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Abstract

The dynamic vertex minimum problem (DVMP) is to maintain the minimum cost edge in a
graph that is subject to vertex additions and deletions. DVMP abstracts the clustering operation
that is used in the primal-dual approximation scheme of Goemans and Williamson (GW). We
present an algorithm for DVMP that immediately leads to the best-known time bounds for the
GW approximation algorithm for problems that require a metric space. These bounds include
time O(n2) for the prize-collecting TSP and other direct applications of the GW algorithm (for
n the number of vertices) as well as the best-known time bounds for approximating the k-MST
and minimum latency problems, where the GW algorithm is used repeatedly as a subroutine.
Although the improvement over previous time bounds is by only a sublogarithmic factor, our
bound is asymptotically optimal in the dense case, and the data structures used are relatively
simple. The DVMP algorithm is also extended to an implementation of the GW clustering
algorithm for sparse graphs, which is more accurate but slower than a recent algorithm of Cole
et.al.[5].

1 Introduction

Many approximation algorithms are applications of the primal-dual algorithm of Goemans and
Williamson (GW) [11]. (This algorithm is rooted in the approach proposed by Agrawal, Klein and
Ravi [2].) This paper determines the asymptotic time complexity of the GW clustering operation
on metric spaces. Although our improvement is a sublogarithmic factor, the issue is important
from a theoretic viewpoint. Also our algorithm uses simple data structures that will not incur
much overhead in a real implementation.

Aside from operations involving a problem-speci�c oracle, the only di�culty in implementing
the GW algorithm is the clustering operation which determines the next components to merge.
Goemans and Williamson's original implementation [11] uses time O(n2 logn). This was improved
to O(n(n +

p
m log log n)) [9] and O(n

p
m log n) [14]. Here and throughout this paper n and m

denote the number of vertices and edges in the given graph, respectively. Regarding time bounds one
should bear in mind that many applications of the GW algorithm are for the dense case m = �(n2)
(see below). We improve the above bounds to O(n

p
m). Cole et. al.[5] present a modi�ed version of

the GW clustering algorithm that runs in time O(km log 2n). Here k is an arbitrary constant, and
the approximation factor of the modi�ed algorithm increases (i.e., worsens) by the small additive
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term O(1=nk). This time bound is a substantial improvement for sparse graphs. Still in the dense
case this algorithm is slower than the original GW implementation (and slightly less accurate).

One reason that dense graphs arise is assumption of the triangle inequality. Because of this
our algorithm gives the best known time bound O(n2) for these applications of the GW algo-
rithm [11]: 4-approximation for the exact tree, exact path and exact cycle partitioning prob-
lems; 2-approximation algorithm for the prize-collecting TSP (see [13] for the TSP time bound);
and �nally the 2-approximation for minimum cost perfect matching (whose primary motivation is
speed). The GW approximation algorithms for prize-collecting Steiner tree and TSP, on metric
spaces, are used as subroutines in several constant factor approximation algorithms for the mini-
mum latency problem and the k-MST problem. For minimum latency these include [3, 10] and the
best-known 10.77-approximation algorithm of [7]. For k-MST they include [4], and the best-known
3-approximation of [7] for the rooted case and 2.5-approximation of [1] for the unrooted case. In
all of these algorithms multiple executions of the GW algorithm dominate the running time, so our
implementation improves these time bounds too (although the precise time bounds are higher).

For the approximation algorithm for survivable network design [9, 17, 8] the given graph can
be sparse but there are additional quadratic computations. Our algorithm achieves time O((n)2)
when the maximum desired connectivity is . (The bound of [9] is O((n)2 + n

p
m log log n).

For  = 2 Cole et. al. avoid the quadratic computations and achieve time bound O(km log 2n)
for k as above.) For other applications of the GW algorithm where the time is dominated by
clustering (generalized Steiner tree problem, prize-collecting Steiner tree problem, non�xed point-
to-point connection, and T -joins [11]) our bound is O(n

p
m), which improves the previous strict

implementations of GW and improves the algorithm of Cole et. al. [5] in very dense graphs (but of
course not in sparse graphs).

