
Distrib. Comput. (2017) 30:261–280
DOI 10.1007/s00446-016-0287-6

Distributed algorithms for the Lovász local lemma
and graph coloring

Kai-Min Chung1 · Seth Pettie2 · Hsin-Hao Su3

Received: 19 May 2016 / Accepted: 21 October 2016 / Published online: 21 November 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract The Lovász local lemma (LLL), introduced by
Erdős and Lovász in 1975, is a powerful tool of the prob-
abilistic method that allows one to prove that a set of n
“bad” events do not happen with non-zero probability, pro-
vided that the events have limited dependence. However,
the LLL itself does not suggest how to find a point avoid-
ing all bad events. Since the works of Alon (Random Struct
Algorithms 2(4):367–378, 1991) and Beck (Random Struct
Algorithms 2(4):343–365, 1991) there has been a sustained
effort to find a constructive proof (i.e. an algorithm) for the
LLL or weaker versions of it. In a major breakthroughMoser
and Tardos (J ACM 57(2):11, 2010) showed that a point
avoiding all bad events can be found efficiently. They also
proposed a distributed/parallel version of their algorithm that
requires O(log2 n) rounds of communication in a distributed
network. In this paper we provide two new distributed algo-

A preliminary version of this paper appeared in the 33rd Proceedings
of the ACM Symposium on Principles of Distributed Computing
(PODC). Pettie and Su are supported by NSF Grants CCF-0746673,
CCF-1217338, CNS-1318294, CCF-1514383, and a grant from the
US-Israel Binational Science Foundation. Part of the work was done
while visiting MADALGO at Aarhus University, supported by Danish
National Research Foundation Grant DNRF84. Chung was supported
by NSF Grants CNS-1217821, CCF-1214844, and R. Pass’s Sloan
Fellowship.

B Hsin-Hao Su
hsinhao@csail.mit.edu

Kai-Min Chung
kmchung@iis.sinica.edu.tw

Seth Pettie
pettie@umich.edu

1 Academia Sinica, Taipei, Taiwan

2 University of Michigan, Ann Arbor, MI, USA

3 MIT, Cambridge, MA, USA

rithms for the LLL that improve on both the efficiency and
simplicity of the Moser–Tardos algorithm. For clarity we
express our results in terms of the symmetric LLL though
both algorithms deal with the asymmetric version as well.
Let p bound the probability of any bad event and d be the
maximum degree in the dependency graph of the bad events.
When epd2 < 1 we give a truly simple LLL algorithm run-
ning in O(log1/epd2 n) rounds. Under the weaker condition
ep(d + 1) < 1, we give a slightly slower algorithm run-
ning in O(log2 d · log1/ep(d+1) n) rounds. Furthermore, we
give an algorithm that runs in sublogarithmic rounds under
the condition p · f (d) < 1, where f (d) is an exponen-
tial function of d. Although the conditions of the LLL are
locally verifiable, we prove that any distributed LLL algo-
rithm requires Ω(log∗ n) rounds. In many graph coloring
problems the existence of a valid coloring is established by
one or more applications of the LLL. Using our LLL algo-
rithms, we give logarithmic-time distributed algorithms for
frugal coloring, defective coloring, coloring girth-4 (triangle-
free) and girth-5 graphs, edge coloring, and list coloring.

Keywords Lovász local lemma · Distributed algorithms ·
Randomized algorithms · Coloring · Locality

1 Introduction

Consider a system P of independent random variables and
a set A of n bad events, where each A ∈ A depends solely
on some subset vbl(A) ⊆ P . For example, in a hypergraph
2-coloring instance,P represents the vertex colors andA the
events in which an edge is monochromatic. The dependency
graph GA = (A, {(A, B) | vbl(A)∩ vbl(B) �= ∅}) includes
edges between events if and only if they depend on at least
one common variable. Let Γ (A) be A’s neighborhood in GA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-016-0287-6&domain=pdf
http://orcid.org/0000-0003-3838-8349

262 K.-M. Chung et al.

and Γ +(A) = Γ (A) ∪ {A} be its inclusive neighborhood.
The (general, asymmetric) LLL states [14,41] that if there is
a function x : A → (0, 1) such that

Pr(A) ≤ x(A) ·
∏

B∈Γ (A)

(1 − x(B))

then Pr(
⋂

A∈A A) > 0, that is, there is a satisfying assign-
ment to the underlyingvariables inwhichnobad events occur.
The symmetric LLL is a useful corollary of the general LLL.
If p and d are such that Pr(A) ≤ p and |Γ (A)| ≤ d for all
A, and ep(d + 1) < 1, then Pr(

⋂
A∈A A) > 0. For example,

consider a hypergraph in which each edge contains k vertices
and intersects at most d < 2k−1/e − 1 other edges. Under
a uniformly random color assignment P → {red, blue} the
probability an edge is monochromatic is p = 2−(k−1), so
ep(d + 1) < 1. The symmetric LLL proves the existence
of a satisfying color assignment but does not yield an effi-
cient algorithm to find one. Beginning with Alon [1] and
Beck [7], a long line of research has sought to find efficient
(and ideally deterministic) algorithms for computing satis-
fying assignments [1,7,9,11,16–19,22,28,31–34,42]. Most
of these results required a major weakening of the standard
symmetric LLL constraint ep(d + 1) < 1. In many applica-
tions we consider, the bad events are that the sum of dΘ(1)

random variables deviates away from its expectation. So the
probability they are violated is often bounded by Chernoff-
type tail bounds, e.g. exp(−dΘ(1)).

In a relatively recent breakthrough,Moser and Tardos [33]
gave an algorithmic proof of the general asymmetric LLL,
with noweakening of the parameters. Their algorithm is sim-
ple though the analysis is not trivial. At initialization the
algorithm chooses a random assignment to the variables P .
Call an event A ∈ A violated if it occurs under the current
assignment to the variables. LetF ⊆ A be the set of violated
events. The algorithm repeatedly chooses some A ∈ F and
resamples the variables in vbl(A), until F = ∅.

The distributed LLL problem We consider Linial’s LOCAL
model [35] of distributed computation in which the distrib-
uted network is identical to the dependency graph. In other
words, each node A ∈ A hosts a processor, which is aware of
n, the degree bound d, and its neighborhood Γ (A). Compu-
tation proceeds in synchronized rounds in which each node
may send an unbounded message to its neighbors. Time is
measured by the number of rounds; computation local to
each node is free. Upon termination each node A must com-
mit to an assignment to its variables vbl(A) that is consistent
with its neighbors, i.e., the nodesmust collectively agree on a
satisfying assignment to P avoiding all bad events. We con-
sider the LOCAL model because we will need to send the
assignment of vbl(A) in one message.

Moser and Tardos proposed a parallel version of their
resampling algorithm (Algorithm 1), which can easily be
implemented in the LOCAL model. Let GF be the graph
induced by the violated events F under the current variable
assignment. They proved that O(log1/ep(d+1) n) iterations of
Algorithm 1 suffice to avoid all bad events with probability
1 − 1/ poly(n), i.e., O(log n) iterations suffice if ep(d + 1)
is bounded away from 1.1 (For the sake of a simpler pre-
sentation we shall state many results in the symmetric LLL
language. Our algorithms andMoser–Tardos algorithmwork
for the asymmetric LLL as well.) Moser and Tardos sug-
gested using Luby’s randomized MIS algorithm [27], which
runs in Θ(log n) rounds w.h.p. (which can also be achieved
by [2]), for a total running time of Θ(log n · log1/ep(d+1) n).
This is, intuitively, a very wasteful LLL algorithm since
nodes spend nearly all their time computing MISs rather
than performing resampling steps. For certain values of d
the running time can be improved by plugging in an MIS
algorithm running in O(d + log∗ n) time [5] or O(log2 d) +
exp(O(

√
log log n)) time w.h.p. [6].2 However, it is not pos-

sible to find an MIS in constant time. Kuhn, Moscibroda,

and Wattenhofer [23] gave an Ω
(
min

{ log d
log log d ,

√
log n

log log n

})

lower bound on the complexity of MIS and other symmetry-
breaking problems.

Initialize a random assignment to the variables P .
while F �= ∅ do
Compute a maximal independent set I in GF .
Resample each variable in vbl(I) = ⋃

A∈I vbl(A).
end while

Algorithm 1: The Moser–Tardos parallel resampling algo-
rithm. Here F is the set of bad events occurring under the
current variable assignment and GF is the dependency graph
induced by F .

New results We give a new distributed LLL algorithm in the
Moser–Tardos resampling framework that avoids the com-
putation of MISs altogether. Due to its simplicity we are
happy to display the algorithm in its entirety. We assume
that nodes possess unique IDs, which could be assigned in
an adversarial manner. Let ΓF (A) be A’s neighborhood in
GF .

One can see that I is computed in one round: each node A
tells its neighbors whether A ∈ F under the current variable
assignment. Once A receives messages from all neighbors
it can determine if ID(A) is a local minimum in GF . We
prove that under the slightly stronger criterion epd2 < 1, this

1 Note that log1/ep(d+1) n could be sublogarithmic or superlogarithmic
depending on how close ep(d + 1) is to 0 or 1.
2 These MIS algorithms are significantly more complex than Luby’s
and use larger messages.

123

Distributed algorithms for the Lovász local lemma and graph coloring 263

Initialize a random assignment to the variables P

while F �= ∅ do
Let I = {A ∈ F | ID(A) = min{ID(B) | B ∈ Γ +

F (A)}}
Resample vbl(I) = ⋃

A∈I vbl(A).
end while

Algorithm 2: A simple distributed LLL algorithm

algorithm halts in O(log1/epd2 n) steps w.h.p. Most appli-
cations of the LLL satisfy the epd2 < 1 criterion, though
not all. We give another distributed LLL algorithm in the
resampling framework that finds a satisfying assignment in
O(log2 d ·log1/ep(d+1) n) time under the usual ep(d +1) < 1
criterion.

We show that faster algorithms exist when the condi-
tion ep(d + 1) < 1 is replaced by a stronger condition
p · f (d) < 1, where f (d) is a faster growing function
than e(d + 1). However, it is not clear whether there exists
f (d) so that the LLL can be solved in sublogarithmic time
in n, independent of d. Moser and Tardos observed that
any parallel algorithm in the resampling framework requires
Ω(log1/p n) resampling steps, even if the dependency graph
has no edges. We combine the resampling framework with a
locality approach to give an O(log n/ log log n) algorithm for
an exponential function f (d). On the other hand, we prove
that no constant time distributed LLL algorithm exists and
that the LLL for any f (d) requires Ω(log∗ n) time.

New applications Existential results in graph coloring [29]
(those taking the Rödl nibble approach) can often be phrased
as distributed algorithms in which each step succeeds with
some tiny but non-zero probability, as guaranteed by theLLL.
By using our distributed LLL algorithms we are able to solve
a number of graph coloring problems in O(log n) time or
faster.3 Some of these applications require minor changes to
existing algorithms while others are quite involved. Below
Δ is the maximum degree, and ε > 0 an arbitrarily small
parameter.

Frugal coloring A k-frugal vertex coloring is one in
which each color appears at most k times in the neigh-
borhood of any vertex. Pemmaraju and Srinivasan [36]
showed the existence of (Δ + 1)-colorings that are
O(log2 Δ/ log logΔ)-frugal, and proved that (logΔ ·
log n/ log log n)-frugal colorings could be computed in
O(log n) time. With some modifications to their proof
we show that a O(log2 Δ/ log logΔ)-frugal (Δ + 1)-

3 Suppose H is both the distributed network and the graph to be colored.
When invoking the LLL, the dependency graph GA is not identical to
H . Typically bad events in A are associated with H -vertices and two
bad events are adjacent in GA only if the corresponding vertices are at
distance O(1) in H . Thus, a distributed LLL algorithm for GA can be
simulated in H with an O(1) slowdown.

coloring can be computed in O(log n) time. Notice that
the best existential bound on the frugality for (Δ + 1)-
coloring is O(logΔ/ log logΔ) by Molloy and Reed
[30].

Hind,Molloy, andReed [21] showed there exist β-frugal,

O
(
Δ

1+ 1
β
)
-colorings by using the asymmetric LLL. We

show how to turn their proof into a distributed algorithm
that runs in O(log n · log2 Δ) time.
Girth 4 and 5 In prior work [37] we proved that triangle-
free graphs have (4 + ε)Δ/ lnΔ-colorings and gave
log1+o(1) n time algorithms for (4 + ε)Δ/ lnΔ-coloring
triangle-free graphs and (1+ ε)Δ/ lnΔ-coloring girth-5
graphs. Here we prove that both problems can be solved
in O(log n) time.
Edge coloring Dubhashi et al. [12] gave a (1+ε)Δ edge-
coloring algorithm running in O(log n) time, provided
that Δ = (log n)1+Ω(1) is sufficiently large relative to n.
In [13], Elkin, Pettie, and Su applied our LLL algorithm
to show that (1 + ε)Δ edge-coloring can be obtained in
O(log∗ Δ + log n/Δ1−o(1)) rounds for Δ ≥ Δε , where
Δε is a sufficiently large constant depending on ε.
List-coloring Suppose each vertex is issued a list of
(1 + ε)D > Dε colors such that each color appears in
at most D lists in the neighborhood of any vertex, where
Dε is a sufficiently large constant depending on ε. (D
need not be close to the degree Δ.) Reed and Sudakov
[39] proved that (1 + ε)D-list-colorings exist. We show
how to construct them in O(log∗ D + log n/D1−o(1))

time. Furthermore, for any D and any constant ε > 0,
we show that (2e + ε)D list coloring can be solved in
O(log n) time.
Defective coloring An f -defective coloring is one in
which a vertexmay share its colorwith up to f neighbors.
Barenboim and Elkin [4], and implicitly, Kuhn and Wat-
tenhofer [24] gave an O(1) time procedure to compute a
O(log n)-defective O(Δ/ log n)-coloring. We prove that
for any f > 0, an f -defective O(Δ/ f)-coloring can be
computed in O((log n)/ f) time.

