
l

gorithms
can be

ster
Information Processing Letters 91 (2004) 271–276

www.elsevier.com/locate/ip

A simpler linear time 2/3− ε approximation
for maximum weight matching

Seth Pettie∗, Peter Sanders

Max Planck Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

Received 17 November 2003; received in revised form 10 May 2004

Available online 19 June 2004

Communicated by K. Iwama

Abstract

We present two23 − ε approximation algorithms for the maximum weight matching problem that run in time O(m log 1
ε). We

give a simple and practical randomized algorithm and a somewhat more complicated deterministic algorithm. Both al
are exponentially faster in terms ofε than a recent algorithm by Drake and Hougardy. We also show that our algorithms
generalized to find a 1− ε approximation to the maximum weight matching, for anyε > 0.
 2004 Elsevier B.V. All rights reserved.

Keywords:Matching; Maximum weightmatching; Approximation; Analysis of algorithms

1. Introduction tions there is considerable interest in simpler and fa
d
t

he

r

rs
u-

algorithms—ideally linear time—that return a solution
ted
ng
SI

ht

sing
is

his

of

erved
Consider an undirected weighted graphG = (V ,

E,w), wherem andn are the number of edges an
vertices, respectively, andw(e) denotes the weigh
of edgee ∈ E. A matching is a set of edgesM ⊆
E that are endpoint disjoint from one another. T
maximum weight matchingproblem (or MWM) is
to find a matchingM∗ of maximum weight, where

w(M∗) def= ∑
e∈M∗ w(e). The fastest algorithms fo

solving this problem run in polynomial time: O(mn +
n2 logn) for real-weighted graphs [4] and O(m

√
n ·

polylog(nC)) time [6] when the weights are intege
less thanC. Despite these nice polynomial-time sol

* Corresponding author.
E-mail address:pettie@mpi-sb.mpg.de (S. Pettie).

0020-0190/$ – see front matter 2004 Elsevier B.V. All rights res
doi:10.1016/j.ipl.2004.05.007
of some guaranteed quality. For example, weigh
matchings are a crucial subroutine for partitioni
large networks like finite element meshes and VL
circuits (see, e.g., [8]). We define theδ-MWM prob-
lem to be that of finding any matching whose weig
is at leastδ · w(M∗).

There is a well known12-MWM algorithm based on
a simple greedy strategy: scan the edges in increa
order of weight, selecting the current edge if it
vertex-disjoint from previously selected edges. T
algorithm requires O(m logn) time.1 Preis [8], and

1 One can get a(1
2 − m−k)-MWM algorithm in time O(km)

using basem radix sorting of weights rounded to multiples
maxe∈E w(e)/mk+1.

.

272 S. Pettie, P. Sanders / Information Processing Letters 91 (2004) 271–276

later Drake and Hougardy [3], presented linear-time
1-MWM algorithms.

e
rox-
ake

has

de-

m-
re-

sis.
of
ac-

-
sis.

rdy

e
s

n

e
d to

t

he

ly

ing
ger-

from M andE\M. An alternating path or cycleP is
anaugmentationif M ⊕ P is also a matching, where

les

s-
ht

r
for
any

a
.

h

nt

ns.
e

2
While the1

2-MWM algorithms above only compar
adjacent edges, it is possible to achieve better app
imations by examining short augmenting paths. Dr
and Hougardy [2] observed that if a matchingM is
such that any weight-augmenting path or cycle
more than 2 unmatched edges, thenw(M) � 2

3w(M∗).
In a subsequent paper [1] Drake and Hougardy
veloped a(2

3 − ε)-MWM algorithm running in time
O(m · ε−1).

The Drake–Hougardy algorithm is somewhat co
plicated and requires a very detailed analysis. Mo
over, it converges on a23 − ε solution very slowly. In
this paper we give two simple(2

3 − ε)-MWM algo-
rithms, each running in O(m log 1

ε
) time. Our first al-

gorithm is randomized and admits a simple analy
It rivals all previous matching algorithms in terms
simplicity and promises to be a good choice in pr
tice. Our deterministic algorithm is slightly more com
plicated and requires a more sophisticated analy
Both algorithms converge on a23 − ε solution in ex-
ponentially fewer iterations than the Drake–Houga
approach.

