
Connectivity Oracles for Failure Prone Graphs∗

Ran Duan
University of Michigan

duanran@umich.edu

Seth Pettie
University of Michigan
pettie@umich.edu

ABSTRACT
Dynamic graph connectivity algorithms have been studied
for many years, but typically in the most general possible
setting, where the graph can evolve in completely arbitrary
ways. In this paper we consider a dynamic subgraph model.
We assume there is some fixed, underlying graph that can
be preprocessed ahead of time. The graph is subject only
to vertices and edges flipping “off” (failing) and “on” (re-
covering), where queries naturally apply to the subgraph
on edges/vertices currently flipped on. This model fits most
real world scenarios, where the topology of the graph in ques-
tion (say a router network or road network) is constantly
evolving due to temporary failures but never deviates too
far from the ideal failure-free state.

We present the first efficient connectivity oracle for graphs
susceptible to vertex failures. Given vertices u and v and a
set D of d failed vertices, we can determine if there is a
path from u to v avoiding D in time polynomial in d log n.
There is a tradeoff in our oracle between the space, which is
roughly mnε, for 0 < ε ≤ 1, and the polynomial query time,
which depends on ε. If one wanted to achieve the same
functionality with existing data structures (based on edge
failures or twin vertex failures) the resulting connectivity
oracle would either need exorbitant space (Ω(nd)) or update
time Ω(dn), that is, linear in the number of vertices. Our
connectivity oracle is therefore the first of its kind.

As a byproduct of our oracle for vertex failures we re-
duce the problem of constructing an edge-failure oracle to
2D range searching over the integers. We show there is an
Õ(m)-space oracle that processes any set of d failed edges
in O(d2 log log n) time and, thereafter, answers connectivity
queries in O(log log n) time. Our update time is exponen-
tially faster than a recent connectivity oracle of Pǎtraşcu
and Thorup for bounded d, but slower as a function of d.

∗This work is supported by NSF CAREER grant no. CCF-
0746673 and a grant from the US-Israel Binational Science
Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’10, June 5–8, 2010, Cambridge, Massachusetts, USA
Copyright 2010 ACM 978-1-4503-0050-6/10/06 ...$10.00.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph algorithms

General Terms
Algorithms, Theory

Keywords
Connectivity

1. INTRODUCTION
Real world graphs and networks are vulnerable objects

subject to unexpected node and link failures, fluctuations
in congestion, and occasional augmentations of nodes and
links. In the midst of such dynamism we would like to
maintain as much information about the current network
as possible and be able to perform basic tasks, for exam-
ple, finding the (approximate) distance between two ver-
tices, determining whether two vertices are simply connected
(or k-vertex/edge connected) and to produce a shortest or
nearly shortest path between two vertices if they are con-
nected. Dynamic connectivity and shortest path problems
have been studied since the late 1960s. However, decades
of research on the subject focused on what is arguably an
unnaturally general model of a dynamic graph, namely, one
subject to completely arbitrary insertions and deletions of
nodes and links. In this paper we start from the assumption
that there is some fixed underlying graph and that updates
consist solely of flipping vertices and edges on or off, possi-
bly with a restriction on the number of vertices flipped off
at any time. In contrast to the general model of dynamic
graphs, we will refer to this as the dynamic subgraph model.
This model gives one the freedom to preprocess the under-
lying graph in order to facilitate more efficient updates and
queries.

Our main result is a new, space efficient data structure
that can quickly answer connectivity queries after recovering
from d vertex failures. The recovery time is polynomial in d
and log n but otherwise independent of the size of the graph.
After processing the failed vertices, connectivity queries are
answered in O(d) time. The space used by the data structure
is roughly mnε, for any fixed ε > 0, where ε only affects the
polynomial in the recovery time. The exact tradeoffs are
given in Theorem 1.1. Our data structure is the first of its
type. To achieve comparable query times using existing data
structures we would need either Ω(nd) space [11] or Ω(dn)
recovery time [17].

Technical Challenges.
The obvious distinction between vertex failures and edge

failures is proportionality: just a handful of d vertex fail-
ures can have huge impact on the graph connectivity that
is completely divorced from d, whereas d edge failures have
an effect proportional to d. In the happiest scenario the
graph has constant degree and we can simply simulate vertex
failures (with O(1) slowdown) using Pǎtraşcu and Thorup’s
data structure [17] that processes a batch of edge deletions

in Õ(1) time per edge and answers connectivity queries in

Õ(1) time. Given this trivial observation, a natural (but
doomed) way to attack the vertex-failure problem is to find
a sparse surrogate of the graph that behaves like the input
graph (in terms of connectivity) when there are at most d
vertex failures, and that has low degree, say polynomial in
d. It is easy to see that such sparse surrogates do not exist
in general. However, in designing our data structure we do
achieve something comparable, the details of which we will
attempt to sketch.

The first component of our overall data structure is one
that, given a spanning tree T , will recover from d vertex
failures in time polynomial in the degrees of the failed ver-
tices in T , but independent of their degrees in the overall
graph. In other words, the relevant degree of a vertex can be
much smaller than its actual degree and all but the relevant
edges incident to a vertex can be deleted implicitly. (Our
structure is essentially a reduction from a special subgraph
connectivity problem to a 2D range reporting problem.)

The second component of our data structure is a redun-
dant representation of the graph, parameterized by d, the
maximum number of failures, and a degree threshold s, with
the following properties: (1) there are roughly nlogs/d d dif-
ferent representations of the graph such that (2) for any set
of at most d vertex failures, in at least one of the graph rep-
resentations, the relevant degree of each failed vertex is at
most s, and (3) given the failed vertices, the correct graph
representation can be selected in time polynomial in d. In
other words, the redundant graph representation effectively
sparsifies the graph, assuming that we only want to model
the effect of d vertex failures. The space for each graph rep-
resentation in (1) is roughly linear. If we select s = d1+c,
for c ≥ 1, then the overall space for the data structure is
roughly mn1/c and the time to recover from vertex failures
is polynomial in d and s, i.e., polynomial in d. Notice that
increasing c drives the space arbitrarily close to linear and
increases the recovery time. Theorem 1.1 gives a precise
statement of the capabilities and time-space tradeoffs of our
structure:

Theorem 1.1. Let G = (V, E) be a graph with m edges
and n vertices and let c ≥ 1 be an integer. A data struc-
ture with size S = O(d1−2/cmn1/c−1/(c log(2d)) log2 n) can be

constructed in Õ(S) time that supports the following opera-
tions. Given a set D of at most d failed vertices, D can be
processed in O(d2c+4 log2 n log log n) time so that connectiv-
ity queries w.r.t. the graph induced by V \D can be answered
in O(d) time.

To guarantee that the processing time is polynomial in |D|
rather than the upper bound d we simply build a version of
the structure for d = 2, 4, 8, Note that for c ∈ {1, 2} the

size of the structures is stable or geometrically decreasing
with d and the overall space1 is Õ(mn1/c).