2 Preliminaries

Let Γ r (A) be the r -neighborhood of A (the set of nodes at
distance at most r from A, excluding A) and Γ r+(A) =
Γ r (A) ∪ {A} be its inclusive r -neighborhood. A node set in
the subscript indicates a restriction of the neighborhood to
that set, e.g., Γ 2+

F (A) = Γ 2+(A) ∩ F .
Consider an executionof aMoser–Tardos-type resampling

algorithm. Let C : N → A be such that C(i) is the i th
event selected by the algorithm for resampling; C is called
the record of the execution. (If the algorithm selects events

123

264 K.-M. Chung et al.

in independent batches then the events in each batch can
be listed arbitrarily.) A witness tree τ = (T, σT) is a finite
rooted tree where σT : V (T) → A labels each vertex in T
with an event such that the children of u ∈ T receive labels
from Γ +(σT (u)). A 2-witness tree τ = (T, σT) is defined in
the same way except that the children of u ∈ T may receive
labels from Γ 2+(σT (u)). A witness tree (or 2-witness tree)
is proper if the children of a vertex receive distinct labels.

Given a record C , the witness tree τC (t) is constructed
as follows. First, create a root node labelled C(t). Looking
backward in time, for each i = t − 1, t − 2, . . . , 1, check if
an existing node is labeled with an event from Γ +(C(i)). If
so, let u be one of the deepest such nodes. Create a new node
v labeled C(i) and make it a child of u. Given a witness tree
τ , we say τ occurs in C if there exists an index t such that
τC (t) = τ . Moser and Tardos proved the following lemma:

Lemma 1 Let τ be a fixed witness tree and C be the record
produced by the algorithm.

1. If τ occurs in C , then τ is proper.
2. The probability that τ occurs in C is at most

∏
v∈V (τ)

Pr(σT (v)).

Similarly, for r ≥ 2, we can define an r -witness tree τ r
C (t)

in the same way except that in each step we attach a node
labelled C(i) to the deepest node among nodes labelled
Γ r+(C(i)). Also, we say τ r -occurs inC if there exists t ∈ N

such that τ r
C (t) = τ . Then Lemma 2 holds analogously:

Lemma 2 Let τ be a fixed r-witness tree and C be the record
produced by the algorithm.

1. If τ r -occurs in C , then τ is proper.
2. The probability that τ r -occurs in C is at most

∏
v∈V (τ)

Pr(σT (v)).

3 Algorithms

Recall that the parallel/distributed Moser–Tardos algorithm
iteratively selects maximal independent sets (MIS) of vio-
lated events for resampling. They proved that if there is some
slack in the general LLL preconditions then the algorithm
terminates in O(log n) rounds of MIS.

Theorem 1 (Moser and Tardos) LetP be a finite set of mutu-
ally independent random variables in a probability space. Let
A be a finite set of events determined by these variables. If
there exists an assignment of reals x : A → (0, 1) such that

∀A ∈ A : Pr(A) ≤ (1 − ε)x(A)
∏

B∈Γ (A)

(1 − x(B)),

then the probability any bad event occurs after k resampling
rounds of Algorithm 1 is at most (1 − ε)k ∑

A∈A
x(A)

1−x(A)
.

In other words, if x(A) is bounded away from 1 then
O(log 1

1−ε
n) resampling rounds suffice, w.h.p. A distrib-

uted implementation of this algorithm takes O(log 1
1−ε

n ·
MIS(n, d)), where d is the maximum degree of GA and
MIS(n, d) is the time needed to find an MIS in an
n-vertex degree-d graph. It is known that MIS(n, d) =
Ω
(
min

{ log d
log log d ,

√
log n

log log n

})
[23]. Our algorithms avoid the

computation of MISs. In Sect. 3.1 we analyze the simple dis-
tributed LLL algorithm presented in the introduction, which
requires slightly weakening the general LLL conditions. In
Sect. 3.2 we present an algorithm that works for the standard
LLL conditions but is slower by a O(log2 d) factor.

3.1 A simple distributed algorithm

Recall that in each round of Algorithm 2, a violated event
A ∈ F is selected for resampling if ID(A) is a local mini-
mum in the violated subgraph GF . In order to analyze this
algorithm in the witness tree framework we must establish
some connection between the depth of witness trees and the
number of rounds of resampling. Lemma 3 will let us make
such a connection.

Lemma 3 Suppose an event A is resampled in round j > 1
of Algorithm 2. There must exist some B ∈ Γ 2+(A) resam-
pled in round j − 1.

Proof LetF ′ andF be the violated event sets just before and
after the resampling step at round j − 1. If A is not in F ′ but
is in F then its variables vbl(A) must have been changed in
round j −1, which could only occur if some B ∈ Γ (A)were
resampled. Now suppose A is in both F ′ and F . It was not
resampled in round j −1 but was in round j , meaning ID(A)

is not a local minimum in ΓF ′(A) but is a local minimum
in ΓF (A). This implies that some neighbor B ∈ Γ (A) with
ID(B) < ID(A) is in F ′ but not F , which could only occur
if some C ∈ Γ +(B) ⊆ Γ 2+(A) were resampled in round
j − 1. ��
We can now proceed to bound the number of rounds of

Algorithm 2 needed to find a satisfying assignment.

Theorem 2 (Asymmetric LLL) LetP be a finite set of mutu-
ally independent random variables in a probability space. Let
A be a finite set of events determined by these variables. If
there exists an assignment of reals x : A → (0, 1) such that

∀A ∈ A : Pr(A) ≤ (1 − ε)x(A)
∏

B∈Γ 2(A)

(1 − x(B)),

then the probability any bad event occurs after k resampling
rounds of Algorithm 2 is at most (1 − ε)k ∑

A∈A
x(A)

1−x(A)
.

123

Distributed algorithms for the Lovász local lemma and graph coloring 265

Note the difference with Theorem 1 is that the product is over
all B ∈ Γ 2(A) not B ∈ Γ (A).

Corollary 1 (Symmetric LLL) Let P be a finite set of mutu-
ally independent random variables in a probability space.
Let A be a finite set of events determined by these variables,
such that for all A ∈ A

1. Pr(A) ≤ p < 1, and
2. A shares variables with at most d of the other events.

If epd2 < 1, then w.h.p. none of the bad events occur after
O(log 1

epd2
n) rounds of Algorithm 2.

Proof Setting x(A) = 1/d2 and ε = 1 − epd2 in Theorem
2, we have

(1 − ε)x(A)
∏

B∈Γ 2(A)

(1 − x(B))

≥ 1 − ε

d2 ·
(
1 − 1

d2

)|Γ 2(A)|

≥ 1 − ε

d2

(
1 − 1

d2

)(d2−1)

≥ 1 − ε

ed2 ≥ p ≥ Pr(A).

Therefore, the probability a bad event occurs after k rounds
of resampling is at most (1 − ε)k ∑

A∈A
x(A)

1−x(A)
= (1 −

ε)kn/(d2 − 1), which is 1/ poly(n) if k = O(log 1
1−ε

n) =
O(log 1

epd2
n). ��

Following Moser and Tardos [33] we analyze the follow-
ing Galton-Watson process for generating an r -witness tree
T . Fix an event A ∈ A. Begin by creating a root for T labelled
A. To shorten the notation, we let [v] := σT (v). In each sub-
sequent step, consider each vertex v created in the previous
step. For each B ∈ Γ r+([v]), independently, attach a child
labelled B with probability x(B) or skip it with probability
1−x(B). Continue the process until no newvertices are born.
We prove a lemma analogous to one in [33].

Lemma 4 Let τ be a fixed proper r-witness tree with its root
vertex labelled A. The probability pτ that the Galton-Watson
process yields exactly the tree τ is

pτ = 1 − x(A)

x(A)

∏

v∈V (τ)

x ′([v])

where x ′(B) = x(B) ·
C∈Γ r (B)(1 − x(C)).

Proof Let Wv ⊆ Γ r+([v]) denote the set of inclusive r -
neighbors of [v] that do not occur as a label of some child
node of v. Then,

pτ = 1

x(A)
·

∏

v∈V (τ)

⎛

⎝x([v]) ·
∏

u∈Wv

(1 − x([u])
⎞

⎠

= 1 − x(A)

x(A)
·

∏

v∈V (τ)

⎛

⎝ x([v])
1 − x([v]) ·

∏

u∈Γ r+([v])
(1 − x([u]))

⎞

⎠

= 1 − x(A)

x(A)
·

∏

v∈V (τ)

⎛

⎝x([v]) ·
∏

u∈Γ r ([v])
(1 − x([u]))

⎞

⎠

= 1 − x(A)

x(A)
·

∏

v∈V (τ)

x ′([v])

��
Lemma 5 If for all A ∈ A, we have Pr(A) ≤ (1− ε)x(A) ·∏

B∈Γ r (A)(1−x(B)), then the probability that any r-witness

tree of size at least k occurs is at most (1−ε)k ·∑A∈A
x(A)

1−x(A)
.

Proof Let T r
A (k) denote the infinite set of r -witness trees

having root labelled A and containing at least k vertices. By
Lemma 2 and the union bound, the probability there exists a
violated event after k resampling rounds is at most

∑

A∈A

∑

τ∈T r
A (k)

Pr(τ r -occurs in C)

≤
∑

A∈A

∑

τ∈T r
A (k)

∏

v∈V (τ)

Pr([v]) by Lemma 2

≤
∑

A∈A

∑

τ∈T r
A (k)

∏

v∈V (τ)

(1 − ε)x ′([v])

≤ (1 − ε)k
∑

A∈A

x(A)

1 − x(A)

∑

τ∈T r
A (k)

pτ by Lemma 4

≤ (1 − ε)k
∑

A∈A

x(A)

1 − x(A)

The last inequality follows since the Galton-Watson process
grows exactly one tree. ��

Let C be the record of Algorithm 2 and S j be the segment
of the record corresponding to resamplings in round j . The
following lemma relates the number of resampling rounds
with the occurence of 2-witness trees.

Lemma 6 If there is still a violated event after k resampling
rounds in Algorithm 2 then some 2-witness tree of size at
least k occurs in C.

Proof Let Ak be any event in Sk and t be its position in the
record C . By Lemma 3 there exist events Ak−1, . . . , A1 in

123

266 K.-M. Chung et al.

Sk−1, · · · , S1 such that for all j < k, A j ∈ Γ 2+(A j+1).
This implies that Ak−1, . . . , A1 are mapped to distinct nodes
in the 2-witness tree τC (t), whose root is labeled Ak . ��

Therefore, by Lemma 6, if there is a violated event after
k resampling rounds, then a 2-witness tree of size at least k
occurs. However, by Lemma 5, it happens with probability at
most (1− ε)k ·∑A∈A

x(A)
1−x(A)

. Thus, Theorem 2 holds. Note
that if x(A) is bounded away from 1, then after O(log 1

1−ε
n)

rounds, w.h.p. no bad event occurs.

3.2 Resampling by weak MIS

In this section we analyze the efficiency of Moser and
Tardos’s Algorithm 1 when a new weak MIS procedure
(Algorithm 3) is used in lieu of an actual MIS. The Weak-
MIS procedure produces, in O(log2 d) time, an independent
set S such that the probability that a node is not in Γ +(S) =
S ∪ Γ (S) is 1/ poly(d). The procedure consists of O(log d)

iterations where the probability that a vertex avoidsΓ +(S) is
constant per iteration. Each iteration consists of log d phases
where, roughly speaking, the goal of phase i is to eliminate
vertices with degree at least d/2i with constant probability.
Each phase is essentially one step of Luby’s MIS algorithm,
though applied only to a judiciously chosen subset of the
vertices. See Algorithm 3.

Our main results are as follows.

Theorem 3 (Asymmetric LLL) LetP be a finite set of mutu-
ally independent random variables in a probability space. Let
A be a finite set of events determined by these variables. If
there exists an assignment of reals x : A → (0, 1) such that

∀A ∈ A : Pr(A) ≤ (1 − ε)x(A)
∏

B∈Γ (A)

(1 − x(B)),

then the probability any bad event occurs after k resampling
rounds using the Weak-MIS algorithm is at most n(1

d+1)
k +

(1 − ε)k/2∑
A∈A

x(A)
1−x(A)

.

Corollary 2 (Symmetric LLL) Let P be a finite set of mutu-
ally independent random variables in a probability space.
Let A be a finite set of events determined by these variables,
such that for ∀A ∈ A,

1. Pr(A) ≤ p < 1, and
2. A shares variables with at most d of the other events.

If ep(d + 1) < 1, then w.h.p. none of the bad events occur
after O(max(logd+1 n, log 1

ep(d+1)
n)) Weak-MIS resampling

rounds.