Although we can only obtain a linear running tim
for the (2

3 − ε)-MWM problem, both our algorithm
can be extended in purely mechanical ways to theδ-
MWM problem, for anyδ. For graphs with sufficiently
low degree, ourδ-MWM algorithms are faster tha
the O(m

√
n · log(n(1 − δ)−1)) algorithm of Gabow

and Tarjan [6].2 It is not clear to us whether th
Drake–Hougardy approach can be easily extende
theδ-MWM problem, forδ > 2

3.

2. Terminology and notation

Most of our definitions are implicitly with respec
to some matching calledM, which in our algorithms
is the matching currently under consideration. T
maximum weight matching isM∗. A path or cycle
is alternatingif it consists of edges drawn alternate

2 As Gabow and Tarjan [5,6] note, their weighted match
algorithm can be viewed either as an exact algorithm for inte
weighted graphs or as an approximation algorithm for arbitrary
graphs.
A ⊕ B = (A\B) ∪ (B\A). Thegain of an alternating
path/cycleP is g(P) = w(P\M) − w(P ∩ M). The
gain of a set of (not necessarily disjoint) paths/cyc
is the sum of their individual gains. Ak-augmentation
is one containing at mostk non-M edges.

It is well known that if a matching admits no po
itive-gain k-augmentations then it must have weig
at least k/(k + 1) of the maximum. See [7] fo
the unweighted version of this theorem and [2]
the weighted version. Theorem 2.1 shows that
matching can be brought geometrically closer to
k/(k +1)-optimal one usingdisjointk-augmentations

Theorem 2.1. For any matchingM, there exists a
collectionA of vertex-disjointk-augmentations suc
that

w(M ⊕ A) � w(M) + k + 1

2k + 1

×
(

k

k + 1
w(M∗) − w(M)

)
.

Proof. The graphC = M ⊕M∗ consists of alternating
paths and cycles w.r.t.M or M∗. We may assume
w.l.o.g. thatC is a single path/cycle; our argume
is applied to each separately. IfC is a (2�)-cycle, list
its edges in cyclic order:e0, e

∗
0, e1, e

∗
1, . . . , e�−1, e

∗
�−1,

whereei ∈ M, e∗
i ∈ M∗. To conserve ink, letk+ =

k + 1. LetAi be the set of disjointk-augmentations{{ei, . . . , ei+k+−1}, {ei+k+, . . . , ei+2k+−1}, . . . ,
{ei+k+�(�−k+)/k+	, . . . , ei+k+�(�−k+)/k+	+k+−1}

}
.

That is, the augmentations inAi are disjoint and the
only M-edges not inAi are the(� modk+) ones at
the end of the list, when starting atei . We wish to
lower bound the gain of the best set of augmentatio
Clearly maxi g(Ai) �

∑
i g(Ai)/�. One can easily se

that in
∑

i g(Ai), eachM∗-edge is countedk��/k+	
times, and eachM-edgek+��/k+	 times. Therefore,

�−1∑
i=0

g(Ai)/� =
[
k

⌊
�

k+

⌋
w(M∗) − k+

⌊
�

k+

⌋
w(M)

]/
�

= k+

�

⌊
�

k+

⌋(
k

k+ w(M∗) − w(M)

)

� k+

2k+ − 1

(
k

k+ w(M∗) − w(M)

)

S. Pettie, P. Sanders / Information Processing Letters 91 (2004) 271–276 273

= k + 1

2k + 1

(
k

k + 1
w(M∗) − w(M)

)
.

n

at
n

e-

ain
s

on.
–3.