We obtain our results by solving the \dynamic vertex minimum problem" (DVMP). This prob-
lem is to keep track of the minimum cost edge in a graph where vertices can be inserted and deleted.
Ignoring the graph structure it is obvious that O(m log n) is the best time bound possible, for m
the total number of edges. Taking advantage of the graph structure we achieve time O(n2), for
n the total number of vertices. This result immediately implies a time bound of O(n2) for GW
clustering. It gives all the dense graph time bounds listed above. Our solution to DVMP is based
on an amortized analysis of a system of binomial queues.

We apply the DVMP algorithm to implement the GW clustering algorithm on sparse graphs
in time O(n

p
m). We actually solve the more general \merging minimum problem" (MMP). This

problem is to keep track of the minimum cost edge in a graph whose vertices can be contracted.
The costs of edges a�ected by the contraction are allowed to change, subject to a \monotonicity
property." We solve the MMP using our DVMP algorithm and a grouping technique.

Section 2 gives our solution to the DVMP. This immediately implements GW clustering for
dense graphs. Section 3 solves the MMP and implements GW clustering for sparse graphs.

2 Dynamic Vertex Minimum Problem

The dynamic vertex minimum problem (DVMP) concerns an undirected graph G where each edge
e has a real-valued cost c[e]. The graph is initially empty. We wish to process (on-line) a sequence
of operations of the following types:
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Add vertex(v) : add v as a new vertex with no edges.
Add edge(e) : add edge e with cost c[e].
Delete vertex(v) : delete vertex v and all edges incident to v.
Find min : return the edge currently in G that has smallest cost.

This section shows how to support Add vertex, Add edge and Delete vertex operations in O(1)
amortized time, and Find min in worst-case time linear in the number of vertices currently in G.
For convenience we assume the edge costs are totally-ordered. If two edges actually have the same
cost we can break the tie using lexicographic order of the vertex indices.

Our high-level approach is to store the edges incident on each vertex in a heap. Since the
DVMP only involves the edge of globally minimum cost, these heaps ignore important information:
An edge that is not the smallest in one of its heaps is not a candidate for the global minimum,
even if it is the smallest in its other heap. We capture this principle using a notion of \active"
and \inactive" edges (de�ned precisely below). This allows us to economize on the number of heap
operations.

2.1 The Algorithm

This section presents the data structure and algorithm, and proves correctness of the implementa-
tion.

Our data structure is a collection of heaps. Our heaps are a variant of the standard binomial
queue data structure [15]. As usual, each heap is a collection of heap-ordered binomial trees.
However our structure di�ers from the standard de�nition in two ways. First and most importantly,
one heap is allowed to contain an arbitrary number of binomial trees of a given rank. Second, a
lazy strategy is used for deletion: Heap elements are marked when they get deleted (elements are
initially unmarked). The root of a heap is never marked.

Throughout this section \tree" and \binomial tree" are abbreviations for \heap-ordered bino-
mial tree." \Root" always refers to the root of a binomial tree.

The data structure consists of jV (G)j heaps, one for each vertex. We denote by H(u) the heap
associated with u 2 V (G). Elements of H(u) correspond to edges incident on u. An edge fu; vg
appears in both H(u) and H(v); we di�erentiate these two elements with the notation (u; v) and
(v; u), respectively. Let twin(u; v) be synonymous with (v; u). H(u) may contain marked elements
(u; x) (for edges previously incident to u that have been deleted). But as already mentioned, such
marked elements are never tree roots.

Each heap H(u) is a collection of binomial trees divided into two groups: the active trees and
the inactive trees. We sometimes refer to a whole tree by its root. Hence an active root is the root
of an active tree. As usual the rank of an element e, denoted rank(e), is the number of children
it has, which is also the logarithm (base 2) of the size of the subtree rooted at e. The following
invariant characterizes the active and inactive trees.

DVMP Invariant

(i) For all elements e, rank(e) � rank(twin(e)) + 1.

