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A HIERARCHY OF LOWER BOUNDS FOR SUBLINEAR ADDITIVE
SPANNERS\ast 

AMIR ABBOUD\dagger , GREG BODWIN\dagger , AND SETH PETTIE\ddagger 

Abstract. Spanners, emulators, and approximate distance oracles can be viewed as lossy com-
pression schemes that represent an unweighted graph metric in small space, say \~O(n1+\delta ) bits. There
is an inherent tradeoff between the sparsity parameter \delta and the stretch function f of the compres-
sion scheme, but the qualitative nature of this tradeoff has remained a persistent open problem. It
has been known for some time that when \delta \geq 1/3 there are schemes with constant additive stretch
(distance d is stretched to at most f(d) = d+O(1)), and recent results of Abboud and Bodwin show
that when \delta < 1/3 there are no such schemes. Thus, to get practically efficient graph compression
with \delta \rightarrow 0 we must pay superconstant additive stretch, but exactly how much do we have to pay?
In this paper we show that the lower bound of Abboud and Bodwin is just the first step in a hi-
erarchy of lower bounds that characterize the asymptotic behavior of the optimal stretch function
f for sparsity parameter \delta \in (0, 1/3). Specifically, for any integer k \geq 2, any compression scheme

using O(n
1+ 1

2k - 1
 - \epsilon 

) bits has a sublinear additive stretch function f : f(d) = d + \Omega (d1 - 
1
k ). This

lower bound matches Thorup and Zwick's (2006) construction of sublinear additive emulators. It also
shows that Elkin and Peleg's (1+\epsilon , \beta )-spanners have an essentially optimal tradeoff between \delta , \epsilon , and
\beta , and that the sublinear additive spanners of Pettie (2009) and Chechik (2013) are not too far from
optimal. To complement these lower bounds we present a new construction of (1 + \epsilon , O(k/\epsilon )k - 1)-

spanners with size O((k/\epsilon )hkkn
1+ 1

2k+1 - 1 ), where hk < 3/4. This size bound improves on the
spanners of Elkin and Peleg (2004), Thorup and Zwick (2006), and Pettie (2009). According to our
lower bounds neither the size nor stretch function can be substantially improved. Our lower bound
technique exhibits several interesting degrees of freedom in the framework of Abboud and Bodwin.
By carefully exploiting these freedoms, we are able to obtain lower bounds for several related com-
binatorial objects. We get lower bounds on the size of (\beta , \epsilon )-hopsets, matching Elkin and Neiman's
construction (2016), and lower bounds on shortcutting sets for digraphs that preserve the transitive
closure. Our lower bound simplifies Hesse's (2003) refutation of Thorup's conjecture (1992), which
stated that adding a linear number of shortcuts suffices to reduce the diameter to polylogarithmic.
Finally, we show matching upper and lower bounds for graph compression schemes that work for
graph metrics with girth at least 2\gamma + 1. One consequence is that Baswana et al.'s (2010) additive

O(\gamma )-spanners with size O(n
1+ 1

2\gamma +1 ) cannot be improved in the exponent.
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1. Introduction. Spanners [48], emulators [27, 59], and approximate distance
oracles [58] can be viewed as kinds of compression schemes that approximately encode
the distance metric of a (dense) undirected input graph G = (V,E) in small space,
where the notion of approximation is captured by a nondecreasing stretch function
f : \BbbN \rightarrow \BbbN .
Spanners. An f(d)-spanner G\prime = (V,E\prime ) is a subgraph of G for which distG\prime (u, v)
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is at most f(distG(u, v)). An (\alpha , \beta )-spanner is one with stretch function
f(d) = \alpha d+\beta . Notable special cases include multiplicative \alpha -spanners [48, 8,
31, 58, 10, 9], when \beta = 0, and additive \beta -spanners [6, 27, 31, 59, 9, 64, 20, 40],
when \alpha = 1. See [31, 9, 59, 49, 20, 45] for ``mixed"" spanners with \alpha > 1, \beta > 0.

Emulators. An f(d)-emulator (also called a Steiner spanner [8]) is a weighted graph
G\prime = (V \prime \supseteq V,E\prime , w\prime ) such that for each u, v \in V , distG\prime (u, v) \in [distG(u, v),
f(distG(u, v))]. In other words, one is allowed to add Steiner points (V \prime \setminus V )
and long-range (weighted) edges (u, v) \in E\prime \setminus E such that distances are non-
contracting.

(Unconstrained) distance oracles. For our purposes, an f(d)-approximate dis-
tance oracle using space s is a bit string in \{ 0, 1\} s such that given u, v \in V ,

an estimate \widetilde dist(u, v) \in [distG(u, v), f(distG(u, v))] can be computed by ex-
amining only the bit string. Note: the term ``oracle"" was used in [58] to

indicate that \widetilde dist(u, v) is computed in constant time [46, 3, 21]. Later work
considered distance oracles with nonconstant query time [50, 5, 4, 32]. In
this paper we make no restrictions on the query time at all. Thus, for our
purposes distance oracles generalize spanners, emulators, and related objects.

In this paper we establish essentially optimal tradeoffs between the size of the
compressed graph representation and the asymptotic behavior of its stretch function
f . In order to put our results in context we must recount the developments of the
last 30 years that investigated multiplicative, additive, (\alpha , \beta ), and sublinear additive
stretch functions.

1.1. Multiplicative stretch. Historically, the first notion of stretch studied in
the literature was purely multiplicative stretch. Alth\"ofer et al. [8] quickly settled
the problem by showing that any graph contains an \alpha -spanner with at most m\alpha +2(n)
edges, and that the claim is false form\alpha +2(n) - 1. Heremg(n) is the maximum number
of edges in a graph with n vertices and girth g. The upper bound of [8] follows directly
from the observation that a natural greedy construction never closes a cycle with
length at most \alpha + 1; the lower bound follows from the fact that no strict subgraph
of a graph with girth \alpha +2 is an \alpha -spanner.1 It has been conjectured [33, 17, 15] that
the trivial upper bound m2k+1(n),m2k+2(n) = O(n1+1/k) is sharp up to the leading
constant, but this Girth Conjecture has only been proved for k = 1 (trivial) and
k \in \{ 2, 3, 5\} [18, 34, 51, 62, 60, 12, 41]. See [42, 43, 63] for lower bounds on mg(n).

1.2. Additive stretch. The Girth Conjecture implies that a spanner with size
O(n1+1/k) must stretch some pair of adjacent vertices at original distance d = 1 to
distance 2k - 1. If ``stretch"" is defined a priori to be multiplicative, then such (2k - 1)-
spanners are optimal. However, there is no reason to believe that f(d) = (2k  - 1)d
is an optimal stretch function for size O(n1+1/k). The girth argument could also be
interpreted as lower bounding additive stretch or (\alpha , \beta )-stretch. In general, the Girth
Conjecture only implies that (\alpha , \beta )-spanners with size O(n1+1/k) have \alpha +\beta \geq 2k - 1.

Aingworth et al. [6] gave a construction of an additive 2-spanner with size \~O(n3/2),
which is optimal in the sense that neither the additive stretch 2 nor exponent 3/2
can be unilaterally improved.2 This result raised the tantalizing possibility that there

1Removing any edge stretches the distance between its endpoints from 1 to at least \alpha + 1.
Moreover, since every graph contains a bipartite subgraph with at least half the edges, m2k+1 \leq 
2m2k+2(n) for every k. Thus, there are (2k  - 1)-spanners with size O(m2k+2(n)).

2Moreover, later results of Bollob\'as, Coppersmith, and Elkin [16] show that for spanner size
O(n3/2), the stretch function f(d) = d + 2 is optimal for 1 \leq d \leq \Theta (

\surd 
n). See [31, 59, 9, 40] for

constructions of additive 2-spanners with size O(n3/2).
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exist arbitrarily sparse additive spanners. Dor, Halperin, and Zwick [27] observed that
additive 4-emulators exist with size \~O(n4/3); i.e., the emulator introduces weighted
edges connecting distant vertex pairs. Baswana et al. [9] constructed additive 6-
spanners with size O(n4/3), and Chechik [20] constructed additive-4 spanners with
size \~O(n7/5). See [64, 40, 31, 59, 27, 9] for other constructions of additive 2- and
6-spanners.

The ``4/3"" exponent proved to be very resilient for both emulators and spanners
with additive stretch. This led to a line of work establishing additive spanners below
the n4/3 threshold with stretch polynomial in n [16, 9, 49, 20, 13]. The additive
spanners of Bodwin and Vassilevska Williams [14] with stretch function f(d) = d+n\epsilon 

have size that is the minimum of O(n
4
3 - 

7\epsilon 
9 +o(1)) and O(n

5
4 - 

5\epsilon 
12+o(1)).

1.3. Sublinear additive stretch. Elkin and Peleg [31] showed that the ``4/3
barrier"" could also be broken by tolerating 1+ \epsilon multiplicative stretch. In particular,
for any integer \kappa and real \epsilon > 0, there are (1 + \epsilon , \beta )-spanners with size O(\beta n1+1/\kappa ),
where \beta = O(\epsilon  - 1 log \kappa )log \kappa . The construction algorithm and size-bound both de-
pend on \epsilon . Thorup and Zwick [59] gave a surprisingly simple construction of an

O(kn
1+ 1

2k+1 - 1 )-size emulator with (1 + \epsilon , O(k/\epsilon )k - 1)-type stretch.
Thorup and Zwick's emulator has the special property that its stretch holds

for every \epsilon > 0 simultaneously ; i.e., it can be selected as a function of d. Judi-
ciously choosing \epsilon = k/d

1
k leads to an emulator with a sublinear additive stretch

function f(d) = d + O(kd1 - 
1
k + 3k).3 Thorup and Zwick also showed that this

same stretch function also applies to their earlier [58] construction of multiplicative

(2k + 1)-spanners with size O(kn1+ 1
k+1 ). Pettie [49] gave a construction of sublinear

additive spanners whose size-stretch tradeoff is closer to the Thorup--Zwick emula-

tors. For stretch function d + O(kd1 - 
1
k + 3k) the size is O(kn

1+
(3/4)k - 2

7 - 2(3/4)k - 2 ), which

is always o(n1+(3/4)k+3

) for any fixed k. At their sparsest, Thorup and Zwick's em-
ulators [59] and Pettie's spanners [49] have size O(n log log n) and stretch f(d) =
d + O(log log n) \cdot d1 - \Theta (1/ log logn) + (log n)log2 3. Pettie [49] gave an even sparser
(1 + \epsilon , O(\epsilon  - 1 log log n)log logn)-spanner with size O(n log log(\epsilon  - 1 log log n)).

1.4. Lower bounds. Woodruff proved that any k - 1n1+1/k-size spanner with
stretch function f must have f(k) \geq 3k. As a corollary, additive (2k  - 2)-spanners
must have size \Omega (k - 1n1+1/k), independent of the status of the Girth Conjecture.
Bollob\'as, Coppersmith, and Elkin [16] showed that if the stretch f is such that f(d) =
d for d \geq D, then \Omega (n2/D)-size is necessary and sufficient for spanners and emulators.

In a recent surprise, Abboud and Bodwin [2] proved that no additive \beta -spanners,
emulators, or distance oracles exist with \beta = O(1) and exponent less than 4/3. More
precisely, any construction of these three objects with additive \beta = O(1) stretch

has size \Omega (n4/3/2O(
\surd 
logn)) and any construction with size O(n4/3 - \epsilon ) has additive

stretch \beta = n\delta for some \delta = \delta (\epsilon ). This result explained why all prior additive
spanner constructions had a strange transition at 4/3 [27, 59, 9, 20, 14, 40, 64], but it

3The Thorup--Zwick emulator can easily be converted to a (1+\epsilon , \beta )-spanner by replacing weighted
edges with paths up to length \beta . A careful analysis shows the size of the resulting spanner can be made

O((k/\epsilon )O(1)n
1+ 1

2k+1 - 1 ) (see section 3) which would slightly improve on [31]. Elkin [28] has stated
that with minor changes, the Elkin--Peleg [31] spanners can also be expressed as (1 + \epsilon , O(k/\epsilon )k - 1)-

spanners with size O((k/\epsilon )O(1)n
1+ 1

2k+1 - 1 ). We state these bounds in Figure 1 rather than those
of [31] in order to facilitate easier comparisons with subsequent constructions [59, 20, 49], and the
new constructions of section 3.
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Stretch Function

d+O
\Bigl( \surd 

d
\Bigr) 

d+O
\Bigl( 
d

2
3

\Bigr) 
d+O

\Bigl( 
d

3
4

\Bigr) 
d+O

\Bigl( 
kd1 - 

1
k )
\Bigr) 

or or or or
Citation \bigl( 

1 + \epsilon , O
\bigl( 
1
\epsilon 

\bigr) \bigr) \bigl( 
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\bigl( 
1
\epsilon 

\bigr) 
2
\bigr) \bigl( 

1 + \epsilon , O
\bigl( 
1
\epsilon 

\bigr) 
3
\bigr) \bigl( 

1 + \epsilon , O
\bigl( 
k
\epsilon 

\bigr) 
k - 1

\bigr) 
Elkin \& Peleg Span. O

\Bigl( 
\epsilon  - O(1)n

8
7

\Bigr) 
O
\Bigl( 
\epsilon  - O(1)n

16
15

\Bigr) 
O
\Bigl( 
\epsilon  - O(1)n

32
31

\Bigr) 
O
\Bigl( \bigl( 

k
\epsilon 

\bigr) 
O(1)n

1+ 1

2k+1 - 1

\Bigr) 
Thorup Emul. O

\Bigl( 
n

8
7

\Bigr) 
O
\Bigl( 
n

16
15

\Bigr) 
O
\Bigl( 
n

32
31

\Bigr) 
O
\Bigl( 
kn

1+ 1

2k+1 - 1

\Bigr) 
\& Zwick Span. O

\Bigl( 
n

4
3

\Bigr) 
O
\Bigl( 
n

5
4

\Bigr) 
O
\Bigl( 
n

6
5

\Bigr) 
O
\Bigl( 
kn1+ 1

k+1

\Bigr) 
Pettie Span. O

\Bigl( 
n

6
5

\Bigr) 
O
\Bigl( 
n

25
22

\Bigr) 
O
\Bigl( 
n

103
94

\Bigr) 
O

\biggl( 
kn

1+
(3/4)k - 2

7 - 2(3/4)k - 2

\biggr) 
Chechik Span. \~O

\Bigl( 
n

20
17

\Bigr) 
New Span. O

\Bigl( 
\epsilon  - 

2
7n

8
7

\Bigr) 
O
\Bigl( 
\epsilon  - 

7
15n

16
15

\Bigr) 
O
\Bigl( 
\epsilon  - 

18
31n
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\Bigr) 
O
\Bigl( \bigl( 

k
\epsilon 

\bigr) 
hkn

1+ 1

2k+1 - 1

\Bigr) 
New Lower
Bounds

All \Omega 
\Bigl( 
n

4
3 - o(1)

\Bigr) 
\Omega 
\Bigl( 
n

8
7 - o(1)

\Bigr) 
\Omega 
\Bigl( 
n

16
15 - o(1)

\Bigr) 
\Omega 
\Bigl( 
n
1+ 1

2k - 1
 - o(1)

\Bigr) 
Fig. 1. A summary of spanners and emulators with (1+\epsilon , O(k/\epsilon )k - 1)-type stretch and sublinear

additive stretch d + O(kd1 - 
1
k ). Constructions with the first type of stretch also have sublinear

additive stretch d + O(kd1 - 
1
k ), but only for d up to about (1/\epsilon )k. Note: The new lower bounds

do not contradict the upper bounds; the lower bounds are for stretch functions with smaller leading

constants in the O(k/\epsilon )k - 1 and O(kd1 - 
1
k ) terms. In the last cell of the table, h =

3\cdot 2k - 1 - (k+2)

2k+1 - 1
<

3/4, which improves the dependence on \epsilon that can be obtained from modified versions of existing
constructions [31, 59].

did not suggest what the optimal stretch function should be for sparsity n1+\delta when
\delta \in [0, 1/3).