Prior Work on Subgraph Connectivity.
It is rather astonishing that dynamic subgraph connectiv-

ity problems—in which vertices and edges are flipped on and
off—have been largely ignored until very recently [6, 7, 9, 11,
10, 5, 17, 13]. The premises of this graph model were laid
out by Frigioni and Italiano [13] in 2000, who showed that
in undirected planar graphs, flipping vertices and answer-
ing connectivity queries could all be performed in O(log3 n)
amortized time. Chan, Pǎtraşcu, and Roditty [6, 7] con-
sidered the same problem on general undirected graphs and
showed that vertex flips can be supported in Õ(m2/3) amor-

tized time while answering connectivity queries in Õ(m1/3)
time. Pǎtraşcu and Thorup [17] gave a data structure that
could process any d edge deletions in O(d log2 n log log n)
time and thereafter answer connectivity queries in O(log log n)
time. One downside of this data structure is its exponential
construction time, due to the need to compute sparsest cuts.
If one uses O(

√
log n)-approximate sparsest cuts [3, 2, 20],

their construction time becomes polynomial and the deletion
time becomes O(d log2.5 n log log n).

Demetrescu et al. [9] (see also [5]) considered the problem
of answering distance queries in directed graphs in the ab-
sence of precisely one vertex or edge failure. They gave an
Õ(n2)-space structure that answered such queries in O(1)
time. This was later improved by Duan and Pettie [11],
who showed that distance queries avoiding two edge/vertex

failures could be answered in O(log n) time with a Õ(n2)-
space structure. No non-trivial results are known for three
or more failures. For a survey of recent fully dynamic graph
algorithms (i.e., not dynamic subgraph algorithms), refer
to [15, 18, 22, 19, 8, 21].

Overview.
In Section 2 we present the Euler tour structure, which

plays a key role in our vertex-failure oracle and can be used
independently as an edge-failure oracle. In Sections 3 and
4 we define and analyze the redundant graph representation
(called the high degree hierarchy) mentioned earlier. In Sec-
tion 5 we provide algorithms to recover from vertex failures
and answer connectivity queries.

2. THE EULER TOUR STRUCTURE
In this section we describe the ET-structure for handling

connectivity queries avoiding multiple vertex and edge fail-
ures. When handling only d edge failures, the performance
of the ET-structure is incomparable to that of Pǎtraşcu and
Thorup [17] in nearly every respect.2 The strength of the

1Also note that for moderate values of d the total space is

o(mn1/c), for any c. Specifically, for d � 2
√

(log n)/c the fac-

tor d1−2/cn−1/(c log(2d)) log2 n is o(1). It is never worthwhile

making d > m1/(2c+4) since we can trivially answer con-
nectivity queries in O(1) time after O(m) preprocessing, so

the maximum space is Õ(m
1+ c−2

c(2c+4) n1/c), which is always

o(mn2/c) since m < n2.
2The ET-structure is significantly faster in terms of con-
struction time (near-linear vs. a large polynomial or expo-
nential time) though it uses slightly more space: O(m logε n)
vs. O(m). It handles d edge deletions exponentially

ET-structure is that if the graph can be covered by a low-
degree tree T , the time to delete a vertex is a function of its
degree in T ; incident edges not in T are deleted implicitly.
We prove Theorem 2.1 in the remainder of this section.

Theorem 2.1. Let G = (V, E) be a graph, with m = |E|
and n = |V |, and let F = {T1, . . . , Tt} be a set of vertex dis-
joint trees in G. (Each Ti does not necessarily span a con-
nected component of G.) There is a data structure ET(G,F)
occupying space O(m logε n) (for any fixed ε > 0) that sup-
ports the following operations. Suppose D is a set of failed
edges, of which d are tree edges in F and d′ are non-tree
edges. Deleting D splits some subset of the trees in F into
at most 2d trees F ′ = {T ′

1, . . . , T
′
2d}. In O(d2 log log n + d′)

time we can report which pairs of trees in F ′ are connected
by an edge in E\D. In O(min{log log n, log d}) time we can
determine which tree in F ′ contains a given vertex.

Our data structure uses as a subroutine Alstrup et al.’s
data structure [1] for range reporting on the integer grid
[U] × [U]. They showed that given a set of N points, there
is a data structure with size O(N logε N), where ε > 0 is
fixed, such that given x, y, w, z ∈ [U], the set of k points
in [x, y] × [w, z] can be reported in O(log log U + k) time.
Moreover, the structure can be built in O(N log N) time.

For a tree T , let L(T) be a list of its vertices encountered
during an Euler tour of T (an undirected edge is treated as
two directed edges), where we only keep the first occurrence
of each vertex. One may easily verify that removing f edges
from T partitions it into f +1 connected subtrees and splits
L(T) into at most 2f + 1 intervals, where the vertices of a
connected subtree are the union of some subset of the in-
tervals. To build ET(G = (V, E),F) we build the following
structure for each pair of trees (T1, T2) ∈ F × F ; note that
T1 and T2 may be the same. Let m′ be the number of edges
connecting T1 and T2. Let L(T1) = (u1, . . . , u|T1|), L(T2) =
(v1, . . . , v|T2|), and let U = max{|T1|, |T2|}. We define the

point set P ⊆ [U] × [U] to be P = {(i, j) | (ui, vj) ∈ E}.3
Suppose D is a set of edge failures including d1 edges in
T1, d2 in T2, and d′ non-tree edges. Removing D splits T1

and T2 into d1 + d2 + 2 connected subtrees and partitions
L(T1) into a set I1 = {[xi, yi]}i of 2d1 + 1 intervals and
L(T2) into a set I2 = {[wi, zi]}i of 2d2 + 1 intervals. For
each pair i, j we query the 2D range reporting data struc-
ture for points in [xi, yi] × [wj , zj] ∩ P . However, we stop
the query the moment it reports some point correspond-
ing to a non-failed edge, i.e., one in E\D. Since there are
(2d1 + 1)× (2d2 + 1) queries and each failed edge in D can
only be reported in one such query, the total query time is
O(d1d2 log log U +|D|) = O(d1d2 log log n+d′). See Figure 1
for an illustration.

