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Abstract

An (α, β)-spanner of an unweighted graph G is a
subgraph H that approximates distances in G in the
following sense. For any two vertices u, v: δH(u, v) ≤
αδG(u, v) + β, where δG is the distance w.r.t. G.
It is well known that there exist (multiplicative)
(2k − 1, 0)-spanners of size O(n1+1/k) and that there
exist (purely additive) (1, 2)-spanners of size O(n3/2).
However no other (1, O(1))-spanners are known to
exist.

In this paper we develop a couple new techniques
for constructing (α, β)-spanners. The first result is a
purely additive (1, 6)-spanner of size O(n4/3). Our
construction algorithm can be understood as an eco-
nomical agent that assigns costs and values to paths
in the graph, purchasing affordable paths and ig-
noring expensive ones, which are intuitively well-
approximated by paths already purchased. This gen-
eral approach should lead to new spanner construc-
tions.

The second result is a truly simple linear
time construction of (k, k − 1)-spanners with size
O(n1+1/k). In a distributed network the algorithm
terminates in a constant number of rounds and has
expected size O(n1+1/k). The new idea here is pri-
marily in the analysis of the construction. We show
that a few simple and local rules for picking spanner
edges induce seemingly coordinated global behavior.

1 Introduction

An (α, β)-spanner of a graph G is a subgraph H such
that for all vertices u, v:

δH(u, v) ≤ α · δG(u, v) + β

When β = 0 this definition reverts to the multiplica-
tive α-spanner [PS89, PU89a]. In an (α, β)-spanner

∗Partially supported by the Future and Emerging Technolo-
gies programme of the EU under contract number IST-1999-

14186 (ALCOM-FT). Address: Max Planck Institut für Infor-

matik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany.
Email: {sbaswana,kavitha,mehlhorn,pettie}@mpi-sb.mpg.de.

†Supported by an Alexander von Humboldt postdoctoral

fellowship.

a single edge may be stretched by as much as α + β.
However the average stretch in a long path is as low
as α. We call a spanner additive if α = 1 and purely
additive if α = 1 and β = O(1).

Spanners (and related structures) are useful in
many contexts. They are the basis of space-efficient
routing tables that guarantee nearly shortest routes
[TZ01b, RTZ02, Cow01, CW04, PU89b], schemes
for simulating synchronized protocols in unsynchro-
nized networks [PU89a], parallel and distributed al-
gorithms for computing approximate shortest paths
[Coh98, Coh00, Elk01], and algorithms for construct-
ing so-called approximate distance oracles [TZ01a,
BS04].

Spanner constructions are to be evaluated along
three worst-case measures: approximation quality,
space, and construction time. One aims for small val-
ues of α and β, small size of the spanner, and effi-
cient construction, ideally a linear time construction.
Furthermore, since spanners have important applica-
tions in distributed networks it is desirable to have
the spanner construction itself be distributed.

Erdős [Erd63] conjectured that there exist graphs
with Ω(n1+1/k) edges and girth 2k+2, where n is the
number of vertices, k is an integer constant, and girth
is the length of the shortest cycle. Removing any edge
from such a graph increases the distance between its
endpoints from 1 to at least 2k + 1, which implies
that any (α, β)-spanner with α + β ≤ 2k must have
space Ω(n1+1/k). The girth conjecture is settled for
only k = 1, 2, 3, and 5 [Wen91].

1.1 Comparison with previous results
Althöfer et al. [ADD+93] were the first to discover an
O(n1+1/k)-size (2k − 1, 0)-spanner, which is optimal
assuming the girth conjecture. Their construction
took O(mn1+1/k) time, where m is the number of
edges. This time bound was improved several times,
most recently by Baswana and Sen [BS03], who
gave a randomized linear time (2k − 1, 0)-spanner
construction. Both [ADD+93, BS03] work on
weighted graphs. Better α-β tradeoffs are known for
unweighted graphs. Elkin and Peleg [EP01] exhibit



(α,β) Size Time Notes

(2k − 1, 0) O(n1+1/k) O(m) [BS03],[HZ96]
(k − 1, 2k − O(1)) O(n1+1/k) O(mn1−1/k) [EP01]

(1 + ε, 4) O(ε−1n4/3) O(mn2/3) [EP01]
(1 + ε, β(δ, ε)) O(βn1+δ) O(mnδ) [EP01, Elk01], δ < 1/2

(1, 2) O(n3/2) O(m
√

n) [EP01],[ACIM99]

Õ(n3/2) Õ(n2) [DHZ00]

(1, 2δ−1

n(1−δ)(dδ−1e−2)/(dδ−1e−1)) O(n1+δ) poly(n) [BCE03], δ < 1/2

(1, n1/3) O(n4/3) poly(n) [BCE03]

(k, k − 1) O(n1+1/k) O(m) this paper

(1, 6) O(n4/3) O(mn) this paper
(1, n1−3δ) O(n1+δ) poly(n) this paper, δ < 1/3

Figure 1: State-of-the-art in (α, β)-spanners. Some slower constructions are omitted. The parameters k, δ, ε
are positive; k is an integer and both δ, ε are reals.

a (k − 1, 2k − O(1))-spanner1 of size O(n1+1/k)
and Baswana and Sen [BS04] give a linear time
constructible (2, 1)-spanner of size O(n3/2).