1.5. New results. See Figure 1 for a comparison of these results to prior work.

Spanner/emulator/distance oracle lower bounds. Our main result is a hi-
erarchy of lower bounds for spanners, emulators, and distance oracles, which shows
that tradeoffs offered by Thorup and Zwick's sublinear additive emulators [59] and
Elkin and Peleg's (1 + \epsilon , \beta )-spanners cannot be substantially improved. Building
on Abboud and Bodwin's [2] \Omega (n4/3 - o(1)) lower bounds for additive spanners, we
prove that for every integer k \geq 2 and d < no(1), there is a graph \scrH k on n vertices

and n
1+ 1

2k - 1
 - o(1)

edges such that any spanner with size n
1+ 1

2k - 1
 - \epsilon 

, \epsilon > 0, stretches
vertices at distance d to at least d + ckd

1 - 1
k for a constant ck = \Theta (1/k). More

generally, we exhibit graph families that cannot be compressed into distance oracles

on n
1+ 1

2k - 1
 - \epsilon 

bits such that distances can be recovered below this error threshold.
The consequences of this construction are that the existing sublinear additive emula-
tors [59], sublinear additive spanners [49, 20], and (1 + \epsilon , \beta )-spanners [31, 59, 49] are,
to varying degrees, close to optimal. Specifically:

\bullet The (d+O(kd1 - 
1
k +3k))-emulator [59] with size O(n

1+ 1

2k+1 - 1 ) cannot be im-

proved by more than a constant factor (roughly k2) in the stretch O(kd1 - 
1
k ),

or by a o(1) in the exponent 1 + 1
2k+1 - 1

. (Our results say nothing about the

optimality of the 3k term when d is small.)
\bullet The sublinear additive spanners of Pettie [49] and Chechik [20] probably
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have suboptimal exponents, but not by much. For example, the exponent of
Chechik's [20] \~O(n20/17)-size (d+O(

\surd 
d))-spanner is within 0.034 of optimal

and the exponent of Pettie's [49] O(n25/22)-size (d+O(d2/3))-spanner is within
0.07 of optimal.

\bullet When \epsilon \geq 1/no(1), the existing constructions of (1+\epsilon , O(k/\epsilon )k - 1)-spanners [31,

59, 49] with size O((k/\epsilon )O(1)n
1+ 1

2k+1 - 1 ) cannot be substantially improved in
either the additive O(k/\epsilon )k - 1 term or the exponent 1 + 1

2k+1 - 1
. This follows

from the fact that any spanner with stretch of type (1 + \^\epsilon , O(k/\^\epsilon )k - 1) for

every \^\epsilon \geq \epsilon functions as a (d+O(kd1 - 
1
k ))-spanner for distances d \leq O(k/\epsilon )k.

However, there is no reason to believe that the size of such (1+\epsilon , \beta )-spanners
must depend on \epsilon , as it does in the current constructions.

There is an interesting new hierarchy of phase transitions in the interplay between
our lower bounds and previous upper bounds [59]. Let C be a sufficiently large
constant and c be a sufficiently small constant. If one wants a graph compression
scheme with stretch f(d) = d + C

\surd 
d, then one needs only \widetilde O(n8/7) bits of space to

store an emulator [59]. However, if we want a slightly improved stretch f(d) = d+c
\surd 
d,

then, by our lower bound, the space requirement leaps to \Omega (n4/3 - o(1)). In general,
the optimal space for stretch function f(d) = d+ c\prime d1 - 1/k takes a polynomial jump as
we shift c\prime from some sufficiently large constant O(k) to a sufficiently small constant
\Omega (1/k).

An important take-away message from our work is that the sublinear additive
stretch functions of type f(d) = d + O(d1 - 1/k) used by Thorup and Zwick [59] are
exactly of the ``right"" form. For example, such plausible-looking stretch functions as
f(d) = d+O(d1/3) and f(d) = d+O(d2/3/ log d) could only exist in the narrow bands
not covered by our lower bounds: between space n4/3 - o(1) and n4/3 and between space
n8/7 - o(1) and n8/7.

Spanner upper bounds. To complement our lower bounds we provide new
upper bounds on the sparsity of spanners with stretch of type (1 + \^\epsilon , O(k/\^\epsilon )k - 1),

which holds for every \^\epsilon \geq \epsilon . Our new spanners have size O((k/\epsilon )hkn
1+ 1

2k+1 - 1 ), where

h = 3\cdot 2k - 1 - (k+2)
2k+1 - 1

< 3/4. This construction improves on the bounds that can be

derived from [59, 31, 49] in the dependence on \epsilon .4 For example, suppose we want
something that behaves like a (d+O(

\surd 
d))-spanner for all d up to some threshold D.

Our construction shows that size O(D1/7n8/7) suffices, which improves on Chechik's
(d+O(

\surd 
d))-spanner so long as D < n4/17.

Hopset lower bounds. Hopsets are fundamental objects that are morally sim-
ilar to emulators. They were explicitly defined by Cohen [23] but used implicitly in
many earlier works [61, 39, 22, 53]. Let G = (V,E,w) be an arbitrary undirected
weighted graph and H \subset 

\bigl( 
V
2

\bigr) 
be a set of edges called the hopset. In the united graph

G\prime = (V,E\cup H,w), the weight of an edge (u, v) \in H is the length of the shortest path

in G between u and v. Define the \beta -limited distance in G\prime , denoted dist
(\beta )
G\prime (u, v), to

be the length of the shortest path from u to v that uses at most \beta edges in G\prime .5 We

4No bounds of this type are stated explicitly in [59] or [31]. In order to get a bound of this
type---with the 1 + 1

2k+1 - 1
exponent and some poly(1/\epsilon ) dependence on \epsilon ---one must only adjust

the sampling probabilities of [59]; however, adapting [31] requires slightly more significant changes
[28].

5Note that whereas dist = dist(\infty ) is metric, dist(\beta ) does not necessarily satisfy the triangle
inequality for finite \beta .
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call H a (\beta , \epsilon )-hopset, where \beta \geq 1, \epsilon > 0, if, for any u, v \in V , we have

dist
(\beta )
G\prime (u, v) \leq (1 + \epsilon ) distG(u, v).

There is clearly some three-way tradeoff between \beta , \epsilon , and | H| . Elkin and Neiman
[29] recently showed that any graph has a (\beta , \epsilon )-hopset with size \~O(n1+1/\kappa ), where
\beta = O( log \kappa 

\epsilon )log \kappa . (In this problem ``\kappa "" is not a natural parameter. It is likely that
Elkin and Neiman's tradeoff could be more precisely stated as follows: for any positive

integer k and real \epsilon > 0, there is an \~O(n
1+ 1

2k+1 - 1 ) size (\beta , \epsilon )-hopset with \beta = O(k/\epsilon )k.
Huang and Pettie [36] showed that Thorup and Zwick's emulator [59] is actually a

(\beta , \epsilon )-hopset with size O(n
1+ 1

2k+1 - 1 ) and \beta = O(k/\epsilon )k.)
In this work we show that any construction of (\beta , \epsilon )-hopsets with worst-case size

n
1+ 1

2k - 1
 - \delta 

, where k \geq 1 is an integer and \delta > 0, must have \beta = \Omega 
\bigl( 
1
\epsilon 

\bigr) k
.6 For example,

hopsets with \beta = o(1/\epsilon ) must have size \Omega (n2 - o(1)) and those with \beta = o(1/\epsilon 2)
must have size \Omega (n4/3 - o(1)). This essentially matches the tradeoff of [29, 36] up to a
constant in \beta that depends on k.

Lower bounds on shortcutting digraphs. In 1992, Thorup [55] conjectured
that the diameter of any directed graph G = (V,E) could be drastically reduced
with a small number of shortcuts. In particular, there exists another directed graph
G\prime = (V,E\prime ) with | E\prime | = O(| E| ) and the same transitive closure relation as G (\rightsquigarrow ),
such that if u\rightsquigarrow v, then there is a poly(log n)-length path from u to v in G\prime . Thorup's
conjecture was confirmed for trees [55, 57, 19] and planar graphs [56] but finally refuted
by Hesse [35] for general graphs. In this paper we give a simpler 1-page proof of Hesse's
refutation by modifying our spanner lower bound construction. In particular, we prove
that for any \epsilon > 0, there is a digraph with size n1+\epsilon and diameter n\delta , \delta = \delta (\epsilon ), such
that reducing the diameter to o(n\delta ) requires at least n2 - \epsilon shortcuts.

Spanners for high-girth graphs. Our lower bounds apply to the class of all
undirected graph metrics. Baswana et al. [9] gave sparser spanners for a restricted
class of graph metrics. Specifically, graphs with girth at least 2\gamma +1 contain additive

6\gamma -spanners with size O(n1+ 1
2\gamma +1 ). We adapt our lower bound construction to prove

that the exponent 1 + 1
2\gamma +1 is optimal, assuming the Girth Conjecture, and more

generally we give lower bounds on compression schemes for the class of graphs with

girth at least 2\gamma + 1. Any scheme that uses n
1+ 1

(\gamma +1)2k - 1 - 1
 - \epsilon 

bits must have stretch
f(d) \geq d+\Omega (d1 - 1/k) for any d < no(1). We also give new constructions of emulators
and spanners for girth-(2\gamma + 1) graphs that shows that the exponent 1 + 1

(\gamma +1)2k - 1 - 1

is the best possible.

1.6. Related work. Much of the recent work on spanners has focused on pre-
serving or approximating distances between specified pairs of vertices. See [25, 1, 2]
for lower bounds on pairwise spanners and [25, 49, 26, 38, 37, 1, 45, 52] for upper
bounds. Pairwise spanners have proven to be useful tools for constructing (sublinear)
additive spanners; see [49, 20, 13].

The space/stretch tradeoffs offered by the best distance oracles [21, 46, 47, 3, 5,
4, 32] are strictly worse than those of the best spanners and emulators, even though
distance oracles are entirely unconstrained in how they encode the graph metric. This

6The leading constant hidden by the \Omega is roughly 1/(k2k) but can probably be made 1/poly(k)
with a more careful analysis. Note, however, that because of the `` - o(1)"" in the exponent, the lower
bound is vacuous when k is not constant.
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is primarily due to the requirement that distance oracles respond to queries quickly.
There are both unconditional [54] and conditional [24, 46, 47] lower bounds, suggesting
that distance oracles with reasonable query time cannot match the best spanners or
emulators.

1.7. Organization. In section 2 we generalize Abboud and Bodwin's construc-
tion [2] to give a spectrum of lower bounds against graph compression schemes with
sublinear additive stretch and (1 + \epsilon , \beta )-stretch. In section 3 we combine ideas from
Thorup and Zwick's emulators [59] and Pettie's spanners [49] to attain a new bound
on sparse (1+ \epsilon , \beta )-spanners. In section 4 we prove tight bounds on (\beta , \epsilon )-hopsets. In
section 5 we generalize the construction of section 2 to give stretch-sparseness lower
bounds on the class of graphs with girth at least 2\gamma + 1. Matching upper bounds for
graphs of girth 2\gamma +1 are given in section 5.1. In section 6 we give a simpler refutation
of Thorup's shortcutting conjecture. In section 7 we highlight some remaining open
problems.

2. The lower bound construction. The graphs in this section are parame-
terized by an integer \ell \geq 2, which determines the length of the shortest paths that
will be hardest to approximate. Each graph has a layered structure, consisting of a
layer of input ports, some number of interior layers, and a layer of output ports. In
any given graph construction, p is the number of input/output ports.

Sections 2.1 and 2.2 present the first base graph \.B[p] and second base graph \"B[p],
and section 2.3 proceeds to combine them recursively to form a hierarchy of graphs
(\scrH k[p]) parameterized by k. The graphs \.B[p], \"B[p], and \scrH 2[p] follow the construction
of Abboud and Bodwin [2].

2.1. The first base graph. Let \.B[p] = (L0 \cup \cdot \cdot \cdot \cup L\ell , E) be an (\ell + 1)-layer
graph with the following properties:

\bullet \.B[p] has p vertices per layer, and all edges connect vertices in adjacent layers.
\bullet Each edge e is assigned a label(e) \in \scrL [p]. (In the construction we have
in mind, the label-set \scrL [p] is a relatively dense ``average-free"" subset of
\{ 1, . . . , p/\ell \} ; see below for details.) For any vertex u, the edges connect-
ing u to the previous layer have distinct labels, and the edges connecting u
to the subsequent layer have distinct labels.

\bullet Let \scrP ( \.B[p]) \subset L0 \times L\ell be a set of pairs of input/output ports. Each
(u0, u\ell ) \in \scrP ( \.B[p]) has the property that there exists a unique shortest path
(u0, u1, . . . , u\ell ). Moreover, label(u0, u1) = \cdot \cdot \cdot = label(u\ell  - 1, u\ell ), which im-
plies that any two of these paths are edge disjoint. The edge set E is precisely
the union of these paths over all pairs in \scrP ( \.B[p]).

These properties imply that the number of vertices and edges in \.B[p] is \.n[p]
def
= (\ell +1)p

and \.m[p]
def
= | E( \.B[p])| = \ell \cdot | \scrP ( \.B[p])| .

Refer to [7, 2] for constructions of \.B[p] satisfying these requirements, or to [25]
for a construction without the layered structure. For the sake of completeness we
give a short sketch of how \.B[p] is constructed using average-free sets [7, 2]. Let
\scrL [p] \subset \{ 1, . . . , \lfloor p/\ell \rfloor \} be an \ell -average-free set, i.e., one for which the equation

\ell \cdot x0 = x1 + x2 + \cdot \cdot \cdot + x\ell , where x0, x1, . . . , x\ell \in \scrL [p],

has no solutions, except the trivial x0 = x1 = \cdot \cdot \cdot = x\ell . Let ui,j denote the jth vertex
in Li. The edge set consists of

E = \{ (ui,j , ui+1,j\prime ) | i \in [0, \ell ) and (j\prime  - j)mod p \in \scrL [p]\} ,
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with label(ui,j , ui+1,j\prime ) = (j\prime  - j)mod p. The pair set consists of

\scrP ( \.B[p]) = \{ (u0,j , u\ell ,(j+\ell x)mod p) | for all j \in \{ 0, . . . , p - 1\} and x \in \scrL [p]\} .

The \ell -average-free property of \scrL [p] ensures that (u0,j , u1,j+x, u2,j+2x, . . . , u\ell ,j+\ell x) is
the unique shortest path between its endpoints.

2.2. The second base graph. Roughly speaking, \"B[p] is obtained by taking a
certain product of two copies of \.B[

\surd 
p].7 Let L0

0 \cup \cdot \cdot \cdot \cup L0
\ell and L1

0 \cup \cdot \cdot \cdot \cup L1
\ell be the

vertex sets of copies \.B0[
\surd 
p] and \.B1[

\surd 
p], each with respective pair-sets \scrP 0 and \scrP 1.

\"B[p] is a layered graph with vertex set \"L0 \cup \cdot \cdot \cdot \cup \"L2\ell where \"Li = L0
i/2\times L1

i/2 when i is

even and \"Li = L0
\lceil i/2\rceil \times L1

\lfloor i/2\rfloor when i is odd. Vertices in \"B are identified with vertex

pairs from V ( \.B0) \times V ( \.B1). When i is even, an edge ((u, v), (u\prime , v)) exists between
layers \"Li and \"Li+1 iff (u, u\prime ) \in E( \.B0). Similarly, when i is odd, an edge ((u, v), (u, v\prime ))
exists between layers \"Li and \"Li+1 iff (v, v\prime ) \in E( \.B1). An edge in \"B inherits the label
of the corresponding edge in \.B, so the label set for \"B[p] is \scrL [\surd p]. The pair-set for \"B
is defined to be

\scrP ( \"B[p]) = \{ ((u0, v0), (u\ell , v\ell )) | (u0, u\ell ) \in \scrP 0 and (v0, v\ell ) \in \scrP 1\} .