The space for the data structure (restricted to T1 and T2)
is O(|T1|+ |T2|+ m′ logε n). We can assume without loss of

faster for bounded d (O(log log n) vs. Ω(log2 n log log n))
but is slower as a function of d: O(d2 log log n) vs.
O(d log2 n log log n) time. The query time is the same for
both structures, namely O(log log n). Whereas the ET-
structure naturally maintains a certificate of connectivity
(a spanning tree), the Pǎtraşcu-Thorup structure requires
modification and an additional logarithmic factor in the up-
date time to maintain a spanning tree.
3The idea of representing the cross-product of trees as 2D
point sets has been used in other contexts. See Grossi and
Italiano [14].

u1

u2

u3u4

u5

u6 u7

u8

u9

u10

u11

u12

v1

v2

v3

v4v5

v6

v7 v8

v9

T1 T2

(a)

1 3 5 7 9 11
1

3

5

7

9

T2 :

T1 :

(b)

Figure 1: (a) Dashed edges connect trees T1 and T2. The

edges (u2, u3) and (v1, v2) have failed. (b) The point (i, j)

is in our point set if (vi, uj) is a non-tree edge. The set

of 2D range queries are indicated by solid boxes.

generality that |T1|+ |T2| < 4m′,4 so the space for the ET-
structure on T1 and T2 is O(m′ logε n). Since each non-tree
edge only appears in one such structure the overall space for
ET(G,F) is O(m logε n). For the last claim of the Theorem,
observe that if a vertex u lies in an original tree T1 ∈ F , we
can determine which tree in F ′ contains it by performing
a predecessor search over the left endpoints of intervals in
I1. This can be accomplished in O(min{log log n, log d1})
query time using a van Emde Boas tree [23] or sorted list,
whichever is faster.

Corollary 2.2 demonstrates how ET(G, ·) can be used to
answer connectivity queries avoiding edge and vertex fail-
ures.

Corollary 2.2. The data structure ET(G, {T}), where
T is a spanning tree of G = (V, E), supports the following op-
erations. Given a set D ⊂ E of edge failures, D can be pro-
cessed in O(|D|2 log log n) time so that connectivity queries
in the graph (V, E\D) can be answered in O(min{log log n,
log |D|}) time. If D ⊂ V is a set of vertex failures, the
update time is O((

P
v∈D degT (v))2 log log n) and the query

time O(min{log log n, log(
P

v∈D degT (v))}). (Note that the
update time is independent of

P
v∈D deg(v).)

Proof. Let d be the number of failed edges in T (or edges
in T incident to failed vertices). Using ET(G, {T}) we split

4The idea is simply to remove irrelevant vertices and con-
tract long paths of degree-2 vertices. We leave this as an
exercise.

T into d + 1 subtrees and L(T) into a set I of 2d + 1 con-
nected intervals, in which each connected subtree is made
up of some subset of the intervals. Using O(d2) 2D range
queries, in O(d2 log log n+|D|) time we find at most one edge
connecting each pair in I×I. In O(d2) time we find the con-
nected components5 of V \D and store with each interval a
representative vertex from its component. To answer a query
(u, v) we only need to determine which subtree u and v are
in, which involves two predecessor queries over the left end-
points of intervals in I. This takes O(min{log log n, log d})
time.

It is possible to reduce the query time using more com-
plicated predecessor data structures [4, 12, 16]. However,
in our vertex-failure connectivity oracle this cost is not the
bottleneck.

3. CONSTRUCTING THE HIGH-DEGREE
HIERARCHY

Theorem 2.1 and Corollary 2.2 demonstrate that given a
spanning tree T with maximum degree t, we can processes
d vertex failures in time roughly (dt)2. However, there is
no way to bound t as a function of d. Our solution is to
build a high-degree hierarchy that represents the graph in a
redundant fashion so that given d vertex failures, in some
representation of the graph all failed vertices have low (rel-
evant) degree.

3.1 Definitions
Let degH(v) be the degree of v in the graph H and let

Hi(H) = {v ∈ V (H) | degH(v) > s} be the set of high
degree vertices in H, where s = Ω(d2) is a fixed parameter
of the construction and d is an upper bound on the number
of vertex failures. Increasing s will increase the update time
and decrease the space.

We assign arbitrary distinct weights to the edges of the
input graph G = (V, E), which guarantees that every sub-
graph has a unique minimum spanning forest. Let X and
Y be arbitrary subsets of vertices. We define FX to be the
minimum spanning forest of the graph G\X. (The notation
G\X is short for “the graph induced by V \X.”) Let FX(Y)
be the subforest of FX that preserves the connectivity of
Y \X, i.e., an edge appears in FX(Y) if it is on the path in
FX between two vertices in Y \X. If X is omitted it is ∅.
Note that FX(Y) may contain branching vertices that are
not in Y \X.

Lemma 3.1. For sets X, Y , |Hi(FX(Y))| ≤ b |Y \X|−2
s−1

c.

Proof. Note that all leaves of FX(Y) belong to Y \X.
We prove by induction that the maximum number of ver-
tices with degree at least s +1 (the threshold for being high
degree) in a tree with l leaves is precisely b(l − 2)/(s− 1)c.
This upper bound holds whenever there is one internal ver-
tex, and is clearly tight when l ≤ s + 1. Given a tree with
l > s + 1 leaves and at least two internal vertices, select an
internal vertex v adjacent to exactly one internal vertex and
a maximum number of leaves. If v is incident to fewer than
s leaves it can be spliced out without decreasing the number
of high-degree vertices, so assume the number of incident

5This involves performing a depth first search of the graph
whose vertices correspond to intervals in I.

leaves is at least s. Trimming the adjacent leaves of v leaves
a tree with a net loss of s−1 leaves and 1 high degree vertex.
The claim then follows from the inductive hypothesis.

3.2 The Hierarchy Tree and Its Properties
Definition 3.2 describes the hierarchy tree, and in fact

shows that it is constructible in roughly linear time per hi-
erarchy node. See Figure 2 for a diagram.

Definition 3.2. The hierarchy tree is a rooted tree that
is uniquely determined by the graph G = (V, E), its artificial
edge weights, and the parameters d and s. Nodes in the tree
are identified with subsets of V . The root is V and every
internal node has precisely d children. A (not necessarily
spanning) forest of G is associated with each node and each
edge in the hierarchy tree. The tree is constructed as follows:

1. Let W be a node with parent p(W) = U . We asso-
ciate the forest F (U) with U and FW (U) with the edge
(U, W).

2. Let U be a node. If F (U) has no high degree vertices
then U is a leaf; otherwise it has children W1, . . . , Wd

defined as follows. (Here subtree(X) is the set of de-
scendants of X in the hierarchy, including X.)

W1 = Hi(F (U))

Wi = Wi−1 ∪

26664U ∩

0BBB@ [
W ′∈subtree(Wi−1)

U′=p(W ′)

Hi(FW ′(U ′))

1CCCA
37775

In other words, Wi inherits all the vertices from Wi−1

and adds all vertices that are both in U and high-degree
in some forest associated with an edge (W ′, U ′), where
W ′ is a descendant of Wi−1. Note that this includes
the forest FWi−1(U).

V

W1 W2 W3

X1 X2 X3 Y1 Y2 Y3

FY1
W2 FY3

W2

FW1
V FW2

V

FX1
W1 FX3

W1

Figure 2: After W1, W2 and all their descendants
have been constructed we construct W3 as follows.
Include all members of W2 in W3. Second, look at all
hierarchy edges (X ′, U ′) where X ′ is in W2’s subtree
and U ′ is the parent of X ′ (i.e., all edges under the
dashed curve), and include all the high degree ver-
tices in FX′(U ′) in W3. In this example W3 includes
Hi(FW2(V)), Hi(FY1(W2)), Hi(FY2(W2)), and so on.