The first — and to date, only — purely ad-
ditive spanner was discovered by Aingworth et al.
[ACIM99]. They showed that every graph has
a polynomial-time constructible (1, 2)-spanner with
size Õ(n3/2). This construction was slightly improved
by Dor et al. [DHZ00] and Elkin and Peleg [EP01].
Bollobás et al. [BCE03] showed that there exist a
spectrum of additive spanners where the error de-
pends on n. For space bound O(n1+1/k) the [BCE03]
construction gives a (1, 2kn1−2/k)-spanner. (How-
ever when k is not an integer the additive stretch is
slightly more than 2kn1−2/k.) Elkin and Peleg [EP01]
proved that for any superlinear size bound there ex-
ist almost purely additive spanners. In particular,
there are (1 + ε, β)-spanners of size O(βn1+δ), where
β(δ, ε) is independent of n but grows superpolyno-
mially in δ−1 and ε−1. In [EP01] it is also shown
that there are (1 + ε, 4)-spanners of size O(ε−1n4/3).
Elkin and Zhang [Elk01, EZ04] went on to develop a
distributed (1+ ε, β)-spanner construction that takes
O(nδ) rounds and O(mnδ) communication.

We remark that all the above constructions take
polynomial time and that only the [BS03, BS04]
constructions take linear time. An unpublished
algorithm of Halperin and Zwick [HZ96] also takes
linear time.

Figure 1 summarizes our results and puts them
into context.

Our Results. In Section 2 we present a con-
struction for (1, 6)-spanners of size O(n4/3), which

1With numerous refinements for odd k, even k, and longer

distances.

is the first purely additive spanner of size o(n3/2).
In general terms our algorithm defines cost and value
functions over paths in the graph, which are w.r.t. our
spanner under construction. We examine each of the
(

n
2

)

shortest paths in turn. If the value of the path ex-
ceeds its cost we buy the path (include it in the span-
ner). We show that if the algorithm refuses to buy a
path then the existing spanner already approximates
the distance between its endpoints, to an additive
error of 6. We are optimistic that this framework,
based on costs, values, and affordable paths, could
lead to further purely additive spanners. We are al-
ready able to show that our method gives substan-
tially better additive spanners. By adjusting the path
valuation function (and other parameters) our (1, 6)-
spanner construction produces (1, n1−3δ)-spanners of
size O(n1+δ), for any δ < 1/3. This is a polynomial
improvement over the [BCE03] construction, whose

additive stretch is never better than 2δ−1

n1−2δ.
In Section 3, we give a simple linear-time con-

struction for (k, k − 1)-spanners of size O(n1+1/k),
which, assuming the girth conjecture, cannot be uni-
laterally improved. Our construction uses only lo-
cal adjacency information and computes no distances
or shortest paths whatsoever. In a synchronized dis-
tributed network the algorithm terminates in a con-
stant number of rounds (O(k)), has linear commu-
nication complexity, and produces a spanner whose
expected size is O(n1+1/k). This distributed imple-
mentation makes our algorithm well suited to the ap-
plications cited earlier. Perhaps the most interesting
feature of our (k, k − 1)-spanner construction is how
it guarantees good approximate distances, even for
distant vertices, using only simple and loosely coor-
dinated rules for deciding which edges to put in the



spanner.

1.2 Variations on Spanners Spanners can be
generalized to directed graphs by defining δ(u, v)
to be the roundtrip distance from u to u via v.
Roundtrip spanners were studied by Cowen and Wag-
ner [CW04] and Roditty et al. [RTZ02]. An (α, β)-
Steiner spanner is just like an (α, β)-spanner with
two differences: it need not be a subgraph of the
original graph and it can have weighted edges, even
if the original graph is unweighted. (Cohen’s [Coh00]
hop sets are a variation on Steiner spanners.) Dor
et al. [DHZ00] constructed a (1, 4)-Steiner span-
ner with size O(n4/3). Bollobás et al. [BCE03] de-
fined a D-(Steiner) preserver as a (not necessarily)
subgraph that preserves exact distances for all pairs
of vertices at distance at least D in the original
graph. They proved tight bounds of Θ(n2/D) on
the size of D-(Steiner) preservers, with slightly bet-
ter results for directed Steiner preservers. Thorup
and Zwick [TZ01a] introduced the idea of an approx-
imate distance oracle, a compact data structure of
size O(n1+1/k) that answers distance queries in con-
stant time to within a multiplicative error of 2k − 1.
Baswana and Sen [BS04] gave faster constructions of
distance oracles in unweighted graphs. As a natural
byproduct, the constructions of [TZ01a, BS04] com-
pute (2k−1, 0)-spanners of size O(n1+1/k). One obvi-
ous use for spanners is computing (α, β)-approximate
shortest paths in sub-linear time (simply run BFS
on an (α, β)-spanner rather than the original graph.)
This method can be improved when solving certain
all-pairs approximate shortest path problems; see
[DHZ00, CZ01, BGS04].

2 A New Purely Additive Spanner

Our construction for (1, 6)-spanners works in two
phases, the first of which involves standard tech-
niques. In phase one we choose a collection of dis-
joint vertex sets C = {C1, C2, . . . , Cn2/3}; each Ci is
a cluster with a center vertex that is adjacent to all
other vertices in its cluster. The set H0 (which is a
subset of our spanner) consists of a radius-one span-
ning tree of each cluster and all edges incident to
unclustered vertices. In Section 3 we give two linear
time algorithms for constructing C and H0 such that
|H0| ≤ n4/3 + n. Let C(v) be the cluster containing
v, if any, and if D is a subgraph let C(D) be the set
of clusters incident to any vertex in D.

