
Experimental Evaluation of a

New Shortest Path Algorithm?

(Extended Abstract)

Seth Pettie, Vijaya Ramachandran, and Srinath Sridhar

Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712
seth@cs.utexas.edu, vlr@cs.utexas.edu, srinath@cs.utexas.edu

Abstract. We evaluate the practical eÆciency of a new shortest path
algorithm for undirected graphs which was developed by the �rst two
authors. This algorithm works on the fundamental comparison-addition
model.
Theoretically, this new algorithm out-performs Dijkstra's algorithm on
sparse graphs for the all-pairs shortest path problem, and more generally,
for the problem of computing single-source shortest paths from !(1)
di�erent sources. Our extensive experimental analysis demonstrates that
this is also the case in practice. We present results which show the new
algorithm to run faster than Dijkstra's on a variety of sparse graphs
when the number of vertices ranges from a few thousand to a few million,
and when computing single-source shortest paths from as few as three
di�erent sources.

1 Introduction

The shortest paths problem on graphs is one of the most widely-studied com-
binatorial optimization problems. Given an edge-weighted graph, a path from a
vertex u to a vertex v is a shortest path if its total length is minimum among
all u-to-v paths. The complexity of �nding shortest paths seems to depend upon
how the problem is formulated and what kinds of assumptions we place on the
graph, its edge-lengths and the machine model. Most shortest path algorithms
for graphs can be well-categorized by the following choices.

1. Whether shortest paths are computed from a single source vertex to all
other vertices (SSSP), or between all pairs of vertices (APSP). One should
also consider the intermediate problem of computing shortest paths from
multiple speci�ed sources (MSSP).

2. Whether the edge lengths are non-negative or arbitrary.

? This work was supported by Texas Advanced Research Program Grant 003658-0029-
1999 and NSF Grant CCR-9988160. Seth Pettie was also supported by an MCD
Graduate Fellowship.

3. Whether the graph is directed or undirected.

4. Whether shortest paths are computed using just comparison & addition op-
erations, or whether they are computed assuming a speci�c edge-length rep-
resentation (typically integers in binary) and operations speci�c to that rep-
resentation. Comparison-addition based algorithms are necessarily general
and they work when edge-lengths are either integers or real numbers.

There is a wealth of literature on variations of the shortest path problem,1

however despite such intense research, very few of the results beyond the classi-
cal algorithms of Dijkstra, Bellman-Ford, Floyd-Warshall, and min-plus matrix
multiplication [AHU74,CLR90] work with real-valued edge-lengths using only
comparisons and additions.2

Previous experimental studies of shortest path algorithms [CGR96,GS97,G01b]
focussed on very restricted classes of inputs, where the edge lengths were as-
sumed to be uniformly distributed, relatively small integers. This approach may
be preferable for a speci�c application, however any algorithm implemented for
more general use must be robust. By robust we mean that it makes no assump-
tions on the distribution of inputs, and minimal assumptions on the programming

interface to the input (in the case of shortest path problems this leads naturally
to the comparison-addition model); we elaborate on this in Section 2. A fact
which many �nd startling is that Dijkstra's 1959 algorithm is still the best ro-
bust SSSP & APSP algorithm for positively-weighted sparse directed graphs.

In this paper we evaluate the performance of the recent undirected short-
est path algorithm of Pettie & Ramachandran [PR02], henceforth the PR al-

gorithm. The PR algorithm is a robust, comparison-addition based algorithm
for solving undirected SSSP from multiple speci�ed sources (MSSP). It works
by pre-computing a certain structure called the `component hierarchy', or CH

(�rst proposed by Thorup [Tho99], for use with integer edge lengths) in time
O(m + n logn). Once the CH is constructed SSSP is solved from any source in
O(m�(m;n)) time, where � is the very slow-growing inverse-Ackermann func-
tion. Theoretically this algorithm is asymptotically faster than Dijkstra's when
the number of sources is !(1) and the number of edges is o(n logn).

The PR algorithm (as well as [Tho99,Hag00]) can also tolerate a dynamic
graph in some circumstances. If a component hierarchy is constructed for a graph
G, SSSP can be solved in O(m�(m;n)) time on any graph G0 derived from G
by altering each edge weight by up to a constant factor.

As mentioned above, there are only a few shortest path algorithms that
work on the comparison-addition model, and there is only one robust algorithm
in direct competition with PR, namely Dijkstra's. The Bellman-Ford, Floyd-
Warshall, and min-plus matrix multiplication algorithms handle negative edge

1 For an up-to-date survey of shortest path algorithms, see Zwick [Z01] (an updated
version is available on-line).

2 Some exceptions to this rule are Fredman's min-plus matrix multiplication
algorithm [F76] and several algorithms with good average-case performance:
[MT87,KKP93,KS98,Mey01,G01]

lengths and as a consequence are considerably less eÆcient than the PR algo-
rithm (quadratic time for SSSP and cubic for APSP). The fastest implemen-
tation [Tak92] of Fredman's algorithm [F76] for APSP also takes almost cubic
time. The average-case algorithms in [KKP93,McG91,Jak91,MT87] only provide
improvements on very dense random graphs.