Observe that any length-2\ell path from layer \"L0 to \"L2\ell corresponds to picking edges
alternately from two paths, one from L0

0 to L0
\ell in \.B0 and one from L1

0 to L1
\ell in \.B1.

Lemma 2.1 summarizes the relevant properties of \"B and \scrP ( \"B).

Lemma 2.1. Let \xi \ell (p) be a nondecreasing function of p such that | \scrL [p]| \geq p/\xi \ell (p),
| \scrL [p]| \leq p/2, and | \scrP ( \.B[p])| \geq p2/\xi \ell (p). The graph \"B = \"B[p] has the following
properties.

1. It has \"n[p] \leq (2\ell + 1)p vertices and \"m[p] \geq (1 - o(1))2\ell p3/2/\xi \ell (
\surd 
p) edges.

2. The vertices of each pair in \scrP ( \"B[p]) are connected by a unique shortest path
in \"B[p], whose edge labels alternate between two labels in \scrL [\surd p].

3. By definition, | \scrP ( \"B[p])| = (| \scrP ( \.B[
\surd 
p])| )2 \geq p2/(\xi \ell (

\surd 
p))2.

Proof. Part 1. Each layer of \"B contains (
\surd 
p)2 vertices; there is no harm in adding

dummy vertices to round it up to p. There are at least \ell 
\surd 
p2/\xi \ell (

\surd 
p) edges in each of

\.B0 and \.B1, and each edge of \.B0, \.B1 is duplicated
\surd 
p times in the construction of \"B.

Parts 2 and 3. This part of the proof follows directly from the construction of \"B, and
that \scrP ( \.B[

\surd 
p]) has unique shortest paths in \.B.

A standard extension of Behrend's construction [11] of progression-free sets (see [2,

Appendix]) shows that \xi \ell (p) = 2O(
\surd 
log p log \ell ), so if \ell = po(1) then \xi \ell (p) = po(1) as well,

and if \ell = p\epsilon for an \epsilon > 0 then \xi \ell (p) = p\delta for some \delta = \delta (\epsilon ) > \epsilon . We are most
interested in the cases when \ell , \xi \ell (p) = po(1).

2.3. A recursive construction. In this section we construct a hierarchy
\{ (\scrH k,\scrP k)\} k\geq 1 of hard graphs (\scrH k) and corresponding pair-sets (\scrP k) such that each
pair in \scrP k has a unique shortest path in \scrH k. We will show that, for any k \geq 2
and sufficiently small constant ck, any spanner of \scrH k with stretch function f(d) =

d+ckd
1 - 1

k + \~O(1) must include at least | \scrP k| edges. Each \scrH k[p] is a layered graph with
p input ports, p output ports, and some number of interior layers. In other words, the

7Here we let
\surd 
p be short for \lfloor \surd p\rfloor . Ignoring issues of integrality only introduces 1+ o(1) factors

in all the bounds.



LOWER BOUNDS FOR SUBLINEAR ADDITIVE SPANNERS 2211

first layer (``input ports"") and last layer (``output ports"") have size p each while the
interior layers may have different sizes, and each node pair in \scrP k is composed of one
input port and one output port. Let \scrH k[p] denote the graph with the same topology
as \scrH k[p] but with layers reversed; that is, the roles of input and output ports are
swapped.

The base case. The base case graph \scrH 1[p] = (\{ 1, . . . , 2p\} , \{ 1, . . . , p\} \times \{ p +
1, . . . , 2p\} ) is a complete bipartite graph on 2p vertices and its corresponding pair-set
\scrP 1[p] = \{ 1, . . . , p\} \times \{ p+ 1, . . . , 2p\} has size p2.

The inductive case. Let us first give a very informal overview of the construc-
tion and then discuss how we plan to prove its correctness. The goal is to produce
a new graph \scrH k that contains within it many copies of \scrH k - 1. The shortest path
Ps,t for each (s, t) \in \scrP k joins an input port s to an output port t, in \scrH k, and me-
anders through many copies of \scrH k - 1. When Ps,t goes through a copy of \scrH k - 1, it
enters and exits it at a particular input/output port pair, say (x, y). We hope that
(x, y) \in \scrP k - 1 (a success); if this holds for all the copies of \scrH k - 1 intersected by Ps,t,
then any aggressive sparsification of these copies will introduce a significant additive
error in each copy. Unfortunately, while | \scrP k - 1| is large, it is not that large. Only
a tiny o(1)-fraction of the set of input/output port pairs of \scrH k - 1 appears in \scrP k - 1.
Thus, if Ps,t walks into and out of each \scrH k - 1 through random ports, it is likely to
miss the pairs in \scrP k - 1 (a failure).

The problem with this approach is not the random assignment of input/output
ports but the independence across copies of \scrH k - 1. We solve this problem by corre-
lating the success or failure events associated with Ps,t. That is, we ensure that Ps,t

either enters/leaves every copy of \scrH k - 1 along a pair in \scrP k - 1, or it enters/leaves no
copy of \scrH k - 1 using a pair in \scrP k - 1. Thus, many of the potential pairs are useless and
may be discarded, but some of the pairs (s, t) must accumulate lots of error at each
copy of \scrH k - 1 that Ps,t touches.

We now give this argument more formally. When k \geq 2 we construct \scrH k[p] from
\scrH k - 1[\cdot ] and \"B = \"B[p] as follows. Let the label-set of \"B be \scrL = \scrL [\surd p] and p\prime = | \scrL | . Let
\scrH k - 1,\scrH k - 1 be the standard and reversed copies of \scrH k - 1[p

\prime ] and \pi : \scrL \rightarrow \{ 1, . . . , p\prime \} 
be a port assignment permutation selected uniformly at random.

Recall that \"B consists of layers \"L0, . . . , \"L2\ell . Layers \"L0 and \"L2\ell become the input
and output ports of \scrH k and are left as is. For each vertex u in an interior layer \"Li, we
replace u with a graph \scrH (u), which is a copy of \scrH k - 1 if i is odd and \scrH k - 1 if i is even.
For each former edge (u, u\prime ) \in \"Li\times \"Li+1 in \"B with label(u, u\prime ) = a, we replace it with
a path of length (2\ell  - 1)k - 1 connecting the \pi (a)th output port of \scrH (u) (or leave it
at u if i = 0) and the \pi (a)th input port of \scrH (u\prime ) (or leave it at u\prime if i+ 1 = 2\ell ). The
resulting graph is \scrH k[p]; see Figure 2 for a diagram. It remains to define the new
pair-set \scrP k[p].

Let (u0, u2\ell ) \in \scrP ( \"B) be one of the pairs in \"B, and suppose the edges on the
unique shortest path from u0 to u2\ell alternate between labels a and b. The corre-
sponding pathQ(u0,u2\ell ) in\scrH k passes through some\scrH (u1),\scrH (u2), . . . ,\scrH (u2\ell  - 1), where

\scrH (u1),\scrH (u3), . . . are copies of \scrH k - 1[p
\prime ] and \scrH (u2),\scrH (u4), . . . are copies of \scrH k - 1[p

\prime ].
By construction, Q(u0,u2\ell ) enters \scrH (ui) at the \pi (a)th input port and leaves at

the \pi (b)th output port, if i is odd, or the reverse if i is even. Up to reversal, the
input/output terminals through each \scrH (ui) are identical for all i \in [1, 2\ell  - 1]. The
pair-set \scrP k - 1[p] consists of all (u0, u2\ell ) \in \scrP ( \"B) (whose unique shortest path in \"B is
labeled with, say, a, b) for which (\pi (a), \pi (b)) \in \scrP k - 1[p

\prime ].
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Fig. 2. The edge-labels of a shortest path (u0, u1, . . . , u2\ell ) for a pair (u0, u2\ell ) \in \scrP ( \"B) always
alternate between some a, b \in \scrL . To form \scrH k we substitute for each vertex u \in \"B a graph \scrH (u),
which is a copy of either \scrH k - 1 or \scrH k - 1, depending on whether u appears in an odd or even numbered
layer, respectively; then we replace each edge (u, u\prime ) with a path of length (2\ell  - 1)k - 1. The endpoints
of this path are the (\pi (label(u, u\prime )))th output/input ports of \scrH (u) and \scrH (u\prime ). If (\pi (a), \pi (b)) is in
\scrP k - 1, the pair set of \scrH k - 1, then there is a unique shortest path in \scrH k - 1 from its \pi (a)th input port
to its \pi (b)th output port.

Lemma 2.2. The expected size of \scrP k is p2

(\xi \ell (
\surd 
p))2 \cdot 

| \scrP k - 1| 
(p\prime )2 . Assuming \xi \ell (\cdot ) is a non-

decreasing function for all \ell , the expected size of \scrP k is on the order of p2/(\xi \ell (
\surd 
p))2(k - 1).

Proof. By definition of \xi \ell (\cdot ) and the construction of \"B[p], there are p2/(\xi \ell (
\surd 
p))2

candidate pairs in \scrP ( \"B[p]), each of which, say (u0, u2\ell ), is associated with two alter-
nating labels, say a and b. Since a uniformly random input/output pair (\pi (a), \pi (b))
is in \scrP k - 1 with probability | \scrP k - 1| /(p\prime )2, (u0, u2\ell ) is retained in \scrP k with exactly this
probability.

The second part of the proof is by induction. Let \xi = \xi \ell (
\surd 
p). When k =

1 we have | \scrP 1| = p2 = p2/\xi 0. By the inductive hypothesis and the fact that \xi \ell 
is nondecreasing, | \scrP k - 1| \geq (p\prime )2/\xi 2(k - 2) (in expectation) and so | \scrP k| \geq (p2/\xi 2) \cdot 
(1/\xi 2(k - 2)) = p2/\xi 2(k - 1) (in expectation).

Lemma 2.3. If (u0, u2\ell ) \in \scrP k, then there is a unique shortest path from u0 to
u2\ell in \scrH k which passes through exactly (2\ell  - 1)k - 1 complete bipartite graphs (copies
of \scrH 1[\cdot ]) and has dist\scrH k

(u0, u2\ell ) = (2(k  - 1)\ell + 1)(2\ell  - 1)k - 1, which is exactly the
distance from the first to last layer of \scrH k.

Proof. We prove the claim by induction. Let dk be the length of shortest paths
for \scrP k in \scrH k. Uniqueness of shortest paths in \scrH 1 is obvious, and d1 is clearly 1. In
the construction of \scrH k, shortest paths for pairs in \scrP ( \"B[p]) traverse 2\ell edges via 2\ell  - 1
interior layers. Each edge becomes a path of length (2\ell  - 1)k - 1 and each interior vertex
becomes a copy of \scrH k - 1. Suppose a pair (u0, u2\ell ) \in \scrP ( \"B[p]) is preserved in \scrP k and let
(u0, u1, . . . , u2\ell ) be the shortest path in \"B. By the definition of \scrP k and the inductive
hypothesis, there are unique shortest paths from the given input port to the given
output port in \scrH (u1),\scrH (u2), . . . ,\scrH (u2\ell  - 1). Each passes through (2\ell  - 1)k - 2 complete
bipartite graphs and each has length exactly dk - 1. Any alternative shortest path
would have to visit consecutive layers without backing up to earlier layers and would
therefore visit u0,\scrH (u\prime 

1), . . . ,\scrH (u\prime 
2\ell  - 1), u2\ell for some (u\prime 

1, . . . , u
\prime 
2\ell  - 1) \not = (u1, . . . , u2\ell  - 1).

This, however, violates Lemma 2.1(2) on the uniqueness of shortest paths between
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pairs in \scrP ( \"B). We have the recurrence

d1 = 1,

dk = (2\ell  - 1)dk - 1 + 2\ell (2\ell  - 1)k - 1,

which has the closed form dk = (2(k  - 1)\ell + 1)(2\ell  - 1)k - 1.

Definition 2.4. An edge e is critical for a pair (u0, u2\ell ) \in \scrP k if it lies in a copy
of \scrH 1 (a complete bipartite graph), and it is on the unique shortest u0--u2\ell path.

Lemma 2.5. Let \scrH \prime 
k be \scrH k, with all critical edges for (u0, u2\ell ) removed. Then

dist\scrH \prime 
k
(u0, u2\ell ) \geq dist\scrH k

(u0, u2\ell ) + 2(2\ell  - 1)k - 1.

Proof. Let (u0, u1, . . . , u2\ell ) be the unique shortest path from u0 to u2\ell in \"B. In
\scrH \prime 

k, if we take a path that does not pass through \scrH (u1), . . . ,\scrH (u2\ell  - 1), then at some
point it must move back to an earlier layer (from, say, layer i to layer i  - 1) before
advancing forward again (from layer i  - 1 to i, and onward to 2\ell ). Since each edge
in \"B corresponds to a path of length (2\ell  - 1)k - 1 in \scrH k, such a detour increases the
path length by at least 2(2\ell  - 1)k - 1. On the other hand, if we do take a path passing
through \scrH (u1), . . . ,\scrH (u2\ell  - 1), then it must use the same input/output ports as the
unique shortest u0--u2\ell path. By the inductive hypothesis, the additive stretch inside
each of these subgraphs must be 2(2\ell  - 1)k - 2. (This is true when k = 2 as well,
since in this case \scrH (u1), . . . ,\scrH (u2\ell  - 1) are complete bipartite graphs, and removing
the critical edge increases the distance from 1 to 3 in each one.) Thus, the total
additive stretch is at least (2\ell  - 1) \cdot 2(2\ell  - 1)k - 2 = 2(2\ell  - 1)k - 1.

Lemma 2.6. The shortest paths in \scrH k for two pairs in \scrP k share no critical edges.
As a consequence, any spanner of \scrH k with fewer than | \scrP k| edges must stretch some
pair of vertices at distance d = (2(k - 1)\ell +1)(2\ell  - 1)k - 1 by an additive 2(2\ell  - 1)k - 1 \approx 

2
(k - 1)1 - 1/k \cdot d1 - 

1
k .

Proof. The proof is by induction on k; it clearly holds when k = 1. For k \geq 2,
each pair (u0, u2\ell ) \in \scrP k is identified with a pair of labels a, b \in \scrL , which determines
the input/output ports of \scrH (u1), . . . ,\scrH (u2\ell  - 1) used in the shortest u0--u2\ell path. No
other pair (u\prime 

0, u
\prime 
2\ell ) whose shortest path intersects some \scrH (ui) can be associated with

the same two labels; hence it must enter and exit \scrH (ui) at different input/output
ports than (u0, u2\ell ). By the inductive hypothesis, (u0, u2\ell ) and (u\prime 

0, u
\prime 
2\ell ) share no

critical edges in any \scrH (ui) and therefore no critical edges in \scrH k.

We now analyze the size and density of \scrH k[p]. Let nk[p] and mk[p] be the number
of vertices and edges in \scrH k[p]. The construction of \scrH k gives the following recursive
definition:

\.n[p] = (\ell + 1)p, \.m[p] \geq 
\ell p2

\xi \ell (p)
,

\"n[p] = (2\ell + 1)p, \"m[p] \geq 
2\ell p3/2

\xi \ell (
\surd 
p)

, \"m[p] \leq 2\ell p3/2,

n1[p] = 2p, m1[p] = p2,

nk[p] = 2p+ (2\ell  - 1)p \cdot nk - 1 [| \scrL [
\surd 
p]| ] + (2\ell  - 1)k - 1 \cdot \"m[p], mk[p] \geq (2\ell  - 1)p \cdot mk - 1 [| \scrL [

\surd 
p]| ] .

Lemma 2.7. For all k \geq 1 and sufficiently large p, nk[p] \leq c(2\ell )kp2 - 
1

2k - 1 and
mk[p] \geq (2\ell  - 1)k - 1p2/\xi 2(k - 1), where \xi = \xi \ell (

\surd 
p).