Notice that since H0 contains all edges incident
to unclustered vertices we can focus our attention on
shortest paths whose endpoints are both clustered.
The objective of phase two is to show that on any
shortest path P = 〈u0, . . . , uq〉, where both u0 and

uq are clustered, there exists a short path Q in the
spanner from u0 to uq that passes through some
C ∈ C(P ). We guarantee, in particular, that the
portions of Q from C(u0) ; C and C ; C(uq) are
no longer than their counterparts in P . Property 2.1
formalizes this idea, and Lemma 2.1 states that any
subgraph with this property is a (1, 6)-spanner.

Property 2.1. A subgraph H ⊇ H0 is contented if
for any two clustered vertices u0, uq, there exists a
shortest path P = 〈u0, . . . , uq〉 in G and a C ∈ C(P )
such that:

δH(C(ui), C) ≤ δP (C(ui), C) for i = 0 and i = q

Lemma 2.1. Any contented subgraph of G is also a
(1, 6)-spanner of G.

Proof. Let H be the contented subgraph, u0 and uq

be two arbitrary vertices and let P = 〈u0, . . . , uq〉
be the shortest path between them. We can assume
w.l.o.g. that both u0 and uq are clustered; otherwise
one of (u0, u1) or (uq−1, uq) are in H0 ⊆ H and we
could instead consider a path shorter than P . So,
assuming u0 and uq are clustered, let C ∈ C(P ) be
the cluster guaranteed by the contentedness of H —
see Figure 2. We can bound the distance from u0 to
uq in H as:

C(u0) C C(uq)

u0 u1 uq−1 uq

Figure 2: The clusters C(u0), C, and C(uq) indicated
by ovals. The shortest inter-cluster paths in H are
indicated by dashed curves.

δH(u0, uq)

≤ diamH(C(u0)) + δH(C(u0), C) + diamH(C)

+ δH(C, C(uq)) + diamH(C(uq))

≤ 2 + δP (C(u0), C) + 2 + δP (C, C(uq)) + 2

≤ δG(u0, uq) + 6

where diamH(D) represents the maximum distance
between vertices in D in the graph H . The second
inequality follows directly from Property 2.1.

In phase two we find a subgraph H0∪P1∪P2∪· · ·∪
Pk where P1, . . . , Pk are the purchased shortest paths.
The phase two algorithm is very simple. We evaluate
some shortest path between each pair of vertices, and,



based on certain evolving cost and value functions, we
purchase the path if twice its value exceeds its cost.
See Figure 3.

The following cost and value functions are defined
with respect to an edge set H , which is our spanner
under construction.

value(D) = |{{C, C ′} ⊆ C : δD(C, C ′) < δH(C, C ′)}|

cost(D) = |D\H |

Notice in the definition of value(D) that δD(C, C ′) =
∞ unless both C and C ′ intersect D.

In other words, the cost of a path is the number
of its edges not already included in the spanner. The
value function represents, roughly, how much the
inter-cluster distances would be improved if P were
included in the spanner.

Our algorithm for Phase 2 is given in Figure
3. Let P be a collection of shortest paths between
all pairs of vertices with the following restrictions.
If P ∈ P then all subpaths of P are also in P.
Furthermore, for every three consecutive vertices
〈u1, u2, u3〉 ⊆ P ∈ P, if C(u1) = C(u3), then u2 is the
center of C(u1). (This helps to reduce the number of
non-H0 edges in P since 〈u1, u2, u3〉 ⊆ H0.)

H := H0 {edges chosen in clustering}
For each path P ∈ P

If 2 · value(P ) ≥ cost(P )
then H := H ∪ P {purchase the path P }

Return H

Figure 3: The Phase 2 algorithm. P is a set of
(

n
2

)

shortest paths between all pairs of vertices.

The remainder of the proof is structured as
follows. In Lemma 2.2 we argue that in the sum
of values of paths purchased, the number of times
any cluster pair is counted is bounded by a constant.
This implies that the sum of values is O(n4/3), since
|C| = n2/3, and by our criterion for purchasing
paths, that the sum of costs is also O(n4/3). In
Lemma 2.3 we relate the cost of a path to the
number of clusters intersecting it. Finally, and most
importantly, Lemma 2.4 shows that if any shortest
path is too expensive to be purchased then the
existing spanner edges already guarantee a path with
additive stretch at most 6.

In the following Lemmas value(P ) and cost(P )
represent the value and cost of P at the time it was
considered in Line 3 of Figure 3.

Lemma 2.2.
∑

i≥1 value(Pi) ≤ 5
(

|C|
2

)

< 5
2n4/3

Proof. Let Hi = H0∪P1∪· · ·∪Pi be the spanner after
purchasing i shortest paths. Let C, C ′ be two arbi-
trary clusters and let P (C, C ′) = {Pj1 , Pj2, . . . , Pjr}
be those paths such that

δPji
(C, C ′) < δHji−1

(C, C ′)

By the definition of the value function
∑

i≥1 value(Pi) =
∑

{C,C′}⊆C |P (C, C ′)|. Since Pj1

is a shortest path in G we have that: δPj1
(C, C ′) ≤

diamG(C) + δG(C, C ′) + diamG(C ′) ≤ δG(C, C ′) + 4.
This implies that |P (C, C ′)| ≤ 5 since δG(C, C ′) ≤
|Pjr| < |Pjr−1

| < · · · < |Pj1 | ≤ δG(C, C ′) + 4.

