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Abstract mon (see [35, 22, 13] for some fundamental ones) and in the
domain of purely comparison-based problems they were,
We consider the problem of preprocessing an edge-to our knowledge, previously non-existent. The closest re-
weighted tre€l” in order to quickly answer queries of the lated result is Klawe’s [25§2(na(n)) lower bound on the
following type: does a given edgebelong in the mini-  time to find row-maxima in a totally monoto2e x n ma-
mum spanning tree &f U {e}? Whereas the offline min-  trix, where the non-blank elements are contiguous in each
imum spanning tree verification problem admits a lovely column. However, in [25] the relevant operation is not the
linear time solution, we demonstrate an inherent inverse- comparisorbut thematrix query
Ackermann type tradeoff in the online MST verification ~ Although the MST verification problem is nominally
problem. In particular, any scheme that answers queries about minimum spanning trees, its closest cousins in the
in ¢ comparisons must invesi(n log A\;(n)) time prepro- literature fall within a well-studied family of problems con-
cessing the tree, wherk; is the inverse of the" row of cerned with computing partial sums. In these problems
Ackermann’s function. This implies a query lower bound of there is an underlying set of weighted elements, where the
Q(a(n)) for the case of linear preprocessing time. We also weights are drawn from some (commutative) semigroup
show that our lower bound is tight to within a factor of 2in  (S,0). The problem is to answer a set of queries, where
thet parameter. a query asks for the cumulative weight of some subset of
the underlying elements. The case where elements are
points in R? has been studied extensively under various
types of queries. (There are too many papers to cite; see
[18, 38, 39, 7, 8, 4, 14, 9] for lower bounds and more ref-
erences.) Chazelle & Rosenberg [12, 13] studied the case
The theoretically best minimum spanning tree algo- where the elements are packed intd-dimensional array
rithms [23, 10, 33] were made possible by even more fun- and queries take the form dfrectangles (see also [38, 2]
damental algorithms and data structures, namely Ksi®l~  for d = 1.) In[13] a tight lower bound of(n +ma(m, n))
minimum spanning tree verification algorithm [27, 17, 24, semigroup operations is proved for the 1-dimensiafal
5] and Chazelle’s Soft Heap [11]. It has been speculatedfiine version of the problem, whene is the size of the ar-
by some (see, e.g., Chazelle [10, p. 1029]) that the key toray andm the number of queries. This lower bound ob-
a faster MST algorithm is some interesting new data struc-viously extends to the online problem, and it relates to the
ture. In this paper we show that there are no linear solutionsMST verification problem because a 1-dimensional array is
to theonline minimum spanning tree verification problem, just a kind of tree. For general trees, Tarjan [34, 36] stud-
ruling out this type of data structure in a faster MST algo- jed certain offline partial-sums algorithms based on path-
rithm. In particular, we show that a preprocessing time of compression. Online variants were studied in [6, 2].
Q(nlog A¢(n)) is necessary in order to answer queries with  The lower bounds cited above assume that semigroup el-
t comparisons, where is the size of the tree anl isthe  ements are only accessible via the semigroup operator
¢"-row inverse of Ackermann’s function. A consequence of this — which is key to previous lower
Inverse-Ackermann type lower bounds are not too com- bounds — is that any algorithm solving such a problem
*Email: seth@cs.utexas.edu. This work was supported by Texas Ad- can be written as a straight-line program. However, for the
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9988160, and an MCD Graduate Fellowship. sume thalecision tree modelvhere the algorithm chooses
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which comparisons to make based on the outcomes of previinputs and queries, as described below. Assertions 2.2 and
ous comparisons. Naturally, many bounds that hold for ar- 2.3, given in Section 2.3, provide further restrictions on the
bitrary semigroups do not hold f¢R, max). For instance,  input.

the problem of answering interval-maximum queries in a 1-

dimensional array can be done in constant time with linear 1. The input tred’ is a full, rooted binary tree.
preprocessing [27] (contrast this with the superlinear lower

bound in [13] for arbitrary semigroups). Solving MST ver- 2. The query edge will connect a leaf to one of its ances-
ification offlineon arbitrary trees can be done in linear time tors.

