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ABSTRACT
The Lovász Local Lemma (LLL), introduced by Erdős and

Lovász in 1975, is a powerful tool of the probabilistic method
that allows one to prove that a set of n “bad” events do not
happen with non-zero probability, provided that the events
have limited dependence. However, the LLL itself does not
suggest how to find a point avoiding all bad events. Since the
work of Beck (1991) there has been a sustained effort to find
a constructive proof (i.e. an algorithm) for the LLL or weaker
versions of it. In a major breakthrough Moser and Tardos
(2010) showed that a point avoiding all bad events can be
found efficiently. They also proposed a distributed/parallel
version of their algorithm that requires O(log2 n) rounds of
communication in a distributed network.

In this paper we provide two new distributed algorithms
for the LLL that improve on both the efficiency and simplic-
ity of the Moser-Tardos algorithm. For clarity we express
our results in terms of the symmetric LLL though both al-
gorithms deal with the asymmetric version as well. Let p
bound the probability of any bad event and d be the max-
imum degree in the dependency graph of the bad events.
When epd2 < 1 we give a truly simple LLL algorithm run-
ning in O(log1/epd2 n) rounds. Under the tighter condition
ep(d + 1) < 1, we give a slightly slower algorithm running
in O(log2 d · log1/ep(d+1) n) rounds. Furthermore, we give
an algorithm that runs in sublogarithmic rounds under the
condition p ·f(d) < 1, where f(d) is an exponential function
of d. Although the conditions of the LLL are locally verifi-
able, we prove that any distributed LLL algorithm requires
Ω(log∗ n) rounds.

In many graph coloring problems the existence of a valid
coloring is established by one or more applications of the
LLL. Using our LLL algorithms, we give logarithmic-time
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distributed algorithms for frugal coloring, defective color-
ing, coloring girth-4 (triangle-free) and girth-5 graphs, edge
coloring, and list coloring.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Com-

plexity]: Nonnumerical Algorithms and Problems—com-
putations on discrete structures; G.2.2 [Discrete Mathe-
matics]: Graph Theory—network problems
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1. INTRODUCTION
Consider a system P of independent random variables and

a set A of n bad events, where each A ∈ A depends solely
on some subset vbl(A) ⊆ P. For example, in a hypergraph
2-coloring instance, P represents the vertex colors and A the
events in which an edge is monochromatic. The dependency
graph GA = (A, {(A,B) | vbl(A) ∩ vbl(B) 6= ∅}) includes
edges between events if and only if they depend on at least
one common variable. Let Γ(A) be A’s neighborhood in GA
and Γ+(A) = Γ(A)∪{A} be its inclusive neighborhood. The
(general, asymmetric) LLL states [11, 31] that if there is a
function x : A → (0, 1) such that

Pr(A) ≤ x(A) ·
∏

B∈Γ(A)

(1− x(B))

then Pr(
⋂
A∈AA) > 0, that is, there is a satisfying assign-

ment to the underlying variables in which no bad events
occur. The symmetric LLL is a useful corollary of the gen-
eral LLL. If p and d are such that Pr(A) ≤ p and |Γ(A)| ≤ d
for all A, and ep(d + 1) < 1, then Pr(

⋂
A∈AA) > 0. For

example, consider a hypergraph in which each edge contains
k vertices and intersects at most d < 2k−1/e−1 other edges.
Under a uniformly random color assignment P → {red,blue}
the probability an edge is monochromatic is p = 2−(k−1), so
ep(d + 1) < 1. The symmetric LLL proves the existence of
a satisfying color assignment but does not yield an efficient
algorithm to find one. Beginning with Beck [7], a long line
of research has sought to find efficient (and ideally determin-
istic) algorithms for computing satisfying assignments [7, 1,
19, 9, 32, 22, 23, 24, 8, 12, 14, 25]. Most of these results
required a major weakening of the standard symmetric LLL
constraint ep(d+ 1) < 1. In many applications we consider,



the bad events are that the sum of dΘ(1) random variables
deviates away from its expectation. So the probability they
are violated is often bounded by Chernoff-type tail bounds,
e.g. exp(−dΘ(1)).