Corollary 2 follows directly by plugging in x(A)=1/(d+1)

for all A ∈ A and k = O
(
max

(
logd+1 n, log 1

ep(d+1)
n
))

.

Notice that if 1
ep(d+1) > d +1, we can apply the faster simple

distributed algorithm, so the running time in Corollary 2 will
be dominated by O(log 1

ep(d+1)
n · log2 d).

S ← ∅
for iteration 1 . . . , t = 4e2 ln(2e(d + 1)4) do

G ′ ← GF \ Γ +(S)

for phase i = 1 . . . �log d� do
Vi ← {v ∈ G ′ | degG′ (v) ≥ d/2i }.
For each vertex v ∈ G ′, set

b(v) ←
{
1 with probability pi = 1/(d

2i−1 + 1)

0 otherwise
For each vertex v ∈ G ′, if b(v) = 1 and b(w) = 0 for all w ∈
ΓG′ (v), set S ← S ∪ {v}.
G ′ ← G ′ \ (Γ +(S) ∪ Vi) (i.e., remove both Γ +(S) and Vi from
G ′.)

end for
Let S′ be the (isolated) vertices that remain in G ′.
Set S ← S ∪ S′

end for
return S

Algorithm 3: Weak-MIS

Consider the first iteration of the Weak-MIS algorithm.
For each phase i , G ′ is the subgraph of GF containing
vertices with degree at most d/2i and not adjacent to the
independent set S. Let Vi = {v ∈ G ′ | degG ′(v) ≥ d/2i }.
Note that every vertex in GF must end up isolated in S′
or one of the Vi ’s. Let (u, v) be an edge in G ′. Following
Peleg’s analysis [35], define E(u, v) to be the event that at
phase i , b(u) = 0 and b(v) = 1 and for all other neighbors x
of u and v, b(x) = 0. Define E(u) = ⋃

v∈ΓG′ (u) E(u, v)

to be the event that exactly one neighbor joins S in this
phase. Since these events are disjoint, we have Pr(E(u)) =∑

v∈ΓG′ (u) Pr(E(u, v)).

Lemma 7 If v ∈ Vi , then Pr(E(u)) ≥ 1
4e2

.

Proof Pr(E(u, v)) ≥ pi (1 − pi)
degG′ (u)+degG′ (v) ≥ pi (1 −

pi)
2d/2i−1 ≥ pi e−2. Since degG ′(u) ≥ d/2i , Pr(E(u)) ≥

d
2i pi e−2 ≥ 1

4e2
��

Therefore, if v ∈ GF \Γ +(S) at the beginning of iteration
l, the probability that v ∈ Γ +(S) at the end of iteration l is
at least 1/(4e2). We say a vertex in GF fails if, after all
t = 4e2 ln(2e(d + 1)4) iterations, it is still not in Γ +(S).

Lemma 8 Let S be an independent set selected by Weak-
MIS. If v ∈ F then Pr(Γ +(v) ∩ S = ∅) ≤ 1

2e(d+1)4
.

Proof By Lemma 7, the probability that v survives iteration
� conditioned on it surviving iterations 1 through � − 1 is
at most 1 − 1/(4e2). Over t = 4e2 ln(2e(d + 1)4) itera-
tions the probability of failure is at most (1 − 1/(4e2))t ≤
e− ln(2e(d+1)4) = 1

2e(d+1)4
. ��

123

Distributed algorithms for the Lovász local lemma and graph coloring 267

The next step is to relate the number of rounds of Weak-
MIS resampling with the size of witness trees.

Lemma 9 Suppose a bad event is violated after k rounds of
Weak-MIS resampling and the maximum depth of the witness
trees is t , then there exists a sequence of not necessarily
distinct vertices v1, . . . , vk such that the following hold:

(1) vi ∈ Gi , where Gi is the violated subgraph GF at the
beginning of round i .

(2) vi+1 ∈ Γ +(vi) for 1 ≤ i ≤ k − 1.
(3) For at least k − t indices 1 < l ≤ k, vl failed in the call

to Weak-MIS in round l − 1.

Proof For 1 ≤ i ≤ k, let Si be the segment of the record
C corresponding to events resampled at round i . Suppose
that an event A is violated after k resampling rounds. Build a
witness tree τ with root labeled A, adding nodes in the usual
fashion, by scanning the record C in time-reversed order. For
each j , in decreasing order, attach a node labelledC(j) to the
deepest node in τ whose label is in Γ +(C(j)), if such a node
in τ exists. Let vk+1 = A. We will build vk, vk−1, . . . , v1 in
backward manner. For k ≥ i ≥ 1, we claim there is an event
vi ∈ Γ +(vi+1) such that either vi ∈ Si or vi ∈ Gi and vi

failed at round i . If vi+1 /∈ Gi is not violated at the beginning
of round i , then it must be the case that there exists an event
vi ∈ Γ +(vi+1) resampled at round i to cause vi+1 ∈ Gi+1.
On the other hand, if vi+1 ∈ Gi is violated at the beginning
of round i , then either there exists vi ∈ Γ +(vi+1) resampled
at round i or vi+1 failed at round i . In the latter case, we let
vi = vi+1. Notice that τ (excluding its artificial root labeled
A) is a witness that occured and thus has depth at most t .
Since in each of the k rounds, either the depth of our witness
tree grows or a vertex fails, at least k − t vertices must have
failed in their respective rounds. ��

Notice that the total possible number of sequences sat-
isfying (2) in Lemma 9 is at most n(d + 1)k−1. Given
a sequence of vertices P = (v1, . . . , vk) satisfying (2),
define X (i)

P to be 1 if vi ∈ Gi and vi failed, 0 oth-

erwise. Let X P = ∑k
i=1 X (i)

P . If a sequence satisfying
(1–3) occured, then there exists P such that X P ≥ k − t .
Since X (1)

P , . . . , X (i−1)
P are determined by S1, . . . , Si−1 and

G1, . . . , Gi−1, E(X (i)
P | X (1)

P , . . . , X (i−1)
P) = E(X (i)

P |
S1, . . . , Si−1, G1, . . . , Gi−1) ≤ q

def= 1
2e(d+1)4

by Lemma

8. Fixing t = k/2, we have k − t = k/2 = kq · e(d + 1)4 ≤
E[X P] · e(d + 1)4. By Lemma 19 (Conditional Chernoff

Bound):

Pr(X P ≥ k/2) ≤
⎛

⎝ ee(d+1)4−1

(
e(d + 1)4

)e(d+1)4

⎞

⎠

k
2e(d+1)4

≤
(

1

(d + 1)2

)k

.

By the union bound over all possible P satisfying (2), the
probability that any such sequence in Lemma 9 occurs is at
most

n (d + 1)k−1 ·
(

1

(d + 1)2

)k

≤ n ·
(

1

d + 1

)k

.

Moser and Tardos showed that the probability that any
witness tree of size at least t occurs is at most (1 −
ε)t ∑

A∈A
x(A)

1−x(A)
. Thus, either a witness tree of depth at

least t = k/2 occurs or there exists a sequence of ver-
tices (as in Lemma 9) such that t − k = k/2 of them
failed. The probability either of these occurs is at most

n ·
(

1
d+1

)k + (1 − ε)k/2∑
A∈A

x(A)
1−x(A)

by the union bound.

3.3 A sublogarithmic algorithm

We have seen a faster algorithm for LLL when the general
condition ep(d + 1) < 1 is replaced by a stronger condition
p · f (d) < 1, where f (d) is a faster growing function than
e(d + 1). The question of how fast we can do for a stronger
condition arises. Does there exist a sublogarithmic algorithm
for faster growing f (d), independently of n?We answer this
affirmatively for an exponential function of d.

Inspired by [3], our approach is a two-stage approach. In
the first stage, we run Algorithm 2 for k(n) rounds. Then we
identify the dangerous events, who are likely to become vio-
lated if some subset of its neighborhood is resampled.Wewill
show there is a feasible solution by re-assigning the variables
belonging to dangerous events. Moreover, we show the com-
ponents induced by the dangerous events are likely to have
weak diameter at most k(n). The weak diameter of a com-
ponent is the maximum distance w.r.t. the original graph of
any pair in the component. In the second stage, each compo-
nent of dangerous events computes the answer independent
of others in time proportional to its weak diameter.

Theorem 4 (Asymmetric LLL) Let Pr(A) ≤ P2(A) ≤ 1
and P1(A) = 2d · Pr(A)

P2(A)
, where d is the maximum degree of

the dependency graph. If there exists an assignments of reals
x1, x2 : A → (0, 0.99] such that for all A ∈ A

1. P1(A) ≤ (1 − ε)x1(A)
∏

B∈Γ 3(A)(1 − x1(B))

2. P2(A) ≤ x2(A)
∏

B∈Γ (A)(1 − x2(B))

123

268 K.-M. Chung et al.

then the LLL problem can be solved in O
(
log1/(1−ε) n/ log

log1/(1−ε) n
)

rounds.

Proof Sketch of Theorem 4. Given an assignment of each
variables, we will classify the vertices into safe vertices and
dangerous vertices. An event A is safe if the probability A
becomes violated when any subset of its neighbors resam-
ple is at most P2(A). In contrast, the dangerous vertices are
those where there exists a subset of neighbors whose resam-
pling will cause it to be violated with probability greater than
P2(A).

Using conditional probability, we can bound the probabil-
ity that a vertex becomes dangerous after a random sampling
of vbl(A) by P1(A) = 2d Pr(A)/P2(A) (Lemma 10). Using
Cond. 1 in Theorem 4, we show in Lemma 11 that after
we resample dangerous vertices using the simple distrib-
uted algorithm for k rounds, if there exists a dangerous
component whose weak diameter is at least k, then a 3-
witness tree of size Ω(k log k) would occur. When k =
Θ(log n/ log log n), a 3-witness tree of size O(log n) would
occur, which happens with probability at most 1/ poly(n).
Therefore, with high probability, after O(log n/ log log n)

rounds of resampling, the weak diameters of the danger-
ous components are bounded by O(log n/ log log n). Finally,
a feasible assignment for a dangerous component can be
found in O(log n/ log log n) rounds locally, independent of
other dangerous components, which can be argued using
Cond. 2 in Theorem 4 and the definition of dangerous ver-
tices.

Proof (Proof of Theorem 4) Fix ∅ ⊆ D ⊆ Γ (A), let TD
denote the set of assignments b for vbl(A)\vbl(D) such that
b ∈ TD iff when the variables in vbl(A) \ vbl(D) are fixed
to be equal to b, the probability A becomes violated after
sampling variables in vbl(D) exceeds P2(A), that is,

TD = {b | Pr(A | vbl(A) \ vbl(D) = b) > P2(A)}

Given an assignment of the variables of A, we call A
“dangerous” if there exists ∅ ⊆ D ⊆ Γ (A) such that
vbl(A) \ vbl(D) ∈ TD. Otherwise, A is “safe”. Notice that if
A is violated then A is also dangerous, if we choose D = ∅.

��

Lemma 10 The probability that A becomes dangerous after
(re)sampling vbl(A) is at most P1(A).

Proof By the union bound over each subset of neighbors,
the probability that A becomes dangerous after sampling or
resampling variables in vbl(A) is at most

∑

∅⊆D⊆Γ (A)

Pr(vbl(A) \ vbl(D) ∈ TD)

=
∑

∅⊆D⊆Γ (A)

∑

b∈TD

Pr(vbl(A) \ vbl(D) = b)

=
∑

∅⊆D⊆Γ (A)

∑

b∈TD

Pr(A ∩ (vbl(A) \ vbl(D) = b))

Pr(A | vbl(A) \ vbl(D) = b)

≤
∑

∅⊆D⊆Γ (A)

∑

b∈TD

Pr(A ∩ (vbl(A) \ vbl(D) = b))

P2(A)

≤
∑

∅⊆D⊆Γ (A)

Pr(A)

P2(A)

≤ 2d · Pr(A)

P2(A)
= P1(A).

��
For each A, we define a new event A′ to be that A

becomes violated after resampling the variables of the dan-
gerous events. Also, we letA′ to be the set of all new events.
If A is safe, then Pr(A′) ≤ P2(A) by definition of safe. If A
is dangerous, then Pr(A′) = Pr(A) ≤ P2(A). By the second
condition inTheorem4, there exists x ′ : A′ → (0, 0.99] such
that Pr(A′) ≤ x ′(A′)

∏
B′∈Γ (A′)(1− x ′(B ′)) for all A′ ∈ A′.

Therefore, by the standard asymmetric LLL, with non-zero
probability, no new events A′ ∈ A′ occur. This implies there
exists a feasible solution by reassigning only the variables of
the dangerous events.

Let E ′ ⊆ E be the edges having at least one endpoint that
is dangerous. Let G ′ be the graph induced by E ′. Each com-
ponent of G ′ can compute the feasible solution independent
of other components. (It is tempting to consider the com-
ponents induced by only the dangerous vertices. However,
when such components C1 and C2 are both adjacent to a safe
vertex u, we have to consider C1 and C2 simultaneously to
find an assignment that does not cause u to occur.)

Next we will show that the weak diameter of each com-
ponent in G ′ is bounded. Note that if the weak diameter of
each component in G ′ is at most D, then each component can
find the feasible solution in O(D) time. Each vertex will first
learn the topology up to distance D, which is possible in the
LOCAL model. Then the leader in each component (say the
vertex with the smallest ID) computes the feasible solution
locally and then broadcasts the solution back to other vertices
in the component.