[27,17, 24, 5], and the dual to this problem, MST sensitivity

analysis, can be solved in randomized linear time [20, 17] 3. The answer to the queeywill be no,e ¢ M ST (T U

or deterministicO(m log a(m,n)) time! All these prob- {e}). Therefore, the query algorithm need only verify
lems have(ma(m, n)) lower bounds when generalized to this fact.

arbitrary semigroups [13]. Given this history it is somewhat

startling that the problem we consider, online MST verifi- In a query it is clear that the query edge must partici-
cation, does not admit a linear solution in the decision tree pate in at least one comparison; the parameter0 used
model. throughout the paper represents the desired numizetdif

Inverse-Ackermann type lower bounds are generally tional comparisons per query. The terms “query complex-
proved by appealing purely to the structure of certain ity” and “preprocessing complexity” refer to the number of
fixed combinatorial objects. Contrast this with most lower comparisons performed by the query and preprocessing al-
bounds on decision tree complexity, which are information- gorithms, respectively.
theoretic in nature. The challenge in lower bounding the
online MST verification problem is in combining these two 5 1 A Basic Lemma
very different approaches. We suspect that our techniques
might yield inverse-Ackermann type lower bounds in other

comparison-based problems; two candidate problems are Ve characterize the limits of the preprocessing algorithm
given in Section 5. later. It is important first to characterize the behavior of the

optimal query algorithm. Regardless of what the prepro-
cessing algorithm does, for any query some suBsdtthe
vertices on the query path are candidate maxima. nigte
ural query algorithmdetermines the actual maximum with
Section 2 defines our notation and a class of “hard” prob- g _'1 comparisons in the obvious manner, then compares

lem instances. The lower bound proper appears in Sectionpis maximum with the weight of the query edge.
3. In Section 4 we give almost matching upper bounds

for onlmc_e M.S.T verlflcatl_on, and ShOW that the probl_em be- Lemma 2.1 The natural query algorithm is optimal.
comes significantly easier when the input edge-weights are
permuted randomly. We discuss some open problems in
Section 5.

1.1 Organization

Proof: Comparing two candidates, or a candidate with the
guery edge, can eliminate only one candidate from consid-
eration. Now consider a comparisen : w; involving two
2 Preliminaries weights, one of which, say,, is not a candidate. I,
is known to be larger (smaller) than a candidate maximum,

The prob'em is to preprocess an edge_weightedﬂee then the case, > wy (wa < U]b) eliminates no candidates.

so that given anyjuery edges, we can determine ié € In all other cases the comparison can go either way without
MST(T U {e}). This is tantamount to deciding whether  eliminating candidates
is not the heaviest edge on the only cyclelinJ {e}. For It is conceivable that the natural query algorithm could

the sake of simpler notation we consider input trees that arebe improved under some measure besides worst-case per-
vertexweighted rather than edge weighted. (A query then formance.

decides ife is heavier than alWerticesin the unique cycle of

TU{e}.) To further simplify matters we restrict the types of 2.2  Ackermann’s Function

1The split-findmindata structure [19, 31] was known to be useful in
certain weighted matching [19] and shortest path algorithms [37, 21, 31, In the field of algorithms & complexity, Ackermann’s

29, 30]. One application ofplit-findmin not mentioned in [19, 31] is ; ; : ;
MST sensitivity analysis, which it solves i (m log a(m, n)) time, an function [1] is rarely defined the same way twice (see e.g.,

Q(a/ log o) factor faster than Tarjan’s path-compression-based algorithm [1, 35, 13, 15, 16]). We would not presume to buck such a
[36]. well-established precedent. Here is a slight variant:



First, we show that Assertions 2.2 & 2.3 are mutually
consistent and realizable. The danger in Assertion 2.3 is

A0,5) = 2 that it is, perhaps, impossible to satisfy the independence
Al +1,0) = A(,1) condition.
Ali+1,5+1) = A@22"7) Lemma 2.4 There is a weight-distribution consistent with

