional solution {xuv}u,v, we round it using LpKwikSorth (Figure 4),
which returns a list of all elements in V in some order. We convert this list into a full-ranking (e.g.
a mapping onto [n]) in the obvious way (the first maps to 1, the second to 2, and so on). The
algorithm improves the LP rounding algorithm in [4], by using h to bias probabilities of placing
vertices on either side of the pivot vertex.

Theorem 2 LpKwikSorth returns a full-ranking π with an expected cost of at most 3/2 times
the optimal LP value (and hence also the optimal cost of PartRankAgg).

Note that this implies a bound of 3/2 on the LP integrality gap. The proof technique is very
similar to [4, 5]. The main difficulty here is the use of the h-function and applicability to partial-
rankings.
Proof: The basic idea is to decompose the costs into so-called backward costs (corresponding
to triplets in V) and forward costs (corresponding to pairs in V). Let T denote the collection of
all unordered triplets {u, v, y} of three distinct vertices in V , and E denote the collection of all

8

unordered pairs {u, v} in V . For each t = {u, v, y} ∈ T , we define an event At in the random space
induced by the execution of LpKwikSorth. To define this event, we first notice that all elements
of V are chosen as the pivot at some point in the recursive execution of LpKwikSorth. We say
that At occurred if when the first among u, v, y is chosen as pivot, the other two were input to the
same recursive call. Note that conditioned on At, all three among u, v, y are equally likely to be
that pivot (because the pivot is chosen uniformly at random). Let pt denote Pr[At]. Assume At

occurs (and, say, v is the pivot). In that case, we will charge a backward cost to t corresponding
to the random placement (i.e. L (left) or R (right)) of u, y. If u is placed in L and y in R, then
the charge is wyu, and if y is placed in L and u in R then the charge is wuy (in all other cases, the
charge is 0). It is immediate to verify that the total expected backward cost is B =

∑

t∈T
1
3ptf(t),

where for t = {u, v, y},

f(t) = h(xuv)h(xyu)wvy + h(xvu)h(xuy)wyv

+ h(xvy)h(xuv)wyu + h(xyv)h(xvu)wuy

+ h(xyu)h(xvy)wuv + h(xuy)h(xyv)wvu .

(3)

For e = {u, v} ∈ E, let Ce denote the event that when the first among u, v was chosen as
pivot, the other was input to the same recursive call. Let qe denote Pr[Ce]. Conditioned on Ce, the
expected forward charge on e is ĉ(e) = h(xuv)wvu + h(xvu)wyv . The total expected forward cost is
F =

∑

e∈E qeĉ(e) . The expected cost of the ranking returned by LpKwikSorth is B + F .
The LP value is

∑

e∈E c(e), where c(e) = (xuvwvu +xvuwuv) for e = {u, v}. We decompose this
as BLP + FLP , where BLP =

∑

t∈T
1
3ptg(t), for all t = {u, v, y} ∈ T :

g(t) = (h(xuv)h(xyu) + h(xvu)h(xuy))c({vy})

+ (h(xvy)h(xuv) + h(xyv)h(xvu))c({yu})

+ (h(xyu)h(xvy) + h(xuy)h(xyv))c({uv}) ,

(4)

and FLP =
∑

e∈E qec(e). It is not hard to verify that BLP + FLP is indeed a decomposition of
∑

e∈E c(e): each term c(e) is accounted for exactly once (total) in BLP and FLP .
We want to show that (B + F)/(BLP + FLP) ≤ 3/2 whenever BLP + FLP > 0 and that if

BLP +FLP = 0 then B +F = 0. To do so, it suffices to show that (1) for all e ∈ E, ĉ(e)/c(e) ≤ 3/2
whenever c(e) > 0 and ĉ(e) = 0 otherwise, and, (2) for all t ∈ T , f(t)/g(t) ≤ 3/2 whenever g(t) > 0
and f(t) = 0 otherwise.

