
Bounded-Leg Distance and Reachability Oracles

Ran Duan∗

The University of Michigan
Seth Pettie†

The University of Michigan

Abstract
In a weighted, directed graph an L-bounded leg path is one
whose constituent edges have length at most L. For any fixed
L, computing L-bounded leg shortest paths is just as easy
as the standard shortest path algorithm. In this paper we
study approximate distance oracles (and reachability oracles)
for bounded leg path problems, where the leg bound L is not
known in advance, but forms part of the query. Bounded-leg
path problems are more complicated than standard shortest
path problems because the number of distinct shortest paths
between two vertices (over all leg bounds) could be as large
as the number of edges in the graph.

The bounded leg constraint models situations where
there is some limited resource that must be spent when
traversing an edge. For example, the size of a fuel tank or
the life of a battery places a hard limit on how far a vehicle
can travel in one leg before refueling or recharging. Someone
making a long road trip may place a hard limit on how many
hours they are willing to drive in any one day.

Our main result is a nearly optimal algorithm for pre-
processing a directed graph in order to answer approxi-
mate bounded leg distance and bounded leg shortest path
queries. In particular, we can preprocess any graph in Õ(n3)

time, producing a data structure with size Õ(n2) that an-
swers (1 + ε)-approximate bounded leg distance queries in
O(log log n) time. If the corresponding (1 + ε)-approximate
shortest path has l edges it can be returned in O(l log log n)
time. These bounds are all within polylog(n) factors of the
best standard all-pairs shortest path algorithm and improve
substantially the previous best bounded leg shortest path al-
gorithm, whose preprocessing time and space are O(n4) and

Õ(n2.5).

We also consider bounded leg oracles in other situations.

In the context of planar directed graphs we give a time-space

tradeoff for answering bounded leg reachability queries. For

any k ≥ 2 we can build a data structure with size O(kn1+1/k)

that answers reachability queries in time Õ(n
k−1
2k).

1 Introduction

In real networks the notion of an optimal path may
not be absolute, but depend on multiple factors or
different resource constraints. For example, one may
want to plan a road trip that balances many factors,
such as overall travel time, scenicness, and the travel
time of the longest day. In this paper we consider
a simple generalization of the shortest path problem
that constrains paths to be composed of short legs.

∗Email:duanran@umich.edu
†Email:pettie@umich.edu

This models situations where we are, for example,
constrained by the size of our vehicle’s gas tank or the
life of its battery.

Formally, our input is a weighted directed graph
G = (V,E, w), where |V | = n, |E| = m, and w : E →
R+. An L-bounded leg shortest path is a shortest path
in the graph restricted to edges with length at most
L. If we wanted to compute point-to-point or all-pairs
shortest paths and L is known the problem would be
very simple: just discard all unavailable edges and solve
the problem as usual. We consider the more realistic
situation where the graph G is fixed and L-bounded
leg distance/shortest path queries must be answered
online. In other words, we need a data structure that
can answer queries for any given leg bound L. Our
goals are to minimize the construction time of the data
structure, its space, its query time, and the quality of
the estimates returned. We say that a distance estimate
is α-approximate if it is within a factor of α of the actual
distance.

The bounded leg shortest path problem (BLSP) was
studied most recently by Roditty and Segal [14]. (See
also [3].) They showed that an Õ(n2.5)-space data struc-
ture could be built in O(n4) time that answers (1 + ε)-
approximate bounded leg shortest path queries. They
also showed that when the graph is induced by points in
a d-dimensional lp metric that a more time and space-
efficient data structure could be built for answering
(1+ε)-approximate BLSP queries. Specifically, the con-
struction time and space are O(n3(log3 n + ε−d log2 n))
and O(n2ε−1 log n), respectively. Roditty and Segal’s
construction made use of complicated algorithms for
computing sparse geometric spanners.

Our primary result is a new, efficiently constructible
(1 + ε)-approximate BLSP data structure for arbitrary
directed graphs. The construction time and space of
our data structure improve significantly on Roditty
and Segal’s for arbitrary directed graphs and basi-
cally match the time and space usage of their struc-
ture for ldp metrics. In O(n3ε−1 log3 n) time we can
build a O(n2ε−1 log n)-space data structure that an-
swers distance queries in O(log(ε−1 log n)) time and
BLSP queries in O(log(ε−1 log n)) per edge. This shaves

a factor of n off the construction time and
√

n off the
space of [14]. Since our data structure works for any
directed graph it can be used on one induced by an ldp
metric; unlike [14] the running time of our algorithm
has no dependence on the dimension d. One of the
main advantages of our algorithm is its simplicity. It
is based on a generalized version of the Floyd-Warshall
algorithm and retains its streamlined efficiency.

One can obviously consider the effect of bounded leg
constraints on nearly any graph optimization problem.
In this paper we consider two such problems. We
show how to quickly anwwer bounded leg reachability
queries in weighted planar graphs, where there is an
adjustable tradeoff between space usage and query time.
In particular, for any k > 1, O(kn1+1/k) space suffices
to answer queries in Õ(n

k−1
2k) time. Thorup [18] showed

that standard reachability queries in an unweighted
planar digraph can be answered in O(1) time with
an Õ(n) space data structure. However, getting a
comparable result in the bounded leg scenario seems
much more difficult. A key idea in Thorup’s data
structure is to divide the graph up with path separators.
However, in the L-bounded leg case a path only exists
(as far as a reachability query is concerned) if all its
edges have length at most L. Our algorithm is based
on a new data structure for answering bounded leg
reachability queries in subgraphs with a non-crossing
Monge property.

In the full version of this paper we show how
to build an approximate distance oracle that can an-
swer bounded leg distance queries accurate to within a
2k − 1 + ε factor. The space and query time of our or-
acles, Õ(n1+1/k) and Õ(1), match those of Thorup and
Zwick [19] (without the bounded leg constraint) up to
polylogarithmic factors.

Related Work. Several approximate distance or-
acles (without extra constraints) have been invented in
the last few years, for general graphs [19, 15, 2, 1, 11]
as well as planar graphs [18, 9, 10]. A concept closely
related to bounded leg shortest paths is that of bottle-
neck shortest paths. Gabow and Tarjan [7] give a nearly
optimal algorithm for arbitrary sparse graphs. Recent
work has focused on sub-cubic bottleneck shortest path
algorithms using fast matrix multiplication [20, 4].

