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Abstract

Let mcm(m,n) and mwm(m,n,N) be the complexities of computing a maximum cardinality matching and
a maximum weight matching, and let mcmbi,mwmbi be their counterparts for bipartite graphs, where m,n,
and N are the edge count, vertex count, and maximum integer edge weight. Kao, Lam, Sung, and Ting [1]
gave a general reduction showing mwmbi(m,n,N) = O(N ·mcmbi(m,n)) and Huang and Kavitha [2] recently
proved the analogous result for general graphs, that mwm(m,n,N) = O(N ·mcm(m,n)).

We show that Gabow’s mwmbi and mwm algorithms from 1983 and 1985 [3, 4] can be modified to replicate
the results of Kao et al. and Huang and Kavitha, but with dramatically simpler proofs. We also show that
our reduction leads to new bounds on the complexity of mwm on sparse graph classes, e.g., (bipartite) planar
graphs, bounded genus graphs, and H-minor-free graphs.
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1. Introduction

We are given an integer-weighted graph G = (V,E, w) and asked to find a maximum weight matching
(mwm), that is, a set of vertex-disjoint edges M for which

∑
e∈M w(e) is maximized. This problem is distinct

from, but closely related to, the problem of finding a maximum (or minimum) weight perfect matching
(mwpm), in which all vertices are matched. There are simple reductions between these two problems (see [5,
6]) showing that mwm(m,n,N) = O(mwpm(2m + n, 2n, N)) and mwpm(m,n,N) = O(mwm(m,n, nN)).
Note that the first reduction preserves the graph parameters but the second blows up the maximum edge
weight.

The complexity of the mwm and mwpm problems depend on the graph density, the relative sizes of N and
n, the exponent ω of square matrix multiplication, the word size w = Ω(log n), and the complexity of maxi-
mum cardinality matching (mcm). For both bipartite and general graphs we have mcm(m,n),mcmbi(m,n) =
O(m

√
n log(n2/m)

log n ) (deterministically) and O(nω) (randomized) [7–11].1. Furthermore, on bipartite graphs
mcmbi(m,n) = O(n2 + n5/2/w) (deterministically) [18], which is faster on dense graphs with w = ω(log n).
The running times of the best weighted matching algorithms are given below. See [6] for a more detailed
discussion of these and other matching algorithms. The citations [19–21] are integer priority queues, which
can be used to efficiently implement the Hungarian algorithm.
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1Note that the first bound improves on the older O(m

√
n)-time algorithms of Hopcroft and Karp [12], Dinic and Karzanov [13,

14], Micali and Vazirani [15, 16], and Gabow and Tarjan [17] only when m = n2−o(1).
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mwmbi(m,n,N) =



O(mn + n2 log log n) (indep. of N) [19, 20]
O(mn) (rand., indep. of N) [21]
O(m

√
n log N) [5, 6]

O(Nnω) (rand.) [22]
O(N ·mcmbi(m,n)) [1]

=


O(N ·m

√
n log(n2/m)

log n )
O(N · (n2 + n5/2/w))
O(N · nω) (rand.)

[9]
[18]
[10]

mwpmbi(m,n,N) =


O(mn + n2 log log n) (indep. of N) [19, 20]
O(mn) (rand., indep. of N) [21]
O(m

√
n log(nN)) [5, 6, 8, 23, 24]

O(Nnω) (rand.) [22]

mwm(m,n,N) =



O(mn + n2 log n) (indep. of N) [25]
O(m

√
n log n log(nN)) [17]

O(N ·mcm(m,n)) [2]

=

{
O(N ·m

√
n log(n2/m)

log n )
O(Nnω) (rand.)

[7]
[10, 11]

mwpm(m,n,N) =
{

O(mn + n2 log n) (indep. of N) [25]
O(m

√
n log n log(nN)) [17]

In the mid-1980s Gabow introduced the scaling technique to the weighted matching problem and gave
mwpm algorithms for both bipartite [3] and general graphs [4] running in O(mn3/4 log N) time. In a generally
overlooked passage [3, pp. 159–160] Gabow noted that his mwpmbi algorithm for bipartite graphs could be
modified to solve mwmbi in O(Nm

√
n) time, and stated without proof that the same bound could be obtained

for mwm on general graphs. Using a rather different approach, Kao et al. [1] proved that mwmbi could be
solved with N black-box applications of a bipartite maximum cardinality matching algorithm. This improved
on Gabow’s algorithm2 when the graph is somewhat dense. Very recently Huang and Kavitha [2] generalized
Kao et al.’s reduction to general graphs.