To prove (1), it suffices to show (slightly changing notation) that for all x,w1, w2 ∈ [0, 1] such
that w1 + w2 ≤ 1, a(x,w1, w2) = (h(x)w1 + (1 − h(x))w2)/(xw1 + (1 − x)w2) ≤ 3/2 whenever
the denominator is positive (it is clear that the numerator is 0 if the denominator is 0). We can
therefore assume w1 + w2 > 0. Since we can divide w1 and w2 by w1 + w2 without changing the
value of a(x,w1, w2), we can assume w1 + w2 = 1. The function b(x,w1) = a(x,w1, 1 − w1) is a
ratio of two linear functions in w1 (for fixed x) and hence achieves its optima at w1 = 0 or w1 = 1.
In the former case, b(x, 0) = (1 − h(x))/(1 − x) and in the latter b(x, 1) = h(x)/x. By symmetry
of h, it suffices to prove that h(x)/x ≤ 3/2 whenever x 6= 0, but clearly the maximum of h(x)/x is
obtained at x = 5/6, where h(2/3)/(5/6) = 6/5 < 3/2, as required.

To prove (2), Let w = (wuv, wvu, wvy , wyv, wyu, wuy) ∈ R6 and x = (xuv, xvu, xvy, xyv , xyu, xuy) ∈
R6. Let ∆w denote the defining polytope of w, carved by the triangle inequalities, non-negativity
of the w’s, and wuv + wvu ≤ 1, wvy + wyv ≤ 1, wyu + wuy ≤ 1. This polytope is also the con-
vex closure of points w corresponding to individual votes on u, v, y. There are 13 such votes:

9

the 6 permutations [u, v, y],[u, y, v],[v, u, y],[v, y, u],[y, u, v],[y, v, u], the 6 votes tying 2 elements
[u, vy],[v, yu],[y, uv],[uv, y],[vy, u],[yu, v] and the all-tie vote [uvy]. The corresponding points of
∆w are (for example) w = (1, 0, 1, 0, 0, 1) (corresponding to [u, v, y]), w = (1, 0, 0, 0, 0, 1) (corre-
sponding to [u, vy]) and w = (0, 0, 0, 0, 0, 0) (corresponding to [uvy]). It is not hard to see that all
the above 13 points are in fact vertices of ∆w.

Assume wuv + wvu + wvy + wyv + wyu + wuy > 0 (otherwise g(t) = f(t) = 0). Let c =
max{wuv + wvu, wvy + wyv, wyu + wuy} > 0. By replacing w with w/c we do not change the value
of f(t)/g(t). Also, if w ∈ ∆w then so is w/c. Hence, we may assume that either wuv + wvu = 1,
wvy + wyv = 1 or wyu + wuy = 1. Without loss of generality (and due to symmetry), assume from
now on that wuv + wvu = 1. Let H denote the hyperplane in R6 defined by this constraint. We
restrict our attention to H ∩∆w.

To simplify the proof, instead of working with the ratio f(t)/g(t), we can equivalently show
that z(t) := f(t)− 3

2g(t) ≤ 0 for all t ∈ T . The function z(t) is linear in wuv,wvu,wvy,wyv ,wyu and
wuy (assuming fixed x) and hence achieves its optima on vertices of H ∩∆w. Since H is a defining
hyperplane for ∆w (the entire polytope is contained in one side of the hyperplane), the vertices of
H ∩∆w are exactly the intersection of the set of vertices of ∆w with H. There are 10 such vertices,
corresponding to the 6 permutations and [u, yv],[yv, u],[v, uy],[uy, v]. Substituting each of the 10
vertices for w in z(t), we obtain 10 functions in x. These 10 functions fall into 2 symmetry classes,
one corresponding to a permutation (say, w = (1, 0, 1, 0, 0, 1)) and the other to a 2-tie vote (say,
w = (1, 0, 0, 0, 0, 1)). We therefore consider two functions, corresponding to the two substitutions
for w. Substituting the two w’s into z, the two corresponding functions r(x) and s(x) are

r(x) =
(

h(xuv)h(xyu) + h(xyv)h(xvu) + h(xyu)h(xvy)
)

−
3

2

(

(

h(xuv)h(xyu) + h(xvu)h(xuy)
)

xyv

+
(

h(xvy)h(xuv) + h(xyv)h(xvu)
)

xyu

+
(

h(xyu)h(xvy) + h(xuy)h(xyv)
)

xvu

)

s(x) =
(

h(xyv)h(xvu) + h(xyu)h(xvy)
)

−
3

2

(

(

h(xvy)h(xuv) + h(xyv)h(xvu)
)

xyu

+
(

h(xyu)h(xvy) + h(xuy)h(xyv)
)

xvu

)

.