A natural way to view the bounded leg shortest path
problem is as a partially dynamic persistent data struc-
turing problem. (The graph is constructed incremen-
tally, one edge at a time. A query is simply asking a
question about a previous version of the graph.) There
is a large body of work on dynamic shortest path and
reachability data structures; see [13, 16, 5] for recent
work and more references.

2 All-Pairs Bounded Leg Distances

Let G = (V,E) be a directed graph with a length
function w : E → R+. Our aim is to construct a table
such that for every ordered pair of vertices (u, v) in V
and any positive real number L, we can obtain a (1 +
ε)-approximate L-bounded leg distance immediately.
Denote the L-bounded leg distance between u, v ∈ V
by δL(u, v). We say y is a (1 + ε)-approximation of x if
x ≤ y ≤ (1 + ε)x.

Let E0 = (e1, e2, ..., em) be the list of edges in
increasing order. Let Gi = (V,E[1,i]), where E[x,y] =
{ex, ex+1, ..., ey}, and abbreviate δGi

(u, v) by δi(u, v).
In this paper, v is reachable from u in a graph G

is represented by u
G→ v, and v is not reachable from u

in G by u
G9 v. The bottleneck distance from u to v is

defined by

L(u, v) = min{w(ei)|u
Gi→ v}

If u
G9 v, then define L(u, v) =∞.
As the leg bound L increases the set of usable edges

grows. Therefore, the length of the shortest path from
u to v in this insert-only dynamic subgraph can only
decrease. When L ≥ w(em), the subgraph becomes the
entire graph G. We can see that all edges in the path
from u to v under leg bound L(u, v) are no longer than
L(u, v), so δL(u,v)(u, v) ≤ (n−1)L(u, v). Any path from
u to v in G must contain an edge no shorter than L(u, v),
so δG(u, v) ≥ L(u, v). Thus, we only need log1+ε(n− 1)
different distances for each pair of vertices to be able
to return a (1 + ε)-approximate distance under any leg
bound. The main problem is how to construct this set of
distances efficiently. An obvious solution is to insert one
edge at a time, then check in O(1) time for every pair of
vertices whether its distance changes. The total time for
this trivial algorithm is O(mn2). We will use a natural
divide-and-conquer method to reduce the running time
to O(1

ε n3 log3 n).
Our aim is to construct, for every pair of vertices

(u, v), a set of bounded leg distance entries: D(u, v) =
{(L1, d

L1(u, v)), (L2, d
L2(u, v)), ..., (Lk, dLk(u, v))},

where L(u, v) = L1 < L2 < ... < Lk = w(em) and
dLi(u, v) is an approximation of the distance from u to v
under leg bound Li. For any leg bound L, the distance
between u and v should be (1+ε)-approximated by some
dLi(u, v) ∈ D(u, v) where Li is the maximum among
those Li ≤ L. Denote this by dL(u, v) = dLi(u, v). If
L < L1, dL(u, v) = ∞. Moreover, for every (u, v), we
guarantee that |D(u, v)| ≤ 2 log1+ε n, so for any given
leg bound L we can find dL(u, v) in O(log log1+ε n)
time.

What about exact BLSP? Before delving into
the details of our algorithm we first address a natural

question, which is whether the ε in our approximation
is truly necessary and whether the dependence on ε
in our space bound is optimal. We argue below that
any BLSP data structure that performs no arithmetical
operations in the course of a query cannot improve our
space bound (in terms of ε) and must use space Θ(n4)
if exact distances are to be reported.

Since there can be Θ(n2) different edges in the
graph, the distance between any pair of vertices
can change at most O(n2) times, that is, at most
O(n4) different bounded leg distances are needed if
our data structure must store every distance that
it could return. However, it is not clear whether
such a graph exists. In fact, if there is a graph
H in which there exists a pair of vertices (u, v)
having Θ(n2) different bounded leg distances, then
we can add 2n vertices in H: {u1, u2, . . . , un}
and {v1, v2, . . . , vn}, and also directed edges with
different lengths {(u1, u), (u2, u), . . . , (un, u)} and
{(v, v1), (v, v2), . . . , (v, vn)}. Then in this extended
graph H ′, there are 3n vertices, and for any pair of
ui and vj , their distance varies Θ(n2) times when leg
bound increases, so in total there are Θ(n4) different
bounded leg distances.

Now consider the following directed graph H =
(V,E): V = {u = a1, a2, . . . , ak = b0, b1, b2, . . . , bk, v},
and: E = {(ai, ai+1)|1 ≤ i ≤ k − 1, w(ai, ai+1) = 4k} ∪
{(bi, v)|0 ≤ i ≤ k, w(bi, v) = 2k + 1− 2i} ∪ {(ai, bj)|1 ≤
i ≤ k − 1, 1 ≤ j ≤ k, w(ai, bj) = k2 − ik + 3k + j}. It
is a good exercise to show that the distance from u to v
varies Θ(k2) times, thus there exist graphs with Θ(n4)
different bounded leg distances. Assuming addition and
subtraction are not used during a query, this implies
that Θ(n4) space is needed to answer exact bounded leg
queries and Θ(n2ε−1 log n) space is needed to answer
(1 + ε)-approximate queries.

2.1 A Binary Partition Algorithm. The high-
level idea of our algorithm is to find a small set of
distances (O(log1+ε n) per vertex pair) that can (1+ ε)-
approximate any L-bounded leg distance. Suppose that
we have just found a reasonably accurate estimate to the
distances in Gi and Gj respectively, i < j. Call these
estimates di and dj . If di(u, v)/dj(u, v) is sufficiently
close to 1 then di(u, v) can be considered a good-enough
estimate of δi′(u, v), for all i < i′ < j. Thus, we can
focus on vertex pairs, call them P , whose distance drops
significantly between Gi and Gj . Our idea is to compute
a reasonably good estimate of the distances of the
median G(i+j)/2 using a version of the Floyd-Warshall
algorithm (Figure 1) that just considers the pairs P .
The correctness and time complexity of our algorithm
will follow from two lemmas. The first says, essentially,

Modified-Floyd(d, P)
d: an n× n matrix
P : a set of vertex pairs

for k = 1 to n do
for all (s, t) in P do

d[s, t]← min{d[s, t], d[s, vk] + d[vk, t]}
return d

Figure 1: Modified-Floyd Algorithm: As inputs, d is a
matrix that contains the approximate distances for all
pairs except the pairs in P . The algorithm returns the
approximate distance matrix d.

that if the Modified-Floyd algorithm starts off with a
good approximation to the distances on all vertex pairs
besides P , it ends with a good approximation for all
vertex pairs, including P . One problem in our divide-
and-conquer approach is that errors accumulate as we
break the problem into smaller pieces. The second
lemma bounds the growth of these errors.