Proof. If v is an isolated vertex inM, i.e., if M(v) =
v, then finding aug(v) is trivially accomplished in

ed

s

re

es
2-

m 2
of

e

two

ing

een
If C is a path, list the edges as before. LetM∗
i =

{e∗
j : j = i (modk + 1)} and Ai = C\M∗

i . Ai con-

sists of disjointk-augmentations and
∑k

i=0 g(Ai) =
k w(M∗) − (k + 1)w(M). Thus, for at least onei:

w(M ⊕ Ai) � k

k + 1
w(M∗). �

Before moving on we give a little more notatio
used in both our matching algorithms. Ifv is matched
in M let M(v) = u where (v,u) ∈ M; otherwise
M(v) = v. A 2-augmentation iscenteredat vertex
v if all its non-M edges are incident tov or M(v).
We may also say the augmentation is centered
the edge(v,M(v)). Note that every 2-augmentatio
has at least two center vertices. LetA 2

3
be a set of

vertex-disjoint 2-augmentations such thatg(A 2
3
) �

3
5(2

3w(M∗) − w(M)); Theorem 2.1 implies thatA 2
3

exists. Let aug∗(v) be the 2-augmentation inA 2
3

centered atv (if any) and let aug(v) be the maximum-
gain 2-augmentation centered atv.

3. A randomized matching algorithm

Our randomized matching algorithm can be d
scribed very succinctly. Choose a random vertexv and
augment the current matching with the highest-g
2-augmentation centered atv. Repeat as many time
as you wish. See Fig. 1 for a more formal descripti

We first examine the expected time of Steps 2
Let deg(v) denote the degree ofv in G; w.l.o.g.
assume deg is strictly positive.

Lemma 3.1. The time required to findaug(v) is
O(deg(v) + deg(M(v))).

0. M := ∅ (or initialize M to any matching)
1. repeat k times:
2. LetX ∈ V (G) be selected uniformly at random
3. M := M ⊕ aug(X)

4. return M

Fig. 1. Algorithm Random-Match(G,k): G is a graph,k is an
integer.
deg(v) time. To find the alternating 4-cycles center
at v we first mark all verticesu s.t. (v,u) ∈ E\M.
For each edge(M(v), x), if M(x) is marked then
〈v,M(v), x,M(x), v〉 is an alternating 4-cycle. Thi
procedure clearly runs in O(deg(v) + deg(M(v)))

time.
The procedure for alternating paths is slightly mo

complicated. Anarm of v consists of an edge(v,u) /∈
M plus (u,M(u)) ∈ M, if it exists. We find the two
highest-gain arms ofv, P and P ′, where g(P) �
g(P ′). For each armQ of M(v) we determine the
highest-gain 2-augmenting path centered atv that
uses Q. This will be P ∪ {(v,M(v))} ∪ Q if Q

and P are vertex disjoint andP ′ ∪ {(v,M(v))} ∪
Q otherwise. Again, this procedure clearly tak
O(deg(v) + deg(M(v))) time and detects the best
augmenting path centered atv. �

Lemma 3.1 is essentially the same as Theore
in [2]. We now examine the expected performance
Random-Match.

Lemma 3.2. If v ∈ V is chosen uniformly at random
then

E
[
g
(
aug(v)

)]
� 6

5n

(
2

3
w(M∗) − w(M)

)
.

Proof. Let V 2
3

be the set of center vertices for th

augmenting paths/cycles inA 2
3
. Note that |V 2

3
| �

2 · |A 2
3
| since every 2-augmentation has at least

centers.

E
[
g
(
aug(v)

)]
� Pr[v ∈ V 2

3
] · E

[
g
(
aug(v)

) | v ∈ V 2
3

]
�

∑
v∈V 2

3

g(aug∗(v))

n

� 6

5n

(
2

3
w(M∗) − w(M)

)
. �

Lemma 3.3, given below, shows that by repeat
the randomized augmentation stepn times we obtain
an expected geometric decrease in the gap betw
w(M) and 2

3w(M∗).