(ii) Consider a tree root f . If rank(f) > rank(twin(f)) then f is inactive. If rank(f) �
rank(twin(f)) and f is inactive then twin(f) is either active or a nonroot.

(iii) Consider a vertex u. H(u) contains at most one active root per rank k, denoted ru(k) if it
exists. At all times su(k) points to the element with minimum cost among fru(k); ru(k +
1); : : :g.
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To better understand (ii) consider elements f and twin(f) that are both roots. If the twin roots
have equal rank then at least one of them is active. If the twins have unequal rank then the smaller
rank element is active while the larger one is not.

Here is some motivation for the DVMP Invariant. The purpose of (i) is that the ranks of an
item and its twin should not di�er too much. To maintain the �rst part of (iii) we will sometimes
merge two active trees of the same rank. This increments the rank of the resulting tree's root
by one. If this happened too often the ranks of an item and its twin could di�er by an arbitrary
amount, violating (i). To avoid this when a root's rank is one more than that of its twin (ii) makes
the root inactive. We never merge inactive trees. Hence we do not violate (i).

One consequence of the DVMP Invariant is that the minimum cost edge is easy to �nd:

Lemma 2.1 If fu; vg is the edge with minimum cost in G then either su(0) or sv(0) points to it.

Proof: Because fu; vg is of minimum cost, (u; v) and (v; u) must be roots in H(u) and H(v),
respectively. DVMP Invariant (ii) implies that either (u; v) or (v; u) is active. DVMP Invariant
(iii) implies that in general, su(0) points to the minimum element in an active tree of vertex u.
Hence either su(0) or sv(0) points to fu; vg. (The fact that nonroot elements can be marked, i.e.,
deleted, has no a�ect on this argument.) 2

The procedure for Find min follows directly from Lemma 2.1. We simply take the minimum
cost element pointed to by su(0), over all u 2 V (G).

The Add vertex, Add edge and Delete vertex operations are implemented in a lazy fashion:
They perform the least amount of work necessary to restore the DVMP Invariant. Each of these
operations makes use of the routines Activate(e) and Deactivate(e). The purpose of these rou-
tines is to change a tree root e = (u; v) from the inactive to the active state, or the reverse.
Both these changes of state may violate DVMP Invariant (iii): Making a root e active may cre-
ate two active roots of rank rank(e). Making root e active or inactive may make ru(rank(e))
or su(0); : : : ; su(rank(e)) out-of-date. The routines Activate(e) and Deactivate(e) repair these
violations, as follows.

Deactivate(e = (u; v))
It is assumed that e is an active root. Furthermore deactivating e
will not violate DVMP Invariant (ii).

1. Move the tree rooted at e to the set of inactive trees in H(u).
2. If ru(rank(e)) = e, set ru(rank(e)) = nil.
3. Update su(0); : : : ; su(rank(e)).

Activate(e = (u; v))
It is assumed that e is an inactive tree root and rank(e) � rank(twin(e)).

1. Remove the tree rooted at e from the set of inactive trees in H(u).
2. Let cur := e.

The following loop sets ru(rank(cur)) = cur unless ru(rank(cur)) 6= nil,
in which case merging is necessary.

3. LOOP f
4. Let k := rank(cur).
5. If ru(k) = nil

6. Let ru(k) := cur.
7. Update su(0); : : : ; su(k).
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8. EXIT THE LOOP.
9. Otherwise, merge the trees rooted at cur and ru(k), and let cur be the resulting root.
10. Set ru(k) := nil.
11. If rank(cur) > rank(twin(cur))
12. Deactivate(cur).
13. Activate(twin(cur)) if twin(cur) is an inactive root.
14. EXIT THE LOOP.
15. g

It is clear that Deactivate works correctly. Activate is more complicated because of the tail
recursion in Step 13. Its correctness amounts to the following fact.

Lemma 2.2 Activate eventually returns with the DVMP Invariant intact.

Proof: We will prove by induction that each time Step 5 of Activate is reached,

(i) rank(twin(cur)) � k = rank(cur);

(ii) the only possible violation of the DVMP Invariant is part (iii), speci�cally, H(u) can contain
two active nodes of rank k, cur and ru(k), and the values su(0); : : : ; su(k) can be incorrect.