Lemma 2.1. Let G′ = (V ′, E′) be a graph, let P ⊆
V ′ × V ′ be a set of pairs of vertices. If initially for all
(s, t) ∈ (V ′ × V ′) \ P , d(s, t) is an α-approximation of
δ(s, t), and for all (s, t) ∈ P ∩ E′, δ(s, t) ≤ d(s, t) ≤
w(s, t), then the matrix d returned by this Modified-
Floyd procedure satisfies: for any pair (s, t) ∈ P , d(s, t)
is an α-approximation of δ(s, t).

Proof. Notice that this algorithm can never underesti-
mate a distance δ(s, t) if there are no underestimates
originally. Denote the real shortest path from s to t
in G′ by s ⇀ t. For any (s, t) ∈ P , if the short-
est path s ⇀ t is composed of only one edge, then
(s, t) ∈ E′ and δ(s, t) = w(s, t) = d(s, t), so this case
is trivial. Now assume that after k rounds (k ≥ 1),
for every pair of vertices (s, t) ∈ P such that s ⇀ t
includes only intermediate vertices from {v1, . . . , vk},
d(s, t) is an α-approximation of δ(s, t). In the (k + 1)th
round, if k + 1 is the index of the highest intermedi-
ate vertex in s ⇀ t, for (s, t) ∈ P , then the high-
est indices in the paths s ⇀ vk+1 and vk+1 ⇀ t
are both at most k. So, by the inductive hypothesis,
d(s, vk+1) and d(vk+1, t) are already α-approximations
of δ(s, vk+1) and δ(vk+1, t) respectively. Therefore, after
the (k + 1)st round, d(s, t) ≤ d(s, vk+1) + d(vk+1, t) ≤
αδ(s, vk+1) + αδ(vk+1, t) = αδ(s, t), so d(s, t) is also an
α-approximation of δ(s, t).

Suppose that we have a pretty good approximation
to the distances in Gi and Gj . We want to find
an approximation to the distances in Gq, where q =
b(i+j)/2c. If the distances of some pairs change slightly

between Gi and Gj , then we can just use their distances
in Gi to estimate their distance in Gq. We can focus
our attention on the pairs whose distance changes a lot
between Gi and Gj .

Lemma 2.2. Let di and dj be αl-approximations of
δi and δj, where i < j. Then we can find an
αl+1-approximation of δq, where q = b(i + j)/2c, in
O(n|P | + j − i) time, where P = {(s, t) | (s, t) ∈
V × V and di(s,t)

dj(s,t) > α}.

Proof. By definition: for all (s, t) ∈ V × V , we have
δi(s, t) ≤ di(s, t) ≤ αlδi(s, t) and δj(s, t) ≤ dj(s, t) ≤
αlδj(s, t). Because for all (s, t) /∈ P , di(s, t) ≤ αdj(s, t),
it follows that

δi(s, t) ≤ di(s, t) ≤ αdj(s, t) ≤ αl+1δj(s, t)

Since the bounded leg distance can only decrease with
a larger leg-bound, for all i ≤ q ≤ j, δj(s, t) ≤ δq(s, t) ≤
δi(s, t). Therefore

δq(s, t) ≤ δi(s, t) ≤ di(s, t) ≤ αl+1δj(s, t) ≤ αl+1δq(s, t)

Thus di(s, t) is an αl+1-approximation of δq(s, t) for any
(s, t) ∈ (V × V) \ P .

We can add the edge set E[i+1,q] =
{ei+1, ei+2, ..., eq} into di, that is, for all (s, t) ∈ E[i+1,q],
if (s, t) ∈ P , set di(s, t) = min{di(s, t), w(s, t)}. This
takes q − i = O(j − i) time. We can ignore E[1,i]

because for all (s, t) ∈ E[1,i], δi(s, t) ≤ w(s, t) ≤ w(ei).
If δj(s, t) < δi(s, t) then δj(s, t) ≥ w(ei) ≥ δi(s, t),
which is a contradiction. Thus, if (s, t) ∈ E[1,i] then
(s, t) /∈ P . Now for all (s, t) ∈ P ∩E[1,q] = P ∩E[i+1,q],
δq(s, t) ≤ δi(s, t) ≤ di(s, t) ≤ w(s, t). From lemma
2.1, if we take di and P as the input of the Modified-
Floyd procedure, in O(n|P |) time we can find an
αl+1-approximation of δq; call it dq.

Corollary 2.1. Let k = m
2l . If we already have an αl-

approximation dbi·kcof δbi·kc for all 0 ≤ i ≤ 2l, then we
can find an αl+1-approximation dbi· k

2 c
of δbi· k

2 c
for all

0 ≤ i ≤ 2l+1 in O(n3 logα n) time.

Proof. Apply lemma 2.2 to all pairs of adjacent graphs
Gbi·kc and Gb(i+1)·kc (0 ≤ i < 2l), and let Pi be the set
of pairs P for them. Since δL(u,v)(u, v) ≤ (n−1)δG(u, v),
the number of times (u, v) can appear in the sets Pi is
O(logα n). Thus, the total time taken by this procedure
is O(n ·

∑2l−1
i=0 |Pi|+ m) = O(n3 logα n).

Now we can apply Corollary 2.1 repeatedly and
obtain the main algorithm.

Theorem 2.1. For any graph G of n vertices and m
edges, we can construct the set D(u, v), for every pair
of vertices (u, v), that contains a (1 + ε)-approximation
of δq(u, v) for any 0 < q ≤ m, in O(ε−1n3 log3 n) time.

