
SIAM J. COMPUT. c© 2018 Society for Industrial and Applied Mathematics
Vol. 47, No. 5, pp. 1735–1754

CONTENTION RESOLUTION WITH CONSTANT THROUGHPUT
AND LOG-LOGSTAR CHANNEL ACCESSES∗

MICHAEL A. BENDER† , TSVI KOPELOWITZ‡ , SETH PETTIE‡ , AND

MAXWELL YOUNG§

Abstract. For decades, randomized exponential backoff has provided a critical algorithmic
building block in situations where multiple devices seek access to a shared resource. Despite this
history, the performance of standard exponential backoff is poor under worst-case scheduling of
demands on the resource: (i) subconstant throughput can occur under plausible scenarios, and
(ii) each of N devices requires Ω(logN) access attempts before obtaining the resource. In this
paper, we address these shortcomings by offering a new backoff protocol for a shared communication
channel that guarantees expected constant throughput with only O(log(log∗N)) channel accesses in
expectation, even when packet arrivals are scheduled by an adversary. Central to this result are new
algorithms for approximate counting and leader election with the same performance guarantees.

Key words. contention resolution, distributed computing, algorithms, wireless networks,
throughput, adversarial scheduling

AMS subject classifications. 68W15, 68W20, 68W40, 68M12

DOI. 10.1137/17M1158604

1. Introduction. Randomized exponential backoff [59] is a classic algorithm for
resolving contention when there is a collection of devices that all need to broadcast
on a channel, but only one node can broadcast at a time.

This channel may correspond to a wireless scenario for which there exist a num-
ber of communication standards that govern access to the shared communication
medium; a ubiquitous example is the IEEE 802.11 family of standards [1]. More
generally, this scenario may model any shared resource for which devices require tem-
porary exclusive access. For instance, randomized backoff is implemented in a broad
range of applications including transactional memory [52], lock acquisition [69], email
retransmission [18, 35], congestion control (e.g., TCP) [61, 53], and a variety of cloud
computing applications [46, 66, 76].

In this paper, we design a substitute for randomized exponential backoff that is
globally efficient (in terms of throughput), locally efficient (in terms of per device
costs), and impervious to adversarially scheduled inputs.

1.1. The multiple-access channel model. In classic algorithmic analyses of
randomized backoff, there are N indistinguishable players that arrive over time, each

∗Received by the editors November 29, 2017; accepted for publication (in revised form) August
6, 2018; published electronically October 2, 2018. A preliminary version of our results appeared as
an extended abstract at STOC’16, ACM, New York, pp. 499–508 [14].

http://www.siam.org/journals/sicomp/47-5/M115860.html
Funding: This research was partially supported by National Science Foundation grants CCF-

1217708, IIS-1247726, IIS-1251137, CNS-1408695, CCF-1439084, CCF-1217338, CNS-1318294, CCF-
1514383, CNS-1318294, CCF-1613772, CCF-1815316, CCF-1617618, CCF-1763680, CCF-1716252,
CCF-1725543, and CNS-1755615. Support is also provided by Sandia National Laboratories, NetApp,
and a research gift from C Spire.
†Department of Computer Science, Stony Brook University, Stony Brook, NY 11794-2424

(bender@cs.stonybrook.edu).
‡Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor,

MI 48109 (kopelot@gmail.com, pettie@umich.edu).
§Department of Computer Science and Engineering, Mississippi State University, Mississippi

State, MS 39759 (myoung@cse.msstate.edu).

1735

http://www.siam.org/journals/sicomp/47-5/M115860.html
mailto:bender@cs.stonybrook.edu
mailto:kopelot@gmail.com
mailto:pettie@umich.edu
mailto:myoung@cse.msstate.edu

1736 BENDER, KOPELOWITZ, PETTIE, AND YOUNG

of which needs to transmit a packet on a so-called multiple-access channel.1 Time is
divided into discrete slots. We assume that in each time slot we can convey a single
packet of at least logN -bits.2

We assume an adaptive adversary, which controls precisely how many players are
injected into the system in each slot. In making its decisions, the adaptive adversary
has access to the entire state of the system so far, the internal state of each player,
but not the outcomes of future coin tosses. There is no universal numbering scheme
for the slots, that is, no global clock from which a newly injected player can infer the
lifetime of the system, slot parity, etc.

In each time slot, each player in the system can do one of four actions: (i) sleep,
(ii) send their packet, (iii) send a packet-sized message—a logN -bit number, or (iv)
listen to the channel. Players who take actions (ii), (iii), or (iv) are said to access the
channel. If no players send, then the slot is empty ; if two or more players send, the slot
is full and noisy ; if exactly one player sends, then the slot is full and the transmission
is successful. All players who access the channel (that is, commit actions (ii), (iii),
and (iv)) can distinguish between an empty slot, a full and noisy slot, and a full slot
where the transmission is successful; moreover, if the transmission is a successful one
of type (iii), all listeners learn the logN -bit number. A player is allowed to exit the
system only after its packet has been successfully transmitted.

There are several axes along which we can evaluate a protocol. A global measure
of effectiveness is utilization, defined as the ratio of the number of successful slots and
N . The reciprocal of utilization is called throughput.

From a single player’s perspective, there is some nonzero cost to access the channel
(rather than take action (i), sleeping) and depending on the technology, the cost of
sending (actions (ii) and (iii)) may be different from the cost of listening (action (iv)).
Our goal is to design a protocol that guarantees constant expected utilization and
that minimizes the expected number of channel accesses per player.

Our second objective (access cost) is meaningful in the multitude of applications
where the channel-access cost is high enough to be worth conserving. For example,
in a wired network, an unsuccessful transmission wastes bandwidth. In a wireless
network, in which devices are battery powered, sending and listening takes energy
and reduces battery life. In transactional memory, a transaction rollback (i.e., an
unsuccessful attempt) wastes CPU cycles.

1.2. Results. In this paper, we prove the following theorem.

Theorem 1. There exists a randomized contention-resolution protocol enabling
N online players to transmit their packets on a multiple-access channel such that

• an expected constant fraction of the slots contain a successfully transmitted
packet;

• each player sends on the channel O(1) times in expectation;
• each player listens on the channel O(log(log∗N)) times in expectation.

Moreover, these bounds hold even if the arrival times of the players are controlled by
an adaptive adversary.

Theorem 1 contrasts with standard binary randomized exponential backoff, which,
for unknown N , requires Ω(logN) channel accesses; this lower bound is shown in [11].

1Although it is usually fine to conflate the players with their associated packets, we find it useful
to distinguish them. For example, in our protocols, players are obliged to do more than merely
guarantee that their packet is sent.

2The notation log indicates the logarithm base 2.

CONTENTION RESOLUTION: LOGLOGSTAR CHANNEL ACCESSES 1737

One of the new ideas in our algorithm is circuits for cheaply computing functions
of binary data encoded as full/empty slots. Randomness is used inside our circuit
evaluation protocol for load balancing, but the evaluation itself has zero probability
of error. Theorem 2 summarizes this independent component. The following theorems
hold for general n ≤ N .

Theorem 2. Let C be a circuit with ` bits of input and c constant fan-in gates.
There exists a protocol for n players on a multiple-access channel (n being unknown)
for evaluating C, where the input is represented by ` specified slots (empty = 0,
full = 1), whose sending and listening cost per player is O(1 + c

n) in expectation.

We also give an extremely efficient protocol for estimating n and for leader
election. Our results are consistent with the classic lower bound of Willard [81],
which applies to time, not channel accesses.

Theorem 3. There exists a randomized protocol enabling n players with a syn-
chronized start time to (1) estimate n to within a constant factor and (2) elect a
leader, such that

• each player sends on the channel O(1) times in expectation, and
• each player listens on the channel O(log(log∗ n)) times in expectation;
• the protocol completes after no(1) time.

1.3. Related work. A preliminary version of this work appeared as an extended
abstract in [14]. Here, we have provided additional proof details, an expanded de-
scription of prior relevant work, new subsections addressing applications of our results
and practical considerations, and an extended discussion of open problems.

Subsequent to [14], Chang et al. [26] proved that Theorem 3 is optimal in the sense
that Ω(log(log∗N)) channel accesses are necessary for any protocol taking poly(n)
time. They provided a more general trade-off curve between time and channel accesses
for leader-election algorithms, e.g., with O(log2+ε n) time it is possible to make just
O(log(ε−1 log log log n)) channel accesses.

One variant of exponential backoff can be described as selecting slots within win-
dows. When a new player is injected into the system it partitions future time into
consecutive windows of length W0,W1,W2, If, at the beginning of window Wi,
the player has yet to transmit his packet successfully, it attempts to do so at a slot in
Wi chosen uniformly at random.

Bender et al. [11] analyzed such backoff schemes more generally. The main take-
away messages from [11] are that no monotone backoff strategy (in which Wi+1 ≥
Wi) has constant throughput, but that when all the players start at once, a simple
nonmonotone strategy called sawtooth does have constant throughput.3 These backoff
strategies only access the channel by sending, not listening, and their sending cost
is Ω(logN) in expectation. Anderton and Young [5] evaluate these backoff schemes
using simulations of a wireless network.