We evaluate the practical eÆciency of the PR algorithm for the MSSP prob-
lem on undirected graphs by comparing it with Dijkstra's algorithm. The MSSP
problem generalizes the SSSP-APSP extremes, and could be more relevant in
some practical scenarios. For instance, a recent algorithm of Thorup [Tho01]
for the graphic facility location and k-median problems performs SSSP com-
putations from a polylog number of sources. Our experiments indicate quite
convincingly that the Pettie-Ramachandran algorithm outperforms Dijkstra on
sparse graphs when computing SSSP from a suÆcient number of sources, as few
as 3 or 4 in several cases. We obtained this result across all classes of sparse
graphs that we considered except for the so-called `long grids' [CGR96]. We also
compare the PR algorithm to breadth �rst search, a natural lower bound on
SSSP and a useful routine to normalize the running times of shortest path al-
gorithms across di�erent architectures. We elaborate on this and other aspects
of our results in Section 6. Clearly, our results also apply to the APSP problem,
and they show that the PR algorithm outperforms Dijkstra's algorithm for the
APSP problem on sparse graphs.

The rest of the paper is organized as follows. In Section 2 we delineate the
scope of our study. In Section 3 we give an overview of Dijkstra's algorithm and
the PR algorithm. Section 4 describes the design choices we made in implement-
ing the two algorithms. Section 5 describes our experimental set-up, and Section
5.1 the types of graphs we used. Section 6 provides our results. Section 7 ends
with a discussion.

2 Scope of this Work

The focus of this paper is robust shortest path algorithms, so it is worthwhile to
state here exactly what we mean by the term. A robust shortest path algorithm
should be robust with respect to:

Input format. The algorithm should work with minimal assumptions on the
input format and the programming \hooks" to manipulate the input. The
assumption that edge-lengths are subject to comparison and addition oper-
ations is minimal since these operations are both necessary and suÆcient to
solve shortest path problem.

Graph type. The algorithm should work well on all graph sizes & topologies.
It should not depend on the graph being overly structured (e.g. grids) or
overly random (e.g. the Gn;m distr.).

Edge-length distribution. The algorithm should not be adversely a�ected
by the range or distribution on edge-lengths, nor should it depend upon the
edge-lengths being chosen independently at random.

Some may object to the �rst criterion because, at some level, edge lengths are
represented as ints or doubles; one might as well assume such an input. This is
not quite true. For instance, the LEDA platform [MN99] uses di�erent types for
rationals, high-precision oating point numbers, and `real' numbers with prov-
able accuracy guarantees, and Java has similar types BigDecimal and BigInteger.
A robust algorithm can be used with all such types with little or no modi�cation,
and can be ported to di�erent platforms with minimal modi�cations.

The bottom line is that robust algorithms are �t for use in a general setting
where the format and distribution of inputs is unknown and/or varies. Nothing
precludes the use of other specialized shortest path algorithms (indeed, those
tailored to small integer weights, e.g. [GS97], will likely be faster), however,
depending solely on such an algorithm is clearly unwise.

In our experiments we focus primarily on classes of sparse graphs, which we
de�ne as having an edge-to-vertex ratio less than logn. Sparse graphs frequently
arise naturally; e.g. all planar and grid-like graphs are sparse, and the evidence
shows the `web graph' also to be sparse. Denser graphs are important as well,
but as a practical matter the SSSP problem has essentially been solved: Dijk-
stra's algorithm runs in linear time for densities greater than logn. The \sorting
bottleneck" in Dijkstra's algorithm is only apparent for sparse graphs.

3 Overview of the algorithms

Dijkstra's algorithm [Dij59] for SSSP (see [CLR90] or [AHU74]) visits the vertices
in order of increasing distance from the source. It maintains a set S of visited
vertices whose distance from the source has been established, and a tentative
distance D(v) to each unvisited vertex v. D(v) is an upper bound on the actual
distance to v, denoted d(v); it is the length of the shortest path from the source
to v in the subgraph induced by S [fvg. Dijkstra's algorithm repeatedly �nds
the unvisited vertex with minimum tentative distance, adds it to the set S and
updates D-values appropriately.

Rather than giving a description of the Pettie-Ramachandran [PR02] al-
gorithm (which is somewhat involved), we will instead describe the component
hierarchy approach put forward by Thorup [Tho99]. Suppose that we are charged
with �nding all vertices within distance b of the source, that is, all v such that
d(v) 2 [0; b). One method is to run Dijkstra's algorithm (which visits vertices
in order of their d-value) until a vertex with d-value outside [0; b) is visited.
Thorup observed that if we choose t < b and �nd the graph Gt consisting of
edges shorter than t, the connected components of Gt, say Gt, can be dealt with
separately in the following sense. We can simulate which vertices Dijkstra's al-
gorithm would visit for each connected component in Gt, �rst over the interval
[0; t), then [t; 2t), [2t; 3t), up to [b b

t
ct; b). It is shown in [Tho99] (see also [PR02])

that these separate subproblems do not \interfere" with each other in a technical
sense. The subproblems generated by Thorup's approach are solved recursively.
The component hierarchy is a rooted tree which represents how the graph is
decomposed; it is determined by the underlying graph and choices of t made
in the algorithm. The basic procedure in component hierarchy-based algorithms

[Tho99,Hag00,PR02] is Visit(x; I), which takes a component hierarchy node
x and an interval I , and visits all vertices in the subgraph corresponding to x
whose d-values lie in I .