In the inductive argument we will also note that the lemma holds whenever Activate returns.
For the base case of the induction note that activating e (in Step 1) cannot introduce a violation

of DVMP Invariant (i){(ii). Hence the �rst time Step 5 is reached, only DVMP Invariant (iii) for u
can fail and inductive assertion (ii) holds. Assertion (i) follows from the corresponding inequality
on ranks in the entry condition of Activate.

Now consider Step 5. If ru(k) = nil, Steps 6{7 restore DVMP Invariant (iii). Then Activate

returns with the DVMP Invariant holding, as desired. So suppose ru(k) 6= nil, i.e., there is a
previously existing active tree of rank k.

The inequality rank(f) � rank(twin(f)) holds for both f = cur (by inductive assumption) and
f = ru(k) (by DVMP Invariant (ii){(iii)). Step 9 merges trees cur and ru(k) and makes cur point
to the new tree root, which has rank k + 1. The previous inequality (along with DVMP Invariant
(i)) shows that now rank(cur) is equal to either rank(twin(cur)) or rank(twin(cur)) + 1. In the
�rst case, since cur is active DVMP Invariant (ii) permits twin(cur) to be active or inactive. Hence
the algorithm proceeds to the next execution of Step 5 with inductive assertions (i){(ii) intact. So
the �rst case is correct.

In the second case DVMP Invariant (ii) requires that cur be inactive and twin(cur) be active if
it is a root. Step 12 makes cur inactive and Deactivate restores DVMP Invariant (iii). (Note the
entry condition to Deactivate is satis�ed.) The recursive call of Step 13 �xes up DVMP Invariant
(ii) in its Step 1. (Again note the entry condition to Activate is satis�ed.) Then Step 5 is reached
with inductive assertions (i){(ii) intact. This completes the induction.

It remains to show that Activate eventually returns. This is clear, since every time it reaches
Step 5 the number of trees in the data structure has decreased (in the merge of Step 9). 2

Now consider the remaining operations Add vertex, Add edge and Delete vertex. Add vertex

is trivial. The routines for Add edge and Delete vertex are given below. Delete vertex works
in a lazy fashion: We mark heap elements when they get deleted. We keep a marked element in
the heap as long as possible, i.e., until all its ancestors become marked.
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Add edge(fu; vg)
1. Create rank 0 nodes (u; v) and (v; u).
2. Put (u; v) and (v; u) in the inactive sets of H(u) and H(v), respectively.
3. Activate(u; v).

Delete vertex(u)
1. For each element e 2 H(u), mark twin(e) as deleted.
2. For each tree root f = twin(e) marked in Step 1,
3. Deactivate(f) if it is active.
4. For each unmarked element g that is in the tree of f and has all its ancestors marked,
5. Designate g an inactive tree root (remove all marked ancestors of g).
6. If twin(g) is an inactive root,
7. If rank(g) � rank(twin(g)), Activate(g)
8. Else Activate(twin(g)).

It is obvious that Add edge is correct, so we turn to Delete vertex. Step 1 can discard all the
nodes of H(u) since they are no longer needed. Step 4 �nds the nodes g by a top-down exploration
of the tree rooted at f . Step 2 ensures that every new tree root is found. Step 5 causes DVMP
Invariant (ii) to fail if twin(g) is an inactive root. In that case if g and twin(g) have equal ranks
one of them should be active; if they have unequal ranks the smaller rank element should be active.
However all the rest of the DVMP Invariant is preserved in Step 5. Thus Steps 6{8 restore DVMP
Invariant (ii). (Note the entry conditions to Activate and Deactivate are always satis�ed.) We
conclude that Delete vertex works correctly.