274 S. Pettie, P. Sanders / Information Processing Letters 91 (2004) 271–276

Lemma 3.3. The expected weight ofM after k

iterations of Steps2–3 is at least 2w(M∗)(1 −

,

t

s at

ed

3

is

to

es,
-
tha

t
rtex
bse
sis
ns

selected isΩ(g(A 2
3
)) = Ω(2

3w(M∗) − w(M)). The

obvious ways to choose the candidate set can perform
e

ible

to
e
ta-
ges,

ta-

-

-
ifi-
m-
t

st

t

,

3
e−6k/5n).

Proof. Let w̃ = 2
3w(M∗) and letYi be the weight of

M afteri iterations. ClearlyY0 = 0 and by Lemma 3.2
E[Yi+1] � Yi + 6

5(w̃ − Yi)/n. By linearity of expec-
tation we have the more usable inequalityE[Yi+1] �
E[Yi] + 6

5(w̃ − E[Yi])/n. Assuming inductively tha
E[Yi] � w̃ · (1− e−6i/5n) (it holds fori = 0), we have:

E[Yi+1] � w̃ · (1− e−6i/5n
) + 6w̃ · e−6i/5n/5n

= w̃ · (1− (1− 6/5n)e−6i/5n
)

� w̃ · (1− e−6(i+1)/5n
)
. �

Theorem 3.4. In expected timeO(m log 1
ε
) Random-

Match returns a matching whose expected weight i
least 2

3 − ε that of the maximum weight matching.

Proof. The Theorem follows by settingk = 5
6n ln 1

ε
.

By Lemma 3.3 the expected weight of the return
matching is 2

3(1 − e−6k/5n) > 2
3 − ε times the op-

timum. By Lemma 3.1 the time for Steps 2 and
is proportional to deg(X) + deg(M(X)). Averaged
over all X ∈ V (G) the expected time per iteration
4m/n. �
Remark. Rather than appealing to Theorem 2.1
prove Lemma 3.2, one can show directly thatE[aug(v)]
� 3(2

3w(M∗) − w(M))/n. This implies that only
1
3n ln 1

ε
iterations of Random-Match suffice.

4. A deterministic algorithm

The deterministic algorithm operates in phas
each taking linear time. IfM andM ′ are the match
ings before and after some phase we guarantee
w(M ′) � w(M) + c · (2

3w(M∗) − w(M)), for a con-
stantc. Therefore, executing O(log 1

ε
) phases yields a

2
3 − ε matching.

In each phase we generate a set of at mosn

candidate augmentations (one centered at each ve
then choose from this set, in a greedy manner, a su
of non-overlapping augmentations. In the analy
we show that the total gain of the augmentatio
t

)
t

very poorly in the worst case. For instance, if w
choose{aug(v): v ∈ V (G)}, or in general the bestk
augmentations centered at each vertex, it is imposs
to guarantee a gain ofΩ(g(A 2

3
)).

Recall that nearly all definitions are with respect
the matchingM. An atom is either a matched edg
or an unmatched vertex. We will think of augmen
tions as either being sets of atoms or sets of ed
whichever is more convenient. Ife is an atom and
S a set of augmentations thenS(e) is the maximum-
gain augmentation inS that containse, if any. If
a = {e1, e2, . . .} is a set of atoms (e.g., an augmen
tion) thenS(a) = {S(e1), S(e2), . . .}. An arm3 r of v

is eligible if g(r) � γ · g(S(r)), for a constantγ > 1
to be specified later. An augmentationa is eligible if
g(a) � γ · g(S(a)) and, if a is a three-atom augmen
tation centered at edge(u,M(u)), both the arms ofu
andM(u) are also eligible.

We denote by greedy(S) a subset of the augmen
tationsS selected by the greedy algorithm. Spec
cally the algorithm repeatedly selects the maximu
gain augmentation inS that is vertex/atom disjoin
with previously chosen augmentations.

Theorem 4.1. Deterministic-Match(Fig. 2) runs in
O(km) time and returns a matching weighing at lea
2
3(1− (19

20)
k) of the maximum weight matching.