Lemma 11 Suppose that the conditions in Theorem 4 hold,
and there exists a component of weak diameter at least k after
running k rounds of the simple distributed algorithm, then a
3-witness tree of size Ω(k log k) occurs.

Proof Suppose that there exists u, v in the same component
in G ′ and distG(u, v) = D ≥ k. Since u, v are connected
in G ′, there exists a shortest u-v path Puv of length at least

123

Distributed algorithms for the Lovász local lemma and graph coloring 269

D in G ′. Notice that there are no consecutive safe vertices
in Puv by the definition of G ′. Recall that Si is the set of
events resampled in round i . Let Lk+1 be the set of dangerous
vertices in Puv . Ideally, one would build |Lk+1| 2-witness
trees of depth k, each rooted at each vertex in Lk+1, and then
glue them together into a 3-witness tree of size k · |Lk+1|.
However, these 2-witness trees may overlap, so the final 3-
witness tree may be much smaller. In the following, we will
lower bound the size of the union of the 2-witness tree level
by level and show that the size of the final 3-witness tree can
be lower bounded.

For each dangerous vertex x in Puv (i.e. x ∈ Lk+1), define
Lk+1(x) = {x}. For 1 ≤ i ≤ k, define Li (x) inductively to
be the set of events sampled during round i that arewithin dis-
tance 2 to any events in Li+1(x). Define Li = ⋃

x∈Puv
Li (x).

For each 1 ≤ i ≤ k, we will show the size of Li is at least
D−2

4(k−i+1)+2 .
Notice that Li (x)must be non-empty, because by Lemma

3, for each k + 1 ≥ j > i and each vertex w j in L j , there
exists a vertex w j−1 ∈ S j−1 such that w j−1 ∈ Γ 2+(w j).
Also, for all w ∈ Li (x), distG(x, w) ≤ 2(k − i + 1), since
by definition of Li (x), there exists a sequence of vertices
(x = vk+1, vk, . . . , vi = w) such that v′

i ∈ Li (x) for k+1 ≥
i ′ ≥ i and distG(vi ′+1, vi ′) ≤ 2 for k + 1 > i ′ ≥ i .

Let Puv = {x0, x1, . . . x|Puv |}. Let j = 0 if x0 is danger-
ous; otherwise x1 must bedangerous andwe let j = 1.Repeat
the following procedure (see Fig. 1): Select any w ∈ Li (x j).
Note that x j must be dangerous and Li (x j) is well-defined.
Let x j ′ be the rightmost vertex in Puv such that w ∈ Li (x ′

j)

(it can be the case that j ′ = j). If x j ′+1 is dangerous, set
j ← j ′ + 1; otherwise x j ′+2 must be a dangerous vertex,
then we set j ← j ′ + 2. Repeat until j > |Puv| (Fig. 2).

|Li | must be lower bounded by the total number of itera-
tions l in the procedure above. We will show that we cannot
move too far in each iteration, otherwise we would have a
path shorter than distG(u, v) connecting u and v. Let Δt

be the difference of j at the beginning of iteration t and

xjPuv

Li(xj)

xj new xj

Fig. 1 An illustration of an iteration in the procedure for lower bound-
ing Li . The dashed lines are paths with length at most 2(k − i + 1). In
this iteration, the difference, Δ, between the new position and the old
position of j is 5. Therefore, if 2 · 2(k − i + 1)+ 2 < 5, then the detour
from x j to x ′

j via Li (x j) would be shorter the distance between x j and
x ′

j on Puv

Li(x)

ysys−1ys−2 x

Fig. 2 An illustration showing that each resampled events in Li is in
the 3-witness tree rooted at ys . The vertices inside the boxes are the
independent set I . The dashed line is a sequence of vertices, where
adjacent vertices have distance at most 2. The arrow links denote two
vertices are within distance 3

at the end of iteration t . The procedure terminates only if∑l
t=1 Δt ≥ |Puv| − 2 (the minus 2 came from the fact that

the first and the last vertex in Puv can be safe). Consider iter-
ation t , if Δt > 4(k − i + 1) + 2, it must reduce the distance
between u and v by at least Δt − 4(k − i + 1)− 2. However,
the total distance we can reduce is at most |Puv|− D, for oth-
erwise we would have a path connecting u and v with length
less D, contradicting with distG(u, v) = D. Therefore,

|Puv| − D ≥
l∑

t=1

(Δt − 4(k − i + 1) − 2)

≥
(

l∑

t=1

Δt

)
− (4(k − i + 1) − 2) l

≥ |Puv| − 2 − (4(k − i + 1) − 2) l

which implies

l ≥ D − 2

4(k − i + 1) − 2
≥ k − 2

4(k − i + 1) − 2
.

Next, we will show that we can glue all the resampled
events in L1, . . . , Lk into a single 3-witness tree.We select an
independent set I = {y1, . . . , ys} ⊆ Lk+1 by starting from
the leftmost vertex in Lk+1 and repeatedly selecting the first
non-adjacent vertex in Lk+1. Therefore, y j+1 is in distance
at most 3 from y j for 1 ≤ j < s. Also, each x j ∈ Lk+1 is
adjacent to at least one vertex in I . Since I is an independent
set, we can append y1, . . . , ys to our record artificially. We
claim that each node in Li for 1 ≤ i ≤ k corresponds to a
node in the 3-witness tree rooted at ys . For every node w in
Li , there must exist x ∈ Lk+1 such that w ∈ Li (x). Since x
is adjacent to some y j ∈ I , it implies w is in the 3-witness
tree rooted at y j . Finally, since y j is a node in the 3-witness
tree rooted at ys , w must also be a node in the 3-witness tree
rooted at ys . The 3-witness tree rooted at ys must have size
at least

∑k
i=1

k−2
4(k−i+1)−2 = Ω(k log k). ��

123

270 K.-M. Chung et al.

By choosing k = Ω
(

log1/(1−ε) n
log log1/(1−ε) n

)
, if there exists a com-

ponent in G ′ with diameter at least k, then there exists a
3-witness of size at leastΩ(log1/(1−ε) n)w.h.p. However, by
Condition 1 in Theorem 4 and by Lemma 5, the probability
that such a 3-witness tree occurs is at most 1/ poly(n). There-

fore, we can conclude that after O
(

log1/(1−ε) n
log log1/(1−ε) n

)
rounds,

the weak diameter of each component in G ′ is at most

O
(

log1/(1−ε) n
log log1/(1−ε) n

)
w.h.p. and the solution can be found in

time proportional to the weak diameter. This completes the
proof of Theorem 4. ��

Corollary 3 (Symmetric LLL) Suppose that for all A ∈ A,
Pr(A) ≤ p and A shares variables with at most d other events
inA. Let z = 4ep2dd4. If z < 1, then a satisfying assignment
can be found in O(log1/z n/ log log1/z n) rounds.

Proof (Proof of Collorary 3) For each A ∈ A, let P2(A) =
1
4d ≥ p ≥ Pr(A) and so P1(A) = 2d · Pr(A)

P2(A)
≤ 4pd2d . Let

x1(A) = 1/d3, x2(A) = 1/(2d) and 1−ε = 4ep2dd4. First,
we check that condition 1 in Theorem 4 holds

(1 − ε)x1(A)
∏

B∈Γ 3(A)

(1 − x1(A))

= 4ep2dd4 · 1

ed3 ·
(
1 − 1

d3

)|Γ 3(A)|

≥ 4ep2dd

(
1 − 1

d3

)d3−1

≥ 4p2dd = Pr(A).

Condition 2 also holds similarly,

x2(A)
∏

B∈Γ (A)

(1 − x2(A)) ≥ 1

2d
·
(
1 − 1

2d

)d

= 1

2d
· 1
2

= P2(A).

��

3.4 Lower bound

Linial [26] proved that in an n-vertex ring, any distributed
(log(k) n)-coloring algorithm requires Ω(k) rounds of com-
munication, even if randomization is used. In particular,
O(1)-coloring a ring requires Ω(log∗ n) time. We prove that
Linial’s lower bound implies that even weak versions of the
Lovász local lemma cannot be computed in constant time.

Theorem 5 Let P , A, and GA be defined as usual. Let
d be the maximum degree of any vertex in GA, p =
maxA∈A Pr(A) be the maximum probability of any bad event,

and f : N → N be an arbitrarily quickly growing func-
tion, where f (d) ≥ e(d + 1). If p · f (d) < 1 then
Pr(

⋂
A∈A A) > 0. However, Ω(log∗ |A|) rounds of com-

munication are required for the vertices of GA to agree on a
point in

⋂
A∈A A.

The purpose of the function f is to show that our lower
bound is insensitive to significant weakening of the standard
criterion “ep(d + 1) < 1.” We could just as easily substitute
eed

p < 1 or any similar criterion, for example.

Proof Consider the following coloring procedure. Each ver-
tex in an n-vertex ring selects a color from {1, . . . , c}
uniformly at random. An edge is bad if it is monochromatic,
an event that holds with probability p = 1/c. Let A be the
dependency graph for these events having maximum degree
d = 2 and choose c to be (the constant) f (2) + 1, for any
quickly growing function f . It follows from the LLL that a
good c-coloring exists since p · f (2) < 1. However, by [26],
the vertices of GA require Ω(log∗ n − log∗ c) = Ω(log∗ n)

time to find a good c-coloring. ��
It is also possible to obtain conditional lower bounds

on distributed versions of the LLL. For example, the
best known randomized O(Δ)-coloring algorithm takes
exp(O(

√
log log n)) time [6], though better bounds are pos-

sible if Δ � log n [40]. If LLL could be solved in less than
exp(O(

√
log log n)) time then we could improve on [6], as

follows. Each vertex in G selects a color from a palette of
size c ≥ 2eΔ uniformly at random. As usual, an edge is
bad if it is monochromatic. The dependency graph of these
bad events corresponds to the line graph of G, which has
maximum degree d = 2Δ − 2. Since e(1/c)(d + 1) < 1, a
valid coloring can be found with one invocation of an LLL
algorithm. Therefore, if the result of [6] turns out to be tight,
then there is an exp(O(

√
log log n))) time lower bound of

for LLL.

4 Applications

The Lovász local lemma has applications in many coloring
problems, such as list coloring, frugal coloring, total coloring,
and coloring triangle-free graphs [29]. We give a few exam-
ples of constructing these colorings distributively. In these
applications, the existential bounds are usually achieved by
the so called “Rödl Nibble” method or the semi-random
method. The method consists of one or more iterations. Each
iteration is a random process and some local properties are
maintained in the graph. The properties depend on the ran-
domnesswithin a constant radius. Each property is associated
with a bad event, which is the event that the property fails to
hold. The Lovász local lemma can then be used to show the
probability none of the bad events hold is positive, though

123

Distributed algorithms for the Lovász local lemma and graph coloring 271

it may be exponentially small in the size of the graph. This
probability can then be amplified in a distributed fashion
using a Moser–Tardos-type resampling algorithm. Notice
that we will need to find an independent set (e.g., an MIS
or Weak-MIS or set of events with locally minimal IDs) in
the dependency graph induced by the violated local prop-
erties. Since we assumed the LOCAL model, the violated
local properties can be identified in constant time and the
algorithms for MIS/Weak-MIS can be simulated with a con-
stant factor overhead, where each property is taken care by
one of the processors nearby (within constant distance). The
important point here is that the dependency graph and the
underlying distributed network are sufficiently similar so that
distributed algorithms on one topology can be simulated on
the other with O(1) slowdown. For a simple example, see
the defective coloring problem in the following subsection,
where the dependency graph is G2 (i.e. nodes are adjacent in
G2 iff they are within distance 2 in G).

Most applications of the LLL demand epd2 < 1 or even
weaker bounds. In this case, the efficient simple distributed
algorithm can be applied. (The local properties are often that
some quantities do not deviate too much from their expecta-
tions. Thus, the the failure probability of each local property
is often bounded via standard Chernoff-type concentration
inequalities.)

4.1 Distributed defective coloring

We begin with a simple single-iteration application that uses
the local lemma. Let φ : V → {1, 2, . . . , k} be a k-coloring.
Define defφ(v) to be the number of neighbors w ∈ N (v)

such that φ(v) = φ(w). The coloring φ is said to be f -
defective if maxv defφ(v) ≤ f . Barenboim and Elkin ([4],
Open Problem 10.7) raised the problem of devising an effi-
cient distributed algorithm for computing an f -defective
O(Δ/ f)-coloring. Note that this problem is equivalent to
partitioning the vertices into O(Δ/ f) sets such that each set
induces a subgraph with maximum degree f .