New Results. In this paper we provide a simplified presentation of Gabow’s original algorithms and show
that they can be expressed as reductions from mwm/mwmbi to N executions of mcm/mcmbi. The resulting
algorithms and proofs of correctness are dramatically simpler than those of Kao et al. [1] and Huang and
Kavitha [2]. Our reduction (and those of [1, 2]) also work on all minor-closed graph classes. Together with
the cardinality matching algorithms of Mucha and Sankowski [26], Yuster and Zwick [27], and Borradaile
et al. [28], our reduction yields new mwm algorithms running in time O(N · nω/2) on bounded genus and
planar graphs, O(N · n3ω/(3+ω)) on H-minor-free graphs, and O(N · n log3 n) on bipartite planar graphs.

2. Preliminaries

2.1. The Maximum Weight Matching LP
Let Vodd be the set of all odd-size subsets of V (G). Edmonds [29, 30] proved that the basic solutions

to the following LPs are integral. More specifically, if M is a mwm and x its incidence vector (x(e) = 1 if

2Kao et al. do not cite Gabow’s O(Nm
√

n)-time algorithm. They compare their time bound of N · mcmbi(m, n) against
Gabow and Tarjan’s bound of O(m

√
n log(nN)).
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e ∈M , 0 if e 6∈M) then x is optimal for (1):

maximize
∑

e∈E(G)

w(e)x(e)

subject to 0 ≤ x(e) ≤ 1 ∀e ∈ E(G)∑
e=(u,u′)∈E(G)

x(e) ≤ 1 ∀u ∈ V (G) (1)

∑
e=(u,v) : u,v∈B

x(e) ≤ (|B| − 1)/2 ∀B ∈ Vodd

The dual of (1) is given below, where y : V (G)→ R and z : Vodd → R are the dual variables for vertices and
odd sets.

minimize
∑

u∈V (G)

y(u) +
∑

B∈Vodd

z(B)(|B| − 1)/2

subject to yz(e) ≥ w(e) ∀e ∈ E(G)
y(u) ≥ 0 ∀u ∈ V (G) (2)
z(B) ≥ 0 ∀B ∈ Vodd

where, by definition, yz(u, v) def= y(u) + y(v) +
∑

B∈Vodd : u,v∈B

z(B)

2.2. Matchings and Blossoms
An alternating path or cycle w.r.t. a matching M is one whose edges alternate between M and E(G)\M .

An alternating path is augmenting if it begins and ends at free vertices. If M is a matching and P an
augmenting path, M ⊕ P = (M\P ) ∪ (P\M) is a matching with |M ⊕ P | = |M |+ 1.

Blossoms are formed inductively as follows. A trivial blossom consists of a singleton vertex set {v} and
no edges. Suppose A0, . . . , A`−1 are vertex sets containing blossoms EA0 , . . . , EA`−1 . If there exist edges
e0, . . . , e`−1 where ei ∈ Ai × Ai+1 (modulo `) and ei ∈ M if and only if i is odd, then B =

⋃
0≤i<` Ai is a

vertex set containing the blossom EB =
⋃

0≤i<` EAi
∪ {e0, . . . , e`−1}. The unique unmatched vertex in EB

is called the base of B. See Figure 1 for an example. Matching algorithms usually maintain a dynamically
changing matching M together with a hierarchically nested set Ω of weighted blossoms (those assigned non-
zero z-values). We say M respects Ω if for each B ∈ Ω, |EB ∩M | = (|B|−1)/2. Note that the graph induced
by B generally contains more edges than EB .

The blossom set Ω is represented as a forest of rooted trees. Leaves correspond to trivial blossoms
(vertices) and root blossoms are those not contained in any other blossom. Using the terminology above, if
B is a node with children A0, . . . , A`−1, B stores a pointer to the child containing the base of B and each
node Ai keeps a pointer to the successor edge ei ∈ Ai ×Ai+1. We often refer to a blossom by its vertex set,
e.g., B ∈ Ω asserts that some blossom EB on B ⊆ V is in Ω.

Blossoms can often be treated like single vertices. Let G/Ω be the graph obtained by contracting all root
blossoms in Ω. Observe that if M is a matching in G, M/Ω is also a matching in G/Ω. If P ′ is an augmenting
path in G/Ω then P ′ extends to an augmenting path P in G, that is, P is obtained by substituting a path
through EB for each non-trivial root blossom B in P ′. Furthermore, the augmented matching M ⊕ P still
respects Ω, though augmentation can change the bases of some blossoms in Ω. See Figure 1.

Property 2.1 lists the standard complementary slackness invariants for mwm, which are maintained
throughout the algorithm described in Section 3.