Proof. First, set d0(u, v) = +∞ for all (u, v), and uti-
lize the original Floyd-Warshall algorithm to compute
dm(u, v) = δG(u, v) for all pairs (u, v) in O(n3) time.

Then set α = (1 + ε)
1

log m , and run the procedure of
Corollary 2.3 for l = 0, 1, ..., log2 m− 1. Finally we can
get an (αlog2 m = 1+ε)-approximation of all bounded leg
distances for δq where 0 < q ≤ m. Thus the total time of
this algorithm is O(n3 log n logα n) = O(ε−1n3 log3 n).

Every time we finish a run of the Modified Floyd
algorithm in graph Gq, we insert (w(eq), dq(u, v)) into
D(u, v) for every pair (u, v) in P . This will take
time O(|P | log log1+ε n), which is much less than the
Modified Floyd algorithm itself. Finally we can see
that in D(u, v), the two entries (Li, d

Li(u, v)) and
(Li+2, d

Li+2(u, v)) must satisfy dLi (u,v)

dLi+2 (u,v)
> 1 + ε oth-

erwise the intermediate entry (Li+1, d
Li+1(u, v)) would

not be computed in this algorithm. So the size of D(u, v)
is bounded by 2ε−1 log n.

We can see that the space complexity for every
execution of the procedure is O(n2), and the depth of
the recursion is O(log n). So the total space complexity
is O((1 + ε−1)n2 log n).

Answering a bounded leg shortest path query
In addition to answering approximate bounded leg
distance queries, we also want to find a path of that
distance satisfying the leg bound. Answering path
queries is what made the space bound of the Roditty-
Segal algorithm [14] O(n2.5) rather than O(n2ε−1 log n).
Given a pair of vertices (u, v) and a leg bound L, we
want to find a path γ such that ∀e ∈ γ, w(e) ≤ L and∑

e∈γ w(e) = dL(u, v), where dL(u, v) is the (1 + ε)-
approximation we obtained from the structure D(u, v).

It is easy to achieve this since all our distances
are obtained from the Modified Floyd algorithm. We
can save the intermediate vertex in every step of Floyd
algorithm, then recursively find the two subpaths. We
will slightly change our structure and algorithm. For
any pair (u, v), any entry (Li, d

Li(u, v)) ∈ D(u, v),
we define a function πLi(u, v) ∈ V to be the vertex
with the highest index in the real path from u to v of
distance dLi(u, v) under leg bound Li; if the path only
consists of one edge, then πLi(u, v) = nil. Recall that
in the third line of the algorithm in Figure 1, d[s, t] is
assigned min{d[s, t], d[s, vk]+d[vk, t]}. If d[s, t] does not
change after executing this line, then π(s, t) also does
not change. If d[s, t] = d[s, vk]+d[vk, t], then π(s, t) will
be set to vk. After this procedure, we can add the entry

GetPath(u, v, L)
Find (L′, dL′

(u, v), πL′
(u, v)) ∈ D(u, v)

where L′ ≤ L is maximal.
If πL′

(u, v) = nil, return the edge (u, v).
Else Let w = πL′

(u, v).
GetPath(u, w, L′)
GetPath(w, v, L′)

Figure 2: Algorithm for finding paths

(L, dL(u, v), πL(u, v)) to D(u, v). The procedure to find
the path is shown in Figure 2:

Since the leg bound L can only decrease in each
recursive call, this recursive procedure will correctly
output an approximate bounded leg shortest path from
u to v in O(log(ε−1 log n)) time per edge.

Our binary partition algorithm is essentially opti-
mal in terms of n since the fastest standard all-pairs
shortest path algorithm takes Õ(n3) time [4]. For sparse
graphs we can reduce the construction time of our al-
gorithm to Õ(mn3/2) using a two-level approach. A de-
scription of this algorithm will appear in the full version
of the paper.

3 Bounded-Leg Reachability Oracles in Planar
Digraphs

In this section, we will construct some compact oracles
in planar digraphs which can answer the bounded leg
reachability queries of the form “given a leg bound L,
is v reachable from u?” in sublinear time. The best
reachability oracle for directed planar graphs is due
to Thorup [18] (see also [8]), which takes O(n log n)
space and requires constant query time. However, they
depend on having path separators of the graph. In the
bounded leg reachability problem a path does not really
exist unless all of its edges are below the threshold L.
Instead of looking at path separators we exploit a non-
crossing property of bounded leg reachability and use a
search algorithm similar to that of Fakcharoenphol and
Rao [6].

Theorem 3.1. Given a planar graph G = (V,E),
we can construct a structure of size O(kn1+1/k) in
O(kn1+1/k log2 n) time, such that any reachability query
can be answered in O(n

k−1
2k log2 n) time, where k is an

integer greater than 1. When k = 2 (k = 3), we can
obtain a structure of size O(n3/2) (O(n4/3)) with query
time O(n1/4 log n) (O(n1/3 log n)).

3.1 Brief Description. As in the paper by
Fakcharoenphol and Rao [6], the first step is to decom-
pose the graph into subgraphs called pieces such that

for all e ∈ E, there is a unique piece in one level which
contains e. For any integer k > 1, we can partition the
whole graph into k levels by dividing every piece into
O(n1/k) subpieces recursively. We call the whole graph
a level-0 piece, and the pieces we get from the first
partition level-1 pieces, and so on. Every edge forms a
level-k piece. A vertex v is a border node of a piece P
if v ∈ P and v is adjacent to some vertex outside P .

We can see that in this partition, every vertex in G
is a border node of some piece, so any path between two
vertices is composed of subpaths among border nodes.
There are 3 kinds of subpaths we have to consider: the
paths between border nodes of a single piece; the paths
travelling from border nodes of a piece P to border
nodes of a piece containing P or a piece contained
in P ; and the paths travelling between border nodes
of pieces from the same level. (See Figure 5). The
reason we partition the paths in this way is that each of
these 3 kinds of paths can be decomposed into several
reachability relations satisfying a certain non-crossing
property (See Figure 4). We will give the definition of
the non-crossing property in Section 3.2.

In a pair of two lists satisfying the non-crossing
property, we will use a range structure that stores all
the bounded leg reachability information between these
two lists. The size of this structure is the product of
the sizes of these two lists, but it only takes O(log n)
to find the range in one list reachable from a vertex in
the other list under a given leg bound. In a query of
the reachability between two vertices, we can run the
BFS process on range structures which can cover all the
necessary subpaths, so the time needed for the BFS is
roughly linear in the total number of vertices in these
lists.