Queuing theory arrivals. For many years, most of the analytic results on
backoff assumed statistical queuing-theory models and focused on the question of
what packet-arrival rates are stable (see [51, 45, 68, 43, 51, 44]). Interestingly, even
with Poisson arrivals, there are better protocols than binary exponential backoff, such
as polynomial backoff [51].

Another important notion is that of saturated throughput ; this is roughly, the
maximum throughput when each player always has a packet to be sent. This notion
has been examined in [19, 77].

3The backoff-backon idea behind sawtooth has been discovered in other contexts [41, 49, 6].

1738 BENDER, KOPELOWITZ, PETTIE, AND YOUNG

The findings in this paper are pertinent to both results involving statistical queue-
ing theory and saturated throughput because we guarantee constant utilization under
adversarially scheduled packet arrivals.

Other arrival models. When all the packets begin at the same time (known as
the static case), efficient protocols for sharing a multiple-access channel are known [6,
12, 48]. In contrast, there has been work on adversarial queueing theory, with an
examination of the worst-case performance in the multiple-access model [11, 31, 3].

Algorithms that take feedback on the channel into account when deciding their
next action are adaptive. In [56], the authors present a nonadaptive algorithm for
sharing a channel in a setting where players have access to a global clock. The
players are awakened at adversarially scheduled times (this is also referred to as the
dynamic scenario), and players cannot detect when a collision occurs, though the
channel does report whether a transmission was successful or not. In [37], the authors
present both adaptive and nonadaptive algorithms for adversarially chosen arrival
times, but without a global clock. Optimal algorithms are presented for the cases
of a nonadaptive algorithm that knows “n” and an adaptive algorithm that has no
knowledge of “n”; the case of a nonadaptive algorithm and unknown “n” is proved to
be strictly harder.

First successful transmission/estimating N . Willard [81] addresses a con-
tention-resolution problem in which the goal is to minimize the first moment that some
player transmits successfully. Sharp time bounds of Θ(log logN) (in expectation) are
proved when the N players begin at the same time. Nakano and Olariu [63] improved
the failure probability of Willard’s algorithm; theirs takes O(log logN +log f−1) time
for failure probability f .

The closely related wake-up problem [29, 28, 32, 27, 57, 54] addresses how long
it takes for a single transmission to succeed when packets arrive under the dynamic
scenario. While the problem considered here also deals with dynamic arrivals, all
packets must be transmitted successfully.

Leader election is also a related problem, and its complexity is much higher with-
out collision detection. The decay algorithm [10] takes O(logN log f−1) time, and
this is known to be optimal [64]. Chang et al. [26] gave a variety of trade-offs between
time and channel accesses, both with and without collision detection.

Finally, when the number of players is unknown, size-estimation techniques have
been developed in the context of exponential backoff and variants [47, 22, 23, 20].

Adversarial fault tolerance. A number of elegant results exist on contention
resolution when the channel is subject to (possibly malicious) noise. Awerbuch, Richa,
and Scheideler [8] and Richa et al. [70, 71, 72] consider an adversary whose jamming
is bounded within any sufficiently large window of time. Under the same adversarial
model, Ogierman et al. [65] examine the problem under the well-known signal-to-
interference-plus-noise ratio (SINR) communication model.

Anantharamu et al. [2] consider a multiple access channel where dynamic arrivals
occur subject to an injection rate and a jamming rate. They define a (ρ, λ, b)-adversary
who may inject ρ|τ |+ b packets and jam at most λ|τ |+ b slots within any contiguous
segment τ consisting of |τ | slots, where λ < 1.

A recent result by Bender et al. [13] also addresses worst-case online packet arrivals
and in the face of an unknown T noisy slots scheduled by an adaptive adversary.
It achieves expected constant utilization with an expected polylog(N + T) channel
accesses.

CONTENTION RESOLUTION: LOGLOGSTAR CHANNEL ACCESSES 1739

Relationship to balanced allocations. Scalable backoff is closely related to
balls-and-bins games [9, 33, 60, 73, 79], and the analysis of balls-and-bins often
shows up in problems involving load balancing, resource allocation, and schedul-
ing [15, 16, 17, 30]. Bins correspond to time slots and balls correspond to players.
The objective is for each ball to land in its own bin; if several balls share the same
bin, they are rethrown. The flow of time gets modeled by restrictions on when balls
get thrown and where they may land. As mentioned earlier, listening during a slot
corresponds to observing whether balls landed in a bin, and decoding an O(logN)-bit
number, if a single ball landed in the bin. Our results show that, remarkably, we can
achieve an expected O(log(log∗N)) throws and bin observations, while still achieving
a constant utilization.

Relationship to the beeping model. Portions of our algorithm rely on con-
veying information by having each player either emit noise or remain silent in a slot.
This aligns with the beeping model introduced by Cornejo and Kuhn [34]. Under this
model, both leader election [42] and counting [24, 21] have been investigated.

1.4. Algorithm overview. At any moment in a contention-resolution protocol
we can measure the contention in a single slot by summing up the probabilities of
each player sending in that slot. In order to have constant throughput, we need the
contention on a constant fraction of the slots to be constant. If there are currently
n ≤ N players in the system, a natural way to achieve constant contention is to
have all players send with probability Θ(1/n), which requires that players estimate
n, either implicitly (via some kind of backoff) or explicitly. The first difficulty is that
n is unknown and unbounded. The second is that n is constantly changing: players
successfully transmit their packets and leave the system, and the adversary injects
new players into the system.

We give an efficient protocol for estimating n when the n players start at the same
time, that is, they agree on a slot zero. Once all n players have a mutually agreed-
upon estimate ñ of n, they can skip directly to the correct iteration of the sawtooth
algorithm and finish in Θ(ñ) slots with probability 1−1/poly(n), each player sending
in O(1) slots in expectation. The sawtooth is truncated on both sides: a prefix of the
execution is skipped (because we know an estimate of n) and the algorithm ends after
Θ(ñ) slots regardless of whether a few packets still need to be transmitted.

The protocol outlined above demands perfect synchronization. Even if the players
are out of step by just one time slot, the protocol could fail; therefore, in our algo-
rithms, we develop a method to achieve synchronization. Although the players arrive
at various times, they organize themselves into batches. In each batch, all players
have an agreed-upon time zero, and they run a protocol for estimating n and then
execute a truncated sawtooth.

The sawtooth contention resolution protocol of [11] is somewhat similar to the
windowed version of binary exponential backoff, but is nonmonotonic. It consists of it-
erations indexed by i ≥ 0, each of which consists of windows of length 2i, 2i−1, 2i−2,
It is fairly straightforward to show that at any iteration i ≥ log n + O(1), all n
packets are successfully transmitted, and are actually transmitted within the first
log log n + O(1) windows of iteration i with high probability. Thus, once we have
an estimate ñ, we can jump to iteration log ñ + O(1) of the sawtooth protocol. By
stopping after log log ñ + O(1) windows, the worst-case sending cost per player is
O(log log ñ), the expected sending cost is O(1), and all n players finish with high
probability in n. This is the truncated sawtooth phase.

1740 BENDER, KOPELOWITZ, PETTIE, AND YOUNG

Batches never run concurrently. Consider the point of view of a new player
entering the system. Because of the nonconcurrency requirement, this player must
quickly distinguish between two situations: (i) no batch is currently running, in which
case one can be started, possibly with other players waiting in the system, or (ii) some
batch is running, in which case the player must determine precisely when it will end
in order to identify when a new batch will start. All the players in a batch will
collectively spend a constant fraction of the slots humming, that is, making noise.
Humming indicates that a batch is currently running and prevents new players from
starting a concurrent batch.

The protocol components are given in more detail below.

The players are synchronized. Suppose that n ≤ N players enter the system
at the same time and that they implicitly agree on time slot zero. The players begin
with an estimation phase, where the goal is to compute a Θ(1)-approximation ñ of n
collectively.

First we address the simpler problem of testing whether or not n is close to 2i. In
a series of Ω(i) slots, each player makes noise in each slot with probability 2−i. If n is
close to 2i, Chernoff bounds imply that a large constant fraction of the slots are clear
and a large constant fraction of the slots are noisy. In contrast, if n is far from 2i,
then the slots are either mostly noisy or mostly clear. One can construct a Θ(i)-sized
circuit Ci that counts the number of 1 inputs (noisy slots = 1, clear slots = 0) and
compares this sum against a threshold, which implies (see Theorem 2) that the players
can cheaply test whether or not n is close to 2i.

Suppose that we have deduced that n ≥ X. We build circuit testers that test

n against powers of 2 from 2logX , 21+logX , . . . , 2X
1/3

. The aggregate size of these
circuits is O(X2/3) = O(n2/3), so they can all be simulated cheaply using Theorem 2.

If no circuit outputs 1 then we have a better lower bound on n, namely, n > 2X
1/3

,
and we can now afford to simulate a much larger collection of circuits in the next
iteration.