We close this section with the �nal details of the data structure. Each value twin(e) is rep-
resented by a pointer, so nodes (u; v) and (v; u) point to each other. The set of inactive trees in
each heap H(u) is represented as a doubly-linked list. Now almost every step of the four routines
takes constant time. The exceptions are �rst, the updates of su: Step 3 of Deactivate takes
O(rank(e)+ 1) time and Step 7 of Activate takes O(k+1) time. (We compute su(i) in O(1) time
using the value of su(i+1)). Second, the top-down search in Step 4 of Delete vertex amounts to
O(1) time for the root f plus O(1) time for each binomial tree edge that is explored (and removed).

2.2 Timing Analysis

This section proves the claimed time bounds. It is immediate that the worst-case bounds for
Find min and Add vertex are O(n) and O(1) respectively, where n is the current number of vertices.
We show below that Add edge and Delete vertex use O(1) amortized time.

To start o� we charge each edge of G O(1) time to account for work in its creation and de-
struction, speci�cally Steps 1{2 of Add edge plus the possible time for marking the edge in Steps
1{2 of Delete vertex. It is easy to see that the remaining work performed by our algorithm is
linear in the number of comparisons between edge costs. (Speci�cally, the time for Deactivate is
dominated by the comparisons to update su in Step 3; Activate is dominated by the comparison
to merge binomial trees (Step 9) and the comparisons to update su (Step 7); in Delete vertex

each remaining unit of work corresponds to the destruction of a binomial tree edge, i.e., a previous
comparison.) It therefore su�ces to bound the number of comparisons.

We do this using the accounting method of amortized analysis [6, 16]. De�ne 1 credit to be the
work required for 1 comparison. We will maintain the following invariant after each operation:

6



Credit Invariant

(i) Every heap element has C = O(1) credits.

(ii) Every root of rank k has an additional k + 4 credits.

(iii) Every nonroot of rank k with a marked parent has an additional 2k + 5 credits.

The precise value of the constant C will be determined below.
Note that each call Deactivate(e) uses rank(e) + 1 credits. We will require that each call

Activate(e) is given rank(e) + 1 credits. Using this credit system the amortized cost of Add edge

is 2(C + 4) + 1: C + 4 credits per rank 0 element created plus 1 credit for the call to Activate.
Thus Add edge takes O(1) amortized time as desired.

2.2.1 Amortized Cost of Activate

When Activate(e) is called rank(e) + 1 credits are available to be spent. We maintain that at
each iteration of the loop (Step 3) at least k + 1 credits are available, for k = rank(cur). This is
clearly true for the �rst iteration.

Suppose in Step 5, ru(k) = nil. The only remaining comparisons in this call to Activate are
for updating su(0); : : : ; su(k). We pay for these with the k + 1 available credits.

Suppose now ru(k) 6= nil. Step 9 merges cur and ru(k), two rank k trees, producing a rank
k + 1 tree, also denoted cur. The merge changes one root into a nonroot, releasing k + 4 credits.
We use one credit to pay for the comparison of the merge; additionally the new rank k + 1 root
requires one more credit. This leaves a total of (k + 1) + (k + 2) = 2k + 3 credits available.

Suppose Steps 12{14 are executed. We pay for Deactivate(cur) in Step 12 with k + 2 credits.
(Actually we could save a comparison in Deactivate, since it need not update su(rank(e)).) Since
rank(twin(cur)) = k, we can pay for the call to Activate(twin(cur)) in Step 13 (if necessary) with
the remaining k + 1 credits.

Finally suppose the `If' statement in Step 11 fails. The loop returns to Step 3 with 2k+3 � k+2
available credits, as called for.

2.2.2 Amortized Cost of Delete vertex

Consider an operation Delete vertex(u) and an element (u; v) 2 H(u) with rank k. DVMP
Invariant (i) ensures rank(v; u) � k + 1. When Step 1 marks (v; u) Credit Invariant (iii) requires
credits to be placed on the children of (v; u). Let us temporarily assume this has been done and
discuss the rest of Delete vertex before returning to this issue. In Step 3 a possible operation
Deactivate(v; u) requires at most k + 2 credits, paid for by the k + 4 credits on (v; u).