We build such range structures for all pairs of lists
needed to cover all types of subpaths. Then we can
see that the total size of the structure is roughly linear
in the number of pieces partitioned every time. When
given a query of two vertices, the time needed to run a
BFS on such a structure is roughly linear in the number
of border nodes we consider.

3.2 Range Structures. First, we introduce the non-
crossing property which is similar to the Monge property
in [6] (Figure 3).

Property 3.1. Let A and B be two ordered lists. A
ternary relation “a

L→ b”, where a ∈ A, b ∈ B,L ∈ R+,
satisfies the monotone non-crossing property if a

L→ b

implies a
L′

→ b, for all L′ > L, and if, for v ∈ A,
x, y, z ∈ B, and x < y < z, it always holds that if
v

L→ x, v
L→ z, and v

L9 y, then for all u ∈ A, u
L9 y.

Figure 3: Non-crossing property for reachability

Now when given two ordered lists A and B and a
non-crossing ternary relation “ L→” on them, we describe
a structure that can store all the information of that
relation in O(A ·B) space and can answer queries of the
form “Given L and a ∈ A, find the set {b ∈ B|a L→ b}”.

The structure is composed of two arrays. The first
one is h(b) for all elements b ∈ B, which is defined as:

h(b) = min
a∈A

L(a, b)

where L(a, b) = min{L|a L→ b}. When the non-
crossing property holds, the elements in B that are
reachable from a ∈ A under any leg bound form a
range [x, z] ⊆ B with some holes in it. That is, x
is the smallest element that a can reach and z is the
greatest element that a can reach and the “holes” refer
to the elements in (x, z) which are not reachable from
any elements in A. We define the following structure:

For all a ∈ A, let lL(a) be the leftmost element b in
B that satisfies L(a, b) ≤ L, and rL(a) as the rightmost
element b in B that satisfies L(a, b) ≤ L. So lL(a) and
rL(a) form a range R in B which is reachable from
a with some holes. When the L increases, the range
expands, and the holes shrink. It is obvious that the
range from one element in A can change at most |B|
times. Let F (a) = {(R,LR)} where the range for a
becomes R under LR. There are at most |B| changes
for R, so |F (a)| ≤ |B|. In this structure F (a) is sorted
in increasing order by LR.

Lemma 3.1. For all a ∈ A, an element b ∈ B is
reachable from a under L if and only if b ∈ [lL(a), rL(a)]
and h(b) ≤ L.

Proof. If b ∈ B is reachable from a under L, then
L(a, b) ≤ L, so lL(a) ≤ b ≤ rL(a) and h(b) ≤ L(a, b) ≤
L.

Now consider in the case that lL(a) ≤ b ≤ rL(a) and
h(b) ≤ L, if b = lL(a) or b = rL(a) then we of course
have L(a, b) ≤ L. So we only have to consider the case
lL(a) < b < rL(a). Assume under L, b is not reachable
from a, since a can reach lL(a) and rL(a), from the non-
crossing property, for all a′ ∈ A, a′ cannot reach b. So

for all a′ ∈ A, L(a′, b) > L, and h(b) > L, contradicting
to the conditions.

From this lemma we can see that the range structure
consisting of the arrays h and F contain all reachability
information for A and B and occupy O(|A| · |B|) space.

3.3 Use of Range Structures in Planar Graphs.
In this section, we describe the usage of the non-crossing
property and its range structures in planar graphs. As
in section 3.1, we consider a situation in which the
planar graph G has been multilevel partitioned into
pieces. From [6], we can assume when fixing a plane
embedding, the border nodes have a clockwise order.
Denote the circular ordered list of border nodes of the
piece Gi by σ(Gi).

3.3.1 Intrapiece Paths. For any piece M , consider
the circular ordered list σ(M). If we divide σ(M) into
two halves σ1(M) and σ2(M), then the bounded leg
reachability between them in both directions will satisfy
the non-crossing property if we only consider the paths
lying inside M and not intersecting with other border
nodes except the two end points. (See Figure 4(a).)
We can construct the range structures for σ1(M) to
σ2(M) and σ2(M) to σ1(M). Then for each σi(M)
(i = 1, 2), we can divide it further into two lists and
still use range structures for them. We perform this
partition recursively resulting in a structure containing
all reachability information between any pairs of the
border nodes of M , The size of this data structure is
O((|σ(M)|

2)2 + 2(|σ(M)|
4)2 + ...) = O(|σ(M)|2) = O(M).

If we only consider the paths lying outside M
between the border nodes of M , which do not intersect
with other border nodes, we can construct a similar
structure of size O(M) by the same procedure. (See
Figure 4(b).) We denote all these range structures for
the paths inside and outside the piece M by Ψ(M).

3.3.2 Interpiece Paths. The bounded leg reacha-
bility between border nodes of two different pieces can
also satisfy the non-crossing property in a circular sense.
(See Figure 4(c),(d).) We only need a slight change in
the range structure:

For any two pieces M and N , consider the two
circular ordered list σ(M) and σ(N). Let σ(N) =
(v1, v2, ..., vp), where v1 is the right neighbor of vp.
When i < j, the range [vi, vj] = {vi, vi+1, ..., vj} and
the range [vj , vi] = {vj , vj+1, ..., vp, v1, v2, ..., vi}.

If we only count the paths which do not intersect
with σ(M) and σ(N) except the two end points, then
for any u ∈ σ(M), if u can reach vi, vj ∈ σ(N), then
the range between vi and vj and the two paths u → vi

Figure 4: Non-crossing property for border nodes of
pieces.

and u → vj will form a closed triangle. Whether it is
the range [vi, vj] or [vj , vi] depends on the topological
structure of these two paths. When the pieces M and
N are disjoint, we consider the paths in the subgraph
G \ (M ∪ N) (See Figure 4(d).) When one piece M
contains the other piece N , we consider the paths in
the subgraph M \N . (See Figure 4(c).)