(5)

We may substitute 1− xuv for xvu, 1− xvy for xyv and 1− xyu for xuy (from the LP constraints).
Abusing notation, we keep using s, r to denote the functions after the substitution, and x ∈ R3 to
denote (xuv, xvy , xyu). By the triangle inequality, we have 1 ≤ xuv + xvy + xyu ≤ 2. Let ∆x ⊆ R3

denote the polytope of possible x’s. The function h is linear on each one of the intervals I1 = [0, 1/6],
I2 = [1/6, 5/6] and I3 = [5/6, 1], and hence it will be useful to separately analyze s and r on each
of the 27 domains Di,j,k = ∆x ∩ (Ii × Ij × Ik) for i, j, k ∈ {1, 2, 3}. The remaining of the proof is
elementary case-by case analysis of the multinomials s and r on the 27 corresponding domains. In
Tables 1 and 2 we present the functions s and r (respectively) after substitution on these domains.
For ease of notation in the table, we use x1, x2 and x3 instead of xuv, xvy and xyu, respectively. To

10

simplify the verification of the tables, note that the restriction of s and r to Di,j,k for all i, j, k is
trilinear (linear in each of the three variables x1, x2, x3 when the other two are fixed). Therefore,
any face9 of the polytope Di,j,k parallel to an axis can be removed from consideration when studying
the the maxima of s, r on Di,j,k (because such faces are unions of axis-parallel line segments on
which s, r are linear; the endpoints of these line segments are contained in lower-dimensional faces).
It remains to consider only the 2, 1 and 0-dimensional faces of Di,j,k parallel to the hyperplanes
defined by x1 + x2 + x3 = 2 and x1 + x2 + x3 = 1.

One way to automate the tedious computation of the maxima of s and r is to use the cylindrical
algebraic decomposition algorithm [7, 8, 12]. The polynomials in question are simple enough to
make the computation feasible. Indeed we did this using Mathematica software, and the maximum
outputted by the program was always ≤ 0, as required. The program and its output can be found
on the author’s website [1]. A complete analysis (not computer aided) will be included in the full
version on the author’s website.

2

5 2RatingAgg is in P, Top2Agg is NP-Hard

Theorem 3 pRatingAgg has a polynomial-time algorithm when p = 2 (hence, so does TopmAgg

for m = 1).

Proof: Given an instance π1, . . . , πk : V → [2] of 2RatingAgg, for each v ∈ V we let nv be the
number integers i ∈ [k] such that πi(v) = 2. It is easy to see that nu > nv ⇐⇒ wvu > wuv.
Therefore, if for some full-ranking π : V → [n] there are u, v ∈ V such that π(u) + 1 = π(v) and
nu > nv, then the cost of π will strictly improve if we swap the values of π at u and v. Hence
sorting V in increasing nv order (breaking ties arbitrarily) are exactly the optimal rankings. Such
a ranking can be computed in polynomial time. 2

Theorem 4 TopmAgg is NP-Hard when m = 2 (hence, so is pRatingAgg for p = 3).

Proof: We show a reduction from minimum feedback arc-set in tournaments (MinFasTour),
which was recently shown to NP-Hard by Noga Alon [6] (based on a derandomization of a reduction
from [4]). MinFasTour is the problem of, given a tournament T = (V,A), finding a ranking π of
V minimizing the number of backward edges, namely costT (π) =

∑

u<πv 1(v,u)∈A , where 1P is 1 if
predicate P is true and 0 otherwise.

Given an instance T = (V,A) of MinFasTour, we define a corresponding instance of Top2Agg.
The votes π{u,v} : V → [3] are indexed using all

(n
2

)

unordered pairs {u, v}, where for each {u, v}
and y 6= u, v:

π{u,v}(u) =

{

1 (u, v) ∈ A

2 (v, u) ∈ A

π{u,v}(y) = 3 .

9Faces of polytopes are open sets (in their affine closure) by convention.