Proof. Let a(e) be the augmentation centered ae
that is selected in Line 4 (if any), and letS(a(e)) and
S(aug∗(e)) be w.r.t. the setS whene is considered in
Line 4. In isolationS refers to the setS after the phase

0. M := ∅
1. repeat k times: (Lines2–6= 1 Phase)
2. S := ∅
3. foreach atome (Either e ∈ M or e ∈ V \ ⋃

c∈M c)
4. Find an eligible augm.a centered ate maximizingg(a)

5. S := S ∪ {a}
6. M := M ⊕ greedy(S)

7. return M

Fig. 2. Algorithm Deterministic-Match(G,k): G is a graph,k an
integer.

3 Recall that an arm consists of an unmatched edge(v,u) plus
the matched edge(u,M(u)) if it exists.

S. Pettie, P. Sanders / Information Processing Letters 91 (2004) 271–276 275

at Line 6. We will prove that after every phase of the
algorithm the following two inequalities hold.

at

),
t

e

g

ns.

a1, a2, a3 ∈ S, thena1 ∩ a2 ∩ a3 = ∅. Suppose thata1
was added toS beforea2. Becausea3 ∈ S(a2), a3 must

n

y
in

tion

e

by

for

e

ms
eld

or

ms
to
g(S) � g(A 2
3
)/3γ, (1)

g
(
greedy(S)

)
� (γ − 1)g(S)/γ. (2)

We obtain the sharpest bound by settingγ = 2, giving:

g
(
greedy(S)

)
� (γ − 1)g(A 2

3
)/3γ 2

� 1

20

(
2

3
w(M∗) − w(M)

)
.

We now consider (1). If

g
(
aug∗(e)

)
< γ · g(

S
(
aug∗(e)

))
then aug∗(e) was ineligible when it was considered
Line 4. If

g
(
aug∗(e)

)
� γ · g(

S
(
aug∗(e)

))
and aug∗(e) was eligible, theng(aug∗(e)) � g(a(e)).
There is only one more case, when aug∗(e) is an
ineligible three-atom augmentation with aug∗(e) � γ ·
g(S(aug∗(e))). Let aug∗(e) = {r1, e, r2}, wherer1, r2
are arms. One can see that{r1, e} must be an eligible
augmentation andr2 an ineligible arm (or the reverse
implying thatg({r1, e}) � g(a(e)) and therefore tha
g({r1, e, r2}) = g(aug∗(e)) < g(a(e)) + γ · g(S(r2)).
Combining all cases we have:

g
(
aug∗(e)

)
� γ · g(

S
(
aug∗(e)

)) + g
(
a(e)

)
. (3)

Notice thata(e) and each element ofS(aug∗(e))
share at least one atom with aug∗(e). Let C be a set
of centers representing the augmentations inA 2

3
, with

|C| = |A 2
3
|. Each augmentation inS can appear on th

right side of (3) for at most three distincte ∈ C since
all augmentations inA 2

3
are atom-disjoint. Summin

(3) overe ∈ C we have:

g(A 2
3
) =

∑
e∈C

g
(
aug∗(e)

)
�

∑
e∈C

[
γ · g(

S
(
aug∗(e)

)) + g
(
a(e)

)]
� 3γ · g(S).

Before turning to (2) we make a few observatio
If an augmentationa(e) is added toS in Line 5 we
will say a(e) supersedeseach element ofS(a(e)).
We claim that ifa1 anda2 both supersedea3, where
be the maximum-gain augmentation already inS that
intersectsa2. Let e ∈ a2 ∩ a3. Sinceg(a1) > g(a3), it
must be thate /∈ a1. This observation implies that i
the acyclic graphS = (S, {(a, a′): a supersedesa′}),
the subset{a: e ∈ a ∈ S} forms a directed path, for an
atome. Moreover, the in and out degree of vertices
S are both bounded by 3.