Suppose the range for u is [vi, vj] under leg bound L.
When the leg bound increases, if u can reach a vertex vk

outside [vi, vj], then the range will expand to [vk, vj] or
[vi, vk]. Thus, if we just count the paths which do not
intersect with σ(M) and σ(N), σ(M) and σ(N) will
satisfy the non-crossing property in circular order:

Property 3.2. For any leg bound L and u ∈ σ(M),
vi, vj ∈ σ(N). If u → vi and u → vj, then either the
open interval R = (vi, vj) or R = (vj , vi) will satisfy:
for any vertex v in R, if u cannot reach v, then all the
vertices in σ(M) cannot reach v.

We can still use our range structure to change the
leftmost or the rightmost end point of the range to vk.
Define the range structure for σ(M) to σ(N) and σ(N)
to σ(M) by Ψ(M,N).

3.4 Main Structure. As in the paper by
Fakcharoenphol and Rao [6], an n-node planar

graph G can be partitioned into pieces G1, G2, ..., GO(p)

where any Gi contains no more than n
p edges and

O(
√

n
p) border nodes.

For any integer k > 1, we can partition the whole
graph into k levels by dividing every piece into O(n1/k)
subpieces each time. We call the whole graph as a level-
0 piece, and the pieces we get from the first partition
level-1 pieces, etc Every single edge is a level-k piece.
The border nodes of every level-k piece is the two end
points of the edge. So a level-i piece contains O(n1−i/k)
nodes and O(n

k−i
2k) border nodes. For every vertex v,

we denote one of the level-i pieces containing it by Pi(v).
If it is contained in more than one level-i piece, then it
is a level-i border node. Denote the minimal level in
which v is a border node by jv. Our structure consists
of the following parts:

1. In a level-i piece (0 ≤ i < k) P , for every pair
of level-(i + 1) pieces p1 and p2 in P , the range
structure Ψ(p1, p2) with respect to the subgraph
G \ (p1 ∪ p2).

2. For every level-i piece (1 ≤ i ≤ k) P , for its level-
(i−1) parent piece P ′, the range structure Ψ(P, P ′)
with respect to the subgraph P ′ \ P .

3. For every level-i piece P , the structure Ψ(P).

Now we analyze the size of this structure. In
part 1, the space needed for every level-i piece P is
O(n2/k)×O(|σ(p1)|) = O(n

k−i+1
k), and the space needed

for all level-i pieces is O(n1+1/k). In part 2, the space
for every level-i piece P is O(n1− 2i−1

2k), and total space
for all level-i pieces is O(n1+ 1

2k). In part 3, the space
needed for all level-i piece is O(n). Thus, the total size
of the above structure is O(kn1+1/k).

Lemma 3.2. Given a leg bound L in G, the query
of the reachability from u to v can be answered in
O(n

k−1
2k log2 n) time.

Proof. When answering a query of the reachability from
u to v given a leg bound L, we find J = min{i|Pi(u) 6=
Pi(v)}. Thus, PJ−1(u) = PJ−1(v). Then, using the set
of structures S(u, v) given below, we can run the BFS
algorithm from u on the vertex set:

(
ju⋃

i=J

σ(Pi(u))) ∪ (
jv⋃

i=J

σ(Pi(v)))

where S(u, v) consists of:

Ψ(Pi(u)) (J ≤ i ≤ ju)
Ψ(Pi(v)) (J ≤ i ≤ jv)

Ψ(Pi(u), Pi−1(u)) (J < i ≤ ju)
Ψ(Pi−1(v), Pi(v)) (J < i ≤ jv)
Ψ(PJ(u), PJ(v))

When running the BFS algorithm on range struc-
tures, initially all vertices except the source u are un-
reachable. Every time we select a reachable vertex w, we
find the ranges reachable from w in all range structures
associated with w. After this step, we say w has been
scanned. In a range structure containing w, the new
reachable range obtained by scanning w can be merged
with the reachable ranges already found. By Lemma
3.2, the scanning and merging processes in total take
O(log n) time. In the next step, we can randomly se-
lect a unscanned vertex w′ in the reachable ranges in
any range structure which satisfies h(w′) ≤ L. From
Lemma 3.2, w′ must be reachable from u. We continue
this process until v is scanned or all reachable vertices
have been scanned.

Since we need O(log n) time to scan a vertex, the
total time needed for the above procedure is the sum
of number of vertices in all range structures in S(u, v).
For structures like Ψ(M), the total number of vertices
in all range structures is O(

√
|M | log n). Thus, we

can see that the total time for the BFS algorithm is
O(log2 n(n

k−1
2k + n

k−2
2k + n

k−3
2k + ...)) = O(n

k−1
2k log2 n).

Now we have to prove that any path that may reach
v from u is composed of the subpaths in S(u, v).

Lemma 3.3. In Lemma 3.2, if v is reachable to u under
leg bound L, then the BFS algorithm on S(u, v) must
end with v scanned.

Proof. In a path from u to v, define ul
i and vl

i to be
the last vertices in σ(Pi(u)) and σ(Pi(v)) respectively,
and define uf

i (i > ju) to be the first vertex in σ(Pi(u))
after ul

i−1, and define vf
i (i < J) to be the first vertex

in σ(Pi(v)) after vl
i+1. Also uf

ju
is u, and vf

J is the first
vertex in σ(PJ(v)).

If we also regard Ψ(P), Ψ(P, P ′) as the set of
paths they can represent. Then the subpaths from
uf

i (vf
i) to ul

i (vl
i) are in Ψ(Pi(u)) (Ψ(Pi(v))), and

ul
i → uf

i−1(J < i ≤ jv) are in Ψ(Pi(u), Pi−1(u)),
vl

i → vf
i+1(J ≤ i < jv) are in Ψ(Pi(v), Pi+1(v)), and

ul
J → vf

J is in Ψ(PJ(u), PJ(v)). An example is shown in
Figure 5.

Figure 5: A path from u to v. In this graph, the
paths u → x and x → ul

1 is contained in Ψ(P3(u)),
and the path ul

1 → uf
2 is in Ψ(P3(u), P2(u)), the paths

uf
2 → y → ul

2 is both in Ψ(P2(u)), the path ul
2 → uf

1 is
in Ψ(P2(u), P1(u)), the paths uf

1 → z → ul
1 is both in

Ψ(P1(u)), and the path uf
1 → vf

1 is in Ψ(P1(u), P1(v)).