2214 AMIR ABBOUD, GREG BODWIN, AND SETH PETTIE

Proof. The bounds clearly hold when k = 1. Assuming the claim holds inductively
for nk - 1, we have

nk[p] \leq (2\ell )p \cdot nk - 1 [
\surd 
p/2] + (2\ell  - 1)k - 1 \"m[p] (| \scrL [\surd p]| \leq \surd p/2)

\leq (2\ell )p \cdot 
\Bigl[ 
c(2\ell )k - 1(

\surd 
p/2)2 - 

1

2k - 2

\Bigr] 
+ (2\ell  - 1)k - 12\ell p3/2

< (c/22 - 
1

2k - 2 )(2\ell )kp2 - 
1

2k - 1 + (2\ell )kp3/2

< c(2\ell )kp2 - 
1

2k - 1 (for, say, c = 2)

and assuming the claim holds inductively for mk - 1, we have

mk[p] \geq (2\ell  - 1)p \cdot mk - 1 [
\surd 
p/\xi ] (| \scrL [\surd p]| \geq \surd p/\xi \ell (

\surd 
p))

\geq (2\ell  - 1)p \cdot (2\ell  - 1)k - 2(
\surd 
p/\xi )2/\xi 2(k - 2) (\xi \ell (\cdot ) nondecreasing)

\geq (2\ell  - 1)k - 1p2/\xi 2(k - 1).

We are mainly interested in cases in which \ell is not too large, i.e., \ell , \xi = (nk[p])
o(1).

In this case the density of \scrH k[p] is mk[p]/nk[p] \geq (nk[p])
1

2k - 1
 - o(1)

.

Theorem 2.8 (sublinear additive spanner lower bounds). For any integer k \geq 2
and a sufficiently small constant ck = O(1/k), any spanner construction with stretch

function bounded by f(d) \leq d+ckd
1 - 1

k + \~O(1) has size \Omega (n
1+ 1

2k+1 - 1
 - o(1)

) in the worst
case.

Proof. Let \scrH k[p] be the input graph with respect to some sufficiently large \ell =

(log p)O(1). For this parameterization \xi \ell (p) = 2O(
\surd 
log p log log p) = po(1), we have that

mk[p] and the size of the pair-set \scrP k are both n
1+ 1

2k - 1
 - o(1)

, where n = nk[p]. Any
spanner with size less than | \scrP k| must stretch some pair at distance dk = (2(k - 1)\ell +

1)(2\ell  - 1)k - 1 to dk + 2(2\ell  - 1)k - 1, which is strictly greater than dk + ckd
1 - 1

k + \~O(1)
when ck < 2/(k - 1)1 - 1/k is sufficiently small and \ell sufficiently large to make the \~O(1)
error comparatively negligible.

Remark 2.9. Since the diameter of \scrH k[p] is O(dk), any emulator for \scrH k[p] on the
same vertex set (i.e., without Steiner points) can be converted to a spanner with at
most an O(dk) = no(1) blowup in the number of edges. Thus, Theorem 2.8 applies to
this class of emulators. The argument breaks down for (Steiner) emulators since we
can preserve all distances for pairs in \scrP k with just O(n) edges, simply by replacing
all bipartite cliques (copies of \scrH 1) with stars. See Theorem 2.11 for a lower bound
that applies to emulators with Steiner points.

Theorem 2.10 ((1 + \epsilon , \beta )-spanner lower bounds). Any (1 + \epsilon , \beta )-spanner con-

struction with worst-case size at most n
1+ 1

2k+1 - 1
 - \delta 

, \delta > 0, has \beta = \Omega ( 1
\epsilon (k - 1) )

k - 1.

Proof. Let \scrH k[p] be the input graph with respect to an \ell \approx 1
\epsilon to be chosen

shortly. Any spanner with size n
1+ 1

2k+1 - 1
 - \delta 

< | \scrP k| stretches a pair at distance dk =
(2(k - 1)\ell + 1)(2\ell  - 1)k - 1 to dk + 2(2\ell  - 1)k - 1 = dk(1 +

2
2(k - 1)\ell +1 ). We choose \ell \geq 2

to be minimal such that 1
2(k - 1)\ell +1 \leq \epsilon , that is, \ell = \lceil 1 - \epsilon 

2\epsilon (k - 1)\rceil and the additive stretch

is roughly 2\epsilon dk. In order for this to be a (1 + \epsilon , \beta )-spanner we would need

\beta = \Omega (\epsilon dk) = \Omega ((2\ell  - 1)k - 1) = \Omega 
\Bigl( \Bigl( 

2\lceil 1 - \epsilon 
2\epsilon (k - 1)\rceil  - 1

\Bigr) 
k - 1

\Bigr) 
.
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Theorem 2.10 shows that the existing (1 + \epsilon , O(k/\epsilon )k - 1)-spanners with size

O((k/\epsilon )O(1)n
1+ 1

2k+1 - 1 ) are optimal in the following sense. If k is constant, then we
cannot improve \beta by more than a constant factor \approx (k2)k - 1 without increasing the
exponent to 1 + 1

2k - 1
 - o(1). Moreover, any constant reduction in the exponent

increases \beta to \Theta (1/(k\epsilon ))k. Once again, the argument of Theorem 2.10 applies to
(1 + \epsilon , \beta )-emulators that do not use Steiner points.

Theorem 2.11 (distance oracle/emulator lower bounds). Consider any data
structure for the class of n-vertex undirected graphs that answers approximate distance
queries. If its stretch function is

\bullet f(d) \leq d + ckd
1 - 1

k + \~O(1) for an integer k and a sufficiently small constant
ck < 2/(k  - 1)1 - 1/k, or

\bullet f(d) \leq (1 + \epsilon )d+ \beta where \beta = o(( 1
\epsilon (k - 1) )

k - 1),

then on some graph, the data structure occupies at least n
1+ 1

2k - 1
 - o(1)

bits of space.

Proof. The following proof strategy was employed by Alth\"ofer et al. [8] to bound
the size of emulators. It was also used by Matou\v sek [44] for bounding low-distortion
embeddings into ld\infty , and by Thorup and Zwick [58] and Abboud and Bodwin [2] to
bound the size of approximate distance data structures.

Fix a graph \scrH k = \scrH k[p] with pair-set \scrP k. For any subset \scrP \prime \subseteq \scrP k let G(\scrP \prime )
be obtained from \scrH k be removing all the critical edges for each pair in \scrP \prime , and let
\scrG = \{ G(\scrP \prime ) | \scrP \prime \subseteq \scrP k\} be the class of 2| \scrP k| such graphs. Fix any two graphs
GA, GB \in \scrG . There must exist some pair (u, v) \in \scrP k such that GA contains all of the
critical edges for (u, v) whereas GB contains none of them. By Lemma 2.5 we have

distGA
(u, v) = dA

def
= (2(k  - 1)\ell + 1)(2\ell  - 1)k - 1,

distGB
(u, v) \geq dB

def
= (2(k  - 1)\ell + 1)(2\ell  - 1)k - 1 + 2(2\ell  - 1)k - 1.

If f(dA) < dB , then no single data structure (bit string) can be used to encode two
distinct graphs GA, GB \in \scrG , implying that the data structures for \scrG must use at least
log2(2

| \scrP k| ) bits on average. If \ell = (log p)O(1) = (log n)O(1) is sufficiently large and ck
sufficiently small, then

f(dA) = dA + ckd
1 - 1

k

A + \~O(1) < dB \approx dA + 2
(k - 1)1 - 1/k \cdot d

1 - 1
k

A .

For these parameters | \scrP k| = n
1+ 1

2k - 1
 - o(1)

, where the n - o(1) factor is 2 - O(
\surd 
logn log logn).

We extend this argument to the case of (1 + \epsilon , \beta )-type stretch using an identical ar-
gument to the one given in Theorem 2.10.

3. New upper bounds on (1 + \bfitepsilon , \bfitbeta )-spanners. Thorup and Zwick [59] gave

a very simple randomized construction of an emulator with size O(kn
1 - 1

2k+1 - 1 ) and
stretch function f(d) = d + O(kd1 - 1/k + 3k). Alternatively, one can view this as
a (1 + \epsilon , O(k/\epsilon )k - 1)-emulator for every \epsilon > 0, where the optimal choice of \epsilon , as a
function of d, is \epsilon = \Theta (k/d1/k).

3.1. The Thorup--Zwick emulator. The Thorup--Zwick emulator is param-
eterized by an integer k \geq 2. Let G = (V,E) be the input graph. One samples
vertex sets V = V0 \supset V1 \supset V2 \cdot \cdot \cdot \supset Vk where vertices in Vi are promoted to Vi+1

with probability qi+1/qi, so \BbbE [| Vi| ] = qin. Define pi(u) to be the closest Vi-vertex to
u, breaking ties in a consistent manner. Define \scrB (u, r) = \{ v | dist(u, v) \leq r\} to be
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the set of vertices inside the radius-r ball centered at u and let \scrB i(u) be short for
\scrB (u,dist(u, pi(u))  - 1). For i \geq k + 1, pi(u) does not exist and \scrB i(u) is the entire
graph, by definition. The emulator edge set consists of E0 \cup E1 \cup \cdot \cdot \cdot \cup Ek, where Ei

is defined as follows:

Ei =
\bigl\{ 
(u, v) | u, v \in Vi and v \in \scrB i+1(u)

\bigr\} 
\cup 

\bigl\{ 
(u, pi+1(u)) | u \in V

\bigr\} 
.

The length of all emulator edges is precisely the distance between their endpoints in
G. Since | \scrB i+1(u)| is q - 1

i+1 in expectation, the expected number of edges contributed

by Ei is n + nq2i /qi+1 for i < k and is (nqk)
2 when i = k. Setting qi = n

 - 2i - 1

2k+1 - 1

makes the size of the emulator O(kn
1+ 1

2k+1 - 1 ) in expectation. In order to obtain

a d + O(kd1 - 
1
k )-type stretch bound for all distances d \leq D, it actually suffices to

restrict Ei to pairs at distance at most (r + 2)i, where r = D1/k. Letting P (u, v) be
any shortest path from u to v, the subgraph STZ(k, r) = (V,E\prime 

0 \cup E\prime 
1 \cup \cdot \cdot \cdot \cup E\prime 

k) is a
spanner, where

E\prime 
i =

\bigcup 
(u,v)\in Ei :

v\in \scrB (u,(r+2)i)

P (u, v).

As we show in sections 3.2 and 3.3, the spanner STZ(k, r) behaves exactly like the

emulator for all distances up to D; i.e., it has stretch function d + O(kd1 - 
1
k ) for all

sufficiently large d \leq D.8 However, choosing the optimum sampling probabilities as a
function of r, k, n is no longer trivial. Since each path in Ei contributes (r+2)i edges,
the spanner size is on the order of kn (for paths of the form P (u, pi(u))) plus

n

q1
+

nq21r

q2
+

nq22r
2

q3
+ \cdot \cdot \cdot 

nq2k - 1r
k - 1

qk
+ (nqk)

2rk.

Assuming this sum is minimized when E\prime 
0, E

\prime 
1, . . . , E

\prime 
k contribute equally, we have the

following equalities:

q2 = rq31 (balancing E\prime 
0 and E\prime 

1)

q3 = r2q22q1 (balancing E\prime 
0 and E\prime 

2)

...

qk = rk - 1q2k - 1q1. (balancing E\prime 
0 and E\prime 

k - 1)

If qi is constrained to be of the form n - g(i)r - h(i), these equalities are satisfied when

g(i) = 2g(i - 1) + g(1) (for i \geq 2)

= (2i  - 1)g(1) (by induction)

and h(i) = 2h(i - 1) + h(1) - (i - 1) (for i \geq 2)

= (2i  - 1)h(1) - 2i + (i+ 1). (by induction)

8Thorup and Zwick [59, p. 809] also noted that their emulator can be converted to a spanner,
but their sketch of how to do this was incorrect.
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So qk = n - (2k - 1)g(1)r - (2k - 1)h(1)+2k - (k+1). Plugging this equality into the expression
for | E\prime 

k| and balancing with | E\prime 
0| , we have

| E\prime 
k| = (nqk)

2rk = n2 - 2(2k - 1)g(1)r - 2[(2k - 1)h(1) - 2k+(k+1)]+k = n1+g(1)rh(1) = | E\prime 
0| ,

which is minimized when

g(1) =
1

2k+1  - 1
,

h(1) =
2k+1  - (k + 2)

2k+1  - 1
.

For example, when k = 2 and h(1) = 4/7 this leads to a d + O(
\surd 
d)-spanner for dis-

tances d \leq D = r2 having size O(r4/7n8/7) = O(D2/7n8/7). Since h(1) is strictly less

than 1 for any fixed k, the spanner size is always o(rkn
1+ 1

2k+1 - 1 ) = o(D1/kkn
1+ 1

2k+1 - 1 ).

3.2. Even sparser (1 + \bfitepsilon , \bfitbeta )-spanners. In order to form an even sparser
spanner we substitute for E\prime 

1 a subgraph whose size has no dependence on r but
preserves the relevant distances well enough, up to an additive +2 error. The following
theorem is proved using the same path-buying algorithm for constructing additive 6-
spanners [9, 49]. The algorithm begins with the subgraph E\prime 

0 and supplements it with
an \~E1 to guarantee +2 stretch for each u, v \in V1 that were connected by an edge
in E1.

Theorem 3.1 (see [9] and [49]). Suppose V1, V2 are sampled with probability q1
and q2, with q2 < q1. Then there is an edge-set \~E1 with expected size O(nq21/q2) such
that if u, v \in V1 and v \in \scrB 2(u), then

distE\prime 
0\cup \~E1

(u, v) \leq dist(u, v) + 2.

Proof (sketch). We assume the reader is familiar with the path-buying algorithm
and its analysis [9]. Let \scrP \subset 

\bigl( 
V1

2

\bigr) 
be the pairs for which we are guaranteeing good

stretch, i.e., \{ u, v\} \in \scrP if u \in \scrB 2(v) or v \in \scrB 2(u). Since | \scrB 2(u)| is 1/q2 in expectation,
| \scrP | is O(nq21/q2) in expectation. For each \{ u, v\} \in \scrP we evaluate P (u, v) and buy it
(set \~E1 \leftarrow \~E1 \cup P (u, v)) if its current value exceeds its cost. The value is the number
of pairs \{ x, y\} \in \scrP with x, y adjacent to P (u, v) for which distE\prime 

0\cup \~E1\cup P (u,v)(x, y) <

distE\prime 
0\cup \~E1

(u, v). It is argued by the pigeonhole principle that any path P (u, v) not

bought has distE\prime 
0\cup \~E1

(u, v) \leq dist(u, v) + 2, and that each pair in \scrP is charged for

O(1) edges in \~E1.

We sample vertex sets V = V0 \supset V1 \supset \cdot \cdot \cdot \supset Vk as before and construct the
spanner S(k, r) with edge set E\prime 

0 \cup \~E1 \cup E\prime 
2 \cup \cdot \cdot \cdot \cup E\prime 

k, where
\~E1 is the edge set from

Theorem 3.1. The expected size of the entire spanner is therefore

n

q1
+

nq21
q2

+
nq22r

2

q3
+ \cdot \cdot \cdot +

nq2k - 1r
k - 1

qk
+ (nqk)

2rk.

Letting qi = n
 - 2i - 1

2k+1 - 1 r - h(i), we balance the contribution of E\prime 
0,

\~E1, E
\prime 
2, . . . , E

\prime 
k by

having h satisfy the following:

h(2) = 3h(1) (balancing \~E1 and E\prime 
0)

and for i \geq 3, h(i) = 2h(i - 1) + h(1) - (i - 1) (balancing E\prime 
i - 1 and E\prime 

0)

= (2i  - 1)h(1) - 3 \cdot 2i - 2 + (i+ 1). (by induction)
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Following similar calculations, it follows that the spanner size is minimized when

h(1) =
3 \cdot 2k - 1  - (k + 2)

2k+1  - 1
.

We shall prove shortly that this spanner is, indeed, a d + O(kd1 - 
1
k + 3k)-spanner.

For example, when k = 1 we have h(1) = 2/7, so it is a d + O(
\surd 
d)-spanner for all

d \leq D \leq r2 with size O(r2/7n8/7) = O(D1/7n8/7). For any fixed k, h(1) < 3/4, so

the spanner has size o(D
3
4k kn

1+ 1

2k+1 - 1 ).