In a relatively recent breakthrough, Moser and Tardos [24]
gave an algorithmic proof of the general asymmetric LLL,
with no weakening of the parameters. Their algorithm is
simple though the analysis is not trivial. At initialization
the algorithm chooses a random assignment to the variables
P. Call an event A ∈ A violated if it occurs under the
current assignment to the variables. Let F ⊆ A be the set
of violated events. The algorithm repeatedly chooses some
A ∈ F and resamples the variables in vbl(A), until F = ∅.

The Distributed LLL Problem.
We consider Linial’s LOCAL model [26] of distributed com-

putation in which the distributed network is identical to the
dependency graph. In other words, each node A ∈ A hosts
a processor, which is aware of n, the degree bound d, and
its neighborhood Γ(A). Computation proceeds in synchro-
nized rounds in which each node may send an unbounded
message to its neighbors. Time is measured by the number
of rounds; computation local to each node is free. Upon ter-
mination each node A must commit to an assignment to its
variables vbl(A) that is consistent with its neighbors, i.e.,
the nodes must collectively agree on a satisfying assignment
to P avoiding all bad events. We consider the LOCAL model
because we will need to send the assignment of vbl(A) in one
message, which can be large.

Moser and Tardos proposed a parallel version of their re-
sampling algorithm (Algorithm 1), which can easily be im-
plemented in the LOCAL model. Let GF be the graph in-
duced by the violated events F under the current variable
assignment. They proved that O(log1/ep(d+1) n) iterations
of Algorithm 1 suffice to avoid all bad events with probabil-
ity 1−1/ poly(n), i.e., O(logn) iterations suffice if ep(d+ 1)
is bounded away from 11. (For the sake of a simpler pre-
sentation we shall state many results in the symmetric LLL
language. Our algorithms and Moser-Tardos work for the
asymmetric LLL as well.) Moser and Tardos suggested us-
ing Luby’s randomized MIS algorithm [18], which runs in
Θ(logn) rounds w.h.p. (which can also be achieved by [2]),
for a total running time of Θ(logn · log1/ep(d+1) n). This
is, intuitively, a very wasteful LLL algorithm since nodes
spend nearly all their time computing MISs rather than per-
forming resampling steps. For certain values of d the run-
ning time can be improved by plugging in an MIS algorithm
running in O(d + log∗ n) time [5] or O(log d ·

√
logn) time

w.h.p. [6].2 However, it is not possible to find an MIS in con-
stant time. Kuhn et al. [15] gave an Ω(min{log d,

√
logn})

lower bound on the complexity of MIS and other symmetry-
breaking problems.

New Results.
We give a new distributed LLL algorithm in the Moser-

Tardos resampling framework that avoids the computation
of MISs altogether. Due to its simplicity we are happy to
display the algorithm in its entirety. We assume that nodes

1Note that log1/ep(d+1) n could be sublogarithmic or super-

logarithmic depending on how close ep(d+ 1) is to 0 or 1.
2These MIS algorithms are significantly more complex than
Luby’s and use larger messages.

Initialize a random assignment to the variables P.
while F 6= ∅ do

Compute a maximal independent set I in GF .
Resample each variable in vbl(I) =

⋃
A∈I vbl(A).

end while

Algorithm 1: The Moser-Tardos Parallel Resampling Algo-
rithm. Here F is the set of bad events occurring under the current
variable assignment and GF is the dependency graph induced by
F .

possess unique IDs, which could be assigned in an adversarial
manner. Let ΓF (A) be A’s neighborhood in GF .

Initialize a random assignment to the variables P

while F 6= ∅ do
Let I = {A ∈ F | ID(A) = min{ID(B) | B ∈ Γ+

F (A)}}
Resample vbl(I) =

⋃
A∈I vbl(A).

end while

Algorithm 2: A Simple Distributed LLL Algorithm

One can see that I is computed in one round: each node A
tells its neighbors whether A ∈ F under the current variable
assignment. Once A receives messages from all neighbors
it can determine if ID(A) is a local minimum in GF . We
prove that under the slightly stronger criterion epd2 < 1,
this algorithm halts in O(log1/epd2 n) steps w.h.p. Most ap-

plications of the LLL satisfy the epd2 < 1 criterion, though
not all. We give another distributed LLL algorithm in the
resampling framework that finds a satisfying assignment in
O(log2 d · log1/ep(d+1) n) time under the usual ep(d+ 1) < 1
criterion.