Lemma 2.3. If P ∈ P then either |C(P )| = 1 or there
exists a subpath P ′ ⊆ P such that C(P ′) = C(P ) and
cost(P ′) ≤ 2|C(P ′)| − 3

Proof. Let P = 〈u0, . . . , uq〉 and let C0, C1 ∈ C(P )
be the (distinct) first and last clusters intersecting
P . Define P ′ as the minimal subpath of P such that
C(P ′) = C(P ). (This means that if C0 or C1 have
two or three vertices in common with P then only
the innermost one appears in P ′.) The only edges in
P ′ that might not be in H ⊇ H0 are those between
clustered vertices. Furthermore, if three consecutive
vertices u1, u2, u3 belong to the same cluster then
〈u1, u2, u3〉 ⊆ H0. Thus the total number of inter-
cluster edges and intra-cluster edges that are not in
H ⊇ H0 are bounded by |C(P ′)| − 1 and |C(P ′)| − 2.

Lemma 2.4. H is contented.

Proof. Let P = 〈u0, . . . , uq〉 ∈ P be the shortest path
from u0 to uq in G. By the statement of Property 2.1
we can dispense with several trivial cases and assume
that P was not purchased in phase two, that both
u0 and uq are clustered and that C(u0) 6= C(uq). Let
P ′ ⊆ P be the subpath guaranteed by Lemma 2.3.
The case when P ′ is included in H is also trivial.
Thus we have the following inequalities:

2 · value(P ′) < cost(P ′) ≤ 2 · |C(P ′)| − 3(2.1)

where the first inequality follows from the fact that P ′

was not included in H and the second from Lemma
2.3. Define A as the set of cluster pairs:

A =

{

{C, C ′} :
C ∈ {C(u0), C(uq)}, C ′ ∈ C(P )
and δP ′ (C, C ′) < δH(C, C ′)

}

By the definition of A we have |A| ≤ value(P ′) and by
the inequalities of Eqn. 2.1 value(P ′) ≤ |C(P ′)| − 2.
Notice that the maximum number of cluster pairs
counted by A is 2 |C(P ′)| − 3. This means that for at
least |C(P ′)|−1 of these cluster pairs, their distance in



the spanner is no worse than their distance in P ′. By
the pigeonhole principle there must be some cluster
C ′′ ∈ C(P ′) = C(P ) satisfying both

δH(C(u0), C
′′) ≤ δP ′ (C(u0), C

′′)

and

δH(C ′′, C(uq)) ≤ δP ′ (C ′′, C(uq))

Lemma 2.5. |H | < 6 · n4/3 + n

Proof. One can easily see that |H | = |H0| +
∑

i≥1 cost(Pi). By construction we have |H0| <

n4/3 + n. It follows from Lemma 2.2 that:
∑

i cost(Pi) ≤ 2 · ∑i value(Pi) < 5 · n4/3

Theorem 2.1. Given any graph on n vertices and
m edges, a min{(1, 6), (1 + ε, 4)}-spanner of size
O(ε−1n4/3) can be constructed in O(mn) time.

Proof. Lemmas 2.1, 2.4, and 2.5 establish that H is a
(1, 6)-spanner of the desired size. By augmenting H
with a shortest path between every two clusters C, C ′

such that δG(C, C ′) = O(1/ε) we obtain a (1 + ε, 4)-
spanner with O(ε−1n4/3) edges. (This is roughly
the same construction given in [EP01].) We now
turn to an efficient construction algorithm. Phase
one (clustering) takes linear time. We construct the
set of shortest paths P using n BFS computations,
which takes O(mn) time. Phase two, the way it is
stated in Figure 3, is much too slow. The bottleneck
is evaluating value(P ) and maintaining the exact
distances in H between all pairs of clusters. We
maintain instead the following upperbound δ̂ on the
inter-cluster distances:

δ̂(C, C ′) = min
i

{

δPi(C, C ′) :
Pi = 〈u0, . . .〉 and
C = C(u0)

}

where i ranges over all paths already included in H .
Rather than evaluate the value function, which is
very expensive, we refer to value∗. Let P = 〈u0, . . .〉.
When C(u0) does not exist value∗(P ) = 0. In general,

value∗(P )

=
∣

∣

∣
{C ∈ C(P ) : δP (C(u0), C) < δ̂(C(u0), C)}

∣

∣

∣

The value∗(〈u0, . . . , uq〉) function can be evaluated in
O(q) time and in O(1) time if value∗(〈u0, . . . , uq−1〉)
is given. (Notice that value∗ is sensitive to the
direction of the path.) In Phase 2, the criterion
for adding P to H is 4 · value∗(P ) ≥ cost(P )
rather than 2 · value(P ) ≥ cost(P ). (This modi-
fied algorithm guarantees that |H | < 11n4/3 rather

than 6n4/3. The proof that this algorithm re-
turns a contented subgraph is similar to that given
above. The proof concludes by showing that if P =
〈u0, . . . , uq〉 is not selected for inclusion in H then
both value∗(〈u0, . . . , uq〉) and value∗(〈uq, . . . , u0〉)
are strictly less than |C(P )| /2, which implies by the

pigeonhole principle that δP (C, C ′) ≥ δ̂(C, C ′) ≥
δH(C, C ′) for both C ∈ {C(u0), C(uq)} and some
C ′ ∈ C(P ).) We can implement the modified algo-
rithm in O(n2) time by performing a DFS traversal
of the BFS tree rooted at each vertex. The value∗(P )
function can be evaluated in constant time because
P is an extension of a previously considered shortest
path, and if P is to be included in H , updating the δ̂
function can be done in O(value∗(P )) time, which is
O(n4/3) overall.