Remark 3.2. We were able to substitute \~E1 for E\prime 
1 without disturbing the expo-

nent 1 + 1
2k+1 - 1

of the spanner, but only because the path-buying algorithm buys

O(nq21/q2) additional edges when initialized with the edge set E\prime 
0. In general we can

use [49, Thm. 4.2] to substitute an \~Ei for E\prime 
i, but its size is O(n

\sqrt{} 
qi/qi+1). This

improves the exponent attached to r but worsens the exponent attached to n. For
example, balancing E\prime 

2 and E\prime 
0 lets us put q3 = (q1)

7rO(1), whereas balancing \~E2 and
E\prime 

0 forces q3 = (q1)
5.

3.3. Stretch analysis. See Figure 3 for a visualization of the argument that
follows. We analyze the stretch of the spanner S = S(k, r) with edge set E\prime 

0 \cup \~E1 \cup 
E\prime 

2 \cup \cdot \cdot \cdot \cup E\prime 
k. We will first consider two vertices u, v at distance at most \ell i for some

integers \ell \geq 2, i \geq 0. We will assume for the time being that r = \infty and calculate
specific quantities related to the spanner distance distS(u, v) without considering the
constraints imposed by a finite r. Once these quantities are calculated, it will be clear
that the analysis goes through so long as \ell \leq r. The pair u, v can be either complete
or incomplete (or both), as explained in the following definition.

Definition 3.3. Define \{ C\ell (i), I\ell (i)\} \ell \in [2,r],i\geq 0 to be integers such that for all u, v
with dist(u, v) \leq \ell i, at least one of the following inequalities holds. Here S = S(k, r)
is the spanner.

distS(u, v) \leq dist(u, v) + C\ell (i), (``u \cdot \cdot \cdot v is complete"")

distS(u, pi+1(u)) \leq I\ell (i). (``u \cdot \cdot \cdot v is incomplete"")

Lemma 3.4. The following values for \{ C\ell (i), I\ell (i)\} \ell \in [2,r],i\geq 0 satisfy Definition 3.3.

C\ell (0) = 0 for all \ell ,

I\ell (0) = 1 for all \ell ,

C\ell (1) = 6 for all \ell ,

I\ell (1) = \ell + 3 for all \ell ,

C\ell (i) = min

\biggl\{ 
\ell \cdot C\ell (i - 1)
(\ell  - 1) \cdot C\ell (i - 1) + 4 \cdot I\ell (i - 1)

for all \ell and i \geq 2,

I\ell (i) = \ell i + 3 \cdot I\ell (i - 1) for all \ell and i \geq 2.

Proof. In the base case (i = 0), we have \ell 0 = 1, so u and v are adjacent in the
input graph. If (u, v) \in E\prime 

0 then distS(u, v) = 1, and if (u, v) \not \in E\prime 
0 then it must be

that dist(u, p1(u)) = 1, so C\ell (0) = 0, I\ell (0) = 1 satisfy Definition 3.3 for all \ell .
When i > 0, partition the shortest path from u to v into at most \ell segments

with length \ell i - 1, and let uj be the vertex on the path at distance j\ell i - 1 from u. For
the sake of simplicity, assume dist(u, v) = \ell i, so v = u\ell . Each segment from uj to
uj+1 is classified as either complete or incomplete. If all segments are complete, then
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Fig. 3. The shortest path from u = u0 to v = u\ell has length \ell i; it is partitioned into segments
of length \ell i - 1. A segment (uj , uj+1) is complete if S contains a path of length \ell i - 1+C\ell (i - 1) from
uj to uj+1 and incomplete if the distance from uj to pi(uj) is at most I\ell (i - 1). If all segments are
complete (not depicted), then distS(u0, u\ell ) \leq dist(u0, u\ell ) + \ell \cdot C\ell (i - 1). If only the first s segments
and last s\prime segments are complete and pi(u\ell  - s\prime ) lies in the ball \scrB i+1(pi(us)), then S contains a path
from u0 to u\ell with length dist(u0, u\ell )+(s+s\prime )C\ell (i - 1)+4I\ell (i - 1). On the other hand, if pi(u\ell  - s\prime )
lies outside \scrB i+1(pi(us)), then this gives a bound on the distance from pi(us) to pi+1(pi(us)) and
therefore a bound on dist(u0, pi+1(u0)). From these cases we derive recursive expressions for C\ell (i)
and I\ell (i).

distS(u, v) \leq distS(u, v) \leq dist(u, v) + \ell \cdot C\ell (i - 1). If there is at least one incomplete
segment, let there be s complete segments on a prefix of the path and s\prime complete
segments on a suffix of the path, where s+ s\prime \leq \ell  - 1. It follows that

distS(u, pi(us)) \leq distS(u, us) + distS(us, pi(us))

\leq dist(u, us) + s \cdot C\ell (i - 1) + I\ell (i - 1),

distS(v, pi(u\ell  - s\prime )) \leq distS(v, u\ell  - s\prime ) + distS(u\ell  - s\prime , pi(u\ell  - s\prime ))

\leq dist(v, u\ell  - s\prime ) + s\prime \cdot C\ell (i - 1) + I\ell (i - 1).

If pi(u\ell  - s\prime ) \not \in \scrB i+1(pi(us)), then

distS(u, pi+1(u)) \leq dist(u, pi(us)) + dist(pi(us), pi(u\ell  - s\prime ))

\leq (\ell  - s\prime )\ell i - 1 + 3I\ell (i)

\leq \ell i + 3I\ell (i) worst case when s\prime = 0

and the path from u to v is incomplete. On the other hand, if pi(u\ell  - s\prime ) \in \scrB i+1(pi(us)),
then S contains a shortest (or nearly shortest, if i = 1) path from pi(us) to pi(u\ell  - s\prime ),
so

distS(u, v) \leq distS(u, pi(us)) + distS(pi(us), pi(u\ell  - s\prime ))+distS(pi(u\ell  - s\prime ), v)

\leq [s(\ell i - 1 + C\ell (i - 1)) + I\ell (i - 1)] from u to pi(us)

+ [(\ell  - s - s\prime )\ell i - 1 + 2I\ell (i - 1) \{ +2\} ] from pi(us) to pi(u\ell  - s\prime )

+ [s\prime (\ell i - 1 + C\ell (i - 1)) + I\ell (i - 1)] from pi(u\ell  - s\prime ) to v

\leq dist(u, v) + (\ell  - 1)C\ell (i - 1) + 4I\ell (i - 1) \{ +2\} worst case when s+ s\prime = \ell  - 1

where the \{ +2\} is only present if i = 1. We satisfy Definition 3.3 by setting C\ell (1) =
6, I\ell (1) = \ell + 3, and, for i \geq 2, I\ell (i) = \ell i + 3I\ell (i  - 1) and C\ell (i) is the maximum of
\ell \cdot C\ell (i - 1) and (\ell  - 1)C\ell (i - 1) + 4I\ell (i - 1).
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We now find closed form bounds for C\ell (i) and I\ell (i).

Lemma 3.5. The values defined inductively in Lemma 3.4 satisfy the following
(in)equalities:

I2(i) = 3i+1  - 2i+1,

C2(i) \leq 3i+1,

I3(i) = (i+ 1)3i,

C3(i) \leq 4i3i.

Define c\ell = \ell /(\ell  - 3). For all \ell \geq 4 and i \geq 1,

I\ell (i) \leq c\ell \ell 
i,

C\ell (i) \leq min

\biggl\{ 
4c\ell \ell 

i,
(4c\ell i+ 2)\ell i - 1.

Proof. All bounds are established by induction on i. The cases when \ell \in \{ 2, 3\} are
left as an exercise. When \ell \geq 4 the base cases i \in \{ 0, 1\} clearly hold. For incomplete
paths and i \geq 2 we have

I\ell (i) = \ell i + 3 \cdot I\ell (i - 1) (by definition)

\leq \ell i(1 + 3c\ell /\ell ) \leq c\ell \ell 
i, (induction hypothesis, c\ell =

\ell 
\ell  - 3 )

and for complete paths we have two cases:

C\ell (i) = (\ell  - 1)C\ell (i - 1) + 4I\ell (i - 1) (by definition)

\leq (\ell  - 1)4c\ell \ell 
i - 1 + 4c\ell \ell 

i - 1 (1st induction hypothesis)

= 4c\ell \ell 
i

and \leq (\ell  - 1)(4c\ell (i - 1) + 2)\ell i - 2 + 4c\ell \ell 
i - 1 (2nd induction hypothesis)

\leq (4c\ell i+ 2)\ell i - 1.

Observe that when we check whether pi(u\ell  - s\prime ) \in \scrB i+1(pi(us)), i \geq 2, the distance
between pi(u\ell  - s\prime ) and pi(us) is maximized when s = s\prime = 0; it is at most

\ell i + 2I\ell (i - 1) = \ell i + 2c\ell \ell 
i - 1 < (\ell + 2)i.

Thus, as long as \ell \leq r, the criterion pi(u\ell  - s\prime ) \in \scrB (pi(us), (r+2)i) will also hold. This
retroactively justifies the constraint \ell \leq r in Lemma 3.4. Theorem 3.6 summarizes
the size-stretch tradeoffs for various ranges of d. Using more careful random sampling,
Huang and Pettie [36] removed a factor k from the size bound of Theorem 3.6 and
other related constructions.

Theorem 3.6. The spanner S(k, r) has size O(rhkn
1+ 1

2k+1 - 1 ), where h =
3\cdot 2k - 1 - (k+2)

2k+1 - 1
< 3/4. Its stretch changes as a function of the distance d being ap-

proximated.
\bullet For d \geq 2k it is a multiplicative O((3/2)k)-spanner.
\bullet For d \geq 3k it is a multiplicative O(k)-spanner.
\bullet For d \geq \ell k, \ell \in [4, k), it is a multiplicative (5 + O(1/\ell ))-spanner, and when
\ell \in [k, r], it is a multiplicative (1 + (4k +O(1))/\ell )-spanner.
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S(k, r) is a (1+\epsilon , ((4k+O(1))/\epsilon )k - 1)-spanner for every \epsilon such that (4k+O(1))/\epsilon < r.

Its stretch function can also be expressed as f(d) = d + (4 + o(1))kd1 - 
1
k + 3k for all

d \leq rk, and f(d) = d + (4 + o(1))kd/r for larger d, where the o(1)s go to zero as d
increases.

Proof. Let dist(u, v) \geq 2k be the distance to be approximated and \ell = \lfloor d 1
k \rfloor ,

where \ell \leq r. Partition the shortest path P (u, v) into intervals of length precisely
\ell k - 1, with at most one shorter interval. Since d < (\ell + 1)k, there are between \ell and
\lfloor (\ell + 1)(1 + 1/\ell )k - 1\rfloor intervals. If all intervals are complete, then distS(u, v) \leq d +
\lceil d
\ell k - 1 \rceil C\ell (k - 1). If at least one is incomplete, then distS(u, v) \leq d+(\lceil d

\ell k - 1 \rceil  - 1)C\ell (k - 
1)+4I\ell (k - 1). If \ell \in [3, k - 1], then according to Lemma 3.5, C\ell (k - 1) = 4I\ell (k - 1),
and so our claimed upper bound holds in either case. If \ell \geq k or \ell = 2, then
C\ell (k  - 1) < 4I\ell (k  - 1), so the second case is worse. When \ell = 2 we have

d+

\biggl( 
\lceil d

2k - 1
\rceil  - 1

\biggr) 
C2(k  - 1) + 4I2(k  - 1)

< d+

\biggl( 
\lceil d

2k - 1
\rceil  - 1

\biggr) 
3k + 4 \cdot 3k

\leq d(1 + 3(3/2)k - 1) + 4 \cdot 3k.

So S(k, r) is a multiplicative O((3/2)k - 1)-spanner for d \geq 2k. This is a nontrivial

multiplicative stretch. Traditional multiplicative stretch spanners with size n
1+ 1

2k+1 - 1

stretch some pairs by a factor of 2k+2  - 3. When \ell = 3 we have

d+

\biggl( 
\lceil d

3k - 1
\rceil  - 1

\biggr) 
C3(k  - 1) + 4I3(k  - 1)

< d+

\biggl( 
\lceil d

3k - 1
\rceil  - 1

\biggr) 
4(k  - 1)3k - 1 + 4k3k - 1

\leq d(1 + 4(k  - 1)/3 + 4k/3). (since 3k - 1 \leq d/3)

Thus S(k, r) functions as a multiplicative O(k)-spanner when d \geq 3k. When \ell \in [4, k),

d+

\biggl( 
\lceil d

\ell k - 1
\rceil  - 1

\biggr) 
C\ell (k  - 1) + 4I\ell (k  - 1)

< d+

\biggl( 
\lceil d

\ell k - 1
\rceil  - 1

\biggr) 
4c\ell \ell 

k - 1 + 4c\ell \ell 
k - 1

< d(1 + 4c\ell + 4c\ell /\ell )

= d

\biggl( 
1 +

4(\ell + 1)

\ell  - 3

\biggr) 
= (5 +O( 1\ell ))d. (since \ell k - 1 \leq d/\ell , c\ell = \ell /(\ell  - 3))

The multiplicative stretch of S(k, r) tends to 5 as d increases from 3k to (k  - 1)k.
When \ell \geq k we have

d+

\biggl( 
\lceil d

\ell k - 1
\rceil  - 1

\biggr) 
C\ell (k  - 1) + 4I\ell (k  - 1)

\leq d+

\biggl( 
\lceil d

\ell k - 1
\rceil  - 1

\biggr) 
(4c\ell (k  - 1) + 2)\ell k - 2 + 4c\ell \ell 

k - 1

\leq d

\biggl( 
1 +

4c\ell k + 2

\ell 

\biggr) 
, \ell k - 1 \leq d/\ell .
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When d \geq \ell k \geq kk the multiplicative stretch is 1 + (1 + o(1))4k/\ell , where the o(1) =
O(1/\ell ) tends to zero as \ell increases. When \ell \geq (4c\ell k + 2)/\epsilon the multiplicative stretch
becomes 1 + \epsilon .

One may confirm that by setting \ell = \lfloor d 1
k \rfloor , in all the cases above the stretch

function of S(k, r) can be expressed as f(d) = d+O(kd1 - 
1
k +3k) for \ell k \leq d \leq rk and

f(d) = d + O(kd/r) for d \geq rk. The leading constants in the terms O(kd1 - 
1
k ) and

O(kd/r) tend to 4 as d increases.

Setting r = (4k + O(1))/\epsilon , we obtain a (1 + \epsilon , O(k/\epsilon )k - 1)-spanner with size

O((k/\epsilon )hkn
1+ 1

2k+1 - 1 ). This spanner is sparsest when \epsilon > 0 is a fixed constant and
k = log2 log2 n  - O(1): it is then a (1 + \epsilon , ((4 + o(1)) log log n)log logn - O(1))-spanner
with size O(n(log log n)7/4). When k = log log n it is possible to reduce the size of this
spanner to O(kn+ nr3/4) = O(n(log log n+ (\epsilon  - 1 log log n)3/4)). The kn term reflects
the cost of the paths \{ P (u, pi(u))\} u\in V,i\in [1,k]. Rather than equalize the remaining

contribution of E\prime 
0, . . . , E

\prime 
k, one chooses the sampling probabilities such that | \~E1| and

| E\prime 
0| are balanced and | E\prime 

2| , | E\prime 
3| , . . . , | E\prime 

k| decay geometrically.
Even sparser (1+\epsilon , \beta )-spanners are known, but they have slightly worse tradeoffs.

Pettie [49] constructed a (1 + \epsilon , O(\epsilon  - 1 log log n)log logn)-spanner with size
O(n log log(\epsilon  - 1 log log n)).

4. Lower bounds for hopsets. In this section, we show lower bounds on the
tradeoffs between \beta and \epsilon in (\beta , \epsilon )-hopsets, subject to an upper bound on the num-
ber of edges in the hopset. We begin by making some minor modifications to the
construction of the lower bound graphs \{ \scrH k\} k from section 2 and then prove lower
bounds on hopsets for \scrH k.