11

i, j, k s|Di,j,k
max s argmax s

1, 1, 2 (−7 + 6x3 − 3x1(−5 + 6x3))/8 −1/4 (5
64 , 1

8 , 5
6)

1, 1, 3 1− 3x3/2 −1/4 (1
6 , 0, 5

6)
1, 2, 1 −(−5 + 6x2)(−1 + 3x1 − 3x3)/8 0 (5

64 , 5
6 , 1

8)

1, 2, 2
3(−6 + 8x2+6x3 − 12x2x3+

x1(13 − 18x3 + 18x2(−1 + 2x3)))/16
0 (5

64 , 5
6 , 1

6)

1, 2, 3 (11 + 3x1(−1 + 6x2) + 18x2(−1 + x3)− 15x3)/8 −1/4 (1
6 , 1

4 , 5
6)

1, 3, 1 0 0 const. func.
1, 3, 2 (−1 + 3x1)(−1 + 6x3)/8 0 (5

64 , 59
64 , 1

6)
1, 3, 3 (−1 + 3x1)/2 −1/4 (1

6 , 5
6 , 5

6)
2, 1, 1 (−2 + 3(−5 + 6x1)x3)/8 −1/4 (5

6 , 1
8 , 5

64)
2, 1, 2 (−5 + 3x1 + 3x3)/8 0 (5

6 , 5
64 , 5

6)
2, 1, 3 (−5 + 6x1)(−2 + 3x3)/8 0 (5

6 , 5
64 , 59

64)
2, 2, 1 (−5 + (−39 + 54x1)x3 + x2(6− 54(−1 + 2x1)x3))/16 0 (1

6 , 5
6 , 3

128)
2, 2, 2 (−13 + x1(9− 18x2)− 18x2(−1 + x3) + 9x3)/16 0 (5

6 , 1
6 , 5

6)

2, 2, 3
−3(−9 + 13x3 + 6x1(−1 + 2x2)(−2 + 3x3)−

2x2(−7 + x3))/16
0 (5

6 , 1
6 , 59

64)

2, 3, 1 −3(−1 + 6x1)x3/8 0 (1
6 , 59

64 , 5
64)

2, 3, 2 (1− 3x1 − 3x3)/8 0 (1
6 , 59

64 , 1
6)

2, 3, 3 (−4 + 3x3 − 6x1(−2 + 3x3))/8 −1/4 (1
6 , 7

8 , 59
64)

3, 1, 1 3(−1 + x1)/2 0 (1, 0, 0)
3, 1, 2 −3(−1 + x1)(−5 + 6x3)/8 0 (1, 5

64 , 1
2)

3, 1, 3 0 0 const. func.
3, 2, 1 −3(5 + x1(−5 + 6x2) + 6x2(−1 + x3)− x3)/8 0 (1, 9

32 , 0)

3, 2, 2
(−38 + 54x3 − 12x2(−4 + 9x3)+

3x1(13− 18x3 + 18x2(−1 + 2x3)))/16
0 (1, 1

6 , 1
2)

3, 2, 3 (−1 + 6x2)(−1 + 3x1 − 3x3)/8 0 (59
64 , 1

6 , 7
8)

3, 3, 1 −3x3/2 0 (5
6 , 5

6 , 0)
3, 3, 2 (1− 18x3 + 3x1(−1 + 6x3))/8 −1/4 (59

64 , 7
8 , 1

6)

Table 1: Analysis of s on 27 domains. The entries (i, j, k) = (1, 1, 1) and (i, j, k) = (3, 3, 3) do not
appear as Di,j,k = ∅ there.

12

i, j, k r|Di,j,k
max r argmax r

1, 1, 2 (−22 + 24x3 − 3x1(−5 + 6x3)− 3x2(−5 + 6x3))/8 −1/4 (5
64 , 1

8 , 5
6)

1, 1, 3 1− 3x3/2 −1/4 (1
6 , 0, 5

6)
1, 2, 1 (−17− 3x1(−5 + 6x2)− 15x3 + 18x2(1 + x3))/8 −1/4 (5

64 , 5
6 , 1

8)

1, 2, 2
3(2(−8 + x2(9− 12x3) + 9x3)+

x1(13 − 18x3 + 18x2(−1 + 2x3)))/16
−1/4 (1

6 , 11
64 , 5

6)

1, 2, 3 (11 + 3x1(−1 + 6x2) + 18x2(−1 + x3)− 15x3)/8 −1/4 (1
6 , 1

4 , 5
6)

1, 3, 1 3(−1 + x2)/2 0 (0, 1, 0)
1, 3, 2 (−14 + 15x2 + 12x3 − 18x2x3 + 3x1(−1 + 6x3))/8 0 (5

64 , 1, 1
6)

1, 3, 3 (−1 + 3x1)/2 −1/4 (1
6 , 5

6 , 5
6)

2, 1, 1 (−17 + 15x2 − 18x1(−1 + x2 − x3)− 15x3)/8 −1/4 (5
6 , 5

64 , 1
8)