Our (1, 6)-spanner construction can be tweaked
to give an additive (1, n1−3δ)-spanner of size O(n1+δ),
for any δ < 1/3. Rather than choosing n2/3 clusters
we choose n1−δ. We use the same cost function but
substitute value′(P ) = n3δ−1 · value(P ) for the value
function. The Phase two construction algorithm is
the same, except that H is initialized to include all
edges chosen in Phase one (H0) plus any muliplicative
spanner of size O(n1+δ). One can easily show the
size of the resulting spanner to be O(|H0| + n3δ−1 ·
(

C
2

)

) = O(n1+δ). Proving the additive stretch is
somewhat more complicated. Let P = 〈u, . . . , v〉 be
a path not purchased by the algorithm and let P ′

(resp. P ′′) be the prefix of P (suffix of P ) containing
exactly n1−3δ clusters. We show the existence of
three not necessarily distinct clusters C ′ ∈ C(P ′), C ∈
C(P ), C ′′ ∈ C(P ′′) such that

δH(u, C ′) ≤ δP (u, C ′) + O(n1−3δ)

δH(C ′, C) ≤ δP (C ′, C)

δH(C, C ′′) ≤ δP (C, C ′′)

δH(C ′′, v) ≤ δP (C ′′, v) + O(n1−3δ)

where the first and last inequalities follow because
both cost(P ′) and cost(P ′′) are O(n1−3δ) and H
includes a multiplicative spanner.

3 A Simple (k, k− 1)-Spanner in Linear Time

Before presenting our (k, k− 1)-spanner construction
we show how to construct (2k − 1, 0)-spanners in
deterministic linear time.

The input graph is G = (V, E). For vertex sets
C and C ′, define E(C, C ′) = (C × C ′) ∩ E(G) as
the set of edges from C to C ′. If C is a vertex it
is treated as a singleton set. A cluster is simply a
set of vertices and a clustering is a set of clusters.



A vertex is (un)clustered in C if it appears (does
not appear) in some cluster of C. For a clustered
vertex u, denote by C(u) any cluster containing u
in C. The diameter (resp., radius) of a subgraph is
the maximum distance (half the maximum distance)
between any two vertices in that subgraph. A vertex
is adjacent to a cluster if there is an edge connecting
it to a vertex in the cluster.

Our constructions in this section are based on
a set of k + 1 clusterings, {{v} : v ∈ V (G)} =
C0, C1, . . . , Ck = ∅, where |Ci| ≤ n1−i/k. Below,
we give two methods for constructing appropriate
sequences of clusterings. The edge set of our (2k−1)-
spanner S is defined by the following two rules:

Rule R1. For each cluster C ∈ Ci, there exists a tree
in S that spans C and has radius i.

Rule R2. For each vertex v that is unclustered in Ci

and each cluster C ∈ Ci−1 adjacent to v, some
edge from E(v, C) appears in S.

The construction of Theorem 3.1 is slightly
weaker than that of [HZ96]; however it is the starting
point for our (k, k − 1)-spanner.

Theorem 3.1. A (2k − 1)-spanner with size
O(kn1+1/k) can be constructed in O(km) determin-
istic time.

Proof. (Sketch) We first prove that Rules R1 and R2
give a (2k − 1)-spanner; we then prove the size and
time bounds. Let (u, v) be an arbitrary edge in the
original graph. If δS(u, v) ≤ (2k − 1)δG(u, v) then
S is clearly a (2k − 1)-spanner. Let ` be minimum
such that either u or v was unclustered in C` and
w.l.o.g. suppose it is u. By Rule R2 there must be
an edge in S from u to C`−1(v) — call it (u, w) —
and by Rule R1 there must be a path in S from
w to v of length at most 2(` − 1), twice the radius
of C`−1(v). Since ` ≤ k it follows immediately that
δS(u, v) ≤ 2k − 1.

Given the clustering Ci we show how to compute
Ci+1 such that the number of edges added to the
spanner due to Rules R1 and R2 are at most n
and n1+1/k, resp. (This construction is a simplified
version of one described by Elkin [Elk04].) Initially
Ci+1 = ∅. We define the priority of a cluster
C ∈ Ci to be the number of adjacent vertices
that are unclustered w.r.t. Ci+1. We repeatedly
choose a cluster C ∈ Ci with maximum priority. If
priority(C) ≥ n(i+1)/k we add a new cluster to Ci+1

consisting of C and all unclustered vertices adjacent
to C. (If C has radius i then the cluster added to
Ci+1 clearly has radius i+1.) It follows that |Ci+1| ≤

n1−(i+1)/k and that the number of edges included in
the spanner due to Rule R2 is

∑

C∈Ci
priority(C),

which is at most |Ci| (n(i+1)/k − 1) < n1+1/k. The
number of edges added due to Rule R1 is at most the
number of clustered vertices in Ci+1, i.e. at most n.
The clustering Ci+1 can easily be generated in linear
time using a priority queue consisting of n buckets.

The randomized construction of [BS03] con-
structs the clusterings in an even simpler manner.
Rather than carefully select clusters from Ci for in-
clusion in Ci+1, we randomly sample all clusters from
Ci with probability n−1/k. The alternative (2k − 1)-
spanner construction based on this method is given
in Figure 4. With this algorithm the expected size of
the spanner is O(kn1+1/k).