It is regretful that Definition 3.2(2) is so stubbornly un-
intuitive. We do not have a clean justification for it, except
that it guarantees all the properties we require of the hierar-
chy: that it is small, shallow, and effectively represents the

1. U0 ← V
2. For i from 1 to ∞ : {
3. If Ui−1 is a leaf set p← i− 1 and HALT. (I.e., Ui−1 = Up is the last node on the path.)
4. Let W1, . . . , Wd be the children of Ui−1 and artificially define W0 = ∅ and Wd+1 = Wd.
5. Let j ∈ [0, d] be minimal such that D ∩ (Wj+1\Wj) = ∅.
6. If j = 0 set p← i− 1 and HALT. (I.e., Ui−1 = Up is the last node on the path.)
7. Otherwise Ui ←Wj

8. }

Figure 3: A procedure for finding a path through the hierarchy, given a set D of failed vertices.

graph in many ways so that given d vertex failures, failed
vertices have low degree in some graph representation. After
establishing Lemmas 3.3–3.5, Definition 3.2(2) does not play
any further role in the data structure whatsoever. Proofs of
Lemmas 3.3 and 3.4 appear in the appendix.

Lemma 3.3. (Containment of Hierarchy Nodes) Let
U be a node in the hierarchy tree with children W1, . . . , Wd.
Then Hi(F (U)) ⊆ U and W1 ⊆ · · · ⊆ Wd ⊆ U .

Lemma 3.4. (Hierarchy Size and Depth) Consider
the hierarchy tree constructed with high-degree threshold s =
(2d)c+1 + 1, for some integer c ≥ 1. Then:

1. The depth of the hierarchy is at most

k = dlog(s−1)/2d ne ≤ d(log n)/(c log(2d))e.

2. The number of nodes in the hierarchy is on the order
of d−2/cn1/c−1/(c log 2d).

For the remainder of the paper the variable k is fixed, as
defined above. Aside from bounds on its size and depth,
the only other property we require from the hierarchy tree
is that, for any set of d vertex failures, all failures have low
degree in forests along some path in the hierarchy. More
formally:

Lemma 3.5. For any set D of at most d failed vertices,
there exists a path V = U0, U1, . . . , Up in the hierarchy tree
such that all vertices in D have low degree in the forests
FU1(U0), . . . , FUp(Up−1), F (Up). Furthermore, this path can
be found in O(d(p + 1)) = O(dk) time.

Proof. We construct the path V = U0, U1, . . . one node
at a time using the procedure in Figure 3. First let us note
that in Line 5 there always exists such a j, since we defined
the artificial set Wd+1 = Wd, and that this procedure even-
tually halts since the hierarchy tree is finite. If, during the
construction of the hierarchy, we record for each v ∈ Ui−1

the first child of Ui−1 in which v appears, Line 5 can easily be
implemented in O(d) time, for a total of O((p+1)d) = O(dk)
time.

Define Di = D ∩ Ui. It follows from Lemma 3.3 that
U0 ⊇ · · · ⊇ Up and therefore that D = D0 ⊇ · · · ⊇ Dp. In
the remainder of the proof we will show that:

(A) When the procedure halts, in Line 3 or 6, D is disjoint
from Hi(F (Up)).

(B) For each i ∈ [1, p] and i′ ∈ [i, p], Di−1\Di is disjoint
from Hi(FUi′ (Ui′−1)).

Regarding (B), notice that for i′ ∈ [1, i), Di−1\Di is trivially
disjoint from Hi(FUi′ (Ui′−1)) because vertices in Di−1\Di ⊆

Ui−1 ⊆ Ui′ are specifically excluded from FUi′ (Ui′−1). Thus,
the lemma will follow directly from (A) and (B).
Proof of (A) Suppose the procedure halts at Line 3, i.e.,
Ui−1 = Up is a leaf. By Definition 3.2(2), Hi(F (Up)) = ∅
and is trivially disjoint from D. The procedure would halt
at Line 6 if j = 0, meaning W1\W0 = W1 is disjoint from
D, where W1 is the first child of Ui−1 = Up. This implies
Hi(F (Up)) is also disjoint from D since W1 = Hi(F (Up)) by
definition.
Proof of (B) Fix an i ∈ [1, p] and let Wj = Ui be the
child of Ui−1 selected in Line 5. We first argue that if
j = d there is nothing to prove, then deal with the case
j ∈ [1, d − 1]. If j = d that means the d disjoint sets
W1, W2\W1, . . . , Wd\Wd−1 each intersect D, implying that
Ui = Wd ⊇ D and therefore Di = D. Thus Di−1\Di = ∅ is
disjoint from any set. Consider now the case when j < d,
i.e., the node Wj+1 exists and Wj+1\Wj is disjoint from
D. By Definition 3.2(2) and the fact that Ui, . . . , Up are
descendants of Wj = Ui, we know that Wj+1 includes all
the high-degree vertices in FUi(Ui−1), . . . , FUp(Up−1) that
are also in Ui−1. By definition, Di−1\Di is contained in
Ui−1 and disjoint from Ui, . . . , Up, implying that no vertex
in Di−1\Di has high-degree in FUi(Ui−1), . . . , FUp(Up−1). If
one did, it would have been put in Wj+1 (as dictated by Def-
inition 3.2(2)) and Wj+1\Wj would not have been disjoint
from D, contradicting the choice of j.

4. INSIDE THE HIERARCHY TREE
Lemma 3.5 guarantees that for any set D of d vertex fail-

ures, there exists a path of hierarchy nodes V = U0, . . . , Up

such that all failures have low degree in the forests FU1(U0), . . . ,
FUp(Up−1), F (Up). Using the ET-structure from Section 2
we can delete the failed vertices and reconnect the discon-
nected trees in O(d2s2 log log n) time for each of the p + 1
levels of forests. This will allow us to quickly answer con-
nectivity queries within one level, i.e., whether two vertices
are connected in the subgraph induced by V (FUi+1(Ui))\D.
However, to correctly answer connectivity queries we must
consider paths that traverse many levels.

Our solution, following an idea of Chan et al. [7], is to
augment the graph with artificial edges that capture the fact
that vertices at one level (say in Ui\Ui+1) are connected by
a path whose intermediate vertices come from lower levels,
in V \Ui. We do not want to add too many artificial edges,
for two reasons. First, they take up space, which we want to
conserve, and second, after deleting vertices from the graph
some artificial edges may become invalid and must be re-
moved, which increases the recovery time. (In other words,
an artificial edge (u, v) between u, v ∈ Ui\Ui+1 indicates a
u-to-v path via V \Ui. If V \Ui suffers vertex failures then
this path may no longer exist and the edge (u, v) is presumed
invalid.) We add artificial edges so that after d vertex fail-

ures, we only need to remove a number of artificial edges
that is polynomial in d, s, and log n.