_ _ Assertions 2.2 & 2.3.
Let a(m,n) be the inverse-Ackermann function and

\i(n) be theit®-row inverse, defined as follows: Proof: Assertion 2.3 defines the independent variables
{X.}s. We only need to show no inconsistencies arise
when combined with Assertion 2.2.
a(m,n) = min{i : A(3,[7*]) > n} Consider an auxiliary graph with the same vertex set as
Ai(n) = min{j : A(i,j) > n} the input tree, whose edges represent known (in)equalities.
Assertion 2.2 places a number of uni-directional edges in
and leta(n) be short fora(n,n). An equivalent definition  this graph, and Assertion 2.3 places (randomly) sdrire
of a, which is frequently more intuitive, can be had without directional edges in the graph, representing equalities. An

direct appeal to Ackermann'’s function; see [26]. inconsistency in Assertions 2.2 and 2.3 manifests itself in
the auxiliary graph as a cycle, at least one edge of which
2.3 The Input Distribution is uni-directional. We show that no such cycles can exist.

Assuming the contrary, I€t be such a cycle with minimum
length and be a vertexir€ such that no proper descendant
of bis in C. All uni-directional edges implied by Asser-
tion 2.2 go from nodes to their ancestors. Furthermore, by
Assertion 2.3 there is exactly one bi-directional edge con-
nectingd to an ancestor. Therefore, (&, b) and (b, c) are

the edges incident onin C, exactly one of them, sa, c),
must be bi-directional — see Figure 2. Suppéss ani-

If a is a tree node we lab(a) be the weight ok, and
sizda) be the number of leaf-descendantssofWe calla
ani-node ifsiz€a) = A(Z, 5) fori < ¢t and some and an
i-node if it is ani-node but not arfi + 1)-node.

If a is ani-node,i > 0, we letC, be the sequence of
(¢ — 1)-nodes betweean and its nearestnode ancestor. If
ais a leaf therC, is the sequence #fnodes between and
the root; see Figure 1.

o

6: k-node, k>=i
Assertion 2.2 Leta be a non-leaf-node and be ak-node
ancestor ofa, wherek > i. Thenw(a) < w(b) is known 9 nexti-node above b d
before the preprocessing algorithm begins.

C —
. . . . i-1)-nod
Assertion 2.2 establishes some a priori knowledge about ) (-1)=node

the input. We are purposefully giving the preprocessing al- tl Tnode lz

gorithm information so that we may succinctly characterize

what it “knows” later on. Figure 2. Left: the two edges incidenton  bin
Assertion 2.2 implies that the sequenceé-oiode ances- C. Right: replaced by one edge.

tors of any node is monotonically increasing; see Figure 1.

It also follows from Assertion 2.2 that for any query there

are at most + 2 candidate maxima: the most ancestral ~node and letl be the closestnode ancestor df By Asser-
node in the query path, fér < i < ¢, and the leaf involved ~ tion 2.3,cis a(: — 1)-node descendant af By Assertion
in the query. Note that leaves were specifically excluded 2-2,a is ak-node ancestor af (not necessarily proper), for

from Assertion 2.2. somek > i. Therefore, by Assertion 2.2 there is a uni-
directional edgéc, a); by replacing(c, b), (b, a) with (¢, a)

Assertion 2.3 For all leavesa, ori-nodesz, i > 0, w(a) = we obtain a smaller cycle]

w(X,) where X, is a node selected uniformly at random

from C,, independent of alX;,, whereb € T, b # a. 2.4 A Measure of Information

One can see by Assertion 2.3 that the weight of every  We defineD, to be the elements af', that could have
i-node,i > 0, is set (randomly) to equal that of some an- weight equal toa, given Assertions 2.2 & 2.3 and all the
cestral0-node. The exact weights of tienodes are not  comparisons made by the preprocessing algorithm. It fol-
particularly important, so long as they accord with Asser- lows from Assertion 2.3 thab, is non-empty. Define, ®
tion 2.2. as



A(i-1, k2+1)
A, j+1) = AG-1, k»)

A(i-1, ko-1)
A(i-1, ka—2)
A(i-1, k2-3)

A(i-1, ki+ 2)

_ 0 i-nodes
A(i-1, k1+ 1) e (i~D)-nodes
A, ) = A(-1, ky) points to heavier node

A(i-1, k1-1)

Figure 1. An i-node a and its associated set  C,. Inequalities implied by Assertion 2.2 are marked with
an arrow. To the right of each node isits  sizein Ackermann notation.