We next improve our (2k − 1)-spanner construc-
tion to obtain a (k, k − 1)-spanner. Until now all
spanner edges connected unclustered vertices to clus-
ters. We will now add edges connecting clusters of
one clustering to clusters of another clustering.

Rule R3. For each i with 0 ≤ i ≤ k−1 and for each
pair of adjacent clusters C, C ′ with C ∈ Ci and
C ′ ∈ Ck−1−i, some edge from E(C, C ′) appears
in S.

Rule R4. For each i ≥ k/2 and each pair of adjacent
clusters C, C ′ with C ∈ Ci and C ′ ∈ Ci−1, some
edge from E(C, C ′) appears in S.

The number of edges included due to Rule R3 is
bounded by n1−i/kn1−(k−1−i)/k = n1+1/k, for each
i. Similarly, at most n1−i/kn1−(i−1)/k = n2−2i/k+1/k

edges are included due to R4, which is at most
n1+1/k since i ≥ k/2. Our entire (k, k − 1)-spanner
construction is given in Figure 5. It consists of just
those edges included by Rules R1–R4.

(R1–2) Compute a (2k − 1)-spanner S (det. or
randomized construction)

(R3) Add to S one edge from E(C, C ′) for each
adjacent pair C ∈ Ci and C ′ ∈ Ck−1−i,
for i from 1 to k − 1

(R4) Add to S one edge from E(C, C ′) for each
adjacent pair C ∈ Ci, and C ′ ∈ Ci−1,
for i from dk/2e to k − 1

Figure 5: A simple linear time algorithm for con-
structing a (k, k − 1)-spanner

Implementing Rules R3 and R4 takes linear time
for any fixed i. Once it is proved that Rules R1–R4



Initially S = ∅ and C0 = {{v} : v ∈ V (G)}

For i from 1 to k

– Let Ci be sampled from Ci−1 with prob. n−1/k (If i = k let Ck = ∅)
– For each vertex v (concurrently):

(R1) If v is adjacent to some C ∈ Ci, add v to C and add some edge of E(v, C) to S.

(R2) Otherwise, add to S some edge from E(v, C), for each C ∈ Ci−1 adjacent to v.

Return the (2k − 1)-spanner S

Figure 4: A randomized (2k − 1)-spanner construction.

yield a (k, k − 1)-spanner we can conclude with the
following theorem.

Theorem 3.2. A (k, k − 1)-spanner of size
O(kn1+1/k) can be computed in O(km) deterministic
time.

We now show that S is a (k, k − 1)-spanner. To
simplify the exposition we assume that k is odd, and
let t = (k−1)/2. The case of even k is similar and will
be treated in the full version of this paper. We need
some more definitions. Call a vertex i-(un)clustered
if it appears (does not appear) in clustering Ci. The
center of a cluster C ∈ Ci is a vertex c ∈ C such that
the distance from c to any other vertex in C is at
most i, the radius of C. If v is i-clustered let ci(v) be
the center of Ci(v).

Let us first indicate our overall proof strat-
egy. In analyzing the stretch of a shortest path
〈u0, u1, . . . , uq〉 we imagine a (k + 1) × (q + 1) ma-
trix where the columns correspond to vertices and
the rows to clusterings. The (i, j)th matrix entry
is marked if uj is i-clustered. Clearly Ck’s row is
totally unmarked and C0’s row is totally marked.
However the rest of the array can be arbitrary. A
particularly easy case is when all of the ui’s are
t-clustered. We obtain a path from u0 to uq via
ct(u0), ct(u1), . . . , ct(uq), which, in the array repre-
sentation, is represented as a straight line through
Ct’s row. In general we have to use clusters with ra-
dius larger than t, though to establish a multiplicative
stretch of k we cannot do this too often. We show,
using an inductive argument, that there always exists
a spanner path of the proper length that, in the array
representation, is composed of a sequence of zig-zags
like the one depicted in Figure 7. We achieve an over-
all multiplicative stretch of k by perfectly balancing
detours and shortcuts corresponding to the diagonals
above and below Ct’s row.

The proof makes extensive use of the following

notation.

fi(v) =

{

v if v is i-unclustered

ci(v) if v is i-clustered

ri(v) =

{

0 if v is i-unclustered

i if v is i-clustered

It follows from the definitions that δS(v, fi(v)) ≤
ri(v). Let us omit the subscript S and refer to δS as
δ. We will prove the following theorem by induction
for any path 〈u0, ..., uq〉 in G.

Theorem 3.3. δ(u0, ft(ui)) ≤ ki + rt(ui)

Observe that Theorem 3.3 immediately implies
that S is a (k, k − 1)-spanner. If uq is t-clustered
then there is a path of length kq+t from u0 to ct(uq).
Together with the path from ct(uq) to uq of length at
most t, we have a path of length kq +2t = kq + k− 1
from u0 to uq in S. If uq is t-unclustered then
ft(uq) = uq and rt(uq) = 0, implying a path of length
kq from u0 to uq.