4.1 Stocking the Hierarchy Tree
The data structure described in this section (as well as

all notation) are for a fixed path V = U0, . . . , Up in the hi-
erarchy tree. In other words, for each path from the root
to a descendant in the hierarchy we build a completely dis-
tinct data structure. In order to have a uniform notation
for the forests at each level we artificially define Up+1 = ∅,
so F (Up) = FUp+1(Up). Furthermore, we let F represent
the collection of forests FU1(U0), . . . , FUp+1(Up), which we
construe as having disjoint vertex sets. For i > j we say ver-
tices in Ui\Ui+1 are at a higher level than those in Uj\Uj+1

and say the trees in the forest FUi+1(Ui) are at a higher
level than those in FUj+1(Uj). Recall that FUi+1(Ui) is the
minimum spanning forest connecting Ui \Ui+1 in the graph
G\Ui+1 and may contain vertices at lower levels. See Fig-
ure 4 in the appendix. We distinguish these two types of
vertices:

Definition 4.1. (Major Vertices) Vertices in FUi+1(Ui)
that are also in Ui \Ui+1 are major. Let T (u) be the unique
tree in F in which u is a major vertex.

It is not clear that the trees in F have any coherent or-
ganization. Lemma 4.3 shows that they naturally form a
hierarchy, with trees in FUp+1(Up) on top. Below we give
the definition of ancestry between trees and show each tree
has exactly one ancestor at each higher level. See Figure 4
in the appendix for an illustration of Definitions 4.1 and 4.2.

Definition 4.2. (Ancestry Between Trees) Let 0 ≤
j ≤ i ≤ p and let T and T ′ be trees in FUj+1(Uj) and
FUi+1(Ui), respectively. Call T ′ an ancestor of T (and T
a descendant of T ′) if T and T ′ are in the same connected
component in the graph G\Ui+1. Notice that T is both an
ancestor and descendant of itself.

Lemma 4.3. (Unique Ancestors) For j ≤ i ≤ p, each
tree T in FUj+1(Uj) has at most one ancestor in FUi+1(Ui).

Proof. Let T1, T2 be ancestors of T in FUi+1(Ui), i.e.,
T1 and T2 span connected components in G\Ui+1. Since
they are both connected to T in G\Ui+1 (which contains T
since Ui+1 ⊆ Uj+1), T1 and T2 are connected in G\Ui+1 and
cannot be distinct trees in FUi+1(Ui).

Observe that the ancestry relation between trees T in
FUj+1(Uj) and T ′ in FUi+1(Ui) is the reverse of the ancestry
relation between the nodes Uj and Ui in the hierarchy tree.
That is, if j < i, T ′ is an ancestor of T but Uj is an ancestor
of Ui in the hierarchy tree.

Definition 4.4. (Descendant Sets) The descendant set
of T is ∆(T) = {v | T (v) is a descendant of T}. Equiva-
lently, if T is in FUi+1(Ui) then ∆(T) is the set of vertices
in the connected component of G\Ui+1 containing T .

Lemma 4.5 is a simple consequence of the definitions of
ancestry and descendant set, and one that will justify the
way we augment the graph with artificial edges.

Lemma 4.5. (Paths and Unique Descendant Sets)
Consider a path between two vertices u and v and let w be
an intermediate vertex (i.e., not u or v) with highest level.
Then all intermediate vertices are in ∆(T (w)) and each of
T (u) and T (v) is either an ancestor or descendant of T (w).

Proof. This follows from the definition of ∆(·).

Now that we have notions of ancestry and descendent sets,
we are almost ready to describe exactly how we generate ar-
tificial edges. Recall that we are dealing with a fixed path
V = U0, . . . , Up in the hierarchy tree. We construct a graph
H that, among many other edges, includes all forest edges
in F . Since we interpret these forests as being on distinct
vertex sets, H has at most (p + 1)n vertices, n of which are
distinguished as major. In addition H includes all original
edges of G, that is, for (u, v) ∈ E(G) there is an edge in
E(H) connecting the major copies of u and v. Finally, H
includes a collection of artificial edges; for each tree T in F
there are edges that represent connectivity from ancestors
of T via paths whose intermediate vertices are in ∆(T). To
define the artificial edges with precision we must introduce
some additional concepts. A d-adjacency list is essentially a
path that is augmented to be resilient (in terms of connec-
tivity) to up to d vertex failures.

Definition 4.6. (d-Adjacency List) Let L = (v1, . . . , vr)
be a list of vertices and d ≥ 1 be an integer. The d-adjacency
edges Λd(L) connect all vertices at distance at most d+1 in
the list L:

Λd(L) = {(vi, vj) | 1 ≤ i < j ≤ r and j − i ≤ d + 1}

Before proceeding we make some simple observations about
d-adjacency lists.

Lemma 4.7. (Properties of d-Adjacency Lists) The
following properties hold for any vertex list L:

1. Λd(L) contains fewer than (d + 1)|L| edges.

2. If a set D of d vertices are removed from L, the sub-
graph of Λd(L) induced by L\D remains connected.

3. If L is split into lists L1 and L2, then we must remove
O(d2) edges from Λd(L) to obtain Λd(L1) and Λd(L2).

Proof. Part (1) is trivial, as is (2), since each pair of
consecutive undeleted vertices is at distance at most d + 1,
and therefore adjacent. Part (3) is also trivial: the number
edges connecting any prefix and suffix of L is O(d2).

We now have all the terminology necessary to define the
graph H.

Definition 4.8. (The Graph H) The edge set of H in-
cludes the forests in F , the original edges in G (connecting
their major counterparts), and

S
T C(T), where the union is

over all trees T in F and C(T) is constructed as follows:

• Let the strict ancestors of T be T1, T2, . . . , Tq.

• For 1 ≤ i ≤ q, let A(T, Ti) be a list of the major
vertices in Ti that are incident to some vertex in ∆(T),
ordered according to an Euler tour of Ti. (This is done
exactly as in Section 2.) Let A(T) be the concatenation
of A(T, T1), . . . , A(T, Tq).

• Define C(T) to be the edge set Λd(A(T)).

See Figure 5 in the appendix for an illustration of how
C(T) is constructed. Lemma 4.9 exhibits the two salient
properties of H: that it encodes useful connectivity infor-
mation and that it is economical to effectively destroy C(T)
when it is no longer valid, often in time sublinear in |C(T)|.

Lemma 4.9. (Disconnecting C(T)) Consider a C(T) ⊆
E(H), where T is a tree in F .

1. Suppose d vertices fail, none of which are in ∆(T), and
let u and v be major vertices in ancestors of T that are
adjacent to at least one vertex in ∆(T). Then u and
v remain connected in the original graph and remain
connected in H.

2. Suppose the proper ancestors of T are T1, . . . , Tq and a
total of f edges are removed from these trees, break-
ing them into subtrees T ′

1, . . . , T
′
q+f . Then at most

O(d2(q + f)) edges must be removed from C(T) such
that no remaining edge in C(T) connects distinct trees
T ′

i and T ′
j .