2, 1, 2
3(−16 + 13x2 + 18x3 − 18x2x3+

6x1(3− 4x3 + x2(−3 + 6x3)))/16
−1/4 (5

6 , 5
64 , 1

6)

2, 1, 3 (11 − 3x2 − 15x3 + 18x1(−1 + x2 + x3))/8 −1/4 (1
6 , 5

64 , 5
6)

2, 2, 1
(−35− 39x3 + 18x2(2 + 3x3)−

18x1(−2− 3x3 + x2(2 + 6x3)))/16
0 (5

6 , 5
6 , 0)

2, 2, 2
3(−17 + x2(19 − 24x3) + 19x3+

x1(19− 24x3 + 12x2(−2 + 3x3)))/16
−7/128 (5

6 , 7
12 , 7

12)

2, 2, 3
(29 − 6x1(8 + 18x2(−1 + x3)− 9x3)−

39x3 + 6x2(−8 + 9x3))/16
−7/128 (7

12 , 7
12 , 5

6)

2, 3, 1 −3(5− 5x2 − x3 + 6x1(−1 + x2 + x3))/8 0 (5
6 , 57

64 , 0)

2, 3, 2
3(−12 + 13x2 + 14x3 − 18x2x3+

2x1(7− 12x3 + 9x2(−1 + 2x3)))/16
0 (1

6 , 1, 1
6)

2, 3, 3 3(−1− x2 + x1(2 + 6x2 − 6x3) + x3)/8 −1/8 (1
3 , 5

6 , 5
6)

3, 1, 1 3(−1 + x1)/2 0 (1, 0, 0)
3, 1, 2 (−14− 3x2 + 12x3 + 18x2x3 − 3x1(−5 + 6x3))/8 0 (1, 5

64 , 1
6)

3, 1, 3 (−1 + 3x2)/2 −1/4 (5
6 , 1

6 , 5
6)

3, 2, 1 −3(5 + x1(−5 + 6x2) + 6x2(−1 + x3)− x3)/8 0 (1, 9
32 , 0)

3, 2, 2
3(2(−6 + x2(7− 12x3) + 7x3)+

x1(13 − 18x3 + 18x2(−1 + 2x3)))/16
0 (1, 1

6 , 1
6)

3, 2, 3 3(−1 + x1(−1 + 6x2) + x2(2− 6x3) + x3)/8 −1/8 (5
6 , 1

3 , 5
6)

3, 3, 1 −3x3/2 0 (5
6 , 5

6 , 0)
3, 3, 2 (2− 24x3 + 3x1(−1 + 6x3) + 3x2(−1 + 6x3))/8 −1/8 (5

6 , 5
6 , 1

3)

Table 2: Analysis of r on 27 domains. The entries (i, j, k) = (1, 1, 1) and (i, j, k) = (3, 3, 3) do not
appear as Di,j,k = ∅ there.

13

It is not hard to see that for this instance, any full-ranking π of V has cost

cost(π) =
1

(

n
2

)

∑

u<πv

(

1(v,u)∈A + (n− 2)
)

.

(The n−2 term is from the contribution of π{v,y} for y 6= u, v.) Therefore, cost(π) and costT (π)
are linearly related. This completes the NP-Hardness reduction. 2

6 Applicability to other metrics on partial-rankings

As mentioned in Section 1.1, d belongs to a family of distance functions studied by Fagin et al [18].
This family is parametrized by a real number 0 ≤ ρ ≤ 1. Our distance function d is obtained by
taking ρ = 0 and is not a proper distance function10 because the distance between two partial-
rankings may be zero (in fact, even if one of the arguments is a full-ranking). The distance dρ(σ, π)
between two partial-rankings σ, π is defined in [18] as d(σ, π)+ρd′(σ, π), where d′(σ, π) is the number
of unordered pairs {u, v} such that either u =π v and u 6=σ v, or u =σ v and u 6=π v. The function
d′(σ, π) measures the difference between the two clusterings of V induced by the tie-relations in σ
and π (in fact, it is exactly the consensus-clustering metric [22, 29, 30]). It is shown in [18] that
d1/2 is a metric belonging to an important class D of many other equivalent metrics derived from
both the Kendall-τ and the Spearman’s footrule metrics on full-rankings. We will not go into the
definitions of the metrics belonging to D studied in [18].