To warm up, we give a simple procedure for obtaining an
f -defective O(Δ/ f)-coloring in O(log n/ f) timew.h.p., for
f ≥ 60 lnΔ. Suppose each vertex colors itself with a color
selected from {1, 2, . . . , �2Δ/ f �} uniformly at random. For
every v ∈ N (u), let Xv be 1 if v is colored the same as
u, 0 otherwise. Let X = ∑

v∈N (u) Xv denote the number
of neighbors colored the same as v. Let Au denote the bad
event that X > f at u. Clearly, whether Au occurs is locally
checkable by u in one round. Moreover, the event Au only
depends on the the random choices of u’s neighbors. If Au

occured and is selected for resampling, the colors chosen by
u and its neighbors will be resampled. Since two events share
variables only if they arewithin distance two, the dependency
graph, GA, is G2. Therefore, GA has maximum degree d =
Δ2. Now we will calculate the probability that Au occurs. If

we expose the choice of u first, then Pr(Xv = 1) ≤ f/(2Δ)

and it is independent among other v ∈ N (u). Letting M =
f/2, we have E[X] ≤ f/2 = M . By Lemma 18, Pr(X >

f) ≤ e− f/6. Let Au denote the bad event that X > f at u.
Therefore, epd2 ≤ e−(f/6−1−4 lnΔ) ≤ e−(f/12), since f ≥
60 lnΔ. By using the simple distributed algorithm, it takes
O(log1/epd2 n) = O(log n/ f) rounds to avoid the bad events
w.h.p.

Next, we show that there is a constant C > 0 such that
for any f ≥ C , an f -defective O(Δ/ f)-coloring can be
obtained in O(log n/ f) rounds. For f < C , we can use the
(Δ + 1)-coloring algorithms to obtain 0-defective (proper)
(Δ+1)-colorings that runs in O(log n) rounds. Let Δ0 = Δ

and Δi = log3 Δi−1.

if f < 60 lnΔi−1 then
Each node in G ′ chooses a color from �(1 + 6Δ−1/3

i) · Δi−1
Δi

� colors
uniformly at random.
Let Au denote the event that more thanΔi neighbors of u are colored
the same with u.
Run Algorithm 2 until no bad events Au occurs.
Let G j denote the graph induced by vertices with color j .

For j = 1 . . . , �(1 + 6Δ−1/3
i) · Δi−1

Δi
�, call defective-coloring(G j ,

i + 1) in parallel.
else
Obtain an f -defective, (2Δi−1/ f)-coloring for G ′.

end if

Algorithm 4: Defective-coloring(G ′, i)

An f -defective O(Δ/ f)-coloring in G can be obtained
by calling defective-coloring(G, 1), which is described in
Algorithm 4. The procedure defective-coloring(G ′, i) is
a recursive procedure whose halting condition is when
f ≥ 60 logΔi−1. When the condition occurs, we will
use the procedure described above to obtain an f -defective
(2Δi−1/ f)-coloring in G ′. Let l denote the total number of
levels of the recursion. The final color of node v is a vector
(c1, c2, . . . , cl), where ci denotes the color received by v at
level i . Clearly, such a coloring obtained by the procedure is
f -defective. The total number of colors used is:

⎛

⎝
∏

1≤i<l

(
1 + 6Δ−1/3

i

)
· Δi−1

Δi

⎞

⎠ · 2Δl−1

f

= 2(Δ/ f) ·
∏

1≤i<l

⎛

⎜⎜⎜⎝1 + 6

log log3 . . . log3 Δ︸ ︷︷ ︸
i−1

⎞

⎟⎟⎟⎠

= O(Δ/ f).

Nowwewill analyze the number of rounds needed in each
level i . Suppose that each vertex colors itself with a color

123

272 K.-M. Chung et al.

selected from {1, 2, . . . , �(1+6Δ−1/3
i) · Δi−1

Δi
�} uniformly at

random. For every v ∈ N (u), let Xv be 1 if v is colored the
same as u, 0 otherwise. Let X = ∑

v∈NG′ (u) Xv denote the
number of neighbors colored the same as v. Let Au denote
the bad event that X > Δi at u. The dependency graph GA
has maximum degree d = Δ2

i−1, because two events share
variables only if they are within distance two. If we expose
the choice of u first, then Pr(Xv = 1) ≤ Δi

Δi−1
· 1
1+6Δ−1/3

i
and it is independent among other v ∈ NG ′(u). Since the
maximum degree of G ′ is Δi−1, E[X] ≤ Δi · 1

1+6Δ−1/3
i

. By

Chernoff Bound (Lemma 18),

Pr(Au) = Pr(X > Δi)

≤ Pr
(

X >
(
1 + 6Δ−1/3

i

)
· E[X]

)

≤ e−62Δ−2/3
i ·E[X]/3

≤ e−6Δ1/3
i = e−6 lnΔi−1 .

Therefore, epd2 ≤ e− lnΔi−1 and so Algorithm 2 runs in
O(log n/ logΔi−1) rounds. The total number of rounds over
all levels is therefore

O

(
log n ·

(
1

logΔ
+ 1

log log3 Δ
+ · · · + 1

logΔl−1
+ 1

f

))

= O

(
log n

f

)
.

4.2 Distributed frugal coloring

A β-frugal coloring of a graph G is a proper vertex-coloring
of G such that no color appears more than β times in any
neighborhood. Molloy and Reed [29] showed the following
by using an asymmetric version of the local lemma:

Theorem 6 For any constant integer β ≥ 1, if G has max-
imum degree Δ ≥ ββ then G has a β-frugal proper vertex

coloring using at most 16Δ1+ 1
β colors.

Here we outline their proof and show how to turn it into a
distributed algorithm that finds such a coloring in O(log n ·
log2 Δ) rounds. If β = 1, then simply consider the square
graph of G, which is obtained by adding the edges between
vertices whose distance is 2. A proper coloring in the square
graph is a 1-frugal coloring in G. Since the square graph
has maximum degree Δ2, it can be (Δ2 + 1)-colored by
simulating distributed algorithms for (Δ + 1)-coloring.

For β ≥ 2, let k = 16Δ1+ 1
β . Suppose that each vertex

colors itself with one of the k colors uniformly at random.
Consider two types of bad events. For each edge uv, the
Type I event Au,v denotes that u and v are colored the same.
For each subset {u1, . . . , uβ+1} of the neighborhood of a
vertex, Type II event Au1,...,uβ+1 denotes that u1, . . . , uβ+1

are colored the same. If none of the events occur, then the
random coloring is a β-frugal coloring. For each Type I
event Au,v , Pr(Au,v) is at most 1/k. For each Type II event
Au1,...,uβ+1 , Pr(Au1,...,uβ+1) ≤ 1/kβ . For each bad event A,
let x(A) = 2 Pr(A). Notice that x(A) ≤ 1/2, we have:

x(A)
∏

B∈Γ (A)

(1 − x(B))

≥ x(A)
∏

B∈Γ (A)

exp (−x(B) · 2 ln 2)

{(1 − x) ≥ e−x ·2 ln 2 for x ≤ 1/2}

= x(A) · exp
⎛

⎝−2 ln 2 ·
∑

B∈Γ (A)

2 Pr(B)

⎞

⎠

Since A shares variables with at most (β +1)Δ Type I events
and (β + 1)Δ

(
Δ
β

)
Type II events,

∑

B∈Γ (A)

Pr(B) ≤ (β + 1)Δ · 1
k

+ (β + 1)Δ

(
Δ

β

)
· 1

kβ

<
(β + 1)Δ

k
+ (β + 1)Δβ+1

β!kβ

= β + 1

16Δ
1
β

+ β + 1

β!(16)β
< 1/8

for Δ ≥ ββ and β ≥ 2

Therefore,

x(A)
∏

B∈Γ (A)

(1 − x(B)) ≥ x(A) exp

(
− ln 2

2

)

= √
2 · Pr(A).

By letting 1 − ε = 1/
√
2 in Theorem 3, we need at most

O(log√
2 n) rounds of weak MIS resampling. In each resam-

pling round, we have to identify the bad events first. Type I
events Au,v can be identified by either u or v in constant num-
ber of rounds, where ties can be broken by letting the node
with smaller ID check it. If {u1, . . . , uβ+1} is in the neighbor-
hood of u, then the Type II event Au1,...,uβ+1 will be checked
by u. If {u1, . . . , uβ+1} is in the neighborhood of multiple
nodes, we can break ties by letting the one having the small-
est ID to check it. All Type II events in the neighborhood of u
can be identified from the colors selected by the neighbors of
u. Next we will find a weakMIS induced by the bad events in
the dependency graph. Each nodewill simulate theweakMIS
algorithm on the events it is responsible to check. Each round
of the weak MIS algorithm in the dependency graph can be
simulated with constant rounds. The maximum degree d of
the dependencygraph is O((β+1)Δ

(
Δ
β

)
). Therefore,weneed

123

Distributed algorithms for the Lovász local lemma and graph coloring 273

at most O(log n · log2 d) = O(log n · log2 Δ) rounds, since β

is a constant and (β + 1)Δ
(
Δ
β

) ≤ (β + 1)Δβ+1 = poly(Δ).

4.2.1 β-frugal, (Δ + 1)-coloring

The frugal (Δ + 1)-coloring problem for general graphs is
studied by Hind, Molloy, and Reed [21], Pemmaraju and
Srinivasan [36], and Molloy and Reed [30]. In particular,
the last one gave an upper bound of O(logΔ/ log logΔ)

on the frugality of (Δ + 1)-coloring. This is optimal up
to a constant factor, because it matches the lower bound of
Ω(logΔ/ log logΔ) given by Hind et al. [30]. However, it
is not obvious whether it can be implemented efficiently in a
distributed fashion, because they used a structural decom-
position computed by a sequential algorithm. Pemmaraju
and Srinivasan [36] showed an existential upper bound of
O(log2 Δ/ log logΔ). Furthermore, they gave a distributed
algorithm that computes an O

(
logΔ · log n

log log n

)
-frugal, (Δ +

1)-coloring in O(log n) rounds. We show how to improve it
to find a O(log2 Δ/ log logΔ)-frugal, (Δ+ 1)-coloring also
in O(log n) rounds.

They proved the following theorem:

Theorem 7 Let G be a graph with maximum vertex degreeΔ.
Suppose that associated with each vertex v ∈ V , there is a
palette P(v) of colors, where |P(v)| ≥ deg(v)+ 1. Further-
more, suppose |P(v)| ≥ Δ/4 for all vertices v in G. Then,
for some subset C ⊆ V , there is a list coloring of the vertices
in C such that:

(a) G[C] is properly colored.
(b) For every vertex v ∈ V and for every color x, there are

at most 9 · lnΔ
ln lnΔ

neighbors of v colored x.
(c) For every vertex v ∈ V , the number of neighbors of v

not in C is at most Δ(1 − 1
e5

) + 27
√

Δ lnΔ.
(d) For every vertex v ∈ V , the number of neighbors of v in

C is at most Δ

e5
+ 27

√
Δ lnΔ.

The theorem was obtained by applying the LLL to the fol-
lowing random process: Suppose that each vertex v has an
unique ID. Every vertex picks a color uniformly at random
from its palette. If v has picked a color that is not picked by
any of its neighbor whose ID is smaller than v, then v will
be colored with that color. Let qv denote the probability that
v becomes colored. Then, if v is colored, with probability
1 − 1/(e5qv), v uncolors itself. This ensures that the proba-
bility that v becomes colored in the process is exactly 1/e5,
provided that qv ≥ 1/e5, which they have shown to be true.

They showed by iteratively applying the theorem for
O(logΔ) iterations, an O(log2 Δ/ log logΔ)-frugal, (Δ +
1)-coloring can be obtained. Let Gi be the graph after round
i obtained by deleting already colored vertices and Δi be the
maximum degree of Gi . The palette P(u) for each vertex u

contains colors that have not been used by its neighbors. It
is always true that |P(v)| ≥ deg(v)+ 1. Notice that to apply
Theorem 7, we also need the condition |P(v)| ≥ Δ/4. The
worst case behavior of Δi and pi is captured by the recur-
rences:

Δi+1 = Δi

(
1 − 1

e5

)
+ 27

√
Δi lnΔi

pi+1 = pi − Δi

e5
− 27

√
Δi lnΔi . (1)

They showed the above recurrence can be solved to obtain
the following bounds on Δi and pi :

Lemma 12 Let α = (1− 1/e5). There is a constant C such
that for all i for which Δi ≥ C, Δi ≤ 2Δ0α

i and pi ≥ Δ0
2 αi .

Therefore, |P(v)| ≥ Δ/4 always holds. The two assump-
tions of Theorem 7 are always satisfied and so it can be
applied iteratively until Δi < C , which takes at most

log1/α
(
2Δ0

C

)
= O(logΔ) iterations. Since each iteration

introduces at most O(logΔ/ log logΔ) neighbors of the
same color to each vertex, the frugality will be at most
O(log2 Δ/ log logΔ). In the end, when Δi < C , one can
color the remaining graph in O(Δi + log∗ n) time using
existing (Δi + 1)-coloring algorithms [5]. This will only
add O(1) copies of each color to the neighborhood, yielding
a O(log2 Δ/ log logΔ)-frugal, (Δ + 1)-coloring. In order
to make it suitable for our simple distributed algorithm and
achieve the running time of O(log n), we will relax the cri-
teria of (b),(c),(d) in Theorem 7:

(b’) For every vertex v ∈ V and for every color x , there are
at most 18 · lnΔ0

ln lnΔ0
neighbors of v colored x .

(c’) For every vertex v ∈ V , the number of neighbors of v

not in C is at most Δ(1 − 1
e5

) + 40
√

Δ lnΔ.
(d’) For every vertex v ∈ V , the number of neighbors of v

in C is at most Δ

e5
+ 40

√
Δ lnΔ.