3.5 Construction and Simplification.

Lemma 3.4. The above structure of size O(kn1+1/k)
and query time O(n

k−1
2k log2 n) can be constructed in

time O(kn1+1/k log2 n).

The construction of this structure will be discussed
in Appendix 5.1.

When k = 2 or k = 3, we can get rid of one
log factor in the query time and obtain a structure
of size O(n3/2) with query time O(n1/4 log n), and a
structure of size O(n4/3) with query time O(n1/3 log n).
When k = log2 n, we can simplify the structure of size
O(n log n) with query time O(

√
n log2 n). These are

discussed in Appendix 5.2.

4 Conclusion

We have shown that a (1 + ε)-approximate bounded leg
distance oracle can be constructed in O(ε−1n3 log3 n)
time that occupies O(ε−1n2 log n) space. Although the
construction time could perhaps be improved by a few
log factors the dependence on ε cannot be improved
without a fundamentally new approach to the problem.
In particular the query algorithm would need to perform
some arithmetical operations in the course of answering
a distance query in order to improve our space bounds.1

The main problem left open by this work is to
improve our reachability data structures for planar
graphs. Two obvious problems are to handle approx-
imate bounded leg distance queries or to improve our
time-space tradeoff. There is no reason to believe that
the best possible tradeoff—O(1) query time and linear

1This is not a problem specific to the bounded leg case. The

best data structure known for answering exact distance queries in
O(1) time is simply an n × n table.

space—could not be achieved with more sophisticated
techniques.

References

[1] S. Baswana and T. Kavitha. Faster algorithms for
approximate distance oracles and all-pairs small stretch
paths. In Proc. 47th IEEE Symposium on Foundations
of Computer Science (FOCS), pages 591–602, 2006.

[2] S. Baswana and S. Sen. Approximate distance oracles
for unweighted graphs in expected O(n2) time. ACM
Trans. Algorithms, 2(4):557–577, 2006.

[3] P. Bose, A. Meheswari, G. Narasimhan, M. Smid,
and N. Zeh. Approximating geometric bottleneck
shortest paths. Computational Geometry: Theory and
Applications, 29:233–249, 2004.

[4] T. M. Chan. More algorithms for all-pairs shortest
paths in weighted graphs. In STOC ’07: Proceedings
of the thirty-ninth annual ACM symposium on Theory
of computing, pages 590–598, New York, NY, USA,
2007. ACM Press.

[5] C. Demetrescu and G. F. Italiano. A new approach to
dynamic all pairs shortest paths. In Proc. 35th ACM
Symp. on the Theory of Computing, 2003.

[6] J. Fakcharoenphol and S. Rao. Planar graphs, negative
weight edges, shortest paths, and near linear time. J.
Comput. System Sci., 72(5):868–889, 2006.

[7] H. N. Gabow and R. E. Tarjan. Algorithms for
two bottleneck optimization problems. J. Algorithms,
9(3):411–417, 1988.

[8] P. N. Klein. Preprocessing an undirected planar
network to enable fast approximate distance queries.
In Proc. 13th Ann. ACM-SIAM Symp. On Discrete
Algorithms (SODA), pages 820–827, 2002.

[9] P. N. Klein and S. Subramanian. A fully dynamic
approximation scheme for all-pairs shortest paths in
planar graphs. In Algorithms and data structures
(Montreal, PQ, 1993), volume 709 of Lecture Notes in
Comput. Sci., pages 442–451. Springer, Berlin, 1993.

[10] L. Kowalik and M. Kurowski. Oracles for bounded-
length shortest paths in planar graphs. ACM Trans.
Algorithms, 2(3):335–363, 2006.

[11] M. Mendel and A. Naor. Ramsey partitions and
proximity data structures. J. Eur. Math. Soc. (JEMS),
9(2):253–275, 2007.

[12] S. Pettie. A new approach to all-pairs shortest
paths on real-weighted graphs. Theoret. Comput. Sci.,
312(1):47–74, 2004.

[13] L. Roditty. A faster and simpler fully dynamic tran-
sitive closure. In SODA ’03: Proceedings of the four-
teenth annual ACM-SIAM symposium on Discrete al-
gorithms, pages 404–412, Philadelphia, PA, USA, 2003.
Society for Industrial and Applied Mathematics.

[14] L. Roditty and M. Segal. On bounded leg shortest
paths problems. In SODA ’07: Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 775–784, Philadelphia, PA, USA,
2007. Society for Industrial and Applied Mathematics.

[15] L. Roditty, M. Thorup, and U. Zwick. Determinis-
tic constructions of approximate distance oracles and
spanners. In Automata, languages and programming,
volume 3580 of Lecture Notes in Comput. Sci., pages
261–272. Springer, Berlin, 2005.

[16] L. Roditty and U. Zwick. Improved dynamic reach-
ability algorithms for directed graphs. In FOCS ’02:
Proceedings of the 43rd Symposium on Foundations of
Computer Science, page 679, Washington, DC, USA,
2002. IEEE Computer Society.

[17] S. Subramanian. A fully dynamic data structure for
reachability in planar digraphs. In Algorithms—ESA
’93 (Bad Honnef, 1993), volume 726 of Lecture Notes
in Comput. Sci., pages 372–383. Springer, Berlin, 1993.

[18] M. Thorup. Compact oracles for reachability and
approximate distances in planar digraphs. J. ACM,
51(6):993–1024 (electronic), 2004.

[19] M. Thorup and U. Zwick. Approximate distance
oracles. J. ACM, 52(1):1–24 (electronic), 2005.

[20] V. Vassilevska, R. Williams, and R. Yuster. All-
pairs bottleneck paths for general graphs in truly
sub-cubic time. In STOC ’07: Proceedings of the
thirty-ninth annual ACM symposium on Theory of
computing, pages 585–589, New York, NY, USA, 2007.
ACM Press.

5 Appendix

5.1 Construction of the reachability oracle.
Proof of theorem 3.7:

The time needed for the piece decomposition is
O(n log n). [17, 6]

In order to construct this structure efficiently, we
must first construct a dense distance graph like the
one of Fakcharoenphol and Rao [6]. A dense distance
graph has a k-level decomposition of the graph as in the
structure, and for every piece P in it, it contains the all-
pair distances of the border nodes of P only considering
the path inside P , that is, {LP (u, v)|u, v ∈ σ(P)}.