Proof. For Part (1), the vertices u and v are connected
in the original graph because they are each adjacent to ver-
tices in ∆(T) and, absent any failures, all vertices in ∆(T)
are connected, by definition. By Definition 4.8, u and v ap-
pear in C(T) and, by Lemma 4.7, C(T) remains connected
after the removal of any d vertices. Turning to Part (2),
recall from Definition 4.8 that A(T) was the concatenation
of A(T, T1), . . . , A(T, Tq) and each A(T, Ti) was ordered ac-
cording to an Euler tour of Ti. Removing f edges from
T1, . . . , Tq separates their Euler tours (and, hence, the lists
{A(T, Ti)}i) into at most 2f + q intervals. (This is exactly
the same reasoning used in Section 2.) By Lemma 4.7 we
need to remove at most (2f + q − 1) · O(d2) edges from
C(T) to guarantee that all remaining edges are internal to
one such interval, and therefore internal to one of the trees
T ′

1, . . . , T
′
q+f . Note that C(T) is now“logically”deleted since

remaining edges internal to some T ′
i do not add any connec-

tivity.

Finally, we associate the ET-structure ET(H,F) with the
path V = U0, . . . , Up. Lemma 4.10 bounds the space for the
overall data structure.

Lemma 4.10. (Space Bounds) Given a graph G with
m edges, n vertices, and parameters d and s = (2d)c+1 + 1,
where c ≥ 1, the space for a d-failure connectivity oracle is
O(d1−2/cmn1/c−1/(c log(2d)) log2 n).

Proof. Recall that k = log(s−1)/2d n < log n is the height
of the hierarchy. The graph H has at most (p + 1)n ≤ kn
vertices, and, we claim, less than kn + [(d + 1)k + 1]m
edges. There are less than kn edges in the forests F . Each
original edge (u, v) appears in H and causes v to make
an appearance in the list A(T, T (v)), whenever u ∈ ∆(T).
There are at most k such lists. Moreover, v’s appearance
in A(T, T (v)) (and hence A(T)) contributes at most d + 1
edges to C(T) = Λd(A(T)). By Theorem 2.1, each edge
in H contributes O(log n) space in ET(H,F) for a total of
O((dkm + kn) log n) = O(dm log2 n) space for one hierar-

chy node. By Lemma 3.4 there are d−2/cn1/c−1/(c log(2d))

hierarchy tree nodes, which gives the claimed bound.

5. RECOVERY FROM FAILURES
In this section we describe how, given up to d failed ver-

tices, the structure can be updated in O((dsk)2 log log n)
time such that connectivity queries can be answered in O(d)
time. Section 5.1 gives the algorithm to delete failed vertices
and Section 5.2 gives the query algorithm.

5.1 Deleting Failed Vertices
Step 1. Given the set D of at most d failed vertices,

we begin by identifying a path V = U0, . . . , Up in the hi-
erarchy in which D have low degree in the p + 1 levels of
forests FU1(U0), . . . , FUp+1(Up). By Lemma 3.5 this takes
O(d log n) time.

In subsequent steps we delete all failed vertices in each
of their appearances in the forests, i.e., up to p + 1 ≤ k
copies for each failed vertex. Edges remaining in H (be-
tween vertices not in D) represent original edges, which are
obviously still valid, or edges in

S
T C(T), which might no

longer be valid. Recall that C(T) represents connectivity via
a path whose intermediate vertices are in the descendant set
∆(T). If ∆(T) contains failed vertices then that path may
no longer exist, so all edges in C(T) become suspect, and
are presumed invalid. Although C(T) may contain many
edges, Lemma 4.9(2) implies that C(T) can be logically de-
stroyed in time polynomial in d and s. Before describing
the next steps in detail we need to distinguish affected from
unaffected trees.

Definition 5.1. (Affected Trees) If a tree T in F in-
tersects the set of failed vertices D, T and all ancestors of T
are affected. Equivalently, T is affected if ∆(T) contains a
failed vertex. If T is affected, the connected subtrees of T in-
duced by V (T)\D (i.e., the subtrees remaining after vertices
in D fail) are called affected subtrees.

Lemma 5.2. (The Number of Affected Trees) The
number of affected trees is at most kd. The number of af-
fected subtrees is at most kd(s + 1).

Proof. If u is a major vertex in T , u can only appear in
ancestors of T . Thus, when u fails it can cause at most k
trees to become affected. Since, by choice of Up, all failed
vertices have low degree in the trees in which they appear, at
most kds tree edges are deleted, yielding kd(s + 1) affected
subtrees.

Step 2. We identify the affected trees in O(kd) time and
mark as deleted the tree edges incident to failed vertices in
O(kds) time. Deleting O(kds) tree edges effectively splits
the Euler tours of the affected trees into O(kds) intervals,
where each affected subtree is the union of some subset of
the intervals.

Step 3. Recall from the discussion above that if T is
an affected tree then ∆(T) contains failed vertices and the
connectivity provided by C(T) is presumed invalid. By
Lemma 4.9 we can logically delete C(T) by removing O(d2)
edges for each edge removed from an ancestor tree of T i.e.,
O(d2 · kds) edges need to be removed to destroy C(T). (All
remaining edges from C(T) are internal to some affected
subtree and can therefore be ignored; they do not provide
additional connectivity.) There are at most dk affected trees
T , so at most O(k2d4s) edges need to be removed from H.
Let H ′ be H with these edges removed.

Step 4. We now attempt to reconnect all affected sub-
trees using valid edges, i.e., those not deleted in Step 3. Let
R be a graph whose vertices V (R) represent the O(kds) af-
fected subtrees such that (t1, t2) ∈ E(R) if t1 and t2 are con-
nected by an edge from H ′. Using the structure ET(H,F)
(see Section 2, Theorem 2.1), we populate the edge set in
time O(|V (R)|2 log log n+k2d4s), which is O((dsk)2 log log n)
since s > d2. In O(|E(R)|) = O((dsk)2) time we determine

the connected components of R and store with each affected
subtree a representative vertex of its component.

This concludes the deletion algorithm. The running time
is dominated by Step 4.

5.2 Answering a Connectivity Query
The deletion algorithm has already identified the path

U0, . . . , Up. To answer a connectivity query between u and
v we first check to see if there is a path between them that
avoids affected trees, then consider paths that intersect one
or more affected trees.

Step 1. We find T (u) and T (v) in O(1) time; recall that
these are trees in which u and v are major vertices. If T (u) is
unaffected, let T1 be the most ancestral unaffected ancestor
of T (u), and let T2 be defined in the same way for T (v). If
T1 = T2 then ∆(T1) contains u and v but no failed vertices;
if this is the case we declare u and v connected and stop.
We can find T1 and T2 in O(log k) = O(log log n) time using
a binary search over the ancestors of T (u) and T (v), or in
O(log d) time using predecessor search and a level ancestor
data structure.