We now prove Theorem 3.3. The statement is
true for i = 0 since δ(u0, ft(u0)) ≤ rt(u0). For the
induction step, assume i > 0 and δ(u0, ft(us)) ≤
ks + rt(us) for all s < i. We distinguish cases
according to which of ui−1 and ui are t-clustered.
If ui−1 is t-unclustered then we have ft(ui−1) = ui−1

and rt(ui−1) = 0, which means that δ(u0, ui−1) ≤
k(i − 1). Since ui−1 is t-unclustered it also follows
that δ(ui−1, ui) ≤ 2t− 1 — see the proof of Theorem
3.1. Hence,

δ(u0, ft(ui))

≤ δ(u0, ui−1) + δ(ui−1, ui) + δ(ui, ft(ui))

≤ k(i − 1) + (2t − 1) + rt(ui)

≤ ki + rt(ui)



Similarly, if both ui−1 and ui are t-clustered then, by
Rule R3, S contains an edge between Ct(ui−1) and
Ct(ui) since t = k−1− t. So there is a path of length
2t + 1 = k between ct(ui−1) and ct(ui) in S. Again
we have δ(u0, ct(ui)) ≤ ki + t using the induction
hypothesis that δ(u0, ct(ui−1)) ≤ k(i − 1) + t.

We now come to the final and most interest-
ing case: ui−1 is t-clustered and ui is t-unclustered.
Consider the (k + 1) × (q + 1) table M where rows
represent clusterings and columns represent the ver-
tices u0, . . . , uq. The entries of M are 0 or 1 where
M [`, j] = 0 means that vertex uj is `-unclustered and
M [`, j] = 1 means that vertex uj is `-clustered, where
0 ≤ ` ≤ k and 0 ≤ j ≤ q. Note that row 0 of M con-
sists of only 1’s since each vertex is a singleton cluster
in C0. We are considering the case that M [t, i−1] = 1
and M [t, i] = 0.
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.

. . . . . . .

0

0

0

000

1

11

uiui−j

t:

t − j:

Figure 6: The Table M . The circled 0 − 1 pattern is
very useful to us.

We want to claim the existence of a vertex ui−j

such that M [t− j, i− j] = 1 while M [t, i], M [t−1, i−
1], ..., M [t−j+1, i−j+1] are all 0. While following the
diagonal sequence of 0’s in the table M starting from
the location M [i, j], if we do not reach the starting
vertex u0, then we have to meet such a ui−j since the
bottom row of the table M consists of all 1’s. If we
reach the zeroth column before finding a 1 we have
proved our induction step for i because every vertex
between u0 and ui was `-unclustered for some ` ≤ t.
So without loss of generality, let us assume that such
a ui−j exists. Then the following lemma holds.

Lemma 3.1. δ(ct−j(ui−j), ui) ≤ kj − (t − j) − σ(j),

where σ(j) =
∑j

l=1 2l.

(Proofs of Lemmas 3.1, 3.2, 3.3 are omitted.)
Note that the above lemma says that we have a path
from ui to ct−j(ui−j) that is shorter, by t− j + σ(j),
than we were already prepared to pay for. We
will use these savings to pay for a path from u0 to

ct−j(ui−j) that is longer than we could ordinarily
afford. A remarkable feature of our analysis is that we
amortize over paths of length Ω(k2) yet the spanner
construction itself never makes decisions within this
wide a horizon.

We now need to exhibit a path in S from
ct−j(ui−j) to u0 whose length is no more than k(i −
j)+(t−j)+σ(j). We will first show a path in S from
ct−j(ui−j) to ft+j(ui−j−1), using Rules R1–3, then
show another path from ft+j(ui−j−1) to ft(ui−2j−1),
which uses Rules R1–2 and R4 (see Figure 7). Finally,
we invoke the induction hypothesis for i − 2j − 1.

.

.

.

.

.

.

Each x is a 0/1

0

0

1

x

x

x

ui

t:

t + j:

t − j:

ui−2j−1 ui−j−1

Figure 7: The sub-paths that make up our path from
ui to u0 in S.

Lemma 3.2. Let (u, v) ∈ E be an edge and suppose
that v is (t − j)-clustered. Then

δ(ft+j(u), ct−j(v)) ≤ k + 2j + (t − j) − rt+j(u)

Lemma 3.3. Let 〈us, ..., us+j〉 be a path in the graph
G. Then

δ(ft(us), ft+j(us+j))

≤ kj + rt+j(us+j) − rt(us) + σ(j − 1)

Using Lemmas 3.2 and 3.3 it is now easy to
complete our proof. We have the desired vertex ui−j.
Lemma 3.1 provides us with a path of length at most
kj − (t − j) − σ(j) between ui and ct−j(ui−j) in
S, Lemma 3.2 provides us with a path of length at
most k + 2j + (t − j) − rt+j(u) between ct−j(ui−j)
and ft+j(ui−j−1) in S, and Lemma 3.3 with s =
i − 2j − 1 provides us with a path of length at most
kj + rt+j(ui−j−1) − rt(us) + σ(j − 1) from ft(us) to



ft+j(ui−j−1). In summary:

δ(ct−j(ui−j), ui) ≤ kj − (t − j) − σ(j)(3.2)

δ(ft+j(ui−j−1), ct−j(ui−j))(3.3)

≤ k + 2j + (t − j) − rt+j(ui−j−1)

δ(ft(ui−2j−1), ft+j(ui−j−1))(3.4)

≤ kj + rt+j(ui−j−1) − rt(ui−2j−1) + σ(j − 1)

So, adding Inequalities 3.2–3.4 and using σ(j − 1) +
2j = σ(j), we get that there is a path of length
at most k(2j + 1) − rt(s) from ft(us) to ui where
s = i−2j−1. We know from the induction hypothesis
that there is a path of length at most ks+ rt(s) from
u0 to ft(us). So, we have a path of length at most
ki from u0 to ui, which proves our induction step
because we are in the case where ft(ui) = ui and
rt(ui) = 0.