4 Design Choices

4.1 Dijkstra's Algorithm

We use a pairing heap [F+86] to implement the priority queue in Dijkstra's
algorithm. We made this choice based on the results reported in [MS94] for
minimum spanning tree (MST) algorithms. In that experiment the pairing heap
was found to be superior to the Fibonacci heap (the choice for the theoretical
bound), as well as d-ary heaps, relaxed heaps and splay heaps in implementations
of the Prim-Dijkstra MST algorithm.3 Since the Prim-Dijkstra MST algorithm
has the same structure as Dijkstra's SSSP algorithm (Dijkstra presents both of
these algorithms together in his classic paper [Dij59]), the pairing heap appears
to be the right choice for this algorithm.

The experimental studies by Goldberg [CGR96,GS97,G01b] have used buck-
ets to implement the heap in Dijkstra's algorithm. However, the bucketing strat-
egy they used applies only to integer weights. The bucketing strategies in [Mey01,G01]
could apply to arbitrary real edge weights, but they are speci�cally geared to
good performance on edge-weights uniformly distributed in some interval. The
method in [G01] can be shown to have bad performance on some natural inputs.4

In contrast we are evaluating robust, general-purpose algorithms that function
in the comparison-addition model.

We experimented with two versions of Dijkstra's algorithm, one which places
all vertices on the heap initially with key value1 (the traditional method), and
the other that keeps on the heap only vertices known to be at �nite distance
from the source. For sparse graphs one would expect the heap to contain fewer
vertices if the second method is used, resulting in a better running time. This
is validated by our experimental data. The second method out-performed the
�rst one in all graphs that we tested, so we report results only for the second
method.

4.2 Pettie-Ramachandran Algorithm

The primary consideration in [PR02] was asymptotic running time. In our im-
plementation of this algorithm we make several simpli�cations and adjustments
which are more practical but may deteriorate the worst-case asymptotic perfor-
mance of the algorithm.

1. Finding MST:
The [PR02] algorithm either assumes the MST is found in O(m + n logn)
time (for the multi-source case) or, for the single source case, in optimal

3 This algorithm was actually discovered much earlier by Jarn��k [Jar30].
4 For instance, where each edge length is chosen independently from one of two uniform
distributions with very di�erent ranges.

time using the algorithm of [PR00]. Since, for multiple sources, we both �nd
and sort the MST edges, we chose to use Kruskal's MST algorithm, which
runs in O(m logn) time but does both of these tasks in one pass. Some of
our data on larger and denser graphs suggests that it may be better to use
the Prim-Dijkstra MST algorithm, which is empirically faster than Kruskal's
[MS94], followed by a step to sort only the MST edges.

2. Updating D-values:
In [PR02] the D-value of an internal CH node is de�ned to be the mini-
mum D-value over its descendant leaves. As leaf D-values change, the inter-
nal D-values must be updated. Rather than use Gabow's near-linear time
data structure [G85], which is rather complicated, we use the na��ve method.
Whenever a leaf's D-value decreases, the new D-value is propagated up the
CH until an ancestor is reached with an even lower D-value. The worst-case
time for updating a D-value is clearly the height of CH, which is logR, where
R is the ratio of the maximum to minimum edge-weight; on the other hand,
very few ancestors need to be updated in practice.

3. Using Dijkstra on small subproblems:
The stream-lined nature of Dijkstra's algorithmmakes it the preferred choice
for computing shortest paths on small graphs. For this reason we revert to
Dijkstra's algorithm when the problem size becomes suÆciently small. If
Visit(x; I) is called on a CH node x with fewer than � descendant leaves,
we run Dijkstra's algorithm over the interval I rather than calling Visit

recursively. For all the experiments described later, we set � = 50.
4. Heaps vs. Lazy Bucketing:

The [PR02] algorithm implements a priority queue with a comparison-addition

based `lazy bucketing' structure. This structure provides asymptotic guaran-
tees, but for practical eÆciency we decided to use a standard pairing heap to
implement the priority queue, augmented with an operation called threshold

which simulates emptying a bucket. A call to threshold(t) returns a list of all
heap elements with keys less than t. It is implemented with a simple DFS
of the pairing heap. An upper bound on the time for threshold to return k
elements is O(k logn), though in practice it is much faster.

5. Additional Processing of CH:
In [PR02, Sections 3 & 4] the CH undergoes a round of re�nement, which is
crucial to the asymptotic running time of the algorithm. We did not imple-
ment these re�nements, believing their real-world bene�ts to be negligible.
However, our experiments on hierarchically structured graphs (which, in ef-
fect, have pre-re�ned CHs) are very encouraging. They suggest that the
re�nement step could speed up the computation of shortest paths, at the
cost of more pre-computation.

4.3 Breadth First Search

We compare the PR algorithm not only with Dijkstra's, but also with breadth
�rst search (BFS), an e�ective lower bound on the SSSP problem. Our BFS
routine is implemented in the usual way, with a FIFO queue [CLR90]. It �nds a

shortest path (in terms of number of edges) from the source to all other vertices,
and computes the lengths of such paths.