We show that faster algorithms exist when the condition
ep(d+1) < 1 is replaced by a stronger condition p ·f(d) < 1,
where f(d) is a faster growing function than e(d+ 1). How-
ever, it is not clear whether there exists f(d) so that the LLL
can be solved in sublogarithmic time in n, independent of d.
Moser and Tardos observed that any parallel algorithm in
the resampling framework requires Ω(log1/p n) resampling
steps, even if the dependency graph has no edges. We com-
bine the resampling framework with a locality approach to
give an O(logn/ log log n) algorithm for an exponential func-
tion f(d). On the other hand, we prove that no constant
time distributed LLL algorithm exists and that the LLL for
any f(d) requires Ω(log∗ n) time.

New Applications.
Existential results in graph coloring [20] (those taking the

Rödl nibble approach) can often be phrased as distributed
algorithms in which each step succeeds with some tiny but
non-zero probability, as guaranteed by the LLL. By using
our distributed LLL algorithms we are able to solve a num-
ber of graph coloring problems in O(logn) time or faster.3

Some of these applications require minor changes to existing

3SupposeH is both the distributed network and the graph to
be colored. When invoking the LLL, the dependency graph
GA is not identical to H. Typically bad events in A are
associated with H-vertices and two bad events are adjacent
in GA only if the corresponding vertices are at distance O(1)
in H. Thus, a distributed LLL algorithm for GA can be
simulated in H with an O(1) slowdown.



algorithms while others are quite involved. Below ∆ is the
maximum degree, and ε > 0 an arbitrarily small parameter.

Frugal Coloring A k-frugal vertex coloring is one in which
each color appears at most k times in the neighbor-
hood of any vertex. Pemmaraju and Srinivasan [27]
showed the existence of (∆ + 1)-colorings that are
O(log2 ∆/ log log ∆)-frugal, and proved that (log ∆ ·
logn/ log log n)-frugal colorings could be computed in
O(logn) time. With some modifications to their proof
we show that a O(log2 ∆/ log log ∆)-frugal (∆ + 1)-
coloring can be computed in O(logn) time. Notice
that the best existential bound on the frugality for
(∆ + 1)-coloring is O(log ∆/ log log ∆) by Molloy and
Reed [21].

Hind et al. [13] showed there exist β-frugal, O(∆
1+ 1

β )-
colorings by using the asymmetric LLL. We show how
to turn their proof into a distributed algorithm that
runs in O(logn · log2 ∆) time.

Girth 4 and 5 In prior work [28] we proved that triangle-
free graphs have (4 + ε)∆/ ln ∆-colorings and gave

O(log1+o(1) n) time algorithms for (4 + ε)∆/ ln ∆-
coloring triangle-free graphs and (1 + ε)∆/ ln ∆-
coloring girth-5 graphs. Here we prove that both prob-
lems can be solved in O(logn) time.

Edge Coloring Dubhashi et al. [10] gave a (1 + ε)∆ edge-
coloring algorithm running in O(logn) time, provided

that ∆ = (logn)1+Ω(1) is sufficiently large relative to
n. We give a logarithmic time algorithm for the same
problem that works for any ∆ > ∆ε, where ∆ε is a
sufficiently large constant depending on ε.

List-Coloring Suppose each vertex is issued a list of (1 +
ε)D > Dε colors such that each color appears in at
most D lists in the neighborhood of any vertex, where
Dε is a sufficiently large constant depending on ε. (D
need not be close to the degree ∆.) Reed and Sudakov
[29] proved that (1 + ε)D-list-colorings exist. We show
how to construct them in O(logD+logD n+log logD ·
logn/D1/2) = O(logn) time. Significant modifications
are needed to adapt their approach to a distributed
network. Furthermore, for any D and any constant
ε > 0, we show that (2e + ε)D list coloring can be
solved in O(logn) time.

Defective Coloring An f -defective coloring is one in
which a vertex may share its color with up to f neigh-
bors. Barenboim and Elkin [4], and implicitly, Kuhn
and Wattenhofer [16] gave an O(1) time procedure
to compute a O(logn)-defective O(∆/ logn)-coloring.
We prove that for any f = Ω(log ∆), an f -defective
O(∆/f)-coloring can be computed in O((logn)/f)
time.