In (b’), Δ is replaced by Δ0, which is the maximum degree
of the initial graph. Also, the constant 9 is replaced by 18. In
(c’) and (d’), the constant 27 is replaced by 40 and

√
lnΔ is

replaced by lnΔ. It is not hard to see that Lemma12 still holds
and an O(log2 Δ/ log logΔ)-frugal coloring is still obtain-
able. Originally, by Chernoff Bound andAzuma’s Inequality,
they showed

Pr

(
neighbors of v colored x exceeds 9 · lnΔ

ln lnΔ

)

<
1

Δ6 (2)

123

274 K.-M. Chung et al.

and

Pr

(∣∣∣∣Pv − deg(v)

e5

∣∣∣∣ > 27
√

Δ lnΔ

)
<

2

Δ4.5
(3)

where Pv is the number of colored neighbors of v. Theorem
7 can be derived from (2) and (3). The relaxed version (b’),
(c’), and (d’) can be shown to fail with a lower probability.

Pr

(
neighbors of v colored x exceeds 18 · lnΔ0

ln lnΔ0

)

<
1

Δ12
0

(4)

and

Pr

(∣∣∣∣Pv − deg(v)

e5

∣∣∣∣ > 40
√

Δ lnΔ

)
<

2

Δ9 lnΔ
(5)

The bad event Av is when the neighbors of v colored x
exceeds 18 · lnΔ0

ln lnΔ0
for some color x or |Pv − deg(v)

e5
| >

40
√

Δ lnΔ happens. By (4), (5), and the union bound,
Pr(Av) ≤ (Δ + 1)/Δ12

0 +2/Δ9 lnΔ. In their randomprocess,
they showed Av depends on variables up to distance two.
Thus, the dependency graph GA has maximum degree d
less than Δ4. Note that

epd2 = eΔ8((Δ + 1)/(2Δ12
0) + 2/Δ9 lnΔ)

≤ 1/(2Δ0) + 1/(2ΔlnΔ)

< 2 · max(1/(2Δ0), 1/(2Δ
lnΔ))

= max(1/Δ0, 1/Δ
lnΔ).

The number of resampling rounds needed is at most

O
(
log 1

epd2
n
)
, which is at most ln n

min
(
lnΔ0,ln2 Δ

) ≤ ln n
lnΔ0

+
ln n
ln2 Δ

. Therefore, the total number of rounds needed is atmost:

c lnΔ0∑

i=1

(
ln n

lnΔ0
+ ln n

ln2 Δi

)

≤
c lnΔ0∑

i=1

(
ln n

lnΔ0
+ ln n

ln2(2Δ0αi)

)

= c lnΔ0 · ln n

lnΔ0
+

c lnΔ0∑

i=1

ln n

(lnΔ0 − i ln 1
α

+ ln 2)2

≤ c ln n + ln n · O

(∞∑

i=1

1

i2

)
= O(log n)

where c > 0 is some constant, and α = (1 − 1/e5).

4.3 Distributed triangle-free graphs coloring

Pettie and Su [37] gave a distributed algorithm for (Δ/k)-
coloring triangle-free graphs:

Theorem 8 Fix a constant ε > 0. Let Δ be the maximum
degree of a triangle-free graph G, assumed to be at least
some Δε depending on ε. Let k ≥ 1 be a parameter such
that 2ε ≤ 1 − 4k

lnΔ
. Then G can be (Δ/k)-colored, in time

O(k + log∗ Δ) if Δ1− 4k
lnΔ

−ε = Ω(ln n), and, for any Δ, in
time on the order of

eO(
√
ln ln n) · (k + log∗ Δ) · log n

Δ1− 4k
lnΔ

−ε
= log1+o(1) n.

The algorithm consists of O(k + log∗ Δ) iterations. For
each iteration i , a property Hi (u) is maintained at each ver-
tex u. If Hi−1(u) is true for all u in G, then after round
i , it is shown Hi (u) fails with probability at most p =
exp

(
−Δ1− 4k

lnΔ
−ε+Ω(ε)

)
, which is at most exp

(
−Δ1− 4k

lnΔ
−ε
)

/eΔ4 ifΔ ≥ Δε , for some constantΔε . Note

that if Δ1− 4k
lnΔ

−ε = Ω(log n), then by union bound, with
high probability all Hi (u) holds. Otherwise, they revert to
the distributed constructive Lovász Local Lemma. Let Gi be
the subgraph of G induced by uncolored vertices. The event
Hi (u) shares random variables up to distance two from u
in Gi−1. The bad events A is made up with Au = Ei (u)

for u ∈ Gi−1. Therefore, the dependency graph GA is G≤4
i−1,

where (u, v) is connected if the distGi−1(u, v) ≤ 4. Themax-
imum degree d of GA is less than Δ4. By the Lovász Local
Lemma, since ep(d+1) < 1, the probability allHi (u) simul-
taneously hold is positive. To achieve this constructively,
note that by Theorem 1, it requires O(log 1

1−ε
n) resampling

rounds, where 1−ε = ep(d+1) ≤ exp
(
−Δ1− 4k

lnΔ
−ε
)
. Each

resampling round involves finding an MIS. They showed in

the caseΔ1− 4k
lnΔ

−ε = O(log n),Δwill be atmost polylog(n),
where faster MIS algorithms can be applied. Now we will
use the simple distributed algorithm presented in the pre-
vious section to resample without finding an MIS in each
resampling round. First, notice that with some larger con-
stant Δε , if Δ ≥ Δε , the failure probability p is at most

exp
(
−Δ1− 4k

lnΔ
−ε
)

/eΔ8. Since epd2 ≤ exp
(
−Δ1− 4k

lnΔ
−ε
)
,

by Corollary 1, w.h.p. none of the bad events happen after

O
(
log 1

epd2
n
) = O

(
log n

Δ
1− 4k

lnΔ
−ε

)
resampling rounds of the

simple distributed algorithm, where each resampling round
takes constant time. As a result, the number of rounds is
reduced to O(log n).

Theorem 9 Fix a constant ε > 0. Let Δ be the maximum
degree of a triangle-free graph G, assumed to be at least
some Δε depending on ε. Let k ≥ 1 be a parameter such

123

Distributed algorithms for the Lovász local lemma and graph coloring 275

that 2ε ≤ 1 − 4k
lnΔ

. Then G can be (Δ/k)-colored, in time

O(k + log∗ Δ) if Δ1− 4k
lnΔ

−ε = Ω(ln n), and, for any Δ, in
time on the order of

(k + log∗ Δ) · log n

Δ1− 4k
lnΔ

−ε
= O(log n).

Similarly, the (1 + o(1))Δ/ logΔ-coloring algorithm for
girth-5 graphs in [37] can be obtained in O(log n) rounds
by replacing Moser and Tardos’ algorithm with the simple
distributed algorithm.

4.4 Distributed list coloring

Given a graph G, each vertex v is associated with a list (or
a palette) of available colors P(v). Let degc(v) denote the
number of neighbors w ∈ N (v) such that c ∈ P(w). Sup-
pose that degc(v) is upper bounded by D. The list coloring
constant is theminimum K such that for any graph G and any
palettes P(u) for u ∈ G, if |P(u)| ≥ K · D and degc(u) ≤ D
for every u ∈ G and every c ∈ P(u), then a proper color-
ing can be obtained by assigning each vertex a color from
its list. Reed [38] first showed the list coloring constant is at
most 2e by a single application of LLL. Haxell [20] showed
2 is sufficient. Later, Reed and Sudakov [39] used a multi-
ple iterations Rödl Nibble method to show the list coloring
constant is at most 1 + o(1), where o(1) is a function of
D. Reed’s upper bound of 2e can be made distributed and
constructive with a slightly larger factor, say 2e + ε for any
constant ε > 0. The LLL condition they need is close to
tight and so we will need to use the weak MIS algorithm.
The additional slack needed is due to the ε-slack needed in
distributed LLL (ep(d + 1) ≤ 1− ε). The constructive algo-
rithm can be easily transformed from their proof. Here we
outline their proof: Suppose |P(v)| ≥ (2e + ε)D for all v.
Each vertex is assigned a color from its palette uniformly at
random. They showed that with positive probability, a proper
coloring is obtained. Let e = uv ∈ E , and c ∈ P(u)∩ P(v).
Define Ae,c to be the bad event that both u and v are assigned
c. Clearly, p = Pr(Ae,c) = 1/((2e + ε)D)2. Also, there
are at most (2e + ε)D2 events that depend on the color u
picks and at most (2e + ε)D2 events that depend on the
color v picks. The dependency graph has maximum degree
d = 2(2e + ε)D2 − 2. Since ep(d + 1) ≤ 2e/(2e + ε) is
upper bounded by a constant less than 1, we can construct
the coloring in O(log n · log2 D) rounds by using the weak
MIS algorithm.

In the following, we shall show that for any constants
ε, γ > 0, there exists Dε,γ > 0 such that for any D ≥
Dε,γ , any (1 + ε)D-list coloring instance can be colored
in O(log∗ D · max(1, log n/D1−γ)) rounds. The algorithm
consists of multiple iterations. Let Pi (u) and degi,c(u) be the
palette and the c-degree of u at end of iteration i . Also, at the

end of iteration i , denote the neighbor of u by Ni (u) and the
c-neighbor by Ni,c(u), which are the neighbors of u having
c in their palette. Suppose that each vertex u has an unique
ID, ID(u). Let N∗

i,c(u) denote the set of c-neighbors at the
end of iteration i having smaller ID than u. Let deg∗

i,c(u) =
|N∗

i,c(u)|.

1: G0 ← G
2: i ← 0
3: repeat
4: i ← i + 1
5: for each u ∈ Gi−1 do
6: (Si (u), Ki (u)) ← Select(u, πi , βi)

7: Set Pi (u) ← Ki (u) \ Si (N∗
i−1(u))

8: if Si (u)∩Pi (u) �= ∅ then color u with any color in Si (u)∩Pi (u)

end if
9: end for
10: Gi ← Gi−1 \ {colored vertices}
11: until

Algorithm 5: List-Coloring (G, {πi }, {βi })

1: Include each c ∈ Pi−1(u) in Si (u) independently with probability
πi .

2: For each c, calculate rc = βi /(1 − πi)
deg∗

i−1,c(u).
3: Include c ∈ Pi−1(u) in Ki (u) independently with probability rc.
4: return (Si (u), Ki (u)).

Algorithm 6: Select(u, πi , βi)

In each iteration i , each vertex will select a set of colors
Si (u) ⊆ Pi−1(u) and Ki (u) ⊆ Pi−1(u), which are obtained
from Algorithm 6. If a color is in Ki (u) and it is not in Si (v)

for any v ∈ N∗
i−1(u), then it remains in its new palette Pi (u).

Furthermore, if Si (u) contains a color that is in Pi (u), then
u colors itself with the color (in case there are multiple such
colors, break ties arbitrarily).

Given πi , the selecting probability for each vertex u to
include a color in Si (u), the probability that u /∈ Si (N∗

i−1(u))

is (1−πi)
deg∗

i−1,c(u). Defineβi = (1−πi)
t ′i−1 , where t ′i−1 is an

upper bound on degi−1,c(u) for each vertex u and each color

c. Then rc = βi/(1−πi)
deg∗

i−1,c(u) is always atmost 1 and thus
it is a valid probability. Therefore, the probability that a color
c ∈ Pi−1(u) remains in Pi (u) is (1− πi)

deg∗
i−1,c(u) · rc = βi .

As a result, the palette size shrinks by at most a βi factor in
expectation.

Suppose that p′
i is the lower bound on the palette size at

the end of iteration i . Then the probability that u remains
uncolored is upper bounded by the probability that any of
the colors in Pi (u) was not selected to be in Si (u). The prob-
ability is roughly (1−πi)

p′
i , which we will define it to be αi .

The slight inaccuracy comes from the fact that we are con-
ditioning on the new palette size |Pi (u)| is lower bounded
by p′

i . However, we will show the effect of this conditioning
only affects the probability by a small amount.

123

276 K.-M. Chung et al.

Let p0 = (1 + ε) · D and t0 = D be the initial palette
size and upper bound on c-degree. In the following, pi and
ti are the ideal lower bound of the palette size and the ideal
upper bound of the c-degree at the end of each iteration i .
p′

i and t ′i are the approximation of pi and ti , incoporating
the errors from concentration bounds. K is a constant in the
selecting probability that depends on ε. T is the threshold on
the c-degree beforewe switch to a different analysis, since the
usual concentration bound does not apply when the quantity
is small. δ = 1/ log D is the error control parameter which
is set to be small enough such that (1 ± δ)i is 1 ± o(1) for
every iteration i .

πi = 1/(K t ′i−1 + 1) δ = 1/ log D

αi = (1 − πi)
p′

i βi = (1 − πi)
t ′i−1

pi = βi pi−1 ti = max(αi ti−1, T)

p′
i = (1 − δ)i pi t ′i = (1 + δ)i ti

K = 2 + 2/ε T = D1−0.9γ /2

Intuitively, we would like to have ti shrink faster than pi .
To ensure this happens, we must have α1 ≤ β1, which holds
under our setting of πi . As we will show, αi shrinks much
faster than βi as i becomes larger. Note that βi is at least a
constant, as

βi = (1 − 1/(K t ′i−1 + 1))t ′i−1

= (1 − 1/(K t ′i−1 + 1))(K t ′i−1)·(1/K)

≥ (e−1)1/K = e−1/K

since (1 − 1/(x + 1))x ≥ e−1.

Lemma 13 tr = T after at most r = O(log∗ D) iterations.