On the other hand, if n is in the range [X, 2X
1/3

], then some subset of the players
will learn an estimate of n ≈ 2i, namely, the players that simulated the output gate
of the circuit Ci. In order for this subset of players to notify everyone else that
n ≈ 2i, they first elect a leader, using another O(X1/3) slots. In a designated slot, the
leader announces “ 2i ” and every other player listens. The players make O(1) channel
accesses in expectation to simulate a batch of circuits and elect a leader.

A sequential search for n would involve evaluating log∗ n batches of circuits. To
speed up this algorithm the n players initially perform a straightforward binary search
for log∗ n± 1, which requires O(log(log∗ n)) slots and channel accesses per player.
This estimate of log∗ n implies a decent enough lower bound on n that the players
only need to simulate O(1) batches of circuits. The estimation phase is described in
detail in Section 4.

The process of estimating n may yield a significant underestimate or overestimate.
Even if the estimate is accurate, a leader may fail to be elected. In either case, the
probability of such a bad event is very small. These rare errors are eventually detected
and remedied by the relevant players. For example, if a leader fails to be elected, they
can restart the estimation phase. These restarts do not change the players’ expected
cost asymptotically.

Batches and humming. Players arrive online and must be organized into syn-
chronized batches. Each batch is a set of players that execute the estimation and

CONTENTION RESOLUTION: LOGLOGSTAR CHANNEL ACCESSES 1741

truncated sawtooth phases, which together define one epoch. Players in the current
batch are called active. Our algorithm guarantees (via a humming mechanism de-
scribed shortly) that inactive players injected into the system in the middle of an
epoch quickly learn that fact and eventually learn precisely when the epoch ends so
that they may become active in the next batch. Thus, epochs are disjoint. If a player
does not succeed in transmitting its packet during the truncated sawtooth phase of
its epoch, that player joins the next batch.

The players in the current batch take turns humming in a constant fraction of
the slots. The first purpose of humming is never to let the channel go silent for more
than O(1) slots so that any new inactive player can detect if it entered in the middle
of an epoch. This aspect of humming is based on the “busy signal” idea of [13].

The second purpose of humming is to notify new players precisely when the
current epoch will end. In the truncated sawtooth the players know exactly how
many slots are left, say t, and will announce “ t ” when it is their turn to hum. Once
a new player hears “ t ” it can sleep for t slots, wake up, and join the next batch.
If, however, the current epoch is still in the estimation phase, no player knows when
the epoch will end. In this case they encode their current estimate of log∗ n using
O(log(log∗ n)) slots (noisy=1, clear=0) so that new players can sleep until truncated
sawtooth has begun or a better estimate of log∗ n is known. The listening cost for
inactive players to determine when the current epoch will end is O(log(log∗ n)).

Organization. This paper is organized as follows. Section 2 explains how the
players can collectively simulate a circuit, proving Theorem 2. The estimation phase
is described in sections 3 and 4. The truncated sawtooth is described and analyzed in
Section 5. Section 6 describes how humming is introduced into both the estimation
and truncated sawtooth phases.

2. Decentralized simulation of circuits. Let C be a constant fan-in circuit
with ` input bits and c gates g1, . . . , gc, listed in some topological order. There are `
designated slots that encode the input to the circuit (full=1, empty=0) and n players,
who must collectively evaluate C. Every player knows C and the particular topological
sort g1, . . . , gc, but not n. Our simulation scheme will make use of ` + 2c time slots.
The first c slots are control slots, which allow the players to take responsibility for
implementing certain gates. We guarantee that at least one player is assigned to each
gate. The next ` time slots are the input slots, each of which is either empty or full.
The last c time slots are circuit slots which encode the output bit of each gate.

Control slots. The c control slots enable the players to coordinate among them-
selves to guarantee that (with probability 1) each gate is simulated by at least one
player.

Each player P picks one uniformly random control slot τP and broadcasts in that
slot. Let τ ′P be the first control slot following τP that is full, or c+1 if no such slot ex-
ists. The player P will be responsible for simulating gates gτP , . . . , gτ ′P−1. In order for
P to know exactly which gates it is responsible for, P listens to the control slots fol-
lowing τP until another player transmits or the control slots end, thereby defining τ ′P .

Some special treatment is needed for the prefix of empty control slots, since there
must be at least one player that is responsible for simulating the corresponding gates.
To solve this, we have all the players be responsible for simulating these gates, thereby
guaranteeing that every gate is simulated.

Input slots. Each input slot is either empty or full (0 or 1), and how it got to
be empty or full is not the concern of this simulation. (As we will see in sections 3

1742 BENDER, KOPELOWITZ, PETTIE, AND YOUNG

and 4, it is the players themselves who make noise in each input slot with some small
probability.)

Circuit slots. The ith circuit slot encodes the output of gate gi. If player P
is responsible for simulating gi then it listens during the slots corresponding to the
inputs of gi (either input slots or previous circuit slots) and sends noise on circuit slot
i if and only if the output of gi is 1. Since all the players simulating gi will compute
the same output bit, they will all either send noise or stay silent.

Lemma 4. Each player is responsible for O(1 + c
n) gates in expectation.

Proof. Each player P is responsible for gτP and a fake gate g0, and the runs of
unclaimed gates immediately following g0 and gτP . A gate gi is unclaimed if the
ith control slot is empty. Each control slot is empty with probability (1 − 1

c)n <
exp(−n/c). Moreover, conditioned on one slot being empty, the probability that
the next is empty is smaller. Thus, the expected number of empty slots in the run
following control slot τP (or control slot 0) is less than (1− exp(−n/c))−1 − 1, which
is negligible for n� c and always O(cn).

Proof of Theorem 2. The circuit is correctly evaluated with probability 1. The
only uncertainty is the cost paid by the players. Being responsible for a gate entails
listening for O(1) slots (because C was assumed to have bounded fan-in) and sending
in the output slot for that gate. The number of gates that a player is responsible for
is O(1 + c

n) in expectation.
Note that if a player wants to learn the output of C, it must also listen to all the

circuit slots corresponding to the output gates.

3. A circuit for testing size. Consider the following experiment for determin-
ing whether i ≤ log n or i > log n. In each of ` slots each player sends with probability
1/2i. If i = log n then we expect to see `(1−1/2i)n ≈ `/e empty slots. If we see fewer
empty slots we conclude i ≤ log n; if we see more empty slots we conclude i > log n.
We are only concerned with the accuracy of this test when |i− log n| is a sufficiently
large constant, e.g., 1. It is clearly likely to give an incorrect answer when i is very
close to log n. We use a circuit simulation of Thr`,(1−1/e)` (defined below) to let the
players determine the result of this test.

Lemma 5. For any natural numbers ` and t, there exists a Θ(`)-gate circuit
Thr`,t : {0, 1}` → {0, 1} such that, for any binary string x of length `, Thr`,t(x) = 1
if and only if the Hamming weight (number of 1’s) of x is at most t.

Proof. We first construct a circuit to output the Hamming weight of x in binary.
Recursively construct two circuits to compute the Hamming weight of the first `/2
(last `/2) bits of x, then attach an O(log `)-bit adder to compute their sum. The
number of gates in this construction is S(`) = 2S(`/2) +O(log `), which is O(`). The
circuit Thr`,t(x) first computes the Hamming weight of x, then compares it against
the fixed constant t. The comparison only requires O(log `) additional gates.

Lemma 6. Define Ci to be the circuit Thr`,(1−1/e)`, where ` = Ω(i) is a parameter,
and suppose each of the n players makes noise in each input slot of Ci with probability
1/2i. If i ≤ log n − 1 then the probability that Ci returns 1 is exp(−Ω(lnn)). If
i ≥ log n+ 1 then the probability that Ci returns 0 is exp(−Ω(`)).

Proof. Suppose ∆ = log n− i ≥ 1. The probability of a specific input slot being
empty is (1−2−i)n = (1−2∆/n)n = p < e−2∆ ≤ e−2. Let X be the number of empty

CONTENTION RESOLUTION: LOGLOGSTAR CHANNEL ACCESSES 1743

slots, so E(X) = p`. By a Chernoff bound, Pr[X ≥ `/e] = exp(−Ω(`)), which is
exp(−Ω(lnn)) if ∆ ≤ 2. For ∆ > 2 we can obtain stronger bounds by direct analysis
without going through Chernoff bounds. The probability of seeing at least `/e empty
slots is, by a union bound, at most(

`

`/e

)
p`/e <

(
e`

`/e

)`/e
p`/e since

(
x
y

)
< (ex/y)y

= exp

(
2`

e
+
` ln p

e

)

< exp

(
(2− 2∆)`

e

)
since ln p < −2∆

< exp
(
−Ω(2∆`)

)
since ∆ > 2

= exp (−Ω(lnn)) since `+ ∆ = Ω(log n).

Now suppose ∆ = i− log n ≥ 1. The probability of an input slot being empty is
(1 − 2−i)n = (1 − 1/(n2∆))n = p > e−1/2∆ − o(1) > 1/2. The expected number of
empty slots is E(X) = p`. By a Chernoff bound, Pr[X ≤ `/e] = exp(−Ω(`)).