5 Experimental Set-up

Our main experimental platform was a SunBlade with a 400 MHz clock and
2GB DRAM and a small cache (.5 MB). The large main memory allowed us to
test graphs with millions of vertices. For comparison purposes we also ran our
code on selected inputs on the following machines.

1. PC running Debian Linux with a 731 MHz Pentium III processor and 255
MB DRAM.

2. SUN Ultra 60 with a 400 MHz clock, 256 MB DRAM, and a 4 MB cache.
3. HP/UX J282 with 180 MHz clock, 128 MB ECC memory.

5.1 Graph Classes

We ran both algorithms on the following classes of graphs.

Gn;m
The distribution Gn;m assigns equal probability to all graphs with m edges on n
labeled vertices (see [ER61,Bo85] for structural properties of Gn;m). We assign
edge-lengths identically and independently, using either the uniform distribution
over [0; 1), or the log-uniform distribution, where edge lengths are given the
value 2q, q being uniformly distributed over [0; C) for some constant C. We use
C = 100.

Geometric graphs

Here we generate n random points (the vertices) in the unit square and connect
with edges those pairs within some speci�ed distance. Edge-lengths correspond
to the distance between points. We present results for distance 1:5=

p
n, implying

an average degree � 9�=4 which is about 7.

Very sparse graphs

These graphs are generated in two stages: we �rst generate a random spanning
tree, to ensure connectedness, then generate an additional n=10 random edges.
All edges-lengths are uniformly distributed.

Grid graphs

In many situations the graph topology is not random at all but highly pre-
dictable. We examine two classes of grid graphs:

p
n � p

n square grids and
16� n=16 long grids, both with uniformly distributed edge-lengths [CGR96].

New graph classes. Random graphs can have properties that might actually
be improbable in real-world situations. For example, Gn;m almost surely pro-
duces graphs with low diameter, nice expansion properties, and very few small,
dense subgraphs [Bo85]. On the other hand, it may be that graph structure is
less crucial to the performance of shortest path algorithms than edge length
distribution. In the [PR02] algorithm for instance, all the random graph classes
described above look almost identical when viewed through the prism of the

component hierarchy. They generally produce short hierarchies, where nodes on
the lower levels have just a few children and upper level nodes have vast numbers
of children.

We introduce two classes of structured random graphs, Hierarchical and
Bullseye, whose component hierarchies are almost predetermined. Edge lengths
will be assigned randomly, though according to di�erent distributions depending
on how the edge �ts into the overall structure.

Hierarchical graphs

These graphs are organized into a hierarchy of clusters, where the lowest level
clusters are composed of vertices, and level i clusters are just composed of level
i � 1 clusters. A hierarchical graph is parameterized by the branching factor b
and is constructed so that the CH is almost surely a full b-ary tree of height
logb n. The graph density is also O(logb n). We present results for b = 6 and
b = 10.

Bullseye graphs

Bullseye graphs are parameterized by two numbers, the average degree d and
the number of orbits o. Such a graph is generated by dividing the vertices into
o groups of n=o vertices each (the orbits), and assigning dn=2o random edges
per orbit, plus a small number of inter-orbit edges to connect the orbits. Edge
lengths are assigned depending on the orbits of the endpoints. An intra-orbit
edge in orbit i, or an inter-orbit edge where i is the larger orbit is assigned
a length uniformly from [2i; 2i+1). The resulting component hierarchy is almost
surely a chain of o internal nodes, each with n=o leaf children. We present results
for o = 25 and o = 100 with average degree d = 3.

6 Results

The plots in Figures (a)-(j) give the running times of the two algorithms and
BFS on the SunBlade for each of the graph classes we considered. Each point in
the plots represents the time to compute SSSP/BFS, averaged over thirty trials
from randomly chosen sources, on three randomly chosen graphs from the class.
The y-axis is a measure of `microseconds per edge', that is, the time to perform
one SSSP/BFS computation divided by the number of edges.

In the plots, DIJ stands for the cost of computing SSSP using Dijkstra's
algorithm and PR-marg stands for the marginal cost of computing SSSP using
the Pettie-Ramachandran algorithm. By marginal cost for the PR algorithm, we
mean the time to compute SSSP after the CH is constructed, and excluding the

cost of computing the CH.

It is unclear how close a robust SSSP algorithm can get to the speed of BFS.
Our results show that on a variety of graph types the marginal cost of the PR
algorithm is very competitive with BFS, running between a factor of 1.87 and
2.77 times the BFS speed and usually less than 2.15 times BFS speed | see
Table 1, third row. Naturally there is always room for some improvement; the
question is, how much slack is there in the PR algorithm?