4.1. A new construction of \bfscrH \bfitk . In the base case k = 1, redefine \scrH 1[p] to
be a copy of \.B[p] on \ell + 1 layers (rather than a biclique), each edge of which has
unit length. Naturally \scrP 1 is \scrP ( \.B[p]). Rather than have p2 edges and p2 pairs in its
pair-set, the new \scrH 1[p] has p

2 - o(1) edges and p2 - o(1) pairs in \scrP 1 when \ell = po(1). The
graph \scrH k[p] is formed as before, by taking a copy of \"B[p] and replacing each vertex in
an interior layer with a standard or reversed copy of \scrH k - 1[p

\prime ], where p\prime = p/\xi \ell (
\surd 
p).

Rather than subdivide edges of \"B[p] into paths of length (2\ell  - 1)k - 1, we leave them
as is, but give them weight (2\ell  - 1)k - 1. The construction of \scrP k from \scrP k - 1 is exactly
as in section 2. When \ell = po(1), the size of \scrH k[p] and \scrP k[p] only differ from the old
\scrH k[p] and \scrP k[p] (from section 2) by po(1) factors.

Lemma 4.1. If (u, v) \in \scrP k, then there is a unique shortest path from u to v in
\scrH k. If k = 1 the path has length exactly \ell , and if k \geq 2 the path has length exactly
(2k  - 1)\ell (2\ell  - 1)k - 1 and passes through 2\ell  - 1 copies of \scrH k - 1.

Proof. The proof follows the same lines as Lemma 2.3. Let dk be the distance
between the input ports and output ports in \scrH k. Then

d1 = \ell ,

dk = (2\ell  - 1)dk - 1 + 2\ell (2\ell  - 1)k - 1,

and the claim follows by induction on k.

4.2. Simplifying the hopset \bfitH . Consider a hopset H for \scrH k. In order to
simplify the arguments to come we will manipulate H so that it satisfies certain
structural properties.

Definition 4.2. Let H be a hopset of \scrH k.
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Fig. 4. Top: An order i short edge (u, v) joining two vertices in adjacent copies of \scrH i - 1, the
edge joining these copies being (\^u, \^v). Bottom: Replacing (u, v) with three hops (u, \^u), (\^u, \^v), (\^v, v).
If (order i - 1) edges (u, \^u), (\^v, v) are still short, then they are processed recursively. Note: \^u and \^v
are input/output ports in copies of \scrH i - 1; only u and v may be contained in copies of \scrH i - 2.

1. An edge (u, v) \in H has order i, 1 \leq i \leq k, if u and v are contained in a
single copy of \scrH i within \scrH k.

2. Suppose (u, v) \in H has order i. If u and v are in adjacent copies of \scrH i - 1 (or
u is in a copy of \scrH i - 1 and v is an adjacent input/ouput port of the copy of
\scrH i containing it), then (u, v) is short. Otherwise (u, v) is long.

Later it will be convenient to assume that H contains only long edges. Lemma 4.3
shows that short edges can be expunged from H without affecting \beta and | H| by more
than a constant factor.

Lemma 4.3. Let H be a (\beta , \epsilon ) hopset for \scrH k. Then there is an (O(k\beta ), \epsilon ) hopset
H \prime for \scrH k containing only long edges, with | H \prime | \leq 2| H| .

Proof. Let (u, v) \in H be an order i short edge connecting adjacent copies of \scrH i - 1,
and let (\^u, \^v) be the edge joining these copies. See Figure 4. Replace (u, v) in H with
edges (u, \^u), (\^v, v). Any path formerly using (u, v) can now use three edges in its
place: (u, \^u), (\^u, \^v), (\^v, v). Observe that (u, \^u), (\^v, v) are order i - 1 edges, which may
be short order i - 1 edges. If (u, \^u) and/or (\^v, v) are short, recursively process them
in the same way. Whereas processing (u, v) spawned two edges, processing (u, \^u) or
(\^v, v) spawns a single edge since \^u and \^v are input/output ports of copies of \scrH i - 1,
and not contained in any copy of \scrH i - 2. Thus, after this recursive process completes,
each original short edge (u, v) is simulated by a path with at most O(k) hops.

Henceforth we only consider hopsets for \scrH k that contain only long edges.

4.3. Tradeoffs between \bfitbeta and \bfitepsilon . We next assign ownership of each long order
i edge (x, y) \in H to a pair in \scrP k. Suppose that G

x
i - 1 and Gy

i - 1 are the copies of \scrH i - 1

containing x and y, respectively. Let P \in \scrP k own (x, y) if the unique shortest path for
P intersects both Gx

i - 1 and Gy
i - 1. It is not obvious how to assign ownership over short

edges. Lemma 4.4 motivates our procedure for expunging short edges by showing that
each remaining long edge is owned by at most one pair in \scrP k.

Lemma 4.4. Each long edge (x, y) \in H is owned by at most one pair in \scrP k.

Proof. Suppose (x, y) has order i. Let Gi be the copy of \scrH i containing x, y and
Gx

i - 1, G
y
i - 1 be the copies of \scrH i - 1 within Gi containing x and y. Each pair in \scrP k has a

unique shortest path in \scrH k; if it intersects Gi, then it enters and exits Gi by a unique
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(input port, output port) pair, which is included in \scrP i. Thus, it suffices to prove
that at most one pair in \scrP i has a shortest path intersecting both Gx

i - 1, G
y
i - 1. Since

(x, y) is long, Gx
i - 1, G

y
i - 1 are not adjacent; i.e., the corresponding nodes \=x, \=y in \"B are

at distance at least 2. In order for a path in \scrP i to intersect Gx
i - 1, G

y
i - 1 the edges

on the path between \=x and \=y must be labeled alternately with two labels a, b. The
triple \=x, a, b uniquely determines the input port and output port in Gi and therefore
uniquely determines a member of \scrP k that owns (x, y). If the shortest path between \=x
and \=y is not labeled alternately with two labels a, b, then no pair in \scrP k owns (x, y).

If the size of the hopset H is strictly less than | \scrP k| , then some pair in \scrP k must not
own any edges. Lemma 4.5 shows that for any pair with this property, it is impossible
to get below additive error 2(\ell + 1)k - 1 via a path having at most (\ell  - 1)k hops.

Lemma 4.5 (compare to Lemma 2.5). Let H be a hopset for \scrH k containing only
long edges, and let (u, v) \in \scrP k be a pair that owns no edges in H. Then we have

dist
((\ell  - 1)k)
\scrH k\cup H (u, v) \geq dist\scrH k

(u, v) + 2(\ell + 1)k - 1.

Proof. The proof is by induction over k.

Base case. When k = 1, \scrH 1 is a layered bipartite graph, so we have either

dist
(\ell  - 1)
\scrH k\cup H(u, v) = dist\scrH k

(u, v)

or
dist

(\ell  - 1)
\scrH k\cup H(u, v) \geq dist\scrH k

(u, v) + 2,

so it suffices to rule out the former possibility. We have dist\scrH 1
(u, v) = \ell ; thus, the

shortest u--v path in \scrH k \cup H using at most \ell  - 1 hops must include at least one
edge in H. All edges in H have order 1. Since (u, v) owns no edge in H, there
is no edge (x, y) \in H with x, y on the unique shortest u--v path. It follows that

dist
(\ell  - 1)
\scrH 1\cup H(u, v) \not = dist\scrH 1

(u, v) and the base case is complete.

Inductive step. We now argue the inductive step. Let U be a u--v path in
\scrH k \cup H that uses at most (\ell  - 1)k hops and P be the corresponding path in \scrH k,
i.e., the one obtained by replacing each H-edge in U with a shortest path between
its endpoints. Finally, define \^P to be the projection of P onto \"B[p]. We consider two
cases depending on whether U uses at least one order k edge from H or not.

Inductive step: Case 1. Suppose that U includes an edge (x, y) \in H of order
k. In this case we do not need the inductive hypothesis. Since the pair (u, v) does
not own (x, y), this means that x (or y) is in a copy of \scrH k - 1 that is disjoint from
the unique shortest u--v path in \scrH k. Thus, \^P is not equal to the unique shortest u--v
path in \"B. Since \"B is bipartite, the length of \^P is at least 2 + dist \"B(u, v). Each
of these two edges has weight (2\ell  - 1)k - 1 in \scrH k, so P (and U) have length at least
dist\scrH k

(u, v)+2(2\ell  - 1)k - 1. This same analysis applies whenever \^P is not identical to
the shortest u--v path in \"B.

Inductive step: Case 2. Suppose that U contains no edges of H with order
k. By the above analysis, we can restrict our attention to the case when \^P = (u =
u0, u1, . . . , u2\ell = v) is the shortest u--v path in \"B. Let G(uj) be the copy of \scrH k - 1

substituted for uj and Uj . It follows that U contains all the weighted edges joining
consecutive G(uj - 1), G(uj), and some paths \{ Uj\} joining an input port and output
port of G(uj). Moreover, these input/output port pairs must be in \scrP k - 1.
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Partition the \{ Uj\} 1\leq j\leq 2\ell  - 1 based on whether their hop count is at most (\ell  - 1)k - 1

or at least (\ell  - 1)k - 1 +1. There can be at most \lfloor (\ell  - 1)k - 2\ell 
(\ell  - 1)k - 1+1

\rfloor = \ell  - 2 subpaths in the

second category, meaning at least (2\ell  - 1) - (\ell  - 2) = \ell + 1 of the subpaths in \{ Uj\} 
use at most (\ell  - 1)k - 1 hops. Applying the inductive hypothesis to these subpaths, we
have

dist
((\ell  - 1)k)
\scrH k\cup H (u, v) \geq dist\scrH k

(u, v) + (\ell + 1) \cdot 2(\ell + 1)k - 2 = dist\scrH k
(u, v) + 2(\ell + 1)k - 1.

We are finally ready to show the following.

Theorem 4.6. Fix a positive integer k and parameter \epsilon > 1/no(1). Any construc-

tion of (\beta , \epsilon )-hopsets with size n
1+ 1

2k - 1
 - \delta 

, \delta > 0, has \beta = \Omega k

\bigl( 
1
\epsilon 

\bigr) k
.

Proof. Construct \scrH k[p] with respect to an \ell = po(1) to be determined, so | \scrP k| =
n
1+ 1

2k - 1
 - o(1)

. Let H be a (\beta , \epsilon ) hopset for \scrH k containing only long edges. If | H| \leq 
n
1+ 1

2k - 1
 - \delta 

for some \delta > 0, then | H| < | \scrP k| , meaning some pair (u, v) \in \scrP k owns no
H edges. By Lemma 4.5, we then have

dist
(\ell  - 1)k

\scrH k\cup H (u, v) = dist\scrH k
(u, v) + 2(\ell + 1)k - 1.

By Lemma 4.1, dist\scrH k
(u, v) = (2k  - 1)\ell (2\ell  - 1)k - 1. Thus the relative error \^\epsilon of any

(\ell  - 1)k-hop path is

\^\epsilon =
2(\ell + 1)k - 1

(2k  - 1)\ell (2\ell  - 1)k - 1
>

2

(2k  - 1)\ell 2k - 1
.

We choose \ell as a function of k and \epsilon so that \ell < 1
2k - 2(2k - 1)\epsilon 

, which implies \^\epsilon > \epsilon . In

order for H to be a (\beta , \epsilon )-hopset for \scrH k, it must be that \beta > (\ell  - 1)k = \Omega k(1/\epsilon )
k.

Observe that Theorem 4.6 implies several interesting corollaries: any (\beta , \epsilon )-hopset
with \beta = o(1/\epsilon ) must have size \Omega (n2 - o(1)) and any such hopset with \beta = o(1/\epsilon 2) must
have size \Omega (n4/3 - o(1)).

Remark 4.7. The analysis of Lemma 4.5 still has some slack in it, which intro-
duces the 2k - 1 factor error in Theorem 4.6. A more careful analysis will most likely
reduce the hop lower bound to \beta = \Omega (1/(k\epsilon ))k, mimicking the dependency on k from
Theorems 2.10 and 2.11.

Remark 4.8. The construction of \scrH k from this section was essentially the same
as that of section 2, except in the base case. Had we used section 2's definition of
\scrH 1[p] (a Kp,p biclique, rather than a copy of \.B[p]), Theorem 4.6 would have arrived
at a weaker lower bound on \beta = \Omega k(1/\epsilon )

k - 1.

5. Lower bounds on compressing high-girth graphs. The density of the
graph \scrH k constructed in section 2 comes exclusively from complete bipartite graphs
(copies of \scrH 1); that is, \scrH k has girth 4. This feature of the construction turns out to
be absolutely essential. Baswana et al. [9] showed that the class of graphs with girth
(length of the shortest cycle) larger than 4 contains additive spanners below the 4/3
threshold. For example, graphs with girth 5 contain additive 12-spanners with size
O(n6/5).

Theorem 5.1 (see [9]). For any integer \gamma \geq 1, any graph with girth at least

2\gamma + 1 contains an additive 6\gamma -spanner on O(n1+ 1
2\gamma +1 ) edges.
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In this section, we extend our lower bound technique to show that the exponent
of Theorem 5.1 is optimal. More generally, we establish a hierarchy of tradeoffs
for sublinear additive graph compression schemes that depend on k and \gamma . From a
technical point of view, this section highlights two degrees of freedom that were not
used in section 2 or [2]. We use alternative base-case graphs (rather than bicliques
\scrH 1) and form \"B[p] from an imbalanced product of \.B[p1] and \.B[p2], where p = p1p2.
Our construction uses a slightly stronger, but equivalent, statement of the Girth
Conjecture that asserts a lower bound on the degree rather than the total size.

Conjecture 5.2 (Girth Conjecture [33, 17, 15]). For any integer \gamma \geq 1, there
exists a graph with n vertices, girth 2\gamma + 2, and minimum degree \Omega (n1/\gamma ).

Our goal is to prove the following theorem. Observe that by setting k = 2,
Theorem 5.3 implies that the exponent of Theorem 5.1 cannot be improved.

Theorem 5.3. Fix integers \gamma \geq 1, k \geq 2. Consider any data structure that
answers approximate distance queries for the class of n-vertex undirected graphs with
girth at least 2\gamma + 1. Assuming the Girth Conjecture, if the stretch function of the
data structure is

f(d) < d+ ck,\gamma d
1 - 1/k for ck,\gamma \approx 2

(\gamma (k - 1))1 - 1/k and d sufficiently large,

then on some graph the data structure occupies at least \Omega (n
1+ 1

(\gamma +1)2k - 1 - 1
 - o(1)

) bits.

We remark that this theorem holds trivially for any superconstant \gamma (with a
sufficiently large n - o(1) factor), since the lower bound becomes \Omega (n). Thus, we treat
\gamma as a fixed constant throughout this section. The remainder of this section constitutes
a proof of Theorem 5.3. We first make a simple observation about the hypothesized
graphs from the Girth Conjecture.

Observation 5.4. Fix a \gamma \geq 1. If G has girth 2\gamma +2 and minimum degree \Omega (n1/\gamma ),
there are \Omega (nd/\gamma ) nodes at distance exactly d from any node u for any 0 \leq d \leq \gamma .

Recall that the reason\scrH 1[p] from section 2 was useful was because its edge-set was
covered by unique, disjoint shortest paths between p input ports and p output ports.
We will prove something analogous for high-girth graphs, but with these properties
weakened slightly, in ways that have no adverse effect on the overall construction.

Definition 5.5. In a graph G, we say that a pair of nodes s, t requires an edge
e if every shortest path from s to t includes e.

Lemma 5.6. Fix integers \gamma \geq 1 and 0 \leq i < \gamma . Assuming the Girth Conjecture,
there is a graph H = (V,E) on n vertices and \Omega (n1+1/\gamma ) edges with girth 2\gamma +2, and
disjoint node subsets S, T \subseteq V of sizes | S| = \Omega (ni/\gamma ), | T | = \Omega (n(\gamma +1 - i)/\gamma ) such that
each edge e \in E is required by some (s, t) \in S \times T with dist(s, t) = \gamma .