Step 2. We now try to find vertices u′ and v′ in affected
subtrees that are connected to u and v respectively. If T (u)
is affected then u′ = u clearly suffices, so we only need to
consider the case when T (u) is unaffected and T1 exists.
Recall from Definition 4.8 that A(T1) is the list of major
vertices in proper ancestors of T1 that are adjacent to some
vertex in ∆(T1). We scan A(T1) looking for any non-failed
vertex u′ adjacent to ∆(T1). Since ∆(T1) is unaffected, u
is connected to u′, and since T1’s parent is affected u′ must
be in an affected subtree. Since there are at most d failed
vertices we must inspect at most d + 1 elements of A(T1).
This takes O(d) time to find u′ and v′, if they exist. If
one or both of u′ and v′ does not exist we declare u and v
disconnected and stop.

Step 3. Given u′ and v′, in O(min{log log n, log d}) time
we find the affected subtrees t1 and t2 containing u′ and v′,
respectively. Note that t1 and t2 are vertices in R, from
Step 4 of the deletion algorithm. We declare u and v to be
connected if and only if t1 and t2 are in the same connected
component of R. This takes O(1) time.

We now turn to the correctness of the query algorithm. If
the algorithm replies connected in Step 1 or disconnected in
Step 2 it is clearly correct. (This follows directly from the
definitions of ∆(Ti) and A(Ti), for i ∈ {1, 2}.) If u′ and v′

are discovered then u and v are clearly connected to u′ and
v′, again, by definition of ∆(Ti) and A(Ti). Thus, we may
assume without loss of generality that the query vertices
u = u′ and v = v′ lie in affected subtrees. The correctness
of the procedure therefore hinges on whether the graph R
correctly represents connectivity between affected subtrees.

Lemma 5.3. (Query Algorithm Correctness) Let u
and v be vertices in affected subtrees tu and tv. Then there
is a path from u to v avoiding failed vertices if and only if
tu and tv are connected in R.

Proof. Edges in R represent either original graph edges
(not incident to failed vertices) or paths whose intermediate
vertices lie in some ∆(T), for an unaffected T . Thus, if there
is a path in R from tu to tv then there is also a path from
u to v avoiding failed vertices. For the reverse direction,
let P be a path from u to v in the original graph avoiding
failed vertices. If all intermediate vertices in P are from

affected subtrees then P clearly corresponds to a path in
R, since all inter-affected-tree edges in P are included in
H ′ and eligible to appear in R. For the last case, let P =
(u, . . . , x, x′, . . . , y′, y, . . . , v), where x′ is the first vertex not
in an affected tree and y is the first vertex following x′ in an
affected tree. That is, the subpath (x′, . . . , y′) lies entirely
in ∆(T) for some unaffected tree T , which implies that x
and y appear in A(T). By Lemma 4.9, x and y remain
connected in C(T) even if d vertices are removed, implying
that x and y remain connected in H ′. Since all edges from
H ′ are eligible to appear in R, tx and ty must be connected
in R. Thus, u lies in tu, which is connected to tx in R, which
is connected to ty in R. The claim then follows by induction
on the (shorter) path from y to v.

6. CONCLUSION
We presented the first space-efficient data structure for

one of the most natural dynamic graph problems: given that
a set of vertices has failed, is there still a path from point
A to point B avoiding all failures? Our connectivity oracle
recovers from d vertex failures in time polynomial in d and
answers connectivity queries in time linear in d. Are these
types of time bounds intrinsic to the problem? Excluding
polylogarithmic factors the best we could hope for is Õ(m)

space, Õ(d) time to process vertex failues and Õ(1) time for
queries.

In addition to our vertex-failure oracle we presented a
new edge-failure connectivity oracle that is incomparable to
a previous structure of Pǎtraşcu and Thorup [17] in many
ways. We note that it excels when the number of failures
is small; for d = O(1) the oracle recovers from failures in
O(log log n) time and answers connectivity queries in O(1)
time.

7. REFERENCES
[1] S. Alstrup, G. S. Brodal, and T. Rauhe. New data

structures for orthogonal range searching. In Proceedings
41st FOCS, pages 198–207, 2000.

[2] S. Arora, E. Hazan, and S. Kale. O(
√

log n) approximation

to sparsest cut in Õ(n2) time. In Proceedings 45th FOCS,
pages 238–247, 2004.

[3] S. Arora, S. Rao, and U. V. Vazirani. Expander flows,
geometric embeddings and graph partitioning. J. ACM,
56(2), 2009.

[4] P. Beame and F. E. Fich. Optimal bounds for the
predecessor problem and related problems.
J. Comput. Syst. Sci., 65(1):38–72, 2002.

[5] A. Bernstein and D. Karger. A nearly optimal oracle for
avoiding failed vertices and edges. In Proceedings 41st
STOC, pages 101–110, 2009.

[6] T. Chan. Dynamic subgraph connectivity with geometric
applications. SIAM J. Comput., 36(3):681–694, 2006.

[7] T. M. Chan, M. Pǎtraşcu, and L. Roditty. Dynamic
connectivity: Connecting to networks and geometry. In
Proceedings 49th FOCS, pages 95–104, 2008.

[8] C. Demetrescu and G. F. Italiano. Mantaining dynamic
matrices for fully dynamic transitive closure. Algorithmica,
51(4):387–427, 2008.

[9] C. Demetrescu, M. Thorup, R. A. Chowdhury, and
V. Ramachandran. Oracles for distances avoiding a failed
node or link. SIAM J. Comput., 37(5):1299–1318, 2008.

[10] R. Duan and S. Pettie. Bounded-leg distance and
reachability oracles. In Proceedings 19th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages
436–445, 2008.

[11] R. Duan and S. Pettie. Dual-failure distance and
connectivity oracles. In Proceedings 20th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages
506–515, 2009.

[12] M. L. Fredman and D. E. Willard. Surpassing the
information-theoretic bound with fusion trees.
J. Comput. Syst. Sci., 47(3):424–436, 1993.

[13] D Frigioni and G. F. Italiano. Dynamically switching
vertices in planar graphs. Algorithmica, 28(1):76–103, 2000.

[14] R. Grossi and G. F. Italiano. Efficient splitting and merging
algorithms for order decomposable problems. Information
and Computation, 154(1):1–33, 1999.

[15] J. Holm, K. de Lichtenberg, and M. Thorup.
Poly-logarithmic deterministic fully-dynamic algorithms for
connectivity, minimum spanning tree, 2-edge, and
biconnectivity. J. ACM, 48(4):723–760, 2001.

[16] M. Pǎtraşcu and M. Thorup. Time-space trade-offs for
predecessor search. In Proceedings 38th ACM Symposium
on Theory of Computing (STOC), pages 232–240, 2006.

[17] M. Pǎtraşcu and M. Thorup. Planning for fast connectivity
updates. In Proceedings 48th IEEE Symposium on
Foundations of Computer Science (FOCS), pages 263–271,
2007.

[18] L. Roditty and U. Zwick. A fully dynamic reachability
algorithm for directed graphs with an almost linear update
time. In Proceedings 36th ACM Symposium on Theory of
Computing (STOC), pages 184–191, 2004.