4. A protocol for estimating n.

Exponential search. For a sufficiently large constant d, define the quickly grow-
ing sequence (Xi) as

X0 = d,

Xi = 2X
1/3
i−1 .

Lemma 7. Define k to be such that Xk−1 ≤ n < Xk. There exists an algorithm
in which n players agree on an integer î such that the cost per player is O(log î) =
O(log(log∗Xî)), the probability that î ≥ k + 2 (an overestimate) is at most n/Xî−1,

and the probability that î ≤ k − 2 (an underestimate) is at most e−n/ log3(n).

Proof. The n players perform the following experiment to test a value i. In a
single time slot each player sends independently with probability 1/Xi. If the slot is
full, then we conclude that i < k; otherwise we conclude i ≥ k.

The algorithm uses exponential search on the index i: the players perform re-
peated doubling on the index i until they find the first value whose slot is empty;
then they perform binary search to find the value î such that the slot for value î− 1
is full while the slot for value î is empty. At this point, the algorithm makes the
educated guess that k = î, which, we show below, is accurate to within 1 with high
probability.

Each player listens in every slot, regardless of whether it chooses to send. More-
over, every player knows exactly when the exponential search ends, and the value of
î. Each player listens in O(log î) = O(log(log∗Xî)) slots and sends in O(1) slots in
expectation.

Suppose we are testing the value i and that k < i. If the slot is full then we
will erroneously conclude that î ≥ i + 1 ≥ k + 2. This occurs with probability
1− (1− 1/Xi)

n ≤ n/Xi. Thus, if î ≥ k + 2 then when testing î− 1 the slot was full,
which happens with probability at most n/Xî−1. On the other hand, if we are testing

1744 BENDER, KOPELOWITZ, PETTIE, AND YOUNG

the value i and i ≤ k−2 then the probability of seeing an empty slot, and erroneously
concluding that î ≤ i, is (1− 1

Xi
)n ≤ e−n/Xi = e−n/ log3 Xi+1 ≤ e−n/ log3 n.

Lemma 8 implies that once we have a reasonably good lower bound on n, we can
approximate n in o(n) time with expected O(1) channel accesses.

Lemma 8. Suppose all players agree on a value i. There exists an algorithm that
selects a subset L of the players with the following properties.

• At the end of the algorithm every player in L learns that it is in L; all players
in L agree on an integer j ∈ [logXi−1, logXi].

• If L 6= ∅, then j ∈ {blog nc, dlog ne} with probability 1 − 1/poly(Xi). The

expected cost per player is O(1 + X
2/3
i−1/n), and the expected size of L is

O(1 + n/X
2/3
i−1).

• If n < Xi/2, then the probability that L = ∅ is 1/ poly(Xi).

Proof. Let C ′j be the circuit Cj from Lemma 6 with an additional input bit called
the “override bit.” The output of C ′j is the OR of the output of Cj and the override
bit. The number of input bits to Cj is `, to be specified shortly.

We construct a “supercircuit” SCi composed of subcircuits

C ′logXi−1
, C ′logXi−1+1, . . . , C

′
X

1/3
i−1

which collectively test whether n ∈ [Xi−1, Xi]. The subcircuits are chained such that
the output of C ′j−1 is the override (input) bit to C ′j ; the override bit to the first
subcircuit is zero. Thus, if at least one of the subcircuits passes the threshold test,
the output of the supercircuit is 1.

The goal of supercircuit SCi is to determine whether log n lies in the interval

[logXi−1, X
1/3
i−1] (by searching for a j ∈ [logXi−1, X

1/3
i−1] and declaring log n ≈ j). In

order to control the probability of errors, we fix `, the number of input bits of each of

the subcircuits {Cj} of SCi to be exactly Θ(log(Xi)) = Θ(X
1/3
i−1). Thus, the number

of gates in SCi is O(X
2/3
i−1).

Each input slot of Cj is generated by having all players make noise with probability
1/2j . This allows us to apply Lemma 6. Thus, the expected cost for generating input
slots for each player is O(1). The supercircuit is simulated using Theorem 2, and so

the simulation cost per player is expected O(1 +X
2/3
i−1/n).

The set L is the set of players that simulate the output gate of the first circuit C ′j
that outputs 1. Notice that the players in L necessarily know that they are in L and
know the value of j. If L is established, then the expected size of L is the expected

number of players to simulate a single gate, which is O(1 + n/X
2/3
i−1).

By Lemma 6, the error probability for any subcircuit C ′j is at most e−Ω(logXi).
Thus, if L 6= ∅ and j is established then the probability that j ≤ log n − 1 or j ≥
log n + 1 is polynomially small in Xi. Moreover, if n < Xi/2, then the only way in
which j will not be established is if the last circuit C ′

X
1/3
i−1

errs, which happens with

probability e−Ω(logXi).

Leader election. The members of L know that E[|L|] = O(n/X
2/3
i−1), and can

elect a leader in O(1) time, in expectation, by each sending with probability 1/E[|L|]
until precisely one member of L sends without collision. This is the leader. In general
we would like to have a leader-election protocol that is more robust to errors in the
size of |L|. Nakano and Olariu [63] gave sharp bounds on the time complexity of
low-error leader election.

CONTENTION RESOLUTION: LOGLOGSTAR CHANNEL ACCESSES 1745

Lemma 9 (see Nakano and Olariu [63]). There is a protocol for electing a leader
among a set L of players (|L| unknown) that takes O(log log |L|) time in expectation,
and O(log log |L|+ log f−1) time with probability 1− f .

Note that we can upper bound |L| by Xi. By allocating O(logXi) time slots
for leader election, Lemma 9 ensures that the protocol correctly elects a leader with
probability 1− 1/ poly(Xi).

4.1. Estimating n. In this section, we give an efficient protocol enabling n
players to estimate n to within a constant factor. We prove that the expected cost to
estimate n is only O(log(log∗ n)).

Theorem 10. There exists an algorithm for n synchronized players to agree on
an integer j such that j < log n− 1 with probability 1/ poly(n) and j > log n+ 1 with
probability 1/ poly(2j). The protocol lasts O(n2/3) time with probability 1−1/poly(n).
In expectation, each player sends O(1) times and listens O(log(log∗ n)) times.

Proof. Our algorithm for estimating n up to a constant factor makes use of Lem-
mas 7, 8, and 9. The estimation algorithm has three types of phases.

Exponential-search phase. In the first phase, the players attempt to estimate
log∗ n to within an additive constant by using Lemma 7; by the end of the phase, all
the players know this estimate. Remarkably, estimating log∗ n is the most expensive
part of estimating n.

Estimating-log n phase. In the second phase, the players attempt to use the
estimate of log∗ n to establish a subset L of the players that (1) know that they are in
L (and every other player not in L knows that it is not in L), and (2) have the same
estimate of log n which is accurate up to some additive constant. This is established
by applying Lemma 8 up to three times, as follows. Let î be the value established
by the algorithm of Lemma 7. We first simulate SCî−1, and have all of the players
listen to the output of the very last gate, which is 1 iff some subcircuit C ′j outputted
1. If it is 1, some nonempty subset L of players has estimated log n and the phase
ends. Otherwise, we repeat the process by simulating SCî, and if its last gate outputs
0, then we simulate SCî+1. If SCî+1 outputs 0, then we declare failure; all players
restart the algorithm from the exponential-search phase.

Leader-election phase. Suppose L is nonempty, and formed in the simulation of
SCi? , where i? ∈ {̂i − 1, î, î + 1}. All members of L agree on an estimate j ≈ log n.
We apply Lemma 9 for O(logXi?) time slots, and elect a leader with probability
1 − 1/ poly(Xi?). The leader sends “n ≈ 2j ” in a predesignated time slot, in which
all other players listen. If no leader is elected then this slot is empty, in which case a
failure has been detected. All the players restart the algorithm from the exponential-
search phase.

Conclusion. At the end of a successful leader-election phase all the players agree
on an estimate of log n which is accurate up to ±1.

Cost analysis. We now determine the expected cost of each player in the algo-
rithm.

The cost of the exponential-search phase is O(log(log∗Xî)), where î is the output
of the algorithm in Lemma 7. Let k be such that Xk−1 ≤ n < Xk, so k = Θ(log∗ n).
Since the probability of obtaining an overestimate is negligible, the expected cost of
the exponential search is O(log(log∗ n)).

The cost of the estimating-log n phase is a bit more involved. The phase first

simulates SCî−1 using Lemma 8, and so the expected cost of each player is O(X
2/3

î−2
/n).

1746 BENDER, KOPELOWITZ, PETTIE, AND YOUNG

If î ≤ k + 1 this cost is O(1 + X
2/3

k̂−1
/n) ≤ O(1 + n2/3/n) = O(1). In general the

probability of having an erroneous î ≥ k + 2 is at most n/Xî−1, so the expected cost
per player to simulate SCî−1 in these circumstances is at most∑

î≥k+2

(n/Xî−1)(1 +X
2/3

î−2
/n) = O(1).