Proof. Let H initially be any graph with minimum degree \Omega (n1/\gamma ) and girth
2\gamma + 2. Sample node subsets S, T independently and uniformly at random of the
appropriate size and let P \subset S\times T be such that (s, t) \in P if and only if dist(s, t) = \gamma .
The shortest s--t path is unique, due to H's girth, so all its edges are required by
(s, t). Discard from H all edges not required by any pair in P .

We will now prove that any particular edge remains in H with constant prob-
ability, so there exists some choice of S, T for which at least a constant fraction of
the edges are retained. Let us consider an arbitrary edge (u, v) in H. If there exist
nodes s \in S, t \in T such that distH - \{ (u,v)\} (s, u) + distH - \{ (u,v)\} (t, v) = \gamma  - 1, then
dist(s, t) = \gamma and the unique s--t shortest path requires (u, v).
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Let A be all vertices at distance exactly \gamma  - i from u in H  - \{ (u, v)\} and B be
all vertices at distance exactly i  - 1 from v in H  - \{ (u, v)\} . By Observation 5.4,

| A| = \Omega (n
\gamma  - i
\gamma ) and | B| = \Omega (n

i - 1
\gamma ). Since | A| | S| and | B| | T | are both \Omega (n), with

constant probability A \cap S \not = \emptyset and B \cap T \not = \emptyset .
Lemma 5.7. Let H = (V,E) be a graph and S, T \subseteq V be node subsets as described

in Lemma 5.6. Then there exists a set \scrP \gamma 
1 \subseteq S \times T of size | \scrP \gamma 

1 | = \Omega (n1+1/\gamma /\gamma 3), as
well as a mapping \phi : \scrP \gamma 

1 \rightarrow E, with the following two properties:
\bullet For each (s, t) \in \scrP \gamma 

1 , the pair (s, t) requires the edge \phi (s, t).
\bullet For each (s, t) \in \scrP \gamma 

1 , the unique shortest path from s to t in H contains no
edge e such that e = \phi (s\prime , t\prime ) for some (s\prime , t\prime ) \not = (s, t).

Proof. Let P \subseteq S \times T be the set of s, t pairs for which dist(s, t) = \gamma . Since
P = \Theta (n1+1/\gamma ), each node pair in P has distance \gamma , and H has \Omega (n1+1/\gamma ) edges, it
follows that the average edge in H is required by c = O(\gamma ) different pairs in P . By
Markov's inequality, at most half the edges in H are required by more than 2c pairs;
let F be the set of edges required by 2c or fewer node pairs in S \times T . We then have
| F | = \Omega (n1+1/\gamma ).

We now build \scrP \gamma 
1 and \phi using the following process. Iterate through the pairs in

P in any order. For each (s, t) \in P , let Q be the unique shortest path from s to t. If
F \cap Q = \emptyset , i.e., if (s, t) requires no F -edges, then discard (s, t) from P . Otherwise,
include (s, t) in \scrP \gamma 

1 , set \phi (s, t) to be any edge in F \cap Q, and discard from P any other
pair that requires any edge in F \cap Q. Since | Q| \leq \gamma and edges in F are required by
at most 2c pairs, we discard O(c\gamma ) pairs for each (s, t) not discarded.

The necessary properties of \scrP \gamma 
1 are immediate from the construction. To bound

the size of | \scrP \gamma 
1 | , first note that \Omega (n1+1/\gamma /\gamma ) pairs in P require at least one edge in

F , since | F | = \Omega (n1+1/\gamma ). Of these \Omega (n1+1/\gamma /\gamma ) node pairs, each one added to \scrP \gamma 
1

causes at most O(c\gamma ) = O(\gamma 2) to be discarded, so | \scrP \gamma 
1 | = \Omega (n1+1/\gamma /\gamma 3).

The lower bound construction. The graph \.B[p] is defined exactly as before,
and the parameter \ell \geq 2 is fixed throughout. The graph \"B can now be formed from an
imbalanced product. Construct \"B[p1, p2] from copies of \.B[p1] and \.B[p2] in exactly the
same way that \"B[p] is constructed from two copies of \.B[

\surd 
p]. The number of vertex

layers in \"B[p1, p2] is still 2\ell +1, and each layer contains p1p2 vertices. However, a node
in an internal layer has | \scrL [p1]| neighbors in the previous layer and | \scrL [p2]| neighbors in
the next layer (or vice versa), so the density of \"B[p1, p2] is determined by max\{ p1, p2\} .

We define \scrH \gamma 
1 [p1, p2] to be a graph drawn from Lemma 5.6, with n = n(p1, p2)

vertices and input/output ports S, T selected with the following cardinality. When
\gamma \geq 3 is odd,

| S| = | T | = p1 = p2 = n(\gamma +1)/(2\gamma ),

which, in Lemma 5.6, corresponds to choosing i = \gamma +1
2 . When \gamma \geq 2 is even,

| S| = p1 = n(\gamma +2)/(2\gamma ) and | T | = p2 = n1/2,

which corresponds to picking i = \gamma +2
2 in Lemma 5.6. We define \scrP \gamma 

1 to be the set of
\Omega (p1p2) node pairs in \scrH \gamma 

1 [p1, p2] from Lemma 5.7.
We proceed as in Theorem 5.3, but with a few critical differences. Although \scrP \gamma 

1 -
paths through \scrH \gamma 

1 have length \gamma , there could be ``shortcuts"" between input ports and
output ports not covered by \scrP \gamma 

1 ; the length of a shortcut might be as low as 1. When
forming \scrH \gamma 

k we subdivide edges in \"B as before, but we have to make these paths a
factor \gamma longer to sufficiently penalize paths that attempt to deviate far from the
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unique shortest path and thereby take advantage of many shortcuts elsewhere in \scrH \gamma 
k .

The imbalanced product \"B[p1, p2] is only used in the formation of \scrH 2[p], and only
when \gamma is even.

When \gamma is odd,\scrH \gamma 
2 [p] is constructed from \"B[p] = \"B[

\surd 
p,
\surd 
p] and\scrH \gamma 

1 [
\surd 
p

\xi \ell (
\surd 
p) ,

\surd 
p

\xi \ell (
\surd 
p) ]

exactly as in section 2, but replacing edges in \"B by paths of length \gamma (2\ell  - 1). When
\gamma is even, to construct \scrH \gamma 

2 [p] we pick p1, p2 to have the ``right"" proportions such that
p1p2 = p. The right proportions are dictated by the function \xi \ell (\cdot ) from the construc-
tion of \.B and Lemma 5.6. Let p\prime 1 = | \scrL [p1]| \geq p1/\xi \ell (p1) and p\prime 2 = | \scrL [p2]| \geq p2/\xi \ell (p2) be
the number of edges connecting an internal node u in \"B[p1, p2] to previous/subsequent
layers. When forming\scrH \gamma 

2 , each of these edges gets attached to a different input/output
port of \scrH \gamma 

1 (u), so we need p\prime 1 = (p\prime 2)
(\gamma +2)/\gamma . In cases where \xi \ell (p) = po(1), we can ig-

nore the distinction between p1 and p\prime 1 and just set p1 = p
\gamma +2
2\gamma +2 and p2 = p

\gamma 
2\gamma +2 . When

k \geq 3, \scrH \gamma 
k [p] is constructed from \"B[p] and \scrH \gamma 

k - 1[\cdot ] as before but subdivides edges into
paths of length \gamma (2\ell  - 1)k - 1.

We now analyze the distances in \scrH \gamma 
k of pairs in \scrP \gamma 

k .

Lemma 5.8 (compare to Lemma 2.3). Fix a (u0, u2\ell ) \in \scrP \gamma 
k whose unique shortest

path in \"B is (u0, u1, . . . , u2\ell ). The following hold.
\bullet There is a unique u0--u2\ell shortest path in \scrH \gamma 

k . It has length \gamma (2(k  - 1)\ell +
1)(2\ell  - 1)k - 1.

\bullet Any path from u0 to u2\ell in \scrH \gamma 
k that intersects some \scrH \gamma 

k - 1(u
\prime ), u\prime \not \in \{ u1, . . . , u2\ell  - 1\} ,

is at least 2(2\ell  - 1)k - 1 longer than the shortest path.

Proof. The proof is by induction. When k = 1, (u0, u2\ell ) \in \scrP \gamma 
1 implies that

dist\scrH \gamma 
1
(u0, u2\ell ) = \gamma (by Lemma 5.6), and by the girth of \scrH \gamma 

1 the path is unique.
We now turn to the inductive step. By the inductive hypothesis, there is only

one shortest path that passes through \scrH \gamma 
k - 1(u1), . . . ,\scrH \gamma 

k - 1(u2\ell  - 1), and it has length

d\gamma k = (2\ell  - 1)d\gamma k - 1 + (2\ell ) \cdot \gamma (2\ell  - 1)k - 1,

which has a closed form solution d\gamma k = \gamma (2(k  - 1)\ell + 1)(2\ell  - 1)k - 1.
By Lemma 2.3, any path from an input port of \scrH \gamma 

k to an output port of \scrH \gamma 
k

passes through (2\ell  - 1)k - 1 copies of \scrH \gamma 
1 . Thus, the minimum length of such a path is

exactly d\gamma k  - (\gamma  - 1)(2\ell  - 1)k - 1. Consider a path that passes through some \scrH \gamma 
k - 1(u

\prime ),

where u\prime \not \in \{ u1, . . . , u2\ell  - 1\} . Since the shortest u0--u2\ell path in \"B is unique and \"B is
bipartite, this path traverses at least two additional subdivided edges, each of length
\gamma (2\ell  - 1)k - 1. The length of such a path is therefore at least

d\gamma k  - (\gamma  - 1)(2\ell  - 1)k - 1 + 2 \cdot \gamma (2\ell  - 1)k - 1,

which is at least d\gamma k + 2(2\ell  - 1)k - 1. Thus the shortest u0--u2\ell path in \scrH \gamma 
k is unique.

Since paths through \scrH \gamma 
1 overlap, we need to update the definition of a ``critical""

edge.

Definition 5.9 (compare to Definition 2.4). An edge e is critical for a pair
(u0, u2\ell ) \in \scrP \gamma 

k if it lies in a copy of \scrH \gamma 
1 , the unique shortest u0--u2\ell path in \scrH \gamma 

k enters
and leaves that copy of \scrH \gamma 

1 by some pair (s, t) \in \scrP \gamma 
1 , and we have \phi (s, t) = e. (Thus

(s, t) requires e in \scrH \gamma 
1 , and so (u0, u2\ell ) requires e in \scrH \gamma 

k .)

Lemma 5.10. Let \~\scrH \gamma 
k be \scrH \gamma 

k with all critical edges for (u0, u2\ell ) removed. Then
dist \~\scrH \gamma 

k
(u0, u2\ell ) \geq dist\scrH \gamma 

k
(u0, u2\ell ) + 2(2\ell  - 1)k - 1.
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Proof. We proceed by induction. In the base case of k = 1, suppose a critical
edge is removed for (u0, u2\ell ). Since dist\scrH \gamma 

1
(u0, u2\ell ) = \gamma and \scrH \gamma 

1 has girth 2\gamma + 2,
dist \~\scrH \gamma 

1
(u0, u2\ell ) \geq \gamma + 2. For the inductive step, let Q be the shortest path from u0

to u2\ell in \scrH \gamma 
k , and let \~Q be the shortest path in the graph \~\scrH \gamma 

k . Suppose first that
\~Q traverses the exact same copies of \scrH \gamma 

k - 1 that Q traverses. In this case the claim

follows from the inductive hypothesis: we accumulate 2(2\ell  - 1)k - 2 additive stretch in
each of the 2\ell  - 1 copies of \scrH \gamma 

k - 1 traversed. If \~Q deviates and intersects some other

copy of \scrH \gamma 
k - 1, then by Lemma 5.8, the additive stretch is at least 2(2\ell  - 1)k - 1.

Lemma 5.11. Let \~\scrH \gamma 
k be \scrH \gamma 

k with the critical edges for all pairs in \scrP \gamma 
k except

(u0, u2\ell ) removed. Then dist \~\scrH \gamma 
k
(u0, u2\ell ) = dist\scrH \gamma 

k
(u0, u2\ell ).

Proof. Let s, t be the input/output ports used by shortest paths from u0 to u2\ell 

in any internal copy of \scrH \gamma 
1 . By Lemma 5.7, the unique shortest path from s to t in

\scrH \gamma 
1 does not include any edge e for which \phi (s\prime , t\prime ) = e, (s\prime , t\prime ) \not = (s, t). It follows that

the distance from s to t is the same in \scrH \gamma 
k and \~\scrH \gamma 

k .

The final piece of the proof is exactly identical to the lower bound argument in
section 2. In particular, we define a family of 2| \scrP 

\gamma 
k | graphs by keeping/removing the

critical edges for each pair in \scrP \gamma 
k in all possible combinations. By Lemmas 5.10 and

5.11, any two of these graphs will disagree on a pairwise distance (u0, u2\ell ) by an
additive 2(2\ell  - 1)k - 1. By Lemma 5.8, we have dist\scrH \gamma 

k
(u0, u2\ell ) = d = \gamma (2(k  - 1)\ell +

1)(2\ell  - 1)k - 1. Thus, the additive stretch 2(2\ell  - 1)k - 1 is roughly 2
(\gamma (k - 1))1 - 1/k \cdot d1 - 1/k.

If the stretch function of the distance oracle is f(d) \leq d+cd1 - 1/k for sufficiently large
d and a sufficiently small constant c < 2

(\gamma (k - 1))1 - 1/k , then it cannot map any of these

graphs to the same bit-string. This gives the stretch part of the lower bound claimed
in Theorem 5.3. It remains only to compute the size of this graph family. We have
2| \scrP 

\gamma 
k | distinct graphs, so we need to obtain a lower bound on | \scrP \gamma 

k | . In order to avoid
tedious calculations let us assume that \ell = po(1), so \xi \ell (p) = po(1) as well. In particular,
\.n[p], \"n[p] = p1+o(1), \"m[p1, p2] = p1p2(p1+p2)

1 - o(1), and | \scrP ( \"B[p1, p2])| = (p1p2)
2 - o(1).

Letting n\gamma 
1 [p1, p2] be the number of vertices in \scrH \gamma 

1 [p1, p2] and n\gamma 
k [p] be the number of

vertices in \scrH \gamma 
k [p], we have

n\gamma 
1 [p1, p2] = (p1p2)

\gamma /(\gamma +1),

n\gamma 
2 [p] = p1+o(1) \cdot n\gamma 

1 [p
1 - o(1)
1 , p

1 - o(1)
2 ] + ( \"m[p1, p2])

1+o(1),

where p1, p2 =
\surd 
p if \gamma is odd and p1 = p

\gamma +2
2\gamma +2 , p2 = p

\gamma 
2\gamma +2 if \gamma is even. When k \geq 3,

n\gamma 
k [p] = p1+o(1) \cdot n\gamma 

k - 1[p
1/2 - o(1)] + ( \"m[p])1+o(1).

Whether \gamma is even or odd, n\gamma 
1 [p

1 - o(1)
1 , p

1 - o(1)
2 ] = (p1p2)

\gamma /(\gamma +1) - o(1). The density of
\"B[p1, p2] is maximized when p1 and p2 are most imbalanced. This occurs when \gamma = 2,
p1 = p2/3, and p2 = p1/3, making \"m[p1, p2] = p5/3 - o(1). Thus, for any \gamma \geq 2,

n\gamma 
2 [p] = p2 - 

1
\gamma +1+o(1). By induction on k, n\gamma 

k [p] = p
2 - 1

(\gamma +1)2k - 2 +o(1)
.