The e�ect of the CH pre-computation time is described in Table 1 and Figure
(k). Table 1 (�rst row) lists, for each class of graphs, the critical number of

0 3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

2
1
4

2
1
5

2
1
6

2
1
7

2
1
8

2
1
9

2
2
0

2
2
1

Microseconds per edge

N
u
m
b
e
r

o
f

e
d
g
e
s

G
n
,
m ,

m

=

3
n
/
2
,

u
n
i
f
o
r
m

e
d
g
e

w
e
i
g
h
t
s

(
S
u
n

B
l
a
d
e
)

D
I
J

P
R
-
m
a
r
g

B
F
S

(a
)

(b
)

0 2 4 6 8

1
0

1
2

1
4

2
1
4

2
1
5

2
1
6

2
1
7

2
1
8

2
1
9

2
2
0

2
2
1

Microseconds per edge

N
u
m
b
e
r

o
f

e
d
g
e
s

G
n
,
m ,

m

=

3
n
/
2
,

l
o
g
-
u
n
i
f
o
r
m

e
d
g
e

w
e
i
g
h
t
s

(
S
u
n

B
l
a
d
e
)

D
I
J

P
R
-
m
a
r
g

B
F
S

0 3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

3
0

3
3

3
6

3
9

4
2

2
1
4

2
1
5

2
1
6

2
1
7

2
1
8

2
1
9

2
2
0

2
2
1

2
2
2

Microseconds per edge

N
u
m
b
e
r

o
f

e
d
g
e
s

V
e
r
y

s
p
a
r
s
e

g
r
a
p
h
s

(
S
u
n

B
l
a
d
e
)

D
I
J

P
R
-
m
a
r
g

B
F
S

(c)

(d
)

0 2 4 6 8

2
1
5

2
1
6

2
1
7

2
1
8

2
1
9

2
2
0

2
2
1

Microseconds per edge

N
u
m
b
e
r

o
f

e
d
g
e
s

G
e
o
m
e
t
r
i
c

g
r
a
p
h
s
,

d
i
s
t

=

1
.
5
/
s
q
r
t
(
n
)

(
S
u
n

B
l
a
d
e
)

D
I
J

P
R
-
m
a
r
g

B
F
S

02468

1
0

1
2

1
4

1
6

2
1
5

2
1
6

2
1
7

2
1
8

2
1
9

2
2
0

2
2
1

2
2
2

Microseconds per edge

N
u
m
b
e
r

o
f

e
d
g
e
s

H
i
e
r
a
r
c
h
i
c
a
l

g
r
a
p
h
s
,

b
r
a
n
c
h
i
n
g

f
a
c
t
o
r

6

(
S
u
n

B
l
a
d
e
)

D
I
J

P
R
-
m
a
r
g

B
F
S

(e
)

(f
)

02468

1
0

1
2

1
4

1
6

1
8 2

1
4

2
1
5

2
1
6

2
1
7

2
1
8

2
1
9

2
2
0

2
2
1

2
2
2

Microseconds per edge

N
u
m
b
e
r

o
f

e
d
g
e
s

H
i
e
r
a
r
c
h
i
c
a
l

g
r
a
p
h
s
,

b
r
a
n
c
h
i
n
g

f
a
c
t
o
r

1
0

(
S
u
n

B
l
a
d
e
)

D
I
J

P
R
-
m
a
r
g

B
F
S

02468

1
0

1
2

1
4

1
6

2
1
4

2
1
5

2
1
6

2
1
7

2
1
8

2
1
9

2
2
0

2
2
1

Microseconds per edge

N
u
m
b
e
r

o
f

e
d
g
e
s

B
u
l
l
s
e
y
e

g
r
a
p
h
s
,

2
5

o
r
b
i
t
s

(
S
u
n

B
l
a
d
e
)

D
I
J

P
R
-
m
a
r
g

B
F
S

(g
)

(h
)

02468

1
0

2
1
4

2
1
5

2
1
6

2
1
7

2
1
8

2
1
9

2
2
0

2
2
1

Microseconds per edge

N
u
m
b
e
r

o
f

e
d
g
e
s

B
u
l
l
s
e
y
e

g
r
a
p
h
s
,

1
0
0

o
r
b
i
t
s

(
S
u
n

B
l
a
d
e
)

D
I
J

P
R
-
m
a
r
g

B
F
S

0 2 4 6 8

1
0

2
1
4

2
1
5

2
1
6

2
1
7

2
1
8

2
1
9

2
2
0

2
2
1

2
2
2

Microseconds per edge

N
u
m
b
e
r

o
f

e
d
g
e
s

G
r
i
d

g
r
a
p
h
s
,

s
q
r
t
(
n
)

x

s
q
r
t
(
n
)

(
S
u
n

B
l
a
d
e
)

D
I
J

P
R
-
m
a
r
g

B
F
S

(i)

(j)

0

0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

2
1
4

2
1
5

2
1
6

2
1
7

2
1
8

2
1
9

2
2
0

2
2
1

Microseconds per edge

N
u
m
b
e
r

o
f

e
d
g
e
s

G
r
i
d

g
r
a
p
h
s
,

1
6

x

n
/
1
6

(
S
u
n

B
l
a
d
e
)

D
I
J

P
R
-
m
a
r
g

B
F
S

0 5

1
0

1
5

2
0

2
5

2
1
4

2
1
5

2
1
6

2
1
7

2
1
8

2
1
9

2
2
0

2
2
1

Microseconds per edge

N
u
m
b
e
r

o
f

e
d
g
e
s

G
n
,
m ,

m

=

3
n
/
2
,

v
a
r
y
i
n
g

n
u
m
b
e
r

o
f

s
o
u
r
c
e
s

(
S
u
n

B
l
a
d
e
)