Proof: We only consider the case whéh,| > 3, so there

aredistinct nodes,b andz. Letg be an(i + 1) nodea, b, z

¢(a) = log ||Da || and &= Z ¢(a). bei-nodes and supposés ak-node k < i. If e is between
* a€T g andz and it is known thatv(g) < w(e), thenw(g) <
This following lemma may be obvious. We prove it for w(z) also follows, since from Assertion 2:i2(e) < w(z).
completeness’ sake. This contradicts the fact thate D,. For the second case,

e lies betweerb andz — see Figure 3. The definition of

Lemma 2.5 If the preprocessing algorithm has a budget of C, D D, impliesk < i. Suppose that(g) > w(e) is
g = g = -

¥ comparisons, thefL[®] < ¥, where the expectation is
over the input distribution and any random choices made

by the algorithm. <
_ e
Proof: Consider, from Assertion 2.3, the set of random w(g) <= w(e) . w(g) >= w(e) implies
variablesX = {X,},. The expected number of bits of implies b | han all kenod
information one could derive aboiXt in ¥ comparisons is : w(g) larger than all k- nodes
C.l w(g) < w(z) a
clearly no more thaw. Now, ¢(a) = log |‘D | Mmeasures ?
the number of bits known abouk,, for the special case g

whenX, is uniformly distributed oveD,. Thereforep(a)
is nevermorethan the actual number of bits known about
X,, and, by the independence of th&, }, (Assertion 2.3
andLemma 2.4y = > ¢(a)is never more than the num-
ber of bits known abouX. The Lemma follows

® measures a certain kind of information. A conse-
guence of Lemma 2.6, proved below, is that for the right
kind of query, any other information gathered by the pre-
processor is nhot useful.

Figure 3. Ancestor relationship indicated by
height on the page.

known. Then by Assertion 2.2is heavier than alk-nodes
betweena andb. However, by Assertion 2.3f w(g) =
w(a) thenw(g) = w(f) for somek node between andb.
Lemma 2.6 Let g be an arbitrary node, and let, b, z be Thereforew(g) > w(e) impliesa ¢ D,, a contradictiond

the first, second and last nodesof (i.e., z ancestral tob, Lemma 2.6 greatly simplifies our lower bound proof.
b ancestral toa). Then for any node betweery andz it is Consider any query path that includgsLemma 2.6 says
not known thatw(g) < w(e); for e betweerb andz it is that if the upper endpoint is not too close to the upper end
not known thatv(g) > w(e). of D,, then no ancestor of in the query is known to be



heavier thary, and no ancestor af at or abové is known
to be lighter thary. These two facts will prove useful in
Section 3.

3 The Lower Bound

Lemma3.3For0<i<t+1,|D,| > 3.

Proof: We first show/ D
#(f) = log |5ty

arp1| = |Dy| > 3. By definition of
log 1557, and the fact thatC's| = A¢(n), we have
[Ds] = Ni(n)/299), and sinces(f) < cos(f), |Dy| >
(At(n))2 > 3. Recall that\;(n) was assumed to be at least

Our main Theorem is stated below. The remainder of 8; the last inequality follows sincei > 3 for r > 8.

this section constitutes its proof.

Theorem 3.1 Any (randomized) preprocessing algorithm
for the online MST verification problem making at most
cnlog\i(n) comparisons has query complexity at least
t + 1 (with probability 1 — e for any constant > 0), for
some constant

Corollary 3.2 Any linear-time preprocessing algorithm for

the online MST verification problem has query complexity

Q(a(n)).

The outline of the proof is as follows. We generate a
query edge(f, ag) by first finding an appropriate leaf,
then finding a sequence of nodesa;_1,...,aq, Where
a; is at-node ancestor of anda; is ani-node ancestor
of a;+1. If we can then show thaff,ay,...,ap} are all
candidate maxima for the query ed@g ao), by Lemma
2.1 the query algorithm must use at leastl comparisons.