Now consider an unmarked element g as in Step 4. The cost of discovering g and processing it
in Steps 4{6 has already been associated with merge comparisons. In addition if rank(g) = j we
need 2j+5 credits: Credit Invariant (ii) requires j+4 credits when g becomes a root (Step 5), plus
we need at most j + 1 credits to pay for the call to Activate for g or its twin (Steps 7{8). Credit
Invariant (iii) for g gives the 2j + 5 needed credits.

It remains only to explain how Credit Invariant (iii) is maintained when (v; u) is marked in Step
1. (v; u) has at most k + 1 children, one child of each rank i = 0; : : : ; k. So Credit Invariant (iii)
requires a total of at most

kX

i=0

(2i+ 5) = (k + 1)(k + 5)
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credits. We consider two cases, depending on whether or not (u; v) is a root of H(u).
H(u) contains at most jH(u)j=2k+1 rank k nonroot elements (u; v), since the parent of such a

nonroot has 2k+1 descendants. So the total cost associated with deleting all nonroots (u; v) of all
ranks k is bounded by

1X

k=0

jH(u)j � (k + 1)(k + 5)

2k+1
:

Recall that
P

1

k=0
1

2k
=
P

1

k=0
k

2k
= 2 and

P
1

k=0
k2

2k
= 6. Hence the above sum is at most jH(u)j(6+

12 + 10)=2 = 14jH(u)j. We pay for this by taking 14 credits from each element of H(u), assuming
C � 14 in Credit Invariant (i).

Next consider a rank k root (u; v). The elements in the binomial tree of (u; v) now have a total
of k + 4 + (C � 14)2k credits by Credit Invariant (i){(ii). Choosing C = 18 makes this quantity
at least (k + 1)(k + 5), because k2 + 5k + 1 � 2k+2 for every k � 0. (This inequality follows by
induction using base case k � 1. For the inductive step we use the identity 2k+6 � 2k+2 for every
k � 1.) Hence we can pay the cost associated with (u; v).

Theorem 2.3 The dynamic vertex minimum problem can be solved in amortized time O(1) for each
Add vertex, Add edge and Delete vertex operation and worst-case time O(n) for each Find min

when the graph contains exactly n vertices.

We close with three remarks. First, the constant C in the analysis can be lowered because
the algorithm performs unnecessary comparisons. Speci�cally in Delete vertex(u) consider an
element e = (u; v) 2 H(u) whose twin f = (v; u) is a tree root. When Steps 3{8 are executed
for this edge f , the values sv(�) get updated both in Step 3 by Deactivate(f) and in every call
Activate(g) in Step 7. Clearly we need only update the sv(�) values once, after the loop iteration
for f .

Second, an actual implementation of this data structure will probably be more e�cient if we
modify DVMP Invariants (i){(ii) slightly. The current requirement rank(e) � rank(twin(e)) + 1
may cause many activates and deactivates of the same tree. We can replace this by a requirement
rank(e) � c1 � rank(twin(e)) + c2, for two constants c1; c2. This allows DVMP Invariant (ii) to be
relaxed so there are fewer activates and deactivates. The changes do not a�ect Theorem 2.3.

Finally, if necessary we can ensure that the space is always O(m), for m the current number
of edges. To do this we maintain counts of the number of marked and unmarked heap elements.
Whenever the former exceeds the latter we discard all heaps and reconstruct the data structure
using Add edge operations. The reconstruction time is O(m), which is accounted for by charging
each marked edge O(1) time.

3 GW Clustering

This section de�nes and solves the merging minimum problem. The solution is then used to derive
an e�cient algorithm for GW clustering.

The merging minimum problem (MMP) concerns an undirected graph G where each edge e
has a real-valued cost c(e). We wish to process (on-line) a sequence of contraction operations on
G. Speci�cally the operation Merge(x1; x2; y; c

0) contracts vertices x1 and x2 to form a new vertex
y, assigning cost c0(e) to each edge e incident to y. The contraction discards parallel edges, and
for each vertex z only the smallest cost edge joining y and z is retained. Merge returns the edge
currently in G that has smallest cost.
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To make an e�cient solution possible the MMP is restricted to functions c0 that satisfy two
properties. First, c0(e) can be computed in O(1) time. To state the second property assume that
each vertex has a color, chosen from amongst O(1) possibilities. The color of a vertex originally
in G is given, and each Merge speci�es the color of the new vertex y. We assume a monotonicity
property that says c0 preserves the relative order of edges going to similarly colored vertices. More
precisely:

Monotonicity Property. For c the cost function before Merge(x1; x2; y; c
0), for any i 2 f1; 2g and

any two edges e; f joining xi to vertices of the same color, c(e) � c(f) implies c0(e) � c0(f).