Property 2.1. Recall that yz(u, v) = y(u) + y(v) +
∑

B∈Vodd : u,v∈B z(B) is defined to be the dual of edge
(u, v). Let M be a matching respecting Ω.
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Figure 1: Matched edges in M are thick and dashed, unmatched edges thin. A blossom B1 = (u1, u2, B4, u10, B3, B2, u19)
contains blossoms B2 = (u18, u16, u17), B3 = (u11, u12, u13, u14, u15) and B4 = (u3, u4, B5, u8, u9), which contains
the blossom B5 = (u5, u6, u7). Augmenting along the path (u21, u20, B1, u22) in G/B1, corresponding to the path
(u21, u20, u1, u2, u3, u9, u8, u7, u6, u5, u4, u22) in G, repositions the bases of B1 and B4 to u4, and the base of B5 to u7.

1. Non-negativity. All y- and z-values are non-negative. The set Ω consists of nested blossoms, and
includes all blossoms with non-zero z-values. Root blossoms in Ω have non-zero z-values, though
non-root blossoms may have zero z-values.

2. Domination. yz(e) ≥ w(e) for all e ∈ E(G).
3. Tightness. If e ∈M ∪

⋃
B∈Ω EB then yz(e) = w(e).

4. Free vertices. The y-values of free vertices are equal and strictly less than all matched vertices.

Lemma 2.2 is well known. See [6] for a short proof of it and related statements.

Lemma 2.2. If Property 2.1 holds for a matching M and the y-values of free vertices are zero, then M is
a maximum weight matching.

3. A Maximum Weight Matching Algorithm

What follows is a simplified presentation of Gabow’s algorithm [3, 4], using the notation and terminology
from [6].

Initialization. Initially M and Ω are empty and y(u) = N/2 for all u ∈ V (G). This clearly satisfies Prop-
erty 2.1: the non-negativity, domination, and free vertex conditions are immediate and the tightness condition
is vacuous. Let Gtight = (V,Etight) be the tight subgraph, where Etight = {e ∈ E(G) | yz(e) = w(e)}. By
Property 2.1, M ∪

⋃
B∈Ω EB ⊆ Etight. Note that after initialization all edges with weight N are tight.

After initialization we repeatedly execute Augmentation, Blossom Formation, Dual Adjustment, and
Blossom Dissolution steps until the y-values of free vertices are zero. This requires exactly N iterations.
Figure 2 illustrates steps of Augmentation and Blossom Formation.

Augmentation. Extend M to a maximum cardinality matching in Gtight respecting Ω, that is, matched
vertices must remain matched. This is tantamount to extending M/Ω to a maximum cardinality matching
on Gtight/Ω. The matched edges inside a blossom are determined by the matching on Gtight/Ω.
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Blossom Formation. Let Vout ⊆ V (Gtight/Ω) be the vertices of Gtight/Ω reachable from free vertices by
even-length alternating paths and let Vin ⊆ V (Gtight/Ω)\Vout be the non-Vout vertices reachable from free
vertices by odd-length alternating paths. Let Ω′ be a maximal set of possibly nested blossoms on Vout,
that is, if (u, v) ∈ E(Gtight/Ω) and u, v ∈ Vout then u and v must belong to a common blossom in Ω′. Set
z(B)← 0 for all B ∈ Ω′ and set Ω← Ω ∪ Ω′.

Dual Adjustment. Let V̂in, V̂out ⊆ V (G) be original vertices represented by vertices (that is, root blossoms)
in Vin and Vout. The y- and z-values for some vertices and root blossoms are adjusted:

y(u)← y(u)− 1/2, for all u ∈ V̂out.

y(u)← y(u) + 1/2, for all u ∈ V̂in.

z(B)← z(B) + 1, for all root blossoms B ∈ Ω with B ⊆ V̂out.

z(B)← z(B)− 1, for all root blossoms B ∈ Ω with B ⊆ V̂in.

Blossom Dissolution. After Dual Adjustment some root blossoms may have zero z-values. Remove such
blossoms from Ω as long as they exist. Note that non-root blossoms can have zero z-values and should not
be removed.

The Blossom Dissolution step can be implemented in O(n) time by traversing the forest representing Ω,
repeatedly removing roots whose z-values are zero.

The correctness of the algorithm follows from the fact that Property 2.1 is maintained after every iteration;
see [6, Lemmas 3–5] for a short proof.3 Note that the Blossom Dissolution step is critical. If this step is not
performed then the z-values of blossoms may become negative in a subsequent Dual Adjustment step, which
would not allow us to apply Lemma 2.2.

Since free vertices have their y-values decremented by 1/2 in each iteration, there are exactly N iterations
until their y-values are zero. By Lemma 2.2 the resulting matching is a maximum weight matching. It is
crucial that matched vertices do not become unmatched in the Augmentation step, for otherwise free vertices
will not have equal and minimal y-values.