D
I
J

P
R
-
m
a
r
g

P
R
-
5

P
R
-
1
0

P
R
-
5
0

(k
)

(l)

0 5 10 15 20 25 30 35

2
14

2
15

2
16

2
17

Microseconds per edge

N
um

ber of edges

G
n,m

, m
 =

 3n/2, uniform
 edge w

eights: T
im

ing on different m
achines

D
IJ (H

P
/U

X
)

P
R

-m
arg (H

P
/U

X
)

D
IJ (S

un U
ltra)

P
R

-m
arg (S

un U
ltra)

D
IJ (Linux)

P
R

-m
arg (Linux)

234567

214
215

216
217

Microseconds per edge

N
um

be
r

of
 e

dg
es

G
n,

m
, m

 =
 3

n/
2,

 u
ni

fo
rm

 e
dg

e
w

ei
gh

ts

(o
n

in
t,

do
ub

le
 a

nd
 lo

ng
 d

ou
bl

e
-

Li
nu

x)

D
IJ

 (
lo

ng
 d

ou
bl

e)
D

IJ
 (

do
ub

le
)

D
IJ

 (
in

t)
P

R
-m

ar
g

 (
lo

ng
 d

ou
bl

e)
P

R
-m

ar
g

 (
do

ub
le

)
P

R
-m

ar
g

 (
in

t)

024681012

30
0k

50
0k

70
0k

90
0k

1.
1m

1.
3m

1.
5m

1.
7m

Microseconds per edge

N
um

be
r

of
 e

dg
es

G
n,

m
, 1

00
k

ve
rt

ic
es

, v
ar

yi
ng

 e
dg

e
de

ns
ity

 (
S

un
 B

la
de

)

D
IJ

P
R

-m
ar

g

(m
)

(n
)

048

1
2

1
6

2
1
4

2
1
5

2
1
6

2
1
7

2
1
8

2
1
9

2
2
0

Total number of additions and comparisons per edge

N
u
m
b
e
r

o
f

e
d
g
e
s

G
n
,
m
,

m

=

3
n
/
2
,

u
n
i
f
o
r
m

a
n
d

l
o
g
-
u
n
i
f
o
r
m

e
d
g
e

w
e
i
g
h
t
s

(
t
o
t
a
l

c
o
m
p
a
r
i
s
o
n
s

a
n
d

a
d
d
i
t
i
o
n
s
)

D
I
J

(
U
)

D
I
J

(
L
U
)

P
R
-
m
a
r
g

(
U
)

P
R
-
m
a
r
g

(
L
U
)

(o
)

sources s0 such that PR (including the cost of computing CH) outperforms
Dijkstra when SSSP is solved from at least s0 sources on a graph with 220

vertices. Figure (k) shows the amortized time per SSSP, including the cost of
computing the CH, for varying numbers of sources in the Gn;m graph class. Table
1 indicates that PR overtakes DIJ for a modest number of sources (on all but the
long grid graph class), and Figure (k) indicates that the pre-computation time
quickly becomes negligible as the number of sources increases. In Figure (k), the
line PR-i represents the amortized cost per source (including pre-computation)
when computing SSSP from i sources.

Gn;m Gn;m Sparse Geom. Hier. Hier. Bull. Bull. Grid Grid

(uniform) (log-uni.) b = 6 b = 10 o = 25 o = 100 (sq.) (long)

s0 3 21 3 17 4 4 4 7 10 n/a

CH/PR 5.05 11.75 4.38 8.48 10.1 9.6 5.33 6.11 7.85 82.66

PR/BFS 2.14 2.11 1.99 2.77 1.87 1.92 2.15 2.01 2.77 2.06

Table 1. First line: number of SSSP computations (s0) beyond which PR (including
cost of computing CH) outperforms Dijkstra. Second line: ratio of time to construct
the CH to the time for PR to perform one marginal SSSP computation. Third line:
ratio of time for PR to perform one marginal SSSP computation to time for one BFS
computation. These statistics reect graphs of 220 vertices.

Figures (a) and (b) show the marginal performance of the PR algorithm to
be stable over the uniform and log-uniform distributions. What is somewhat sur-
prising is that Dijkstra's algorithm is dramatically faster under the log-uniform
distribution (though still somewhat slower than the marginal performance of the
PR algorithm for the same class). We hypothesize that this e�ect is due to the
pairing heap. Recently, Iacono [Iac00] proved that the amortized complexity of
extract-min in a pairing heap is logarithmic in the number of operations since
the extracted item's insertion. Assigning edge lengths from the log-uniform dis-
tribution seems to cause Dijkstra's algorithm to visit vertices which were recently
inserted into the heap. An interesting experiment would be to use a heap less
sensitive to edge-length distribution, such as a binary heap. The plot for very
sparse graphs in Figure (c) shows a nice separation between the marginal cost
of the PR algorithm and the cost of Dijkstra's algorithm.

Figure (d), on geometric graphs, still shows the marginal cost of PR to be
faster than Dijkstra on all graphs tested, though the separation in running times
is not as dramatic as in Gn;m. We believe this is largely due to the density of the
graph (the average degree for the graphs tested in Figure (e) is over 7) and the
overhead for relaxing edges in PR, which is worse than in Dijkstra's algorithm.
Another factor which could be taken into account is the large diameter of the
geometric graphs, which is almost always
(

p
n).