Suppose thata ∈ S was selected by greedy(S). This
removes from consideration any other augmenta
b for which a ∩ b �= ∅. Let A0 = {a} and let Ai

be those augmentations inS superseded by som
augmentation inAi−1. Finally let A = ⋃

i Ai . It fol-
lows from the observations above thatA are exactly
those augmentations removed from consideration
the selection ofa. By the definition of eligibility
g(Ai) � g(Ai−1)/γ . Therefore:

g(A) �
∞∑
i=0

g(Ai) � g(a) ·
∞∑
i=0

γ −i

= γ

γ − 1
· g(a). (4)

Summing over alla ∈ greedy(S) we have

g
(
greedy(S)

)
� (γ − 1)γ −1 · g(S),

which proves (2).
One can readily see that O(m) time suffices to

compute the setS in each phase; see Lemma 3.1
the details. The set greedy(S) can be computed in
O(n) time by performing a topological sort of th
acyclic graphS. �

5. Arbitrarily good approximations

Both our randomized and deterministic algorith
can be generalized in straightforward ways to yi
δ-MWM algorithms, for anyδ < 1. For δ � 2/3 −
o(1) the running time is super-linear; however, f
degree bounded graphs and any constantδ the running
time remains linear. In general graphs our algorith
are faster than the previous best [6] for sparse
moderately dense graphs.

Theorem 5.1. There is a(1 − 1/k − ε)-MWM algo-
rithm running in timeO(m(∆ − 1)k−3 logε−1), where

276 S. Pettie, P. Sanders / Information Processing Letters 91 (2004) 271–276

ε > 0, k � 3, ∆ > 1 is the maximum degree, andm the
number of edges.

r-
est

im-

t-
1.

al-

in
ut.

ug-

Sci., vol. 2764, Springer-Verlag, Berlin, 2003, pp. 14–23.
[2] D. Drake, S. Hougardy, Linear time local improvements for

e
03,

m
85

rest

4–

ork

eral

5–

-
.
),
ag,
The time bound follows from a generalized ve
sion of Lemma 3.1. One can easily show that the b
(k − 1)-augmentation centered4 at a vertexv can be
found in O((deg(v) + deg(M(v)))(∆ − 1)k−3) time.
For regular graphs the time bound of Theorem 5.1
proves on [5,6] for allk, whenever∆ = O(n1/2(k−3)).

Acknowledgement

We would like to thank Stefan Hougardy for poin
ing out an error in an earlier version of Theorem 2.

References

[1] D. Drake, S. Hougardy, Improved linear time approximation
gorithms for weighted matchings, in: 7th International Work-
shop on Randomization and Approximation Techniques
Computer Science (APPROX), in: Lecture Notes in Comp

4 An augmenting cycle is centered at any of its atoms, an a
menting path at the second atom in the path.
weighted matchings in graphs, in: International Workshop on
Experimental and Efficient Algorithms (WEA), in: Lectur
Notes in Comput. Sci., vol. 2647, Springer-Verlag, Berlin, 20
pp. 107–119.

[3] D. Drake, S. Hougardy, A simple approximation algorith
for the weighted matching problem, Inform. Process. Lett.
(2003) 211–213.

[4] H.N. Gabow, Data structures for weighted matching and nea
common ancestors with linking,in: First Annual ACM–SIAM
Symposium on Discrete Algorithms (SODA), 1990, pp. 43
443.

[5] H.N. Gabow, R.E. Tarjan, Faster scaling algorithms for netw
problems, SIAM J. Comput. 18 (5) (1989) 1013–1036.

[6] H.N. Gabow, R.E. Tarjan, Faster scaling algorithms for gen
graph-matching problems, J. ACM 38 (4) (1991) 815–853.

[7] J.E. Hopcroft, R.M. Karp, Ann5/2 algorithm for maximum
matchings in bipartite graphs, SIAM J. Comput. 2 (1973) 22
231.

[8] R. Preis, Linear time 1/2-approximation algorithm for maxi
mum weighted matching in general graphs, in: Proc. 16th Ann
Symp. on Theoretical Aspects of Computer Science (STACS
in: Lecture Notes in Comput. Sci., vol. 1563, Springer-Verl
Berlin, 1999, pp. 259–269.