3.1. Implementation and Efficiency
The Blossom Formation step is easy to implement in O(m) time using depth first search.4 The Dual

Adjustment and Blossom Dissolution steps are easy to implement in O(m) time. For the latter, we process
the forest representing Ω, repeatedly removing roots with zero z-values.

We can implement the Augmentation step using any maximum cardinality matching algorithm in a black-
box fashion. First, find a maximum cardinality matching M ′ of Gtight respecting Ω, in O(mcm(m,n)) time.
(I.e., find a maximum cardinality matching of Gtight/Ω and extend it to a maximum cardinality matching
of Gtight.) The graph M ′ ⊕ M consists of even-length alternating cycles, even-length alternating paths
(connecting a free vertex w.r.t. M to a free vertex w.r.t. M ′) and odd-length augmenting paths w.r.t. M .
Let P ⊆ M ′ ⊕M be the union of the augmenting paths. We set M ← M ⊕ P . It follows that M is now a
maximum cardinality matching respecting Ω and that matched vertices remain matched after augmentation.

Clearly mcm(m,n) = Ω(m). Thus, the dominant cost in this algorithm is the N applications of some
mcm algorithm. Of course, if the original graph is bipartite then we never have to consider blossoms and
can instead use any mcmbi algorithm in the Augmentation step. Theorem 3.1 follows.

3The proof is merely a case analysis, the cases of which depend on whether zero, one, or both endpoints of an edge e are
in V̂out ∪ V̂in, whether e is in M or not, and whether e is tight or not. The only subtlety of the proof is this. It is conceivable
that before Dual Adjustment (u, v) 6∈ M is not tight and yz(u, v) = w(u, v) + 1/2. If both u and v are in V̂out then both will
have their y-values decremented and yz(u, v) will be w(u, v)−1/2 after Dual Adjustment, violating domination. This situation,
however, cannot happen. The y-values of all vertices reachable from free vertices have the same parity (as a multiple of 1/2) so

if u, v ∈ V̂out and (u, v) is not tight then yz(u, v) ≥ w(e) + 1.
4The complications of blossom manipulation in other matching algorithms (e.g., [3, 17, 25, 31, 32]) arise from the need to

interleave graph searching and dual adjustments and to detect augmenting paths. However, the Blossom Formation step in this
algorithm makes no dual adjustments and, by definition, cannot find an augmenting path in the tight subgraph.
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Theorem 3.1. mwm(m,n,N) = O(N ·mcm(m,n)) and mwmbi(m,n,N) = O(N ·mcmbi(m,n)). According
to the known bounds on mcmbi and mcm [7, 9–11, 18], both mwm(m,n,N) and mwmbi(m,n,N) are O(N ·
m
√

n log(n2/m)
log n ) (determistically) and O(N · nω) (randomized, w.h.p.) and, furthermore, mwmbi(m,n,N) =

O(N · (n2 + n5/2/w)) (deterministically).

Theorem 3.1 is only superior to the recent O(m
√

n log N)-time mwmbi algorithm of [6] when the graph
is very dense, but it is superior to the O(m

√
n log n log(nN))-time mwm algorithm of [17] both when the

graph is dense and when N = o(log3/2 n).
Call a class C of graphs good if it is closed under taking subgraphs, and, if C does not consist solely of

bipartite graphs, if it is also closed under taking minors. We have actually shown that mwmC(m,n,N) =
O(N · mcmC(m,n)), where mwmC and mcmC are the complexities of the problems on any good C. This
follows from the fact that G ∈ C implies Gtight/Ω ∈ C as well. Our reduction, together with existing
algorithms for good graph classes [26–28] gives a number of new bounds on the complexity of mwm. Mucha
and Sankowski [26] showed that mcm can be solved in O(nω/2) time in general planar graphs. Yuster and
Zwick [27] generalized this algorithm to graphs of bounded genus, and gave a new O(n3ω/(3+ω))-time mcm
algorithm for H-minor free graphs. Very recently Borradaile, Klein, Mozes, Nussbaum, and Wulff-Nilsen [28]
gave an O(n log3 n)-time mcm algorithm for bipartite planar graphs. At the time of their publication, all
of the algorithms cited above improved on the standard Õ(n3/2)-time algorithms. Theorem 3.2 follows
immediately.

Theorem 3.2. mwmplanar(n, N),mwmlow-genus(n, N) = O(N ·nω/2), mwmminor-free(n, N) = O(N ·n3ω/(3+ω)),
and mwmbi-planar(n, N) = O(N · n log3 n).

4. Conclusion

We have given simple reductions from maximum weight matching to maximum cardinality matching,
though the loss in efficiency is linear in the maximum edge weight N . Is it possible to improve the dependence
on N while still using cardinality matching algorithms in a similar black-box fashion? Is there an efficient
reduction from maximum weight perfect matching to maximum cardinality matching?
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