Proof We divide the iterations into two stages, where the
first stage consists of iterations i for which ti−1/pi−1 ≥
1/(1.1e2/K K). During the first stage, we show that the ratio

ti/pi decreases by a factor of exp
(
−(1 − o(1)) ε2

4(1+ε)

)
in

every round.

ti
pi

= αi

βi

ti−1

pi−1

= (1 − πi)
p′

i −t ′i−1 · ti−1

pi−1

defn. αi , βi

≤ exp
(−πi · (p′

i − t ′i−1)
) · ti−1

pi−1

1 − x ≤ e−x

≤ exp

(
−(1 − o(1)) · 1

K

(
pi

ti−1
− 1

))
· ti−1

pi−1

defn. πi ,
p′

i

t ′i−1
= (1 − o(1))

pi

ti−1

≤ exp

(
−(1 − o(1)) · 1

K

(
βi pi−1

ti−1
− 1

))
· ti−1

pi−1

defn. pi

≤ exp

(
−(1 − o(1)) · 1

K

(
e−1/K (1 + ε) − 1

))

· ti−1

pi−1
pi−1/ti−1 ≥ (1 + ε)

≤ exp

(
−(1 − o(1)) · ((1 − 1/K)(1 + ε) − 1)

K

)

· ti−1

pi−1
e−x ≥ 1 − x

= exp

(
−(1 − o(1)) · ε2

4(1 + ε)

)
· ti−1

pi−1

K = 2(1 + ε)/ε

Therefore, the first stage ends after at most (1 + o(1))
4(1+ε)

ε2
ln(1.1K e2/K) iterations. Let j be the first iteration

when the second stage begins. For i > j , we show that 1/αi

has an exponential tower growth.

αi = (1 − πi)
p′

i

≤ exp

(
−(1 − o(1))

1

K
· pi

ti−1

)

1 − x ≤ e−x

≤ exp

(
−(1 − o(1))

1

K
· βi pi−1

ti−1

)

defn. pi

≤ exp

(
−(1 − o(1))

1

K
· βi−1

αi−1
· βi pi−2

ti−2

)

pi−1

ti−1
= βi−1

αi−1

pi−2

ti−2

≤ exp

(
−(1 − o(1))

1

K
· e−2/K

αi−1
· pi−2

ti−2

)

βi ≥ e−1/K

≤ exp (−1/αi−1)

ti−2

pi−2
<

1

1.1K e2/K

Therefore, 1
α j+log∗ D+1

≥ ee···
e

︸︷︷︸
log∗ D

≥ D, and so t j+log∗ D+1 ≤

max(α j+log∗ D+1 · D, T) = T . ��
On the other hand, we show the bound on the palette size

remains large throughout the algorithm.

Lemma 14 p′
i = D1−o(1) for i = O(log∗ D).

Proof p′
i = (1 − δ)i pi ≥ (1 − δ)i ∏i

j=1 β j D ≥ (1 −
δ)i e−i/K D = (1 − o(1))D− i

K log D · D = D1−o(1). ��

123

Distributed algorithms for the Lovász local lemma and graph coloring 277

In the following we shall show how to ensure that for each
iteration i the palette sizes are lower bounded by p′

i and the
c-degrees are upper bounded by t ′i . For convenience let Hi (u)

denote the event that |Pi (u)| ≥ p′
i and degi,c(u) ≤ t ′i for u

and c ∈ Pi−1(u). Let Hi denote the event that Hi (u) holds
for every u ∈ Gi .

Lemma 15 Suppose that Hi−1 holds, then Pr(|Pi (u)| <

(1 − δ)βi |Pi−1(u)|) < e−Ω(δ2 p′
i).

Proof Consider a color c ∈ Pi−1(u). The probability that c
remains in Pi (u) is exactly βi . Since the event that c remains
in Pi (u) is independent among other colors, by a Chernoff
Bound, Pr(|Pi (u)| < (1 − δ)βi |Pi−1(u)|) < e−Ω(δ2 pi−1). ��
Lemma 16 Suppose that Hi−1 holds, then Pr(degi,c(u) >

(1+δ)·max(αi ·degi−1,c(u), T)) < e−Ω(δ2T)+D·e−Ω(δ2 p′
i).

Proof Let x1, . . . xk ∈ Ni−1,c(u) be the c-neighbors of u,
ordered by their ID. Let E j denote the event that |Pi (x j)| ≥
p′

i , where Pr(E j) < e−Ω(δ2 p′
i) by Lemma 15.

Let Xi denote the event that xi remains uncolored after
iteration i . Let X j denote the shorthand for (X1, . . . , X j).
We will show that for any realization of X j−1, Pr(X j |
X j−1, E1, . . . , E j) ≤ αi . Then we can apply Lemma 19,
which is a variant of Chernoff bound that works when con-
ditioning on a sequence of likely events.

Let U2 = Ni−1(Ni,c(u)) \ Ni,c(u) be the neighbors
of the c-neighbors excluding the c-neighbors themselves
(u ∈ U2 unless degi−1,c(u) = 0). First, notice that the events
X j−1 and E1 . . . , E j are functions of Si (U2), Si (x1), . . . ,
Si (x j−1), Ki (x1), . . . , Ki (x j). Therefore, we can instead
show that under any realization of Si (U2), Si (x1), . . . ,
Si (x j−1), Ki (x1), . . . , Ki (x j) subject to the eventsE1 . . . , E j

hold, Pr(X j | Si (U2), Si (x1), . . . , Si (x j−1), Ki (x1),
. . . , Ki (x j)) ≤ αi .

Obviously for any c′ ∈ Pi−1(x j),

Pr(c′ ∈ Si (x j) | Si (U2), Si (x1), . . . , Si (x j−1),

Ki (x1), . . . , Ki (x j)) = πi .

Therefore,

Pr(X j | Si (U2), Si (x1), . . . , Si (x j−1),

Ki (x1), . . . , Ki (x j))

≤ (1 − Pr(c′ ∈ Si (x j) | Si (U2), Si (x1), . . . , Si (x j−1),

Ki (x1), . . . , Ki (x j)))
|Pi (u)|

≤ (1 − πi)
p′

i = αi .

Therefore, by Lemma 19, Corollary 5, and by the fact that∑
j Pr(E j) ≤ D · e−Ω(δ2 p′

i), we have Pr(degi,c(u) > (1 +
δ) ·max(αi ·degi−1,c(u), T)) ≤ e−Ω(δ2T) + D · e−Ω(δ2 p′

i). ��

Corollary 4 Suppose that Hi−1 holds, Pr(Hi (u)) ≤ D ·
e−Ω(δ2T) + 2D2 · e−Ω(δ2 p′

i).

Proof By taking union bound over the event in Lemma 15
and the events in Lemma 16 over each c ∈ Pi−1(u), we get
the desired result. ��

Let r be the first iteration such that tr = T . If Hr holds,
then degr,c(u) ≤ t ′r ≤ (1 + δ)r tr ≤ (1 + o(1))tr ≤ 2T
for all u and c. Now we switch to the following analysis,
which shows the algorithm terminates in a constant number
of iterations. For i > r , we define t ′i = t ′i−1· T

p′
i
. The definition

for the rest of parameters remain the same. By Lemma 14,
if D is large enough, we can assume that p′

i ≥ D1−0.8γ for
i = r + �1/(0.1γ)�, since r + �1/(0.1γ)� = O(log∗ D).
Then from the definition of t ′i , it shrinks to less than one in
� 1
0.1γ � iterations, since T/p′

i ≤ D−0.1γ and t ′r+1/(0.1γ) <

(D−0.1γ)�1/(0.1γ)� · t ′r < 1.
Now we will show that under this new definition of ti for

i > r , Hi (u) is likely to hold, provided that Hi−1 holds.

Lemma 17 Suppose that Hi−1 is true where i > r , then
Pr(degi,c(u) > t ′i) < e−Ω(T) + D · e−Ω(δ2 p′

i)

Proof Let x1, . . . xk ∈ Ni−1,c(u) be the c-neighbors of u,
ordered by their ID in the increasing order. Let E j denote the

event that |Pi (x j)| ≥ p′
i . Note that Pr(E j) ≤ e−Ω(δ2 p′

i).
As we have shown in the proof of Lemma 16, Pr(X j |
X j , E1, . . . , E j) ≤ αi . Therefore,

Pr(degi,c(u) > t ′i)

= Pr

(
degi,c(u) >

(
t ′i−1

αi t ′i−1

)
· αi t

′
i−1

)

Applying Lemma 19 and Corollary 5 with 1 + δ =
t ′i /(αi t ′i−1), and noticing that αi degi−1,c(u) ≤ αi t ′i−1, the
probability above is bounded by

≤ exp

(
−αi t

′
i−1

(
t ′i

αi t ′i−1
ln

t ′i
αi t ′i−1

−
(

t ′i
αi t ′i−1

− 1

)))

+ De−Ω(δ2 p′
i)

≤ exp

(
−t ′i

(
ln

t ′i
αi t ′i−1

− 1

))
+ De−Ω(δ2 p′

i)

= exp

(
−ti

(
ln

(
1

αi

)
− ln

(
et ′i−1

t ′i

)))

+ De−Ω(δ2 p′
i)

123

278 K.-M. Chung et al.

≤ exp

(
−t ′i

(
(1 − o(1))

p′
i

K t ′i−1
− ln

(
et ′i−1

t ′i

)))

+ De−Ω(δ2 p′
i) ln

1

αi
= (1 − o(1))

p′
i

K t ′i−1

≤ exp

(
−
(

(1 − o(1))
T

K
− t ′i ln(eD)

))

+ De−Ω(δ2 p′
i) defn. t ′i and t ′i−1/t ′i < D

≤ exp

(
−T

(
(1 − o(1))

K
− t ′i−1

p′
i
ln(eD)

))

+ De−Ω(δ2 p′
i)

≤ exp

(
−T

(
(1 − o(1))

1

K
− 2 ln(eD)

D0.1γ

))

+ De−Ω(δ2 p′
i) t ′i−1 p′

i ≤ 2T

p′
i

≤ 2

D0.1γ

≤ exp (−Ω(T)) + De−Ω(δ2 p′
i)

��
Suppose that Hi−1 holds, by taking the union bound

over all the events Pi (u) ≥ p′
i for all u ∈ Gi−1 and

Pr(degi,c(u) > t ′i) for all u ∈ Gi−1 and all c ∈ Pi−1(u),

we get that Pr(Hi (u)) ≤ D · e−Ω(T) + 2D2 · e−Ω(δ2 p′
i).

Therefore, we conclude that for each iteration i ≥ 1,
if Hi−1 holds, then Pr(Hi (u)) ≤ D · exp(−Ω(δ2T)) +
2D2 · exp(−Ω(δ2 p′

i)) ≤ exp(−D1−0.95γ) for large enough
D. Now we want to ensure that Hi holds for every itera-
tion i . If Hi−1 is true, then Pr(Hi (u)) ≤ exp

(−D1−0.95γ
)
.

If D1−γ ≥ log n, then each of the bad events occur with
probability at most 1/ poly(n). Since there are O(n) events,
by the union bound, Hi holds w.h.p. On the other hand,
if D1−γ ≤ log n, then we can use the LLL algorithm to
make Hi hold w.h.p. The probability of the failure events
are bounded by p = exp

(−D1−0.95γ
)
. Each event depends

on at most d = O(Δ2) other events, since each event only
depends on the outcomes of the randomvariables in its neigh-
borhood. Therefore, epd2 ≤ exp(−D1−γ) and we can apply
the simple LLL algorithm to make all the events hold w.h.p.
in O(log1/epd2 n) ≤ O(log n/D1−γ) iterations.

By Lemma 13 and the fact that ti shrinks to 1 in a con-
stant number of iterations after i > r , the algorithm uses
O(log∗ D) iterations. Each iteration uses
max(1, O(log n/D1−γ)) rounds. The total number of rounds
is therefore O(log∗ D · max(1, O(log n/D1−γ))).

5 Discussion

We gave distributed LLL algorithms under the conditions
p · f (d) < 1 for different functions f (d). When f (d) =
e(d + 1) that matches the general condition of LLL, our

weak-MIS resampling algorithm gives a running time of
O(log2 d ·log1/ep(d+1) n). Note that the weak-MIS algorithm
was later applied in local computation algorithms for comput-
ing MIS [25]. Recently, Ghaffari’s new MIS algorithm [15]
can compute a weak-MIS in O(log d) time, which improves
the overall running time for LLL to O(log d · log1/ep(d+1) n).

The lower bound we showed in this paper is Ω(log∗ n).
Very recently,Brandt et al. [8] obtained anΩ(log log n) lower
bound for LLL from the sinkless orientation problem and
the sinkless coloring problem in 3-regular graphs. Subse-
quently, Chang, Kopelowitz, and Pettie generalized [8] to
show an Ω(logd n) lower bound for deterministic LLL algo-
rithms and an Ω(logd log n) lower bound for randomized
LLL algorithms [10]. Note that the lower bounds they have
obtained requires f (d) to be upper bounded by 2d , while
ours allows it to grow unbounded.

Acknowledgements Thanks Mohsen Ghaffari for pointing out that by
iteratively applyingLLL, the rangeof f canbe improved fromΩ(logΔ)

to any positive integer for f -defective, O(Δ/ f)-colorings.