For deterministic preprocessing algorithms Theorem 3.1

could be proved witle = g. We setc = ¢ and consider

Now to prove thatD,,| > 3 fori < t. Letj be such
thatsizda;) = A(¢, 7). Recall thaC,, includes all(i — 1)-
nodes between; and its next-node ancestor. Therefore,
|Cu;| = j2 — 71 — 1L where

A(i,j) = A(i = 1,71) and A(i,j +1) =A@ = 1,j2)
Forj >0, [Co,| = 2% _ 9247 _ 1 "and forj = 0,
ICo,| = 22*“” — 2. In either case, ifD,,| < 3 then
#(a;) = log ‘lc‘“ || > 24(13) — 2 and hence
dlar) 240D 2
cos - A
V)2 Sada) 2 TAG) o

The last inequality follows from Lemma 3.4, below, stat-
ing that A(i,5) > A¢(n) > 8. We now have a contradic-
tion because we specifically chogesuch thatcos{f) <
log A¢(n)/4.

|

The following lemma is only used in the proof of Lemma

randomized preprocessmg algorithms as well. We assume>-3-

w.l.o.g. that\;(n) >
Definecos{!), wherel is a leaf, as

>

a ancestral td
(includingl)

¢(a)
sizda)

cos(l) =

Clearly® = 3 . #(a) = >, costl) and from Lemma
2.5 we know thatE[®] < cnlog:(n). By Markov’s in-
equalityPr[® < e lenlog\:(n)] > 1 — €. Since Theorem
3.1 is only guaranteed with probability— ¢, we assume
below that® < e~'cnlogAi(n) = tnlogA¢(n).

Our query edgéf, ap) is chosen as follows

1. Letf = a;41 be a leaf such thatos(f) < &2
2. For0 < i <t, leta; be the second most ancestral node
in D

Qiy1*

In (1), such anf can always be found because the aver-

age leaf cost is bounded Ql(c;‘i‘)lg)/*;(") < log2e(n) For

(2) we clearly requir¢D,, .| > 2. We will actually require

Lemma 3.4 For 0 < i < t, sizéa;) > A¢(n)

Proof: (sketch) Sincey; is an ancestor of;1 and hence
sizda;) > siz€a; 1), we need only prove the lemma for
1 = t. By our selection ofi;, the lemma will follow from
the inequality A(¢, [r3] — 2) > r, which holds for all
t > 0, r > 8. One can prove by induction that for allj,
A(i,j) > 27, and thatfr3] — 2 > logr forall r > 8.

|

Lemma 3.5, given below, establishes thata,, ..., a0}
are all candidate maxima, and by Lemma 2.1, at least
1 comparisons will be needed to answer the qugtyio).
This will conclude our proof of Theorem 3.1.

Lemma 3.5 On the query f, ap), the set of candidate max-
ima includes{ f, as, . .., a0}

Proof: Assuming the contrary, leny, € {f =
at+1,at,--.,a0} andy be a node in the query path such
thatw(y) > w(ax) is known. By Lemma 2.6 cannot be
an ancestor of;. Suppose is ani-node descendant af;.

(If a, = f this is clearly impossible.) By Assertion 2.2,

it to have at least 3 elements, in order to apply Lemma 2.6clearly: > k. Since, also by Assertion 2.2(y) > w(ax)

later. Lemma 3.3 shows the feasibility of (2).

implies all i-node ancestors af are heavier thamy, we



may as well assumg = a; asa; is the most ancestrat
node on the query path. By Lemma 3I3(a;)| > 3 and by
our choice ofz;_1, the upper endpoint of the query path has
at least 2 elements fro(a;) below it. This allows us to
apply the second part of Lemma 2.6, implying that it is not
known whethekw(a;) > w(as), a contradiction. Therefore
ay, is a candidate maximum on the query péfha,). O

3.1 One Last Detail

We proved our lower bound with a slightly non-standard
version of Ackermann’s function. Below we defifk fol-
lowing a more typical definition of Ackermann’s function,
and compare its row-invergg with ;. Lemma 3.6, given
below, can be repeated with little modification for any of
the other definitions of Ackermann’s function found in the
literature [1, 35, 13, 15, 16].

B(0,j) = 2’
B(i+1,0) = B(i,1)
B(i+1,7+1) = B(,B(i+1,y))

pi(n) =min{j : Bli,j) > n}

We omit the proofs thatl and B are ascending in both
arguments.

Lemma 3.6 For anyt, n, pi(n) < 3X:(n) + 1.

Proof: We will prove by induction thatB(z,3j + 1) >
A(1, j) for all 4, j, giving the lemma. Notice first that since
B(0,7) = A(0,j) = 2/, the Lemma holds foi = 0. As-
sume, henceforth, that> 0. The following inequalities are
easily proved by induction.