Note that we have made the assumption that
i − 2j − 1 ≥ 0, which is always true when i ≥ k.
However, we did not explicitly consider the possibility
that ui−j = u0, or that ui−j−1 = u0, or that before
we came to ui−2j−1 we met the starting vertex. It is
easy to check that these three cases can be handled
as corollaries to, respectively, Lemmas 3.1, 3.2, and
3.3.

3.1 Implementation in a Distributed Net-
work Rules R3 and R4 of our algorithm (Figure 5)
can be executed in O(k) rounds of communication
in a distributed network, and, using the randomized
algorithm from Figure 4, Rules R1 and R2 can also
be executed in O(k) rounds. See the appendix for a
detailed proof of Theorem 3.4.

Theorem 3.4. In a synchronized distributed net-
work G, a (k, k − 1)-spanner of G with expected size
O(kn1+1/k) can be constructed in O(k) rounds of
communication. The total message volume is O(k2m)
and the maximum message length is O(n1/2+1/2k).

4 Further Research

The main existential question in the field of spanners
is whether, for any given size bound O(n1+δ), there
exist purely additive (1, β(δ))-spanners and if not,
which additive spanners do exist? For δ < 1/3
our additive spanners are the best known, but have
additive stretch polynomial in n — see Figure 1.
In this paper we introduced a general construction
technique that might help to resolve the question of
purely additive spanners.

In Section 3 we addressed the problem of com-
putationally efficient spanner constructions and gave
partial answers to two problems of practical signifi-
cance: what is the highest quality spanner that can

be constructed in linear time? and which spanners
can be constructed distributively in O(1) rounds?
It seems implausible that any purely additive or
(1+ ε, β)-spanners admit such efficient constructions.

Lastly we would like to highlight an issue relating
to Erdős’s girth conjecture [Erd63]. We are able to
show, by applying the algorithm of Figure 4 with
altered sampling probabilities, that there exists a
o(n1+1/k)-sized (2k − 1)-spanner for any graph with
minimum degree Ω̃(n1/k). That is, the girth bound
does not apply to such graphs. In general, what is
the optimal size α-spanner for arbitrary graphs of
degree at least d?
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Appendix: Proof of Theorem 3.4

Before proving Theorem 3.4 let us elaborate a little
on our model of distributed computation. In a
synchronized distributed network the nodes of the
network solve a problem by exchanging messages in
discrete rounds. In each round one message may
be sent across each link in each direction. We are
interested in three measures: the number of rounds,
the maximum length of any message sent (measured
in units of O(logn) bits) and the total length of
all messages sent. Clearly any protocol requiring R
rounds, maximum message length L and total volume
V can be converted to one with parameters dRL/Ue,

U , and V , for any any U ≥ 1. That is, Theorem 3.4
can be adapted to any synchronized network with a
fixed maximum message length.
Theorem 3.4 In a synchronized distributed network
G, a (k, k − 1)-spanner of G with expected size
O(kn1+1/k) can be constructed in O(k) rounds of
communication. The total message volume is O(k2m)
and the maximum message length is O(n1/2+1/2k).

Proof. (Sketch) We compute the clusters
C0, C1, . . . , Ck = ∅ using the randomized algo-
rithm from Figure 4. Each vertex is the center of its
cluster in C0 = {{v} : v ∈ V (G)}. With probability
n−1/k each center in Ci declares itself to also be
a center in Ci+1. These random choices are made
before the first round of communication.

After Ci is computed every vertex tells its neigh-
bors whether it is clustered in Ci and if it is, the
identity of its center in Ci and the highest j ≥ i for
which that center is also a center in Cj . For each
vertex w that has a neighbor v already clustered in
Ci+1, w declares (w, v) to be a spanner edge (Rule
R1) and declares its center in Ci+1 to be that of v.
Every vertex w that did not become clustered in Ci+1

declares one edge from E(w, C) to be in the spanner
(Rule R2), for each C ∈ Ci adjacent to w. Rules R1
and R2 require k − 1 rounds of communication, plus
one more to let clustered vertices in Ck−1 inform their
neighbors of this fact. Each message sent so far has
unit length.

Once C0, . . . , Ck−1 are computed we implement
Rules R3 and R4. Consider Rule R3, a fixed i ≥ 0,
and a fixed cluster C ∈ C(k−1)/2−i.

2 Rule R1 has
created a tree T of spanner edges rooted at the
center of C. This tree is used to inform the center
of C of all incident clusters in C(k−1)/2+i, and for
each such cluster, one connecting edge. Once the
center decides which edges to select for Rule R3 it
broadcasts its choices back through T . The number
of rounds for Rule R3 is clearly O(k). The maximum
necessary message length (for fixed i) is |C(k−1)/2+i|
since duplicate edges connecting the same clusters
can be ignored. With high probability |C(k−1)/2+i| =

O(n1/2+1/2k−i/k). Summing over i ≥ 0 the maximum
message length is bounded by O(n1/2+1/2k). For even
k, i is always at least 1/2, so in this case the maximum
message length is O(

√
n). The total message volume

for Rule R3 is O(k2m) since each edge contributes k
units of message volume for each of k/2 values of i.
The implementation and analysis of Rule R4 is very
similar to R3.

2If k is odd then i is an integer. For even k, i is a half-

integer.