By Lemma 5.7, | \scrP \gamma 
1 [p1, p2]| = \Omega (p1p2). The same inductive proof from section 2

shows that for any k \geq 2, | \scrP \gamma 
k [p]| = p2 - o(1). Expressed in terms of n = n\gamma 

k [p], p
2 - o(1)

is n
1+ 1

(\gamma +1)2k - 1 - 1
 - o(1)

. Theorem 5.3 follows.

5.1. Matching upper bounds. The subgraph E\prime 
0 from section 3 can be viewed

as a radius-1 clustering of the graph, obtained from the following procedure. First,
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cluster centers V1 \subset V are sampled with probability q1. Each vertex incident to V1

is clustered and joins the cluster of one such adjacent V1 vertex. E\prime 
0 contains a star

spanning each cluster and all edges incident to unclustered vertices, which number
O(n/q1) in expectation. Baswana et al. [9] observed that in graphs with girth at least
2\gamma +1, this procedure can be generalized to compute a radius-\gamma clustering with similar
properties.

Theorem 5.12 (see [9]). Let G = (V,E) be a graph with girth at least 2\gamma + 1.
Fix q1 < 1 and let V1 \subset V be obtained by sampling each element of V with probability
q1. Any v \in V with dist(v, V1) \leq \gamma is clustered and joins the cluster of the closest V1

vertex, breaking ties consistently. Let E\gamma 
0 contain a radius-\gamma tree on each cluster and

all edges incident to unclustered vertices. In expectation | E\gamma 
0 | = O(n/q

1/\gamma 
1 ).

We can use the E\gamma 
0 from Theorem 5.12 in lieu of E0 in the construction of Thorup--

Zwick emulators [59]. The total size of the emulator E\gamma = E\gamma 
0 \cup E1 \cup \cdot \cdot \cdot \cup Ek is then

on the order of
n

q
1/\gamma 
1

+
nq21
q2

+ \cdot \cdot \cdot +
nq2k - 1

qk
+ (nqk)

2.

If we write qi as n
 - g(i), g(i) must satisfy the following.

g(i) = 2g(i - 1) + g(1)
\gamma (balancing E\gamma 

0 and Ei - 1, for i \in [2, k])

= (\gamma + 1)(2i - 1  - 1) g(1)\gamma . (by induction)

Balancing the size of Ek and E\gamma 
0 , we have

| Ek| = (nqk)
2 = n2 - ((\gamma +1)2k - 2)

g(1)
\gamma = n1+

g(1)
\gamma = | E\gamma 

0 | ,

which is satisfied when g(1)
\gamma = 1

(\gamma +1)2k - 1
, implying the size of the emulator is

O(kn
1+ 1

(\gamma +1)2k - 1 ). The analysis of the emulator proceeds exactly as in section 3,
by bounding the quantities C\ell (i) and I\ell (i) inductively. Substituting E\gamma 

0 for E0 only
affects the following base cases.

C\ell (0) = 0 for all \ell ,

I\ell (0) = \gamma for all \ell .

This is justified by Theorem 5.12. Any path with length \ell 0 = 1 is a single edge, say
(u, v). If u is unclustered in E\gamma 

0 , then (u, v) \in E\gamma , distE\gamma (u, v) = 1, and (u, v) is
complete. On the other hand, if u is clustered, then distE\gamma (u, p1(u)) \leq \gamma and (u, v)
is incomplete. With these base cases it is straightforward to show that the stretch
function for E\gamma is f(d) = d+O(\gamma kd1 - 1/k). For example, when \gamma = k = 2 we see that
every girth-5 graph has a (d+O(

\surd 
d))-emulator with size O(n12/11).

This emulator can be converted to a (1+ \epsilon , O(\gamma k/\epsilon )k - 1)-spanner by applying the
same transformations from section 3, using Theorem 5.13 in lieu of Theorem 3.1.

Theorem 5.13. Let G = (V,E), q1, V1, and E\gamma 
0 be as in Theorem 5.12. Suppose

V2 is obtained by sampling each element of V with probability q2, where q2 < q1.
There is an edge-set \~E\gamma 

1 with expected size O(\gamma 2nq21/q2) such that for u, v \in V1 and
v \in \scrB 2(u),

distE\gamma 
0 \cup \~E\gamma 

1
(u, v) \leq 2\gamma .
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Remark 5.14. The \gamma 2 factor arises from two parts of the path-buying algorithm's
analysis that depend on the cluster radii. The cost of a path (number of missing
edges) is at most the number of clusters touching the path divided by the cluster
diameter, 2\gamma . Once a cluster-pair is charged we have their correct distance to within
+O(\gamma ). The path-buying algorithm only charges this cluster pair again when the
distance improves, so at most O(\gamma ) times.

The base-case values for C\ell (i) and I\ell (i) are updated as follows. For all \ell ,

C\ell (0) = 0,

I\ell (0) = \gamma ,

C\ell (1) = 6\gamma ,

I\ell (1) = \ell + 3\gamma .

It is easy to check that these base cases increase I\ell (i)  - \ell i by a factor of \gamma . It is for
this reason that we use a slightly larger threshold (r + 2\gamma )i when forming E\prime 

i in the
following construction. The spanner S(k, r, \gamma ) has the edge-set E\gamma 

0 \cup \~E\gamma 
1 \cup E\prime 

2\cup \cdot \cdot \cdot \cup E\prime 
k,

where E\prime 
i is obtained by replacing each (weighted) pair (u, v) \in Ei with a shortest

path P (u, v), assuming dist(u, v) is sufficiently short.

E\prime 
i =

\bigcup 
(u,v)\in Ei :

dist(u,v)\leq (r+2\gamma )i

P (u, v).

It follows that the size of the spanner is on the order of9

n

q
1/\gamma 
1

+
nq21
q2

+
nq22r

2

q3
\cdot \cdot \cdot 

nq2k - 1r
k - 1

qk
+ (nqk)

2rk.

Writing qi = n - g(i)r - h(i), g(i) satisfies the same recurrence as before and h(i) satisfies
the following.

h(2) = 2h(1) + h(1)
\gamma , (balancing E\gamma 

0 and \~E\gamma 
1 )

h(i) = 2h(i - 1) + h(1)
\gamma  - (i - 1) (balancing E\gamma 

0 and E\prime 
i - 1, i \in [3, k])

= ((\gamma + 1)2i - 1  - 1)h(1)\gamma  - 3 \cdot 2i - 2 + (i+ 1). (by induction, for i \in [3, k])

Finally, we balance E\gamma 
0 and E\prime 

k,

| E\prime 
k| = (nqk)

2rk = n2 - ((\gamma +1)2k - 2)
g(1)
\gamma rk - [((\gamma +1)2k - 2)

h(1)
\gamma  - 3\cdot 2k - 1+2(k+1)] = n1+

g(1)
\gamma r1+

h(1)
\gamma 

= | E\gamma 
0 | ,

by setting g(1), h(1) as follows:

g(1)

\gamma 
=

1

(\gamma + 1)2k  - 1
,

h(1)

\gamma 
=

3 \cdot 2k - 1  - (k + 2)

(\gamma + 1)2k  - 1
.

9For simplicity we treat the \gamma 2 factor in | \~E\gamma 
1 | as a constant.
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Thus, the size of the resulting spanner is O(rhkn
1+ 1

(\gamma +1)2k - 1 ), where h = 3\cdot 2k - 1 - (k+2)
(\gamma +1)2k - 1

.

For example, setting k = \gamma = 2 and r =
\surd 
D, this shows that every graph with girth

5 contains a subgraph that functions like a (d+ O(
\surd 
d))-spanner for all d \leq D, with

size O(r
2
11n

12
11 ) = O(D

1
11n

12
11 ).

Theorem 5.15 summarizes our emulator and spanner constructions for high-girth
graphs. The size can be further reduced by a factor of k using the sampling technique
of Huang and Pettie [36].

Theorem 5.15. Let G be a graph with girth at least 2\gamma +1. There is an additive

4\gamma -emulator and additive 6\gamma -spanner for G with size O(n1+ 1
2\gamma +1 ). For any integer

k \geq 2, there is a (d + O(\gamma kd1 - 1/k))-emulator for G with size O(kn
1+ 1

(\gamma +1)2k - 1 ) and

a (1 + \epsilon , O(\gamma k/\epsilon )k - 1)-spanner for G with size O((\gamma k/\epsilon )hkn
1+ 1

(\gamma +1)2k - 1 ), where h =
3\cdot 2k - 1 - (k+2)
(\gamma +1)2k - 1

< 3
2(\gamma +1) .

6. Lower bounds on shortcutting digraphs. In this section we consider
directed unweighted graphs G = (V,E). Let u \rightsquigarrow v be the reachability (transitive
closure) relation for G, indicating a directed path from u to v. In 1992 Thorup [55]
conjectured that for any directed graph G = (V,E) there exists another G\prime = (V,E\prime )
such that (i) G and G\prime have the same reachability relation (\rightsquigarrow ), (ii) | E\prime | \leq 2| E| , and
(iii) every u\rightsquigarrow v is witnessed in G\prime by a directed path with length poly(log n); this is
called the diameter of G\prime . Thorup's conjecture was confirmed for trees [55, 57, 19] and
planar graphs [56], but was disproved in a strong form by Hesse [35], who showed that
there exists a G with n1+\epsilon edges and diameter n\delta (\epsilon ), such that any shortcutting G\prime 

with diameter o(n\delta ) requires \Omega (n2 - \epsilon ) edges. In this section we give a simpler proof of
Hesse's result---a refutation of Thorup's conjecture---by generalizing the construction
of \"B from section 2.

6.1. The construction. Recall that \.B[p] is parameterized by an integer \ell \geq 2.
Its vertex set is partitioned into \ell + 1 layers of p vertices; each vertex has p/\xi \ell (p)
edges leading to the next layer, each of which is assigned a distinct label from the
set \scrL [p]. Here \xi \ell (p) = 2\Theta (

\surd 
log \ell \cdot log p). The set \scrP = \scrP ( \.B[p]) consists of p2/\xi \ell (p) pairs,

each having a unique length-\ell shortest path. Each element (u, v) \in \scrP is generated by
picking a vertex u in the first layer and a label a \in \scrL [p]: v is the vertex in the last
layer reached by starting at u and repeatedly following edges labeled a. In this section
we regard \.B[p] as being a directed acyclic graph, with all edges oriented toward the
higher numbered layer.

Rather than form \"B[p] by taking the product of two copies of \.B[
\surd 
p], we take the

product of k copies of \.B[p1/k]. Let the layers of \.B[p1/k] be L0, . . . , L\ell . The vertex set
of \"B[p] is partitioned into layers \"L0, . . . , \"Lk\ell . If q is written ik+ j, where i \leq \ell , j < k,
\"Lq is the set Lj

i+1 \times Lk - j
i . A directed edge (\nu , \nu \prime ) \in \"Lq \times \"Lq+1 exists if \nu and \nu \prime only

differ in their jth component and (\nu [j], \nu \prime [j]) is in the edge-set of \.B[p1/k]. In other
words, a path from layer \"L0 to layer \"Lq in \"B simulates k independent paths, from

layer L0 to Li in k  - j copies of \.B, and from layer L0 to Li+1 in the remaining j
copies. The pair-set \scrP ( \"B[p]) is defined as one might expect:

\scrP ( \"B[p]) = \{ (\nu , \nu \prime ) | (\nu [j], \nu \prime [j]) \in \scrP ( \.B) for each 0 \leq j < k\} .
Thus, for any (\nu , \nu \prime ) \in \scrP ( \"B[p]), \nu \rightsquigarrow \nu \prime is witnessed by a unique path having length k\ell ,
and the labels along this path form a periodic sequence (a0, a1, . . . , ak - 1, a0, a1, . . .)
for some (a0, . . . , ak - 1) \in (\scrL [p1/k])k. The size of the pair-set \scrP = \scrP ( \"B[p]) is | \scrP | \geq 
(p2/k/\xi )k = p2/\xi k, where \xi = \xi \ell [p

1/k].
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Lemma 6.1. The diameter of G = \"B[p] is k\ell . Any graph G\prime with the same tran-
sitive closure as G and diameter k\ell /(k  - 1) - 1 must have at least | \scrP | edges.

Proof. Let (\nu , \nu \prime ) \in \scrP , P be the unique \nu --\nu \prime path in G, and P \prime be a \nu --\nu \prime path in
G\prime having length strictly shorter than k\ell /(k - 1). It must be that P \prime contains an edge
that shortcuts at least k consecutive edges in P . However, because the edge-labels
along P are periodic with length k, any length-k subpath of P uniquely identifies P .
Thus, no edge of G\prime that shortcuts k or more edges in G can be used by two distinct
pairs in \scrP . It follows that G\prime contains at least | \scrP | edges or the diameter of G\prime is at
least k\ell /(k  - 1).

The number of vertices and edges in \"B[p] is n = (k\ell +1)p andm = k\ell p1+1/k/\xi \ell (p
1/k),

respectively. Setting \ell = p\delta /k for some small \delta > 0 we have \xi \ell (p
1/k) = 2\Theta (

\surd 
log \ell \cdot log p1/k) =

p\Theta (
\surd 
\delta /k), so the density of the graph is roughly p(1 - \Theta (

\surd 
\delta ))/k \approx n

1 - \Theta (
\surd 

\delta )
k(1+\delta /k) . By Lemma 6.1,

in order to reduce the diameter to p\delta /k = O(n
\delta 

k(1+\delta /k) ) we need to add | \scrP | = p2/\xi k =

p2 - \Theta (
\surd 
\delta ) shortcuts. By setting \delta = O(\epsilon 2) to be sufficiently small and k = \Omega (1/\epsilon ), we

arrive at the same conclusion of Hesse [35].

Theorem 6.2 (see [35]). For any \epsilon > 0 there exist a \delta = \delta (\epsilon ) and a directed
graph G with n vertices, at most n1+\epsilon edges, and diameter n\delta with the following
property. Any graph G\prime with the same transitive closure as G and diameter o(n\delta )
must contain at least n2 - \epsilon edges.

7. Conclusion. In this paper, we characterized the optimal asymptotic behav-
ior of sublinear additive stretch functions f for spanners, emulators, or any graph

compression scheme. Roughly speaking, any representation using n
1+ 1

2k - 1
 - \delta 

bits (for

any \delta > 0) must have stretch function f(d) = d+\Omega (d1 - 
1
k ). Previous constructions of

sublinear additive emulators [59] and (1+\epsilon , \beta )-spanners ([31, 59] and the construction

of section 3) show that neither the exponent 1 + 1
2k - 1

nor additive stretch \Omega (d1 - 
1
k )

can be improved for any k.
The main distinction between (1 + \epsilon , \beta )-spanners [31, 59, 49] and sublinear ad-

ditive emulators/spanners [59, 49, 20] is that constructions of the former take \epsilon as a
parameter (which affects the size of the spanner), whereas the latter have (1 + \epsilon , \beta )-
stretch for all \epsilon ; that is, \epsilon can be chosen in the analysis. An interesting open question
is whether one can match the size-stretch tradeoff of Thorup and Zwick's optimal
emulators [59] with a spanner. (Constructions in [49, 20] are off, from [59] (and our
lower bounds), by a polynomial factor.) It would be possible to construct such span-
ners given a pairwise spanner with a sublinear additive stretch function. For example,
when S \subset V with | S| = \Omega (n4/7) and P = S \times S, does there exist a pairwise spanner
for P with stretch d + O(

\surd 
d) and size O(| P | )? If such an object existed, we would

immediately have an optimal (d+O(
\surd 
d))-spanner with size O(n8/7); see [59, 49].

Our lower bounds match the existing upper bounds in the distance regime 2\Omega (k) \ll 
d < no(1), while they say nothing when d = 2O(k), and they are weaker when d = n\Omega (1).
An interesting open problem is to understand the sparseness-stretch tradeoffs available
when d = O(2k) is tiny (see [30, 9, 45]) and when d = n\Omega (1) is very large [16, 14].

Acknowledgments. We are grateful to Virginia Vassilevska Williams for useful
technical discussions and for advice about the directions taken by this paper. We
thank Michael Elkin for proposing the question of finding a lower bound hierarchy for
mixed spanners.
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