4  {fori>2} (1)

>
> 22 ffori > 1} )

The casej = 0: B(:,3j + 1) = B(i,1) = B(i —
1,B(i,0)). If i = 1 thenB(0,B(1,0)) > A(1,0) and
we are done, so assumie> 1. By Inequality 1,B(i —
1,B(i,0)) > B(i — 1,4) > A(i — 1,1) = A(i,0), where
the second inequality is by our inductive assumption.

Now for the general case;j > 1.

B(i,3j+1) = B(i—1,B(i—1,B(i—1,B(,
3(j—1)+1)))) {Def. of B}
B(i—1,22""77Y)
{Inductive assumption

—~
o~
Il
—_

—
Vv

= A(i,§) {B(0,-) = A(0,)}
L2405 =1)

{i>1}y > B(@i-1,2° )
{Induct. assumpt., Inequality}2

S A(i 1 (2222A(i,j1> _ 1) /3)
{Inductive assumption
> AG-1,22"""77)

A(i, 7) {Def. of A}

a

4 Upper Bounds

In this section we show that the lower bound estab-
lished in Section 3 is within a factor & of optimal. We
also show that under the assumption of randomly permuted
edge-weights, an expected linear number of preprocess-
ing comparisons is sufficient to answer MST verification
queries witht = 1 additional comparisons. Bear in mind
that we are mainly concerned witlecision treecomplex-
ity in this section. The tools required to actually implement
these algorithms are non-trivial.

Recall from Section 2 that we give the query algorithm
one comparison for free. Therefore a preprocessing algo-
rithm with parametet = 0 means zeradditionalcompar-
isons are necessary.

Theorem 4.1 Suppose the edge-weights of a tfeare per-
muted randomly. With no more than preprocessing com-
parisons (expected), MST verification queriesiooan be
answered witht = 1 additional comparisons. Fot = 0,
©(nlogn) preprocessing is necessary.

Proof: Our notation here will refleatdgeweighted trees,
rather than the vertex-weighted ones from Section 3.

First consider the = 0 case with random edge-weights.

If the input treeT is a star then we need to know the rela-
tive ordering of all edge-weights, which obviously requires
Q(nlogn) preprocessing comparison8(n logn) is also
sufficient. (Remark: If all tree nodes have degree bounded
by a constant, it seems likely thafn logn) preprocessing
would be required on average. Could linear preprocessing
suffice?)

Fort = 1 the preprocessing algorithm must reduce the
number of candidate maxima (on any query) to at most two.
We root the tree arbitrarily and divide the quény v) into
two queriequ, LC A(u,v)) and(v, LC'A(u,v)). Hence, it
will be sufficient to reduce the number of candidate maxima
on a query(z, a) to one, where is an ancestor of. Fix the
nodez = zy; let z1, 23, 23, ... be the sequence of ancestors
of z up to the root, and let; = (z;, z;+1). We must find



the prefix-maxima of the sequen¢e(e;)),, which is tan-
tamount to finding the subsequentg= (e;, , €i,, iz, - - -)
wheree;, has maximum weight amon@o, .. .,e;,.,—1).

We computeL, from Ly = (ej,,ej,,...), WhereL, is the
sequence fog; (z's parent). One can see thi$ is derived
from L, by substituting a (possibly empty) prefix bf with

eo. We find such a prefix in the obvious manner, by com-
paringw(eg) with w(e;, ), w(ej, ), . .. until j4 is found such
thatw(eo) < w(ej,). (If there is no sucle;, then for the
sake of consistent notation we let it be a dummy edge con-
necting the root to its nonexistent parent.) The comparison-
cost of this procedure, which is performed for every edge in
the input tree, is no more thar? We analyze the behavior
of ¢ andj, under the assumption that the tree edge-weights
are randomly permuted. We have

Prljp=r] < 1/r(r+1) (3)
r—1
Efg | Jg = rl < 1+ Z Pr{w(e;) = llgggz{w(ek)}]

i=1 -

= 1 +Hrfl (4)

Elg] = ZPr[jq =r]-Elq | Jg = 7]
r=1

- Hr—l

s 1+ 'rz::Z r(r+1)
> 1 S 1

= 1) 7;1;1“7’“))