We will solve the MMP in time O(n
p
m). The idea is to reduce the problem to DVMP on a

graph H having a small number of vertices (which we will call groups). Towards this end let k be a
parameter (whose value will be determined in the analysis). Let d(v) denote the degree of a vertex
v in the current graph G (v may be an original or contracted vertex). For a set of vertices S the
total degree of S is d(S) =

P
v2S

d(v).
We partition the vertices of G into sets called groups. A group that consists of one vertex is a

singleton. A group with total degree < k is short. We maintain this invariant:

MMP Invariant

(i) A nonsingleton group has total degree � 2k and all its vertices are of the same color.

(ii) Each color has at most one short group.

(ii) ensures that the total number of groups is O(m=k).
We maintain a graph H using DVMP. H has one node for each group. Hence there are O(m=k)

nodes. Two nodes g and g0 are joined by an edge corresponding to the edge in G of smallest cost
joining two vertices in groups g and g0. H does not have any parallel edges.

An internal edge of a (nonsingleton) group g is an edge with both ends in g. For each nonsin-
gleton group g we maintain int(g) as the internal edge of G with smallest cost.

Clearly the smallest cost edge in G is either some edge int(g) or the edge returned by Find min

on H. We now describe how H is maintained, i.e., how the groups and H are initialized and how
they are updated by Merge.

The initialization begins by partitioning V into groups: Each vertex of degree � k is a singleton.
Each remaining vertex has degree < k. Partition these vertices into groups that are maximal subsets
of like colored vertices of total degree at most 2k. This achieves MMP Invariant (ii).

For the rest of the initialization H starts as an empty graph. Then the following Build Step is
performed for each group g:

Build Step. If g is a nonsingleton, set int(g) to the internal edge of g with smallest cost. Ex-
ecute Add vertex(g). For every node h 6= g already in H, take vertices u 2 g and v 2 h such
that edge fu; vg exists and has cost c(u; v) as small as possible. Whenever fu; vg exists execute
Add edge(fg; hg) using cost c(u; v).

We turn to the algorithm for Merge(x1; x2; y; c
0). Let vertex xi belong to group gi. The reader

should bear in mind that there are several possibilities: We can have g1 = g2, or alternatively
g1 6= g2 with 0,1 or 2 of these groups being singletons. We proceed as follows.

Execute Delete vertex(gi) for i = 1; 2. Create a new singleton group g = fyg. Execute the
Build Step for g. To achieve the desired e�ciency we specify in more detail how each edge fu; vg
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of the Build Step is found. For i = 1; 2 let ei be the smallest cost edge of G joining xi and h. If gi
is a nonsingleton �nd ei by examining all the edges incident to xi. Otherwise (gi is the singleton
fxig) ei is the edge that previously joined gi and h in H. (To show this note that any two vertices
in h have the same color. By Monotonicity c0 preserves the relative order of edges from xi to h.)
Choose e 2 fe1; e2g so c0(e) is minimum. The Build Step adds edge fg; hg to H using cost c0(e).

Next we update H for the nodes remaining in groups gi: Delete xi from gi. For each g0 2
fg1; g2g with g0 still nonempty execute the Build Step for g0. Note that before the Merge g0 was a
nonsingleton and so had total degree � 2k. The Build Step computes int(g0) and the smallest edge
joining g0 to every other group by scanning all the edges incident to g0.

Finally we restore MMP Invariant (ii): If any color now has more than one short group combine
these to form maximal nonsingleton groups of total degree between k and 2k, plus possibly one
short group. Delete each of the original groups from H and execute the Build Step for each of the
new groups.