If we used d1/2 instead of d in the definition of our objective function, this would add a con-
stant depending on the input π1, . . . , πk (and not on the output). Indeed, since an output σ is a
full-ranking, d′(σ, πi) is simply the number of pairs u, v that are tied in πi. Therefore, by Theo-
rems 1 and 2, algorithms RepeatChoice and LpKwikSorth are respectively 2 and 3/2 factor
approximation algorithms with respect to d1/2. By up-to-constant equivalence of all the metrics in
D, this also implies constant-factor approximations with respect to them as well.

By the discussion in Section 1.1, partial-rankings can be thought of as partially revealed full-
rankings. Assuming this interpretation, the metrics in class D can be thought of as methods
for compensating for unrevealed information. We suggest the following alternative approach for
compensating. For a partial-ranking π, let µ(π) count the number of pairs u, v that are not tied
in π (for full-rankings, this is

(n
2

)

). Intuitively, µ measures the amount of information revealed

by π. For a full-ranking σ and partial-ranking π, define d̂(σ, π) as d(σ, π)
(

n
2

)

/µ(π) (if µ(π) = 0

then also d(σ, π) = 0 and we define d̂(σ, π) = 0). Intuitively, this spreads the available distance
information evenly across the missing information. We suggest using d̂ as an alternative to using d
and to other distance measures that are used and studied in the literature. Fortunately, algorithms
RepeatChoice and LpKwikSorth generalize to this normalized version, as normalization is
achieved by attaching an “importance” weight of

(n
2

)

/µ(πi) to each voter. For the sake of simplicity,
we omit the simple generalization to weighted voters (it is easy to see, for example, that an integer
weight of ω assigned to a voter can be simulated by considering ω unweighted copies of the voter).
Also note that the hardness statement in Theorem 4 applies to the normalized version as well,
because the hard instances in the proof would assign the same normalization weight to all voters.

10In [18] they use the term “distance function” for what we call “proper distance function”, and aside from the
definition, they don’t deal much with ρ = 0.

14

7 Concluding Remarks

1. Does there exist a PTAS for RankAgg? for pRatingAgg?

2. Is TopmAgg NP-Hard for k = o(n) voters? (RankAgg is NP-Hard for 4 voters [16].)

3. Is taking the best of LpKwikSorth and RepeatChoice better than a 4/3-approximation
for PartRankAgg (as the results in [4] would suggest)?

4. One may argue that the algorithms in this paper hardly apply to TopmAgg, because (as the
search engine example suggests) n may be too large to work with. However, it is trivial to
show that we can run our algorithms considering only the collection of elements of V topping
at least one voter, and (implicitly) place the rest as the output tail (their internal order has
no effect on the cost). (In [16] they make the practical assumption of the input not containing
elements topping no voter in the first place.)

5. The choice of the h-function in Section 4 is optimal in the sense that using any other h-
function with the same rounding algorithm and the same analysis technique cannot result
in a better than 3/2 approximation (though different analysis might lead to a better result).
Indeed, for w = (1, 0, 1, 0, 0, 1) and x = (1/2, 1/2, 1, 0, 1/2, 1/2) we get f(t)/g(t) = 3/2, and
one can show easily that h must satisfy h(0) = 0, h(1/2) = 1/2, h(1) = 1. In order to come up
with h, we first found the unique symmetric function ĥ with the property that f(t)/g(t) = 3/2
for w = (1, 0, 1, 0, 0, 1) and x = (1 − α, α, 1, 0, α, 1 − α), for all 0 < α ≤ 1/2. This function

is ĥ(x) = 1 −
√

1− 3
2x for x ≤ 1/2 and its symmetric completion for x > 1/2. Then h is a

piecewise linear approximation of ĥ.Working with ĥ seems more difficult for analysis though
may prove to be good in practice. Note that in an earlier version [2] a different, slightly more
complicated h was used, but it was subsequently discovered that the one used here suffices.

6. It would be nice to somehow generalized Coppersmith et al’s [14] recent important result
relating the Borda score-based rank aggregation algorithm with the Kemeny-optimal (for
full-rankings). Can this be done for partial-rankings as well?

Acknowledgements

We would like to thank Moses Charikar, Alantha Newman, Ron Fagin, Cynthia Dwork, Kunal
Talwar, Steve Chien, Seffi Naor, Joel Predd and Amit Agarwal for enlightening discussions and
feedback.