= Y - (5)

(i + 1)

Lines 3 and 4 are inequalities, rather than equalities, due

to the finiteness of thée;); sequence. Line 5 follows from
Lines3and 4 and the identily) ¥, 1/i(i+1) = 1—1/(k+
1), which is easily proved by induction dn O

In the general case, Theorem 4.2, given below, has a

preprocessing cost of the forM(n log Ax(n)); this is an
improvement over the previous constructions for arbitrary
semigroups [2, 6], which have a preprocessing cost of
O(n\i(n)). Both [2, 6] are generalizations of Yao’s con-
struction [38] for linear arrays. The proof of Theorem 4.2
is abbreviated; the techniques used are fully fleshed-out in
[27, 2, 6, 24].

Theorem 4.2 We wish to answer MST verification queries
with ¢ additional comparisons. For = 0 a preprocessing
cost of®(nlogn) is necessary and sufficient. For= 1

a preprocessing cost @(n loglogn) is sufficient, and for

2|t is usually equal tay, unlesse;, happens to be the “dummy” edge,
in which case the comparisan(eo) < w(e;,) never takes place.

t = 2k, k > 0, a preprocessing cost @(n log A;(n)) is
sufficient.

Proof: (sketch) Fort = 0, the argumentis identical to The-
orem4.1.

Fort = 1 we use King'’s reduction [24], which produces
an equivalent tree (for the purpose of MST verification)
with height no more thaibg n. We then run a versicrof
Komlbés's MST verification algorithm [27] directly on this
tree, which take® (n log h) = O(nloglogn) comparisons
on heighth trees. Kombs’s algorithm lets us answer node-
to-ancestor queries ifh comparisons, and hence arbitrary
gueries withl comparison.

Fort = 2k we use the same tree-decomposition tech-
nigue used in [2] and [6]. The idea is to generate- 1
forestsky, Fi, Fs, ..., Fj,. A query on the original tree is
then translated inté + 1 queries: for each, one query on
some tre€l; € F;. We preprocess thg, trees fort’ = 0
just by sorting their edge weights. For the remaining trees in
Fi,..., Fy, we preprocess them fet = 1 using Kombs's
algorithm [27]. For any query the number of candidate max-
ima is reduced t@k + 1, as required. The time required to
generatefy, . .., Fy is O(n); the rest of the preprocessing
is O(nlog Ak(n)). O

5 Open Problems

There are several natural comparison-based problems
which remain unresolved. Chief among them are the set
maxima problem [20, 3, 32] and the minimum spanning tree
problem; see [23, 10, 33, 32] for recent progress. We iden-
tify here two comparison-based problems for which slightly
super-linear lower bounds seem plausible.

e Thesplit-findmin problem is to maintain a set of in-
tervals, made up of weightedelementsundersplit
operations, which split an interval in two, and > n
decrease-kepperations, which lower the weight of
some element. The interval-minima must be known
at all times. This peculiar data structure turns out
to be very useful in certain weighted matching algo-
rithms [19] and several recent shortest path algorithms
[37, 21, 31, 29, 30]. It can also be used to solve the
minimum spanning tree and shortest path tree sensi-
tivity analysis problems. This last application is an
unpublished result; see [36] for the definitions of the
sensitivity analysis problems.

Gabow's [19] implementation of split-findmin takes
O(ma(m,n)) time on a pointer machine, which is op-
timal (for pointer machines) by a result of LaPautr”

3The first stage of Konal$’s algorithm is simply a preprocessing algo-
rithm for answering MST verification queries selected from a fixed graph
G. SettingG to be the complete graph makes it an all-purpose preprocess-
ing algorithm for online MST verification.



[28]. Pettie and Ramachandran [31] recently showed [17] B. Dixon, M. Rauch, and R. E. Tarjan. Verification and sen-

that the number odomparisonsequired to implement
the split-findmin structure is onl@(m log a(m, n)).
It is conceivable that)(mloga(m,n)) is a lower
bound as well.

e In [26] an O(ma(m,n)) time algorithm is given to
find the row-maxima in am x m totally monotone
“staircase” matrix. Is there a matching lower bound?

Acknowledgment. | thank Vijaya Ramachandran for many
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