[19] P. Sankowski. Faster dynamic matchings and vertex
connectivity. In Proceedings 8th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 118–126, 2007.

[20] J. Sherman. Breaking the multicommodity flow barrier for
O(
√

log n)-approximations to sparsest cut. CoRR,
abs/0908.1379, 2009.

[21] M. Thorup. Worst-case update times for fully-dynamic
all-pairs shortest paths. In Proceedings 37th ACM
Symposium on Theory of Computing (STOC), pages
112–119, 2005.

[22] M. Thorup. Fully-dynamic min-cut. Combinatorica,
27(1):91–127, 2007.

[23] P. van Emde Boas. Preserving order in a forest in less than
logarithmic time. In Proceedings 39th FOCS, pages 75–84,
1975.

APPENDIX
A. PROOFS AND FIGURES
Lemma 3.3 Let U be a node in the hierarchy tree with
children W1, . . . , Wd. Then Hi(F (U)) ⊆ U and W1 ⊆ · · · ⊆
Wd ⊆ U .

Proof. The second claim will be established in the course
of proving the first claim. We prove the first claim by in-
duction on the preorder (depth first search traversal) of the
hierarchy tree. For the root node V , Hi(V) is trivially a
subset of V . Let Wi be a node, U be its parent, and W1

be U ’s first child, which may be the same as Wi. Sup-
pose the claim is true for all nodes preceding Wi. If it is
the case that Wi = W1, we have that W1 = Hi(F (U)) (by
Definition 3.2(2)) and Hi(F (U)) ⊆ U (by the inductive hy-
pothesis). Since F (W1) is a subforest of F (U) (this follows
from the fact that for a vertex set Y we select F (Y) to be
the minimum forest spanning Y), every high degree vertex
in F (W1) also has high degree in F (U), i.e., Hi(F (W1)) ⊆
Hi(F (U)) = W1, which establishes the claim when Wi = W1.
Once we know that W1 ⊆ U it follows from Definition 3.2(2)
that W1 ⊆ · · · ⊆ Wd ⊆ U . By the same reasoning as
above, when Wi 6= W1, we have that Wi ⊆ U , imply-

ing that F (Wi) is a subforest of F (U), which implies that
Hi(F (Wi)) ⊆ Hi(F (U)) = W1 ⊆ Wi.

The claims of Lemma 3.4 will follow directly from Parts
(1) and (3) of Lemma A.1

Lemma A.1. Consider the hierarchy tree constructed with
high-degree threshold s = (2d)c+1+1, for some integer c ≥ 1.
Let U be a non-root node in the hierarchy tree and W1, . . . , Wd

be its children, if U is not a leaf. Let p(X) be the parent of
X and subtree(X) be the set of descendants, including X,
in the hierarchy tree. Then:

1. For i ∈ [1, d], |Wi| ≤ 2i|U |/(s− 1).

2.
P

X∈subtree(U) |Hi(FX(p(X)))| ≤ 2|p(U)|/(s− 1).

3. The number of nodes in the hierarchy is on the order
of d−2/cn1/c−1/(c log(2d)).

Proof. We prove Parts (1) and (2) by induction over the
postorder of the hierarchy tree. In the base case U is a leaf,
(1) is vacuous and (2) is trivial, since there is one summand,
namely |Hi(FU (p(U)))|, which is at most (|p(U)|−2)/(s−1)
by Lemma 3.1. For Part (1), in the base case |W1| < |U |/(s−
1). For i ∈ [2, d] we have:

|Wi| ≤ |Wi−1|+
X

X∈subtree(Wi−1)

|Hi(FX(p(X)))|

≤ 2(i− 1)|U |
s− 1

+
2|U |
s− 1

{Ind. hyp. (1) and (2)}

=
2i|U |
s− 1

For Part (2) we have:X
X∈subtree(U)

|Hi(FX(p(X)))|

= |Hi(FU (p(U)))|+
dX

i=1

X
X∈subtree(Wi)

|Hi(FX(p(X)))|

{Follows from defn. of subtree}

<
|p(U)|
s− 1

+
2d|U |
s− 1

{Lemma 3.1, Ind. hyp. (2)}

≤ |p(U)|
s− 1

+
2d[2d|p(U)|/(s− 1)]

s− 1
{Ind. hyp. (1)}

≤ 2|p(U)|
s− 1

{s ≥ 4d2 + 1}

We prove Part (3) for a slight modification of the hier-
archy tree in which U is forced to be a leaf if |U | ≤ 2ds.
This change has no effect on the running time of the al-
gorithm.6 Consider the set of intervals {Bj} where Bj =
[(2d)j , (2d)j+1), and let lj be the maximum number of leaf
descendants of a node U for which |U | ∈ Bj . If |U | ≤ (2d)s
then U is a leaf, i.e., lj = 1 for j ≤ c + 1. Part (1) im-
plies that if |U | lies in Bj then each child lies in either
Bj−c−1 or Bj−c. Hence, lj ≤ d · lj−c, and, by induction,
lj ≤ db(j−2)/cc. Now suppose that n lies in the interval
[(2d)cx+2, (2d)(c+1)x+2) = Bcx+2∪· · ·∪B(c+1)x+1. Then the
number of leaf descendants of V , the hierarchy tree root, is
at most dc < n1/c2−xd−2/c ≤ n1/c−1/(c log(2d))d−2/c.

6We only require that in a leaf node U , any set of d failed ver-
tices are incident to a total of O(ds) tree edges from F (U),
i.e., that the average degree in F (U) is O(s). We do not
require that every failed vertex be low degree in F (U).

U3

U2 U3

U1 U2

U0 U1

F U3

FU3
U2

FU2
U1

FU1
U0

F U3

FU3
U2

FU2
U1

FU1
U0

(A) (B) (C)

Figure 4: (A) A path U0, . . . , U3 in the hierarchy tree (where V = U0 is the root) naturally partitions the vertices into

four levels U0\U1, U1\U2, U2\U3, and U3. (B) The forest FUi+1 (Ui) may contain “copies” of vertices from lower levels.

(Hollow vertices are major vertices at their level; solid ones are copies from a lower level. Thick arrows associate a

copy with its original major vertex.) (C) A tree T in FUj+1 (Uj) is a descendant of T ′ in FUi+1 (Ui) (where j ≤ i) if T and

T ′ are connected in G\Ui+1. The tree inscribed in the oval is a descendant of those trees inscribed in rectangles.

T

T1

T2

T3

T

T1

T2

T3

Figure 5: Left: T is a tree in some forest among FU1(U0), . . . , FUp+1(Up) having three strict descendants and three
ancestors T1, T2, T3. Dashed curves indicate edges connecting vertices from ∆(T) (all vertices in descendants
of T) to major vertices in strict ancestors of T , which are drawn as hollow. Right: The set C(T) consists
of, first, linking up all hollow vertices in a list that is consistent with Euler tours of T1, T2, T3 (indicated by
dashed curves), and second, adding edges between all hollow vertices at distance at most d + 1 in the list.