The probability of having an erroneous î≤ k− 2 is exp(−n/ log3 n), and the expected
cost for restarting the algorithm is negligible in this case.

By Lemma 8, either n ≥ Xî−1/2 or Pr(SCî−1 outputs 0) = 1/poly(Xî−1). In
either case, the expected cost of simulating the next supercircuit SCî is

Pr(SCî−1 outputs 0) ·O(1 +X
2/3

î−1
/n) = O(1 + n−1/3) = O(1).

By the same reasoning, the expected cost of simulating SCî+1 is

Pr(Both SCî−1 and SCî output 0) ·O(1 +X
2/3

î
/n) = O(1).

Let C ′j be the first subcircuit to output 1 in SCi? for some i? ∈ {̂i − 1, î, î + 1}. By
Lemma 6, j ∈ {blog nc, dlog ne} with probability 1 − 1/poly(max{n,Xi?}). The set
L of players simulating the output of C ′j know that |L| = O(Xi?) with probability
1 − 1/ poly(Xi?). By Lemma 9, L correctly elects a leader in O(logXi?) slots with
probability 1− 1/poly(Xi?). The expected cost per player P to participate in leader

election is Pr(P ∈ L) ·O(logXi?) = O(1/X
2/3
i?−1) ·O(X

1/3
i?−1) = o(1).

5. The truncated sawtooth. The sawtooth protocol of Bender et al. [11]
achieves constant throughput for a single batch of n players without knowing n,
but at a cost of Ω(log n) transmission attempts per player because of the exponential
search for n. However, in our protocol since the n players already have an estimate ñ
of n, they can jump directly to the correct iteration of the sawtooth protocol and send
all packets in O(ñ) slots with high probability and using an expected O(1) channel
accesses.

In this section we assume ñ ≥ n. Recall that by the results in section 4, with
high probability ñ ≥ n/2. Therefore, the inequality ñ ≥ n can be guaranteed simply
by multiplying the estimate by a factor of 2; this is implicitly assumed throughout.

The truncated sawtooth protocol. We partition O(ñ) slots into log log ñ +
O(1) windows. The 0th window has length precisely 2ñ and, in general, the ith
window has length 2ñ/αi for some α > 1.4 The total length of all windows is less
than 2ñ(α−1)−1 = O(ñ). At the ith window, each player that has yet to successfully
transmit its packet broadcasts in a slot chosen uniformly at random from the window.
If there is no collision, the player detects this and refrains from participating in the
remaining windows.

Analysis. We prove that with high probability the number of active players at
the beginning of window i is at most n/f(i), where f is a function to be determined.
Suppose the claim holds at the beginning of window i. Since at most n/f(i) of the
2ñ/αi slots are full, the probability that a particular player fails to send its packet is at

most n/f(i)−1
2ñ/αi < αi

2f(i) , independently of the choices of all other players. Call a window

4The sawtooth algorithm of [11] fixes the decay factor α to be 2. We find it helpful in the analysis
to keep α a named parameter.

CONTENTION RESOLUTION: LOGLOGSTAR CHANNEL ACCESSES 1747

successful if the number of failures is at most α times its expectation, that is, at most
nαi+1

2f2(i) . By a Chernoff bound, Pr(window i is successful) < exp(−Ω((α−1)2·αin
2f2(i))).

Given this definition of success we set f(i + 1) = 2f2(i)/αi+1. One can prove

by induction that f(i) = 22i−1/α2i+1−i−2. Note that for small α, say α = 1.1,
f(log log n + O(1)) > n so the first log log n + O(1) windows drastically reduce the
number of active players. However, the probability of success (as defined above)
becomes very low when f2(i) is close to n. Once f(i) is polynomial, say at least n1/5,
the current window size is still rather large: 2ñ/αlog logn+O(1) � n/ log n. Once the
disparity between the number of active players and window size is this large, it is easy
to see that all players successfully send their packets in the next O(1) windows, with
probability 1− 1/ poly(n).

Lemma 11. Suppose a batch of n players run the truncated sawtooth protocol and
all agree on an upper bound ñ ≥ n. The protocol takes O(ñ) time slots and with
probability 1−1/ poly(n) all n players send their packets. The sending cost per player
is O(1) in expectation and log log ñ+O(1) in the worst case.

6. Humming. Players arrive at arbitrary times and must be organized into
batches that are synchronized, that is, they all agree on a time 0. Once a batch of
n players is formed, the players obtain an upper bound ñ ≥ n and then run the
truncated sawtooth protocol in O(ñ) slots.

Consider the point of view of a new player entering the system. If there is no
active batch running, then the player should be able to detect this and start a new
batch, possibly with other players who entered at the same time. Otherwise, if there
is an active batch the new player should determine precisely how many slots it has
left, say t, so it can join a new batch beginning in t + 1 slots. One difficulty is
that players within the active batch only know how many slots are left once they
compute ñ and enter the sawtooth. Thus, we need a mechanism with the following
properties:

• New players can determine, by listening to O(log(log∗ n)) slots, whether there
is an active batch and, if so, precisely how many slots remain.

• The sending cost per player in the current batch should be O(1) in expecta-
tion.

To achieve these ends we have to ensure that an active batch never lets the
channel go silent for more than a constant number of slots at a time, because this
would confuse a new player into thinking no batch is active. Thus, the n players in
the current batch collectively hum in at least one in every constant number of slots
to keep new players from joining prematurely.

Humming in the estimation phase. We imagine a baton being passed between
groups of players; at time 0 in the estimation phase all players hold the baton. The
baton holders are responsible for both humming and encoding the current estimate ρ
of log∗ n. Until the estimation phase finishes its binary search to find an i for which
n ∈ [Xi−1, Xi+1], ρ is 0. When the estimation phase is simulating circuits that test
for n ∈ [Xi−1, Xi), ρ = i.

The time slots are partitioned into chunks of seven consecutive slots, only one
of which is dedicated to executing the estimation phase proper. The remaining slots
implement baton passing, humming, and encoding ρ.

(0) baton: Any player wishing to take the baton broadcasts noise in this slot. All
other current baton holders listen in this slot to determine if they still hold
the baton.

1748 BENDER, KOPELOWITZ, PETTIE, AND YOUNG

(1,2) humming: Any player holding the baton hums for two consecutive slots.
(3) silence: This slot is always empty.
(4) rho: Whoever holds the baton sends the next bit in the encoding of ρ: noise =

1 and silence = 0.
(5) silence: This slot is always empty.
(6) data: This slot is used to implement the estimation phase algorithm.
Observe that there are never six consecutive silent slots, and that any new player

can deduce the current time slot modulo 7 by listening to O(1) consecutive slots: it
listens for two, three, or four consecutive noisy slots (which can only be slots (1,2) or
(0,1,2) or (6,0,1,2)) followed by a silent slot, which must be slot (3).

If the binary representation of ρ is b1b2 · · · b`, the baton holders repeatedly encode
ρ in the rho slots as 110b10b20 · · · b`0. A listener can decode ρ by listening to 4` +
O(1) = O(log ρ) chunks: at most 2` + O(1) chunks to hear two consecutive 1’s and
2`+O(1) more to determine ρ.

At all times the algorithm that estimates n has computed a likely lower bound
n̄ on n.5 Each player (even one that holds the baton) makes noise in the baton slot
with probability 1/n̄, thereby taking the baton from whatever group that holds it.
Thus, any player that currently holds the baton is relieved of duty with probability
(1−1/n̄)(1−(1−1/n̄)n−1), which is Θ(1) for n ≥ n̄ > 1. In the first chunk, all players
hold the baton. Since the estimation phase lasts for O(n2/3) slots in expectation, each
player holds the baton for O(1) chunks in expectation.

Humming in the truncated sawtooth. In this phase all nodes in the active
batch have agreed on an estimate ñ, which is Θ(n) with high probability, and know
precisely when the truncated sawtooth phase ends. They need to communicate this
information to new players joining the system. Slots are partitioned into chunks of
three. The players maintain the invariant that exactly one player holds the baton at
any given time. The initial baton holder is the elected leader who announced “ ñ ” at
the end of the estimation phase.

(0) baton: Every nonbaton holder that wishes to take the baton broadcasts a mes-
sage in this slot. If exactly one player broadcasts, he takes the baton; if zero or
more than one players broadcast, the current baton holder retains the baton.

(1) humming: The (unique) baton holder sends “ t ” if there are t slots remaining
in the truncated sawtooth phase.

(2) data: This slot is used to implement the truncated sawtooth algorithm.
Each non-baton-holder attempts to take the baton in slot (0) with probability 1/ñ.

Thus, the current baton holder is relieved of duty with probability
(n − 1)(1/ñ)(1 − 1/ñ)n−2, which is Θ(1) for n > 1 and n = O(ñ). Since there
are O(ñ) chunks each player attempts to take the baton O(1) times in expectation.
By symmetry each player holds the baton for O(ñ/n) chunks in expectation.