For the non-crossing arrays A and B, if we already
have all the distances from the vertices in A to the
vertices in B, then the number of edges in these arrays
is |A| × |B|. Can we use this structure in a Dijkstra
algorithm and only cost Õ(|A|+ |B|) time in total?

Fact 5.1. If the ordered lists A and B satisfy the non-
crossing property, then they satisfy the Monge property:
∀u, v ∈ A, x, y ∈ B, if u ≤ v and x ≤ y, then
max(L(u, x), L(v, y)) ≤ max(L(u, y), L(v, x)).

So, in the the Dijkstra algorithm, the vertices in B
whose shortest leg paths go through a scanned vertex in
A form a range in B. When we scan a new vertex u in
A, instead of testing every node in B to check whether
its distance decreases, we take O(log |B|) time to find
the start and the end of its range. Since the vertices
inside the range have longer or equal distances than u,

they must all be unscanned. So we can find the node
in this range with minimum distance in O(log |B|) time
and then put u and its range in a heap H. When we
scan some vertex in this range later, we can split it into
two ranges and find the minima of them and then put
them into H. This will also take O(log |B|) time. The
total time for the lists A and B is O((|A|+ |B|) log |B|).

As above, for a piece M , consider the circular
ordered list σ(M). If we divide σ(M) into two halves,
they will satisfy the non-crossing property if we only
consider the paths lying inside M and not intersecting
with other border nodes except the two end points. And
we can partition them recursively. So if we already have
the dense distance graph for M , we can use it in Dijkstra
algorithm for a total time of O(|σ(M)| log2 |σ(M)|) =
O(

√
|M | log2 |M |).

Now suppose we already obtain the dense distance
graphs for all level-i (1 < i ≤ k) pieces. For any level-
(i− 1) piece P , we would find the dense distance graph
for it. Since a border node for P is also a level-i border
node, consider the dense distance graphs for all the
level-i pieces in P , and for any u ∈ σ(P) as a start
point, run the Dijkstra algorithm on it. The total time
needed for constructing the dense distance graph for P

is O(n
2k−2i+3

2k log2 n), and therefore the total time for
level-(i− 1) is O(kn1+1/(2k) log2 n).

For a detailed description of this procedure, see
Fakcharoenphol and Rao. [6]

In a level-i piece P , to compute the distances
LG\P (u, v) for any border nodes u and v of P , find the
level-(i − 1) piece P ′ that contains P (If we already
have the distances for P ′), then we can run the Dijkstra
algorithm for all the level-i pieces in P ′. This procedure
also finds the distances needed for paths lying outside P
between the border nodes of P . The total time needed
for this step is O(kn1+1/k log2 n).

We need to construct the range structure for
two circular ordered vertex lists σ(M) and σ(N) =
(v1, v2, ..., vp) given the all-pair bottleneck distances:
{L(u, v)|∀u ∈ σ(M), v ∈ σ(N)}. First, for all
v ∈ σ(N), compute h(v) = minu∈σ(M) L(u, v).
Then, for any u ∈ σ(M), consider the list: Q =
(L(u, v1), L(u, v2), ..., L(u, vp)). Sort this list in increas-
ing order, obtaining Q′. Suppose the minimum element
is L(u, v), so when L = L(u, v), the range for u is
just [v, v]. If the range for u is [vi, vj] when the leg
bound is L, when the leg bound increases, u may reach
a vertex vk outside [vi, vj], then the range will expand.
Any vertex v′ satisfying L(u, v′) > L(u, vk) in the new
range will satisfy L(u, v′) = h(v′), because under leg
bound less than L(u, v′) greater than L(u, vk), u cannot
reach v′, by the non-crossing property, u cannot reach
all other vertices in σ(M). Checking all vertices in a

range to see whether they satisfy L(u, v′) = h(v′) takes
O(log |σ(N)|) time. So the total time needed build up
the range structure is O(

√
|M ||N | log |N |).

5.2 Special Cases when k = 2, k = 3 and k =
log n.

Lemma 5.1. We can construct a structure of size
O(n4/3) with query time O(n1/3 log n), compared to the
query time of O(n1/3 log2 n) in the above structure.

When k = 3, add another part into the structure:

• For every vertex u, construct Ψ(u, P1(u)) =
{(w,LG(u, w))|w ∈ σ(P1(u))} and Ψ(P1(u), u) =
{(w,LG(w, u))|w ∈ σ(P1(u))}. Since |σ(P1(u))| =
n1/3, the total size of this part is also O(n4/3).

Lemma 5.2. Given a leg bound L in G, the query time
of the reachability from u to v for any pair of vertices
(u, v) in G can be reduced to O(n1/3 log n).

Proof. If u and v are in the same level-1 piece, that is,
J > 1, then the query time in the original structure is
actually O(n1/6 log2 n). If u and v are not in the same
level-1 piece, we can run the Dijkstra algorithm for the
vertices {u} ∪ P1(u) ∪ P1(v) ∪ {v} using the structures
Ψ(u, P1(u)) , Ψ(P1(u), P1(v)) and Ψ(P1(v), v). So, the
running time is only O(n1/3 log n).

Now we finish the proof of theorem 5.2
To construct this part, consider the edges in a level-

1 piece P and the all-pair distances LG\P for the border
nodes of P, and run the normal Dijkstra algorithm from
all border nodes of P. Then, the time needed for one
border node is |P | = O(n2/3), so the total time is
O(n4/3).

The same idea also works for k = 2:

Lemma 5.3. We can construct a structure of size
O(n3/2) with query time O(n1/4 log n), compared to the
query time of O(n1/4 log2 n) in the above structure.

When k increases to log n, then every piece is di-
vided into two subpieces, as in the paper by Fakcharoen-
phol and Rao [6]. We perform a binary partition for ev-
ery piece every time and obtain two subpieces. A piece
with n nodes and r border nodes can be divided into two
subpieces, such that each subpiece has no more than 2

3n
nodes and at most 2

3r + c
√

n border nodes, for some
constant c. The recursion stops when a piece contains
a single edge. So, the total number of levels of partition
is O(log n). [6] We can then obtain a structure of size
O(n log n) with query time O(

√
n log2 n).