We believe the near-linear marginal costs of PR on Hierarchical graphs (Fig-
ures (e) and (f)) are a good indication of how well the full PR algorithm [PR02]
could perform on all the graph classes. This is due to the structure of the com-
ponent hierarchy. The CH which is derived naturally from a Hierarchical graph
is very similar to the CH of any graph which is derived using the re�nement
step in [PR02, Sections 3 & 4]. The results for the Bullseye graphs are similar to

those for Gn;m for uniform and log-uniform distributions | DIJ performs better
when the number of orbits increases.

The only graph class for which Dijkstra's algorithm beat the marginal cost of
PR was the `long grid' [CGR96], shown in Figure (j). This is to be expected. At
any given moment in Dijkstra's algorithm the heap probably contains a constant
number of elements, hence the worst-case n logn term in Dijkstra's algorithm
never appears. The running times of the algorithms on long grids appear jumpy
because of some aberrant delays which a�ect a small portion of the SSSP/BFS
computations. In the case of square grids, Figure (i), Dijkstra's algorithm did
exhibit a super-linear running time. The grid topology of the graph did not seem
to have any unpredictable e�ect on either algorithm.

The results on the SUN Ultra 60, the Linux PC and the HP/UX machines are
similar (see �gure (l) for a comparison of runs on Gn;m with uniform distribution
of edge lengths), except that the runs are much faster on the Linux PC and
much slower on the HP machine. The Linux PC was also much more sensitive
to whether edge-lengths are integers, or oating points with double precision,
or oating points with quadruple precision (see Figure (m)). In contrast the
results on the SUN machines were virtually the same for integers and double-
precision oating points. Note that we needed to alter just one line of code
to move between ints, doubles, and long doubles. This is one advantage of the
comparison-addition model.

Figure (n) shows the change in running time of both algorithms as the num-
ber of edges is increased for a �xed number of vertices. This study was performed
on Gn;m with 100,000 vertices and with uniform distribution of edge lengths. Di-
jkstra's algorithm seems to converge to a linear running time as the edge density
increases. However, the �gure shows the marginal cost of the PR algorithm to
be slightly superior even for relatively large edge densities.

Finally in Figure (o) we plot the comparison-addition cost of our imple-
mentation of Dijkstra's algorithm and the comparison-addition marginal cost
of our implementation of the PR algorithm. The plots are for Gn;m with uni-
form and log-uniform edge length distribution. It is interesting to note that this
cost appears to be practically linear for both types of graphs for PR while it
is super-linear for DIJ. This plot once again shows up the signi�cantly better
performance of DIJ on log-uniform distribution over uniform distribution of edge
lengths. These results are, of course, speci�c to the design choices we made for
our implementations (in particular, the use of the pairing heap).

7 Discussion

We have implemented a simpli�ed version of the Pettie-Ramachandran shortest
path algorithm for undirected graphs and tested it against its chief competi-
tor: Dijkstra's algorithm. The evidence shows that the pre-computation time of
the PR algorithm is time well spent if we proceed to compute multiple-source
shortest paths from enough sources.

We did not compare our algorithm directly to any integer-based shortest
path algorithms, the focus of [CGR96,GS97,G01b], however we do compare it

against breadth �rst search, a practical lower bound on the shortest path prob-
lem. In Goldberg's [G01b] recent study, the best algorithms performed (roughly)
between 1.6 and 2.5 times the BFS speed,5 whereas the PR algorithm performed
1.87 to 2.77 times slower than BFS, a remarkable fact considering the algorithms
tested in [G01b] were speci�cally engineered for small integer edge lengths.

One issue we did not directly address is whether the PR algorithm's gain
in speed is due to caching e�ects, or whether it is genuinely performing fewer
operations than Dijkstra's algorithm. The data on comparison/addition oper-
ations6 versus running time data suggests that the cache miss-rate is roughly
equal in both Dijkstra's algorithm and the PR algorithm. We suspect that plug-
ging in a cache-sensitive heap, such as [S00], will a�ect the performance of both
algorithms similarly.

An open problem is to develop a shortest path algorithm for undirected
graphs which beats Dijkstra's when computing single-source shortest paths on
sparse graphs. We think the component hierarchy approach can lead to such an
algorithm (and a quali�ed success appears in [PR02]). However, the possibility of
a practical SSSP algorithm based on the component hierarchy is unlikely since it
requires computing the MST in advance, and the experimental results in [MS94]
suggest that the fastest method (in practice) for computing MST is the Prim-
Dijkstra algorithm | which is structured nearly identically to Dijkstra's SSSP
algorithm [Dij59].

It would be interesting to see if the performance of PR could be improved
by using the hierarchical bucketing structure (using only comparisons and addi-
tions) assumed in [PR02] rather than the pairing heap used in our experiments.
Very similar bucketing structures were used in two recent theoretical SSSP al-
gorithms [Mey01,G01], both with good average-case performance. Both assume
uniformly distributed edge lengths. An open question is whether either of these
algorithms work well in practice (and if they are competitive with [PR02]), and
how sensitive each is to edge-length distribution.