Appendix: Tools

Lemma 18 (Chernoff Bound) Let X1, . . . , Xn be indicator
variables such that Pr(Xi = 1) = p. Let X = ∑n

i=1 Xi .
Then, for δ > 0:

Pr(X ≥ (1 + δ)E[X]) <

[
eδ

(1 + δ)(1+δ)

]E[X]

Pr(X ≤ (1 − δ)E[X]) <

[
eδ

(1 − δ)(1−δ)

]E[X]

The two bounds above imply that for 0 < δ < 1, we have:

Pr(X ≥ (1 + δ)E[X]) < e−δ2 E[X]/3

Pr(X ≤ (1 − δ)E[X]) < e−δ2 E[X]/2.

Lemma 19 LetE1, . . . , En be (likely) events and X1, . . . , Xn

be indicator variables such that for each 1 ≤ i ≤ n and
X = ∑n

i=1 Xi ,

max
X i−1

Pr(Xi | X i−1, E1, . . . Ei) ≤ p

where X i denotes the shorthand for (X1, . . . , Xi).4 Then for
δ > 0:

Pr

(
(X > (1 + δ)np) ∩

(
⋂

i

Ei

))
≤
[

eδ

(1 + δ)(1+δ)

]np

4 We slightly abuse the notation that when conditioning on the ran-
dom variable Xi , it means Xi may take arbitrary values, whereas when
conditioning on the event Ei , it means that Ei happens.

123

Distributed algorithms for the Lovász local lemma and graph coloring 279

and thus by the union bound,

Pr(X > (1 + δ)np) ≤
[

eδ

(1 + δ)(1+δ)

]np

+
∑

i

Pr(Ei).

Proof For now let us treat Ei as 0/1 random variables and let
E = ∏

i Ei . For any t > 0,

Pr

(
(X > (1 + δ)np) ∩

(
⋂

i

Ei

))
(6)

= Pr

((
n∏

i=1

Ei

)
· exp(t X) > exp(t (1 + δ)np)

)

≤ E
[(∏n

i=1 Ei
) · exp(t X)

]

exp(t (1 + δ)np)

= E
[(∏n

i=1 Ei · exp(t Xi)
)]

exp(t (1 + δ)np)
(7)

We will show by induction that

E

[(
k∏

i=1

Ei exp(t Xi)

)]
≤ (1 + p(et − 1))k

When k = 0, it is trivial that E[E] ≤ 1.

E

[(
k∏

i=1

Ei exp(t Xi)

)]

≤ E

[(
k−1∏

i=1

Ei exp(t Xi)

)

·E [Ek exp(t Xk) | Xi−1, E1, . . . , Ek−1
]]

= E

[(
k−1∏

i=1

Ei exp(t Xi)

)

·Pr(Ek) · E [exp(t Xk) | Xi−1, E1, . . . , Ek
]]

≤ E

[(
k−1∏

i=1

Ei exp(t Xi)

)

·E [exp(t Xk) | Xi−1, E1, . . . , Ek
]]

= E

[(
k−1∏

i=1

Ei exp(t Xi)

)

·(1 + Pr(Xk | X i−1, E1, . . . , Ek)(e
t − 1))

]

≤ E

[(
k−1∏

i=1

Ei exp(t Xi)

)
· (1 + p(et − 1))

]

= E

[(
k−1∏

i=1

Ei exp(t Xi)

)]
· (1 + p(et − 1))

≤ (1 + p(et − 1))k

Therefore, by (6),

Pr

(
(X > (1 + δ)np) ∩

(
⋂

i

Ei

))

= E[E · ∏n
i=1 exp(t Xi)]

exp(t (1 + δ)np)

≤ (1 + p(et − 1))n

exp(t (1 + δ)np)

≤ exp(np(et − 1))

exp(t (1 + δ)np)

=
[

exp(δ)

(1 + δ)1+δ

]np

.

The last equality follows from the standard derivation of
Chernoff Bound by choosing t = ln(1 + δ). ��
Corollary 5 Suppose that for any δ > 0,

Pr

(
(X > (1 + δ)np) ∩

(
⋂

i

Ei

))
≤
[

eδ

(1 + δ)(1+δ)

]np

then for any M ≥ np and 0 < δ < 1,

Pr

(
(X > np + δM) ∩

(
⋂

i

Ei

))
≤
[

eδ

(1 + δ)(1+δ)

]M

≤ e−δ2M/3

Proof Without loss of generality, assume M = tnp for some
t ≥ 1, we have

Pr

(
(X > np + δM) ∩

(
⋂

i

Ei

))

≤
[

etδ

(1 + tδ)(1+tδ)

]np

=
[

eδ

(1 + tδ)(1+tδ)/t

]M

≤
[

eδ

(1 + δ)(1+δ)

]M

(∗)

≤ e−δ2M/3 eδ

(1 + δ)(1+δ)
≤ e−δ2/3 for 0 < δ < 1

Inequality (*) follows if (1 + tδ)(1+tδ)/t ≥ (1 + δ)(1+δ), or
equivalently, ((1 + tδ)/t) ln(1 + tδ) ≥ (1 + δ) ln(1 + δ).
Letting f (t) = ((1 + tδ)/t) ln(1 + tδ) − (1 + δ) ln(1 + δ),
we have f ′(t) = 1

t2
(δt − ln(1 + δt)) ≥ 0 for t > 0. Since

f (1) = 0 and f ′(t) ≥ 0 for t > 0, we must have f (t) ≥ 0
for t ≥ 1. ��

123

280 K.-M. Chung et al.

References

1. Alon, N.: A parallel algorithmic version of the local lemma. Ran-
dom Struct. Algorithms 2(4), 367–378 (1991)

2. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel
algorithm for the maximal independent set problem. J. Algorithms
7(4), 567–583 (1986)

3. Alon, N., Krivelevich, M., Sudakov, B.: Coloring graphs with
sparse neighborhoods. J. Comb. Theory Ser. B 77(1), 73–82 (1999)

4. Barenboim, L., Elkin,M.: Distributed Graph Coloring: Fundamen-
tals and Recent Developments Synthesis Lectures on Distributed
Computing Theory. Morgan & Claypool, San Rafael (2013)

5. Barenboim, L., Elkin, M., Kuhn, F.: Distributed (Δ + 1)-coloring
in linear (in Δ) time. SIAM J. Comput. 43(1), 72–95 (2014)

6. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of
distributed symmetry breaking. J. ACM 63(3), 1–20 (2016)

7. Beck, J.: An algorithmic approach to the Lovász local lemma. I.
Random Struct. Algorithms 2(4), 343–365 (1991)

8. Brandt, S., Fischer, O., Hirvonen, J., Keller, B., Lempiäinen, T.,
Rybicki, J., Suomela, J., Uitto, J.: A lower bound for the distributed
lovász local lemma. In: Proceedings of 48th ACM Symposium on
Theory of Computing (STOC), pp. 479–488 (2016)

9. Chandrasekaran, K., Goyal, N., Haeupler, B.: Deterministic algo-
rithms for the Lovász local lemma. SIAM J. Comput. 42(6),
2132–2155 (2013)

10. Chang, Y., Kopelowitz, T., Pettie, S.: An exponential separation
between randomized and deterministic complexity in the LOCAL
model. In: Proceedings of 57th Symposium on Foundations of
Computer Science (FOCS), pp. 195–197 (2016)

11. Czumaj, A., Scheideler, C.: A new algorithm approach to the
general Lovász local lemma with applications to scheduling and
satisfiability problems (extended abstract). In: Proceedings of 32nd
ACM Symposium on Theory of Computing (STOC), pp. 38–47
(2000)

12. Dubhashi, D., Grable, D.A., Panconesi, A.: Near-optimal, distrib-
uted edge colouring via the nibble method. Theor. Comput. Sci.
203(2), 225–251 (1998)

13. Elkin, M., Pettie, S., Su, H.-H.: (2Δ − 1)-edge-coloring is much
easier than maximal matching in the distributed setting. In: Pro-
ceedings of 26th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 355–370 (2015)

14. Erdős, P., Lovász, L.: Problems and results on 3-chromatic hyper-
graphs and some related questions. In: Hanjal, A., Rado, R., Sós,
V.T. (eds.) Infinite and Finite Sets, vol. 11, pp. 609–627. North-
Holland, Amsterdam (1975)

15. Ghaffari,M.: An improved distributed algorithm formaximal inde-
pendent set. In: Proceedings of 27th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 270–277 (2016)

16. Haeupler, B., Saha, B., Srinivasan, A.: New constructive aspects of
the Lovász local lemma. J. ACM 58(6), 28 (2011)

17. Harris, D.G.: Lopsidependency in the Moser–Tardos framework:
beyond the lopsided Lovász local lemma. In: Proceedings of 26th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
1792–1808 (2015)

18. Harris, D.G., Srinivasan, A.: The Moser-Tardos framework with
partial resampling. In: Proceedings of 54th IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 469–478 (2013)

19. Harris, D.G., Srinivasan, A.: A constructive algorithm for the
Lovász local lemma on permutations. In: Proceedings of 25th
ACM-SIAM Symposium on Discrete Algorithms (SODA) pp.
907–925 (2014)

20. Haxell, P.E.: A note on vertex list colouring. Comb. Probab. Com-
put. 10(4), 345–347 (2001)

21. Hind, H., Molloy, M., Reed, B.: Colouring a graph frugally. Com-
binatorica 17(4), 469–482 (1997)

22. Kolipaka, K., Szegedy,M.:Moser andTardosmeet Lovász. In: Pro-
ceedings 43rdACMSymposiumonTheory ofComputing (STOC),
pp. 235–244 (2011)

23. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation:
lower and upper bounds. J. ACM 63(2), 17 (2016)

24. Kuhn, F., Wattenhofer, R.: On the complexity of distributed graph
coloring. In: Proceedings 25th Annual ACM Symposium on Prin-
ciples of Distributed Computing (PODC), pp. 7–15 (2006)

25. Levi, R., Rubinfeld, R., Yodpinyanee, A.: Local computation algo-
rithms for graphs of non-constant degrees. Algorithmica, pp. 1–24
(2016)

26. Linial, N.: Locality in distributed graph algorithms. SIAM J. Com-
put. 21(1), 193–201 (1992)

27. Luby,M.: A simple parallel algorithm for themaximal independent
set problem. SIAM J. Comput. 15(4), 1036–1053 (1986)

28. Molloy, M., Reed, B.: Further algorithmic aspects of the local
lemma. In: Proceedings of 30th ACM Symposium on Theory of
Computing (STOC), pp. 524–529 (1998)

29. Molloy, M., Reed, B.: Graph Colouring and the Probabilistic
Method. Algorithms and Combinatorics. Springer, Berlin (2001)

30. Molloy, M., Reed, B.: Asymptotically optimal frugal colouring. J.
Comb. Theory Ser. B 100(2), 226–246 (2010)

31. Moser, R.A.: Derandomizing the Lovász local lemma more effec-
tively. CoRR, abs/0807.2120 (2008)

32. Moser, R.A.: A constructive proof of the Lovász local lemma. In:
Proceedings of 41st ACM Symposium on Theory of Computing
(STOC), pp. 343–350 (2009)

33. Moser, R.A., Tardos,G.: A constructive proof of the general Lovász
local lemma. J. ACM 57(2), 11 (2010)

34. Pegden, W.: An extension of the Moser–Tardos algorithmic local
lemma. SIAM J. Discrete Math. 28(2), 911–917 (2014)

35. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach.
Monographs on Discrete Mathematics and Applications. Society
for Industrial and Applied Mathematics, Philadelphia (2000)

36. Pemmaraju, S., Srinivasan, A.: The randomized coloring procedure
with symmetry-breaking. In: Proceedings of 35th Int’l Colloq. on
Automata, Languages, and Programming (ICALP), pp. 306–319
(2008)

37. Pettie, S., Su, H.-H.: Fast distributed coloring algorithms for
triangle-free graphs. In: Proceedings of 40th Int’l Colloq. on
Automata, Languages, and Programming (ICALP), pp. 687–699,
(2013)

38. Reed, B.: The list colouring constants. J. Graph Theory 31(2), 149–
153 (1999)

39. Reed, B., Sudakov, B.: Asymptotically the list colouring constants
are 1. J. Comb. Theory Ser. B 86(1), 27–37 (2002)

40. Schneider, J., Wattenhofer, R.: A new technique for distributed
symmetry breaking. In: Proceedings of 29th ACM Symposium on
Principles of Distributed Computing (PODC), pp. 257–266 (2010)

41. Spencer, J.: Asymptotic lower bounds for Ramsey functions. Dis-
cret. Math. 20, 69–76 (1977)

42. Srinivasan, A.: Improved algorithmic versions of the Lovász local
lemma. In: Proceedings of 19th ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pp. 611–620 (2008)

123

	Distributed algorithms for the Lovász local lemma and graph coloring
	Abstract
	1 Introduction
	2 Preliminaries
	3 Algorithms
	3.1 A simple distributed algorithm
	3.2 Resampling by weak MIS
	3.3 A sublogarithmic algorithm
	3.4 Lower bound

	4 Applications
	4.1 Distributed defective coloring
	4.2 Distributed frugal coloring
	4.2.1 β-frugal, (iDelta + 1)-coloring

	4.3 Distributed triangle-free graphs coloring
	4.4 Distributed list coloring

	5 Discussion
	Acknowledgements
	Appendix: Tools
	References