This completes the description of the algorithm. Now we compute the total time, using Theorem
2.3, choosing the value of k in the process. First consider initialization. We add O(m=k) nodes to
H. The edges of G are scanned in time O(m) and the graph H is constructed in time O(m).

Next consider a Merge. It performs O(1) Add vertex and Delete vertex operations. It does
O(m=k) Add edge operations, since H has that many nodes. To �nd the edges of H in the Build
Step it examines O(k) edges incident to nonsingleton groups, spending O(1) time on each of these
edges. (No extra work is done on edges incident to singleton groups.) Finally it spends O(m=k)
time for Find min, since H has that many nodes. Thus the total time for a Merge is O(1+m=k+k).
Choose k =

p
m to get time O(

p
m) for each Merge.

There are at most n merges in an MMP. Hence the total time is O(n
p
m).

Theorem 3.1 The MMP can be solved in time O(n
p
m). 2

We turn to GW clustering, starting with a brief review of the algorithm [11]. We are given an
undirected graph G = (V;E) with a cost function  : E ! R+. The algorithm maintains a \dual"
variable d(v) for each v 2 V . It also uses a variable t for \time" which advances monotonically. The
algorithm works by repeatedly merging vertices in G. So at any point in time, each v 2 V belongs
to exactly one current vertex of G. At any iteration each current vertex of G is either \active" or
\inactive"; we classify a vertex v 2 V as active or inactive depending on the status of its current
vertex. For vertices u; v 2 V adjacent in the given graph, edge fu; vg 2 E has \reduced cost"

b(u; v) = (u; v) � d(u) � d(v)

and \addition time"

a(u; v) = t+
b(u; v)

s(u) + s(v)

where t is the current time and the status s(x) equals 1 if vertex x is active else 0. The addition
time is in�nite if u and v are both inactive.

Each iteration of the clustering algorithm chooses the edge fu; vg with smallest addition time.
It advances time by � = a(u; v)� t, increases the dual d(v) of each active vertex v by �, and merges
the vertices containing u and v. (For some versions of the GW algorithm additional merges are
performed [12].)

To model this as an MMP assign each current vertex of G the color \active" or \inactive" as
appropriate. To de�ne edge costs for MMP let � be the largest given cost in the GW algorithm.
At all times de�ne edge costs by
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c(u; v) =

�
a(u; v) a(u; v) 6=1;
n�+ b(u; v) a(u; v) =1:

(1)

When the GW algorithm merges current vertices x1 and x2 into a new vertex y, the MMP executes
Merge(x1; x2; y; c

0), for c0 the new cost function de�ned by (1).
We show that with these de�nitions any algorithm for MMP correctly implements the GW clus-

tering algorithm. Consider any GW iteration and its corresponding operation Merge(x1; x2; y; c
0).

The argument consists of three observations.
First note that in each GW iteration the only addition times that change are for edges incident

to the new vertex y. (This uses the fact that the only vertices of V whose status can change in an
iteration are those belonging to the new vertex y.) This implies that the only MMP costs c(a; b)
that change are for edges incident to y (as required by MMP).

Next we verify the Monotonicity Property. Let x be x1 or x2. Let c (c0) be the MMP cost
function before (after) the merge. Take edges fx; y1g and fx; y2g, where y1 and y2 have the same
color and c(x; y1) � c(x; y2). The same color assumption means s(y1) = s(y2). Thus the assumed
inequality on c with (1) implies b(x; y1) � b(x; y2). This in turn implies c0(x; y1) � c0(x; y2).

Finally we must check that Merge returns the edge required by GW, i.e., the edge with smallest
addition time. An iteration of the GW algorithm that chooses edge fu; vg advances time by at
most (u; v). There are < n iterations [11]. Thus time in the GW algorithm is always < n�. This
precludes any edge fu; vg with in�nite addition time from achieving the minimum cost c(u; v) in
the MMP algorithm. So Merge correctly returns the edge with smallest addition time.

Theorem 3.2 The GW clustering algorithm can be implemented in time O(n
p
m). 2
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