Consider how the humming protocol allows new players to cheaply determine
when the current batch will finish. If a player joins during the truncated sawtooth,
it listens for at most three slots and learns t: the exact number of remaining slots.
If a player joins during the estimation phase it listens until it decodes an estimate
ρ > 0, indicating that the algorithm is simulating circuits testing for n ∈ [Xρ−1, Xρ).
Let Lρ = O(log2Xρ) be the length of the simulation. In general, whenever the player
decodes ρ it sleeps for Lρ slots and begins listening again. If the estimation phase
is successful then the new player may listen for O(log ρ) = O(log(log∗ n)) slots in

5In the binary search for log∗ n ± 1 this lower bound can be updated in every time slot. When
simulating the circuits that test for n ∈ [Xi−1, Xi) we use Xi−1 as a lower bound n̄ on n.

CONTENTION RESOLUTION: LOGLOGSTAR CHANNEL ACCESSES 1749

four intervals: it may decode a ρ, sleep for Lρ steps, decode ρ + 1, sleep for Lρ+1

steps, decode ρ + 2, sleep for Lρ+2 steps, then listen in the truncated sawtooth and
determine exactly how many slots remain.

Pulling the pieces together, we can now give a proof of Theorem 1.

Proof of Theorem 1. Define ni to be the number of players that participate in
the ith epoch. By Theorem 10 and Lemma 11, with high probability in ni, the esti-

mation and truncated sawtooth phases take O(n
2/3
i + ni) = O(ni) slots and transmit

all packets. Moreover, each player in the batch listens in O(log(log∗ ni)) slots and
sends in O(1) slots, in expectation. Under these circumstances the throughput is
constant.

The throughput can suffer if ni is underestimated (few packets will be sent in this
epoch due to high contention) or overestimated (the epoch will likely be successful,
but take too long) or if ni is correctly estimated but collisions prevent a large number
of packets from being transmitted. By Theorem 10, the probability that ni is under-
estimated is 1/ poly(ni) and the probability that it is overestimated as ñi > 2ni is
1/ poly(ñi). By Lemma 11, when ni is correctly estimated, the probability that not
all packets are sent is 1/ poly(ni). Call a slot failed if it is in an epoch that failed due
to one of these three causes. Since there are O(ñi) slots in the epoch, the expected
number of failed slots per epoch is a tiny 1/ poly(ni), implying that the expected
throughput is constant.

A player injected during epoch i will listen to O(log(log∗ ni)) slots before join-
ing epoch i + 1, then listen for O(log(log∗ ni+1)) slots in epoch i + 1, in expecta-
tion. With very small probability it will fail to send its packet and continue on
to batch i + 2, and so on. In general, its expected cost in epoch i′ ≥ i + 2 is at
most O(log(log∗ ni′)) ·

∏
i′′∈[i+1,i′−1]

1
poly(ni′′)

. In total the expected listening cost is

O(log(log∗N)), where N =
∑
j nj . The sending cost per player is O(1) in expectation

in both the estimation and truncated sawtooth phases.

7. Discussion and conclusion. In this section, we discuss potential applica-
tions of our result, as well as highlight some issues for future work that might need
to be addressed in order to develop a deployable protocol.

7.1. Application in low-power wireless networks. The small number of
channel accesses provided by our algorithm is perfectly suited to low-power wireless
networks. In this setting, typically only a single device may send data at any given
time, and accessing the shared channel (either for sending or listening) incurs an
energy cost which is significant for battery-powered devices. For example, in the
wireless sensor network setting, the send (at a transmit power of 0 dBm) and listen
costs for the popular Telos motes [67] are 38 mW and 35 mW, respectively, and these
are the dominant operational costs for an active device. Similar costs exist for the
older, well known MICA family of devices [36].

A topical application domain is the emerging internet of things (IoT), where
there is ubiquitous connectivity via all manner of devices for use in personal-wearable
technology, city maintenance, smart homes, and many other settings. There were
more than 6.4 billion IoT devices (excluding phones and laptops) in use at the end of
2016 [74], and 20 to 30 billion are predicted by 2020 [38, 58], with the majority due to
consumer use. An energy-efficient mechanism for contention resolution will continue
to be an enduring challenge for these devices.

This growth in IoT is likely to coincide with increasingly dense networks. In par-
ticular, Bell Labs envisions dense wireless networks as the only way in which to handle

1750 BENDER, KOPELOWITZ, PETTIE, AND YOUNG

predicted increases in wireless network traffic [80]. Therefore, while O(log(log∗N))
channel access attempts may not greatly improve the performance in current networks,
such benefits may be important to future single-hop networks of greatly increased size
and density.

Finally, the ability to handle arbitrary packet arrivals may be valuable in such
future networks. As discussed in section 1.3, prior results consider Poisson arrivals.
However, it is reasonable to assume that traffic will be bursty (as seen in practice [78,
82]) or even adversarially chosen.

7.2. Practical considerations. Our contention-resolution algorithm is intri-
cate and serves as a “proof-of-concept.” Significant work would be required to de-
velop a practical protocol and such an effort is beyond the scope of this current work.
However, we highlight two significant practical considerations.

First, our algorithm requires that devices be tightly synchronized with respect
to when each slot begins and ends. For example, disagreement on even a single slot
could cause the humming (section 6) to fail. While synchronization is a challenge in
wireless networks, there is reason to be hopeful. In wireless sensor networks, global
scheduling has been demonstrated by experimental work in [55], and synchronization
has been shown even under adversarial circumstances in [40].

Second, nonmalicious faults in either the devices sending packets or on the channel
can lead to poor performance. If devices can fail, then a popular technique for increas-
ing fault tolerance is state machine replication [75] where actions are performed in
concert in order to avoid dependence on a single device. This redundancy will increase
the communication overhead, but for a small amount of replication, the asymptotic
guarantees should remain unchanged and the impact from such errors can be reduced.

Faults on the channel may be harder to address since wireless channels are no-
toriously error prone. For example, see [25, 4]. While techniques for detecting and
correcting errors in data transmission are available, a more challenging issue is un-
intended noise; for example, this may cause a gross overestimate of n (section 4) or
corrupt our humming mechanism (section 6). A simple method for mitigating this
problem is to again use redundancy by having each slot repeated for, say, a con-
stant number of instances. If the majority of the redundant slots are silent, then the
corresponding slot in the original algorithm is considered to be silent.

7.3. Future work. One flaw in our algorithm is that the number of channel
accesses is only O(log(log∗ n)) in expectation, not with high probability. The high
probability guarantee for the worst-case cost of a player in our algorithm is O(log n),
and this cost can be realized at two places in the protocol. Leader election can
potentially cost this much (Lemma 9), and in the truncated sawtooth phase, a player
may be responsible for humming Ω(log n) slots. A realistic goal is to reduce the
expected maximum cost of any player to O(log log n) and keep the expected cost
O(log(log∗ n)).

Extending our work to multihop networks is an interesting open problem. For
example, in large wireless networks, not all devices may be able to communicate
directly with all other devices due to a limited broadcast range.

Another avenue to explore is the impact of more realistic physical-layer models.
For example, the SINR model [7, 62, 39] is less strict about failure in the event of si-
multaneous transmissions. An alternative that has received attention is the affectance
model [50]. It would be of interest to learn the asymptotic impact of these models on
our approach.

CONTENTION RESOLUTION: LOGLOGSTAR CHANNEL ACCESSES 1751

REFERENCES

[1] IEEE Standard for Information Technology–Telecommunications and Information Exchange
Between Systems Local and Metropolitan Area Networks – Specific Requirements - Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,
IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012), (2016).

[2] L. Anantharamu, B. S. Chlebus, D. R. Kowalski, and M. A. Rokicki, Medium access con-
trol for adversarial channels with jamming, in Proceedings of the 18th International Collo-
quium on Structural Information and Communication Complexity (SIROCCO), Springer,
Berlin, 2011, pp. 89–100.

[3] L. Anantharamu, B. S. Chlebus, and M. A. Rokicki, Adversarial multiple access channel
with individual injection rates, in Proceedings of the 13th International Conference on
Principles of Distributed Systems (OPODIS), Springer, Heidelberg, 2009, pp. 174–188.

[4] G. Anastasi, A. Falchi, A. Passarella, M. Conti, and E. Gregori, Performance measure-
ments of motes sensor networks, in Proceedings of the 7th ACM International Symposium
on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM ’04, ACM,
New York, 2004, pp. 174–181.

[5] W. C. Anderton and M. Young, Is our model for contention resolution wrong?: Confronting
the cost of collisions, in Proceedings of the 29th ACM Symposium on Parallelism in Algo-
rithms and Architectures, SPAA ’17, ACM, New York, 2017, pp. 183–194.

[6] A. F. Anta, M. A. Mosteiro, and J. R. Muñoz, Unbounded contention resolution in multiple-
access channels, Algorithmica, 67 (2013), pp. 295–314.