References

[1] N. Ailon. A mathematica program for automatically proving inequalities from ’Aggregation
of partial rankings, p-ratings and top-m lists’. http://www.math.ias.edu/˜nailon/proof.nb.

[2] N. Ailon. Aggregation of partial rankings, p-ratings and top-m lists. In Proceedings of the 18th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007.

15

[3] N. Ailon and M. Charikar. Fitting tree metrics: Hierarchical clustering and phylogeny. In Pro-
ceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
2005.

[4] N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information: ranking and
clustering. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing
(STOC), pages 684–693, 2005.

[5] N. Ailon, M. Charikar, and A. Newman. Proofs of conjectures in ’aggregating inconsistent
information: ranking and clustering’. Technical Report, Princeton University, TR-719-05,
2005.

[6] N. Alon. Ranking tournaments. SIAM Journal on Discrete Mathematics, to appear.

[7] D. Arnon, G. Collins, and S. McCallum. Cylindrical algebraic decomposition I: The basic
algorithm. SIAM J. on Computing, 13, 1984.

[8] D. Arnon, G. Collins, and S. McCallum. Cylindrical algebraic decomposition II: The adjacency
algorithm for the plane. SIAM J. on Computing, 13, 1984.

[9] K. J. Arrow. Social Choice and Individual Values. John Wiley and Sons, New York, 1951.

[10] J. Aslam and M. Montague. Condorcet fusion for improved retrieval. In Proceedings of the
11th International Conference on Information and Knowledge Management, pages 538–548,
2002.

[11] J. C. Borda. Mémoire sur les élections au scrutin. Histoire de l’Académie Royale des Sciences,
1781.

[12] G. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decomposition.
In Proceedings of the 2nd GI Conference on Automate Theory and Formal Languages, Vol. 33
of Lecture Notes in Computer Science, pages 134–183. Springer-Verlag, Berlin, 1975.

[13] M.-J. Condorcet. Éssai sur l’application de l’analyse à la probabilité des décisions rendues à
la pluralité des voix. 1785.

[14] D. Coppersmith, L. Fleischer, and A. Rudra. Ordering by weighted number of wins gives
a good ranking for weighted tournamnets. In Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2006.

[15] P. Diaconis and R. Graham. Spearman’s footrule as a measure of disarray. Journal of the
Royal Statistical Society, Series B, 39(2):262–268, 1977.

[16] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the web. In
Proceedings of the Tenth International Conference on the World Wide Web (WWW10), pages
613–622, Hong Kong, 2001.

[17] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation revisited. Manuscript,
2001.

16

[18] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee. Comparing partial rankings.
SIAM Journal of Discrete Mathematica.

[19] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee. Comparing and aggregating
rankings with ties. In Proceedings of the ACM Symposium on Principles of Database Systems
(PODS), pages 47–58, 2004.

[20] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. In Proceedings of the fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 28–36, Baltimore, 2003.

[21] R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity search and classification via
rank aggregation. In Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, pages 301–312, San Diego, 2003.

[22] V. Filkov and S. Skiena. Integrating microarray data by consensus clustering. In Proceed-
ings of International Conference on Tools with Artificial Intelligence (ICTAI), pages 418–425,
Sacramento, 2003.

[23] A. Gionis, H. Mannila, and P. Tsaparas. Clustering aggregation. In Proceedings of the 21st
International Conference on Data Engineering (ICDE), Tokyo, 2005. To appear.

[24] J. Hodge and R.E.Klima. The Mathematics of Voting and Elections: A Hands-On Approach,
volume 22 of Mathematical World. AMS, 2000.

[25] J. Kemeny and J. Snell. Mathematical Models in the Social Sciences. Blaisdell, New York,
1962. Reprinted by MIT Press, Cambridge, 1972.

[26] J. G. Kemeny. Mathematics without numbers. Daedalus, 88:571–591, 1959.

[27] M. Kendall and J. D. Gibbons. Rank correlation methods. Edward Arnold, London, 1990.

[28] W. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American
Statistical Association, 66(336):846–850, 1971.

[29] A. Strehl. Relationship-based clustering and cluster ensembles for high-dimensional data min-
ing. PhD Dissertation, University of Texas at Austin, May 2002.

[30] Y. Wakabayashi. The complexity of computing medians of relations. Resenhas, 3(3):323–349,
1998.

17