References

[AHU74] A. V. Aho, J. E. Hopcroft, J. D. Ullman. The Design and Analysis of Com-
puter Algorithms. Addison-Wesley, 1974.

[Bo85] B. Bollob�as. Random Graphs. Academic Press, London, 1985.

[CGR96] B. V. Cherkassky, A. V. Goldberg, T. Radzik. Shortest paths algorithms:
Theory and experimental evaluation. In Math. Prog. 73 (1996), 129-174.

[CLR90] T. Cormen, C. Leiserson, R. Rivest. Intro. to Algorithms. MIT Press, 1990.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs. In Numer.
Math., 1 (1959), 269-271.

[ER61] P. Erd�os, A. R�enyi On the evolution of random graphs. Bull. Inst. Internat.
Statist. 38, pp. 343{347, 1961.

5 Goldberg implements his BFS with the same data structures used in one of the
algorithms, which, if slower than the usual BFS, would bias the timings.

6 The number of comparisons/additions in PR and DIJ closely correspond to the total
number of operations.

[F76] M. Fredman. New bounds on the complexity of the shortest path problem.
SIAM J. Comput. 5 (1976), no. 1, 83{89.

[F+86] M. L. Fredman, R. Sedgewick, D. D. Sleator, R. E. Tarjan. The pairing heap:
A new form of self-adjusting heap. In Algorithmica 1 (1986) pp. 111-129.

[FT87] M. L. Fredman, R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. In JACM 34 (1987), 596{615.

[G85] H. N. Gabow. A scaling algorithm for weighted matching on general graphs. In
Proc. FOCS 1985, 90{99.

[G01] A. Goldberg. A simple shortest path algorithm with linear average time. In-
terTrust Technical Report STAR-TR-01-03, March 2001.

[G01b] A. Goldberg. Shortest path algorithms: engineering aspects. ISSAC 2001.
[GS97] A. Goldberg, C. Silverstein. Implementations of Dijkstra's algorithm based on

multi-level buckets. Network optimization (1997), Lec. Not. Econ. Math. Syst.
450, 292{327.

[Hag00] T. Hagerup. Improved shortest paths on the word RAM. In Proc. ICALP
2000, LNCS volume 1853, 61{72.

[Iac00] J. Iacono. Improved upper bounds for pairing heaps. Algorithm theory|SWAT
2000 (Bergen), LNCS vol. 1851, 32{45,

[Jak91] H. Jakobsson, Mixed-approach algorithms for transitive closure. In Proc. ACM
PODS, 1991, pp. 199-205.

[Jar30] V. Jarn��k. O jist�em probl�emu minim�aln��m. Pr�aca Moravsk�e P�r��rodov�edeck�e
Spole�cnosti 6 (1930), 57{63, in Czech.

[KKP93] D. R. Karger, D. Koller, S. J. Phillips. Finding the hidden path: time bounds
for all-pairs shortest paths. SIAM J. on Comput. 22 (1993), no. 6, 1199{1217.

[KS98] S. Kolliopoulos, C. Stein. Finding real-valued single-source shortest paths in
o(n3) expected time. J. Algorithms 28 (1998), no. 1, 125{141.

[McG91] C. C. McGeoch. A new all-pairs shortest-path algorithm. Tech. Report 91-30
DIMACS, 1991. Also appears in Algorithmica, 13(5): 426-461, 1995.

[MN99] K. Mehlhorn, S. N�aher. The LEDA Platform of Combinatorial and Geometric
Computing. Cambridge Univ. Press, 1999.

[Mey01] U. Meyer. Single source shortest paths on arbitrary directed graphs in linear
average-case time. In Proc. SODA 2001, 797{806.

[MT87] A. Mo�at, T. Takaoka. An all pairs shortest path algorithm with expected
time O(n2 log n). SIAM J. Comput. 16 (1987), no. 6, 1023{1031.

[MS94] B. M. E. Moret, H. D. Shapiro. An empirical assessment of algorithms for
constructing a minimum spanning tree. In DIMACS Series on Discrete Math.
and Theor. CS, 1994.

[PR00] S. Pettie, V. Ramachandran. An optimal minimum spanning tree algorithm.
In Proc. ICALP 2000, LNCS volume 1853, 49{60. JACM, to appear.

[PR02] S. Pettie, V. Ramachandran. Computing shortest paths with comparisons and
additions. In Proc. SODA '02, January 2002, to appear.

[S00] P. Sanders. Fast priority queues for cached memory. J. Experimental Algorithms
5, article 7, 2000.

[Tak92] T. Takaoka. A new upper bound on the complexity of the all pairs shortest
path problem. Inform. Process. Lett. 43 (1992), no. 4, 195{199.

[Tho99] M. Thorup. Undirected single source shortest paths with positive integer
weights in linear time. J. Assoc. Comput. Mach. 46 (1999), no. 3, 362{394.

[Tho01] M. Thorup. Quick k-median, k-center, and facility location for sparse graphs.
In Proc. ICALP 2001, LNCS Vol. 2076, 249{260.

[Z01] U. Zwick. Exact and approximate distances in graphs { a survey. In Proc. 9th
ESA (2001), 33{48. Updated copy at http://www.cs.tau.ac.il/~zwick