[7] C. Avin, Y. Emek, E. Kantor, Z. Lotker, D. Peleg, and L. Roditty, SINR diagrams:
Towards algorithmically usable SINR models of wireless networks, in Proceedings of the
28th ACM Symposium on Principles of Distributed Computing (PODC), ACM, New York,
2009, pp. 200–209.

[8] B. Awerbuch, A. Richa, and C. Scheideler, A jamming-resistant MAC protocol for single-
hop wireless networks, in Proceedings of the 27th ACM Symposium on Principles of Dis-
tributed Computing (PODC), ACM, New York, 2008, pp. 45–54.

[9] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, SIAM J. Comput.,
29 (1999), pp. 180–200.

[10] R. Bar-Yehuda, O. Goldreich, and A. Itai, On the time-complexity of broadcast in multi-hop
radio networks: An exponential gap between determinism and randomization, J. Comput.
System Sci., 45 (1992), pp. 104–126.

[11] M. A. Bender, M. Farach-Colton, S. He, B. C. Kuszmaul, and C. E. Leiserson, Adver-
sarial contention resolution for simple channels, in Proceedings of the 17th Annual ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), ACM, New York,
ACM, New York, 2005, pp. 325–332.

[12] M. A. Bender, J. T. Fineman, and S. Gilbert, Contention resolution with heterogeneous
job sizes, in Proceedings of the 14th Annual European Symposium on Algorithms (ESA),
Springer, Berlin, 2006, pp. 112–123.

[13] M. A. Bender, J. T. Fineman, S. Gilbert, and M. Young, How to scale exponential backoff:
Constant throughput, polylog access attempts, and robustness, in Proceedings of the 27th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, Philadelphia,
2016, pp. 636–654.

[14] M. A. Bender, T. Kopelowitz, S. Pettie, and M. Young, Contention resolution with log-
logstar channel accesses, in Proceedings of the Forty-eighth Annual ACM Symposium on
Theory of Computing, STOC ’16, ACM, New York, 2016, pp. 499–508.

[15] P. Berenbrink, A. Czumaj, M. Englert, T. Friedetzky, and L. Nagel, Multiple-choice
balanced allocation in (almost) parallel, in Approximation, Randomization, and Combina-
torial Optimization. Algorithms and Techniques (APPROX-RANDOM), Springer, Berlin,
2012, pp. 411–422.

[16] P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, Balanced allocations: The heavily
loaded case, SIAM J. Comput., 35 (2006), pp. 1350–1385.

[17] P. Berenbrink, K. Khodamoradi, T. Sauerwald, and A. Stauffer, Balls-into-bins with
nearly optimal load distribution, in Proceedings of the Twenty-fifth Annual ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA), ACM, New York, 2013,
pp. 326–335.

[18] D. J. Bernstein, qmail, http://cr.yp.to/qmail.html (1998).
[19] G. Bianchi, Performance analysis of the IEEE 802.11 distributed coordination function, IEEE

J. Sel. Areas Commun., 18 (2006), pp. 535–547.

http://cr.yp.to/qmail.html

1752 BENDER, KOPELOWITZ, PETTIE, AND YOUNG

[20] G. Bianchi and I. Tinnirello, Kalman filter estimation of the number of competing terminals
in an IEEE 802.11 network, in Proceedings of the 22nd Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM), Vol. 2, IEEE, Piscataway,
NJ, 2003, pp. 844–852.

[21] P. Brandes, M. Kardas, M. Klonowski, D. Pajak, and R. Wattenhofer, Approximating
the size of a radio network in beeping model, in Proceedings of the 23rd International Col-
loquium Structural Information and Communication Complexity (SIROCCO), Springer,
Cham, Switzerland, 2016, pp. 358–373.

[22] F. Cali, M. Conti, and E. Gregori, Dynamic tuning of the IEEE 802.11 protocol to achieve
a theoretical throughput limit, IEEE/ACM Trans. Netw., 8 (2000), pp. 785–799.

[23] F. Cali, M. Conti, and E. Gregori, IEEE 802.11 protocol: Design and performance evalua-
tion of an adaptive backoff mechanism, IEEE J. Sel. Areas Commun., 18 (2000), pp. 1774–
1786.

[24] A. Casteigts, Y. Métivier, J. M. Robson, and A. Zemmari, Counting in One-Hop Beeping
Networks, preprints, arXiv:1605.09516, 2016.

[25] A. Cerpa, J. L. Wong, L. Kuang, M. Potkonjak, and D. Estrin, Statistical model of lossy
links in wireless sensor networks, in Proceedings of the 4th International Symposium on
Information Processing in Sensor Networks (IPSN), IEEE, Piscataway, NJ, 2005, pp. 81–88.

[26] Y. Chang, T. Kopelowitz, S. Pettie, R. Wang, and W. Zhan, Exponential separations in
the energy complexity of leader election, in Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, 2017, ACM,
New York, 2017, pp. 771–783.

[27] B. S. Chlebus, G. De Marco, and D. R. Kowalski, Scalable wake-up of multi-channel
single-hop radio networks, Theoret. Comput. Sci., 615 (2016), pp. 23–44.

[28] B. S. Chlebus, L. Gasieniec, D. R. Kowalski, and T. Radzik, On the wake-up problem
in radio networks, in Proceedings of the 32nd International Colloquium on Automata,
Languages and Programming (ICALP), Springer, Berlin, 2005, pp. 347–359.

[29] B. S. Chlebus and D. R. Kowalski, A better wake-up in radio networks, in Proceedings of
23rd ACM Symposium on Principles of Distributed Computing (PODC), ACM, New York,
2004, pp. 266–274.

[30] B. S. Chlebus and D. R. Kowalski, Randomization helps to perform independent tasks reli-
ably, Random Structures Algorithms, 24 (2004), pp. 11–41.

[31] B. S. Chlebus, D. R. Kowalski, and M. A. Rokicki, Adversarial queuing on the multiple
access channel, ACM Trans. Algorithms, 8 (2012), 5.

[32] M. Chrobak, L. Gasieniec, and D. R. Kowalski, The wake-up problem in multihop radio
networks, SIAM J. Comput., 36 (2007), pp. 1453–1471.

[33] R. Cole, A. M. Frieze, B. M. Maggs, M. Mitzenmacher, A. W. Richa, R. K. Sitaraman,
and E. Upfal, On balls and bins with deletions, in Proceedings of the Second Interna-
tional Workshop on Randomization and Approximation Techniques in Computer Science
(RANDOM), Springer, Berlin, 1998, pp. 145–158.

[34] A. Cornejo and F. Kuhn, Deploying wireless networks with beeps, in Proceedings of the
24th International Symposium on Distributed Computing (DISC), Springer, Berlin, 2010,
pp. 148–162.

[35] B. Costales and E. Allman, Sendmail, 3rd ed., O’Reilly, Sebastopol, CA, 2002.
[36] Crossbow, MICAz Wireless Measurement System. http://www.openautomation.net/

uploadsproductos/micaz datasheet.pdf.
[37] G. De Marco and G. Stachowiak, Asynchronous shared channel, in Proceedings of the ACM

Symposium on Principles of Distributed Computing, PODC ’17, ACM, New York, 2017,
pp. 391–400.

[38] Ericsson, Ericsson Mobility Report, https://www.ericsson.com/res/docs/2016/
ericsson-mobility-report-2016.pdf (2016).

[39] J. T. Fineman, S. Gilbert, F. Kuhn, and C. Newport, Contention resolution on a fading
channel, in Proceedings of the ACM Symposium on Principles of Distributed Computing
(PODC), ACM, New York, 2016, pp. 155–164.

[40] S. Ganeriwal, C. Pöpper, S. C̆apkun, and M. B. Srivastava, Secure time synchronization
in sensor networks, ACM Trans. Inform. System Security, 11 (2008), pp. 1–35.

[41] M. Geréb-Graus and T. Tsantilas, Efficient optical communication in parallel computers, in
Proceedings of the 4th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA), ACM, New York, 1992, pp. 41–48.

[42] S. Gilbert and C. Newport, The computational power of beeps, in Proceedings of the Inter-
national Symposium on Distributed Computing (DISC), Springer, Berlin, 2015, pp. 31–46.

http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf
http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf
https://www.ericsson.com/res/docs/2016/ericsson-mobility-report-2016.pdf
https://www.ericsson.com/res/docs/2016/ericsson-mobility-report-2016.pdf

CONTENTION RESOLUTION: LOGLOGSTAR CHANNEL ACCESSES 1753

[43] L. A. Goldberg and P. D. MacKenzie, Analysis of practical backoff protocols for contention
resolution with multiple servers, J. Comput. System Sci., 58 (1999), pp. 232–258, https:
//doi.org/10.1006/jcss.1998.1590.

[44] L. A. Goldberg, P. D. Mackenzie, M. Paterson, and A. Srinivasan, Contention resolution
with constant expected delay, J. ACM, 47 (2000), pp. 1048–1096.

[45] J. Goodman, A. G. Greenberg, N. Madras, and P. March, Stability of binary exponential
backoff, J. ACM, 35 (1988), pp. 579–602.

[46] Google, Google Cloud Messaging: Overview, http://developer.android.com/google/gcm/adv.
html#retry (2014).

[47] A. G. Greenberg, P. Flajolet, and R. E. Ladner, Estimating the multiplicities of conflicts
to speed their resolution in multiple access channels, J. ACM, 34 (1987), pp. 289–325.

[48] A. G. Greenberg and S. Winograd, A lower bound on the time needed in the worst case to
resolve conflicts deterministically in multiple access channels, JACM, 32 (1985), pp. 589–
596.

[49] R. I. Greenberg and C. E. Leiserson, Randomized routing on fat-trees, in Proceedings of the
26th Annual Symposium on Foundations of Computer Science (FOCS), IEEE Computer
Society, Los Angeles, 1985, pp. 241–249.

[50] M. M. Halldórsson and R. Wattenhofer, Wireless communication is in APX, in 36th
International Colloquium on Automata, Languages and Programming (ICALP), Springer,
Berlin, 2009, pp. 525–536.

[51] J. Håstad, T. Leighton, and B. Rogoff, Analysis of backoff protocols for multiple access
channels, SIAM J. Comput., 25 (1996), pp. 740–774.

[52] M. Herlihy and J. E. B. Moss, Transactional memory: Architectural support for lock-
free data structures, in Proceedings of the 20th International Conference on Computer
Architecture, IEEE Computer Society, Los Alamitos, CA, 1993, pp. 289–300, https:
//dl.acm.org/citation.cfm?id=165164.

[53] V. Jacobson, Congestion avoidance and control, SIGCOMM Comput. Commun. Rev., 18
(1988), pp. 314–329.

[54] T. Jurdzinski and G. Stachowiak, The cost of synchronizing multiple-access channels, in
Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC),
ACM, New York, 2015, pp. 421–430.

[55] Y. Li, W. Ye, and J. Heidemann, Energy and latency control in low duty cycle MAC pro-
tocols, in Proceedings of the IEEE Wireless Communications and Networking Conference
(WCNC), IEEE, Piscataway, NJ, 2005, pp. 676–682.

[56] G. D. Marco and D. R. Kowalski, Fast nonadaptive deterministic algorithm for conflict
resolution in a dynamic multiple-access channel, SIAM J. Comput., 44 (2015), pp. 868–
888.

[57] G. D. Marco and D. R. Kowalski, Contention resolution in a non-synchronized multiple
access channel, Theoret. Comput. Sci., 689 (2017), pp. 1–13.

[58] IHS Markit, IoT Trend Watch 2017, https://www.ihs.com/info/0117/IoT-Trend-Watch-2017.
html (2017).

[59] R. M. Metcalfe and D. R. Boggs, Ethernet: Distributed packet switching for local computer
networks, Commun. ACM, 19 (1976), pp. 395–404.

[60] M. Mitzenmacher, The power of two choices in randomized load balancing, IEEE Trans.
Parallel Distrib. Syst., 12 (2001), pp. 1094–1104.

[61] A. Mondal and A. Kuzmanovic, Removing exponential backoff from TCP, SIGCOMM Com-
put. Commun. Rev., 38 (2008), pp. 17–28.

[62] T. Moscibroda, The worst-case capacity of wireless sensor networks, in Proceedings of the
6th International Symposium on Information Processing in Sensor Networks (IPSN), IEEE,
Piscataway, NJ, 2007, pp. 1–10.

[63] K. Nakano and S. Olariu, Uniform leader election protocols for radio networks, IEEE
Trans. Parallel Distrib. Syst., 13 (2002), pp. 516–526, https://doi.org/10.1109/TPDS.2002.
1003864.

[64] C. Newport, Radio network lower bounds made easy, in Proceedings of the 28th International
Symposium on Distributed Computing (DISC), Springer, Berlin, 2014, pp. 258–272, https:
//doi.org/10.1007/978-3-662-45174-8 18.

[65] A. Ogierman, A. Richa, C. Scheideler, S. Schmid, and J. Zhang, Sade: competitive MAC
under adversarial SINR, Distrib. Comput., 31 (2018), pp. 241–254.

[66] G. A. Platform, Google Documents List API Version 3.0: Implementing Exponential Backoff.
https://cloud.google.com/iot/docs/how-tos/exponential-backoff, 2011.

[67] J. Polastre, R. Szewczyk, and D. Culler, Telos: Enabling ultra-low power wireless research,
in Proceedings of the Fourth International Symposium on Information Processing in Sensor
Networks (IPSN), IEEE, Piscataway, NJ, 2005, pp. 364–369.

https://doi.org/10.1006/jcss.1998.1590
https://doi.org/10.1006/jcss.1998.1590
http://developer.android.com/google/gcm/adv.html#retry
http://developer.android.com/google/gcm/adv.html#retry
https://dl.acm.org/citation.cfm?id=165164
https://dl.acm.org/citation.cfm?id=165164
https://www.ihs.com/info/0117/IoT-Trend-Watch-2017.html
https://www.ihs.com/info/0117/IoT-Trend-Watch-2017.html
https://doi.org/10.1109/TPDS.2002.1003864
https://doi.org/10.1109/TPDS.2002.1003864
https://doi.org/10.1007/978-3-662-45174-8_18
https://doi.org/10.1007/978-3-662-45174-8_18
https://cloud.google.com/iot/docs/how-tos/exponential-backoff

1754 BENDER, KOPELOWITZ, PETTIE, AND YOUNG

[68] P. Raghavan and E. Upfal, Stochastic contention resolution with short delays, SIAM J.
Comput., 28 (1998), pp. 709–719.

[69] R. Rajwar and J. R. Goodman, Speculative lock elision: Enabling highly concurrent multi-
threaded execution, in Proccedings of the 34th Annual International Symposium on Mi-
croarchitecture, Austin, Texas, IEEE Computer Society, Los Alamitos, CA, 2001, pp. 294–
305, http://www.cs.wisc.edu/∼rajwar/papers/micro01.pdf.

[70] A. Richa, C. Scheideler, S. Schmid, and J. Zhang, A jamming-resistant MAC protocol for
multi-hop wireless networks, in Proceedings of the International Symposium on Distributed
Computing (DISC), Springer, Berlin, 2010, pp. 179–193.

[71] A. Richa, C. Scheideler, S. Schmid, and J. Zhang, Competitive and fair medium access de-
spite reactive jamming, in Proceedings of the 31st International Conference on Distributed
Computing Systems (ICDCS), IEEE, Piscataway, NJ, 2011, pp. 507–516.

[72] A. Richa, C. Scheideler, S. Schmid, and J. Zhang, Competitive and fair throughput for
co-existing networks under adversarial interference, in Proceedings of the 31st ACM Sym-
posium on Principles of Distributed Computing (PODC), ACM, New York, 2012, pp. 291–
300.

[73] A. W. Richa, M. Mitzenmacher, and R. Sitaraman, The power of two random choices: A
survey of techniques and results, Comb. Optimization, 9 (2001), pp. 255–304.

[74] G. Rob van der Meulen, Gartner Says 8.4 Billion Connected “Things” Will Be in Use in
2017, Up 31 Percent from 2016, http://www.gartner.com/newsroom/id/3598917 (2017).

[75] F. B. Schneider, Implementing fault-tolerant services using the state machine approach: A
tutorial, ACM Comput. Surv., 22(4) (1990), pp. 299–319.

[76] A. W. Services, Error Retries and Exponential Backoff in AWS, http://docs.aws.amazon.
com/general/latest/gr/api-retries.html, 2012.

[77] N.-O. Song, B.-J. Kwak, and L. E. Miller, On the stability of exponential backoff, J. Res.
Natl. Inst. Standards Technol., 108 (2003), pp. 289–297.

[78] S. Teymori and W. Zhuang, Queue analysis for wireless packet data traffic, in International
Conference on Research in Networking, Springer, Berlin, 2005, pp. 217–227.

[79] B. Vöcking, How asymmetry helps load balancing, J. ACM, 50 (2003), pp. 568–589.
[80] M. K. Weldon, The Future X Network: A Bell Labs Perspective, 1st ed., CRC Press, Boca

Raton, FL, 2015.
[81] D. E. Willard, Log-logarithmic selection resolution protocols in a multiple access channel,

SIAM J. Comput., 15 (1986), pp. 468–477.
[82] J. Yu and A. P. Petropulu, Study of the effect of the wireless gateway on incoming self-

similar traffic, IEEE Trans. Signal Process., 54 (2006), pp. 3741–3758.

http://www.cs.wisc.edu/~rajwar/papers/micro01.pdf
http://www.gartner.com/newsroom/id/3598917
http://docs.aws.amazon.com/general/latest/gr/api-retries.html
http://docs.aws.amazon.com/general/latest/gr/api-retries.html

	Introduction
	The multiple-access channel model
	Results
	Related work
	Algorithm overview

	Decentralized simulation of circuits
	A circuit for testing size
	A protocol for estimating n
	Estimating n

	The truncated sawtooth
	Humming
	Discussion and conclusion
	Application in low-power wireless networks
	Practical considerations
	Future work

	References