2. PRELIMINARIES
Let Γr(A) be the r-neighborhood of A (the set of nodes

at distance at most r from A, excluding A) and Γr+(A) =
Γr(A) ∪ {A} be its inclusive r-neighborhood. A node set in
the subscript indicates a restriction of the neighborhood to
that set, e.g., Γ2+

F (A) = Γ2+(A) ∩ F .
Consider an execution of a Moser-Tardos-type resampling

algorithm. Let C : N → A be such that C(i) is the ith

event selected by the algorithm for resampling; C is called
the record of the execution. (If the algorithm selects events
in independent batches then the events in each batch can
be listed arbitrarily.) A witness tree τ = (T, σT ) is a finite
rooted tree where σT : V (T ) → A labels each vertex in T
with an event such that the children of u ∈ T receive labels
from Γ+(σT (u)). A 2-witness tree τ = (T, σT ) is defined in
the same way except that the children of u ∈ T may receive
labels from Γ2+(σT (u)). A witness tree (or 2-witness tree)
is proper if the children of a vertex receive distinct labels.

Given a record C, the witness tree τC(t) is constructed
as follows. First, create a root node labelled C(t). Looking
backward in time, for each i = t− 1, t− 2, . . . , 1, check if an
existing node is labeled with an event from Γ+(C(i)). If so,
let u be one of the deepest such nodes. Create a new node v
labeled C(i) and make it a child of u. Given a witness tree
τ , we say τ occurs in C if there exists an index t such that
τC(t) = τ . Moser and Tardos proved the following lemma:

Lemma 2.1. Let τ be a fixed witness tree and C be the
record produced by the algorithm.

1. If τ occurs in C, then τ is proper.

2. The probability that τ appears in C is at most∏
v∈V (τ) Pr(σT (v)).

Similarly, for r ≥ 2, we can define an r-witness tree τrC(t) in
the same way except that in each step we attach a node
labelled C(i) to the deepest node among nodes labelled
Γr+(C(i)). Also, we say τ r-occurs in C if there exists t ∈ N
such that τrC(t) = τ . Then Lemma 2.1 holds analogously:

Lemma 2.2. Let τ be a fixed r-witness tree and C be the
record produced by the algorithm.

1. If τ r-occurs in C, then τ is proper.

2. The probability that τ appears in C is at most∏
v∈V (τ) Pr(σT (v)).

3. DISTRIBUTED CONSTRUCTIVE
LOVÁSZ LOCAL LEMMA

Recall that the parallel/distributed Moser-Tardos algo-
rithm iteratively selects maximal independent sets (MIS) of
violated events for resampling. They proved that if there is
some slack in the general LLL preconditions then the algo-
rithm terminates in O(logn) rounds of MIS.

Theorem 3.1. (Moser and Tardos) Let P be a finite set
of mutually independent random variables in a probability
space. Let A be a finite set of events determined by these
variables. If there exists an assignment of reals x : A →
(0, 1) such that

∀A ∈ A : Pr(A) ≤ (1− ε)x(A)
∏

B∈Γ(A)

(1− x(B)),

then the probability any bad event occurs after k resampling

rounds of Algorithm 1 is at most (1− ε)k
∑
A∈A

x(A)
1−x(A)

.

In other words, if x(A) is bounded away from 1 then
O(log 1

1−ε
n) resampling rounds suffice, w.h.p. A dis-

tributed implementation of this algorithm takes O(log 1
1−ε

n·
MIS(n, d)), where d is the maximum degree of GA and
MIS(n, d) is the time needed to find an MIS in an n-
vertex degree-d graph. It is known that MIS(n, d) =



Ω(min{
√

logn, log d}) [15]. Our algorithms avoid the com-
putation of MISs. In Section 3.1 we analyze the simple dis-
tributed LLL algorithm presented in the introduction, which
requires slightly weakening the general LLL conditions. In
Section 3.2 we present an algorithm that works for the stan-
dard LLL conditions but is slower by a O(log2 d) factor.

3.1 A Simple Distributed Algorithm
Recall that in each round of Algorithm 2, a violated event

A ∈ F is selected for resampling if ID(A) is a local mini-
mum in the violated subgraph GF . In order to analyze this
algorithm in the witness-tree framework we must establish
some connection between the depth of witness trees and the
number of rounds of resampling. Lemma 3.2 will let us make
such a connection.

Lemma 3.2. Suppose an event A is resampled in round
j > 1 of Algorithm 2. There must exist some B ∈ Γ2+(A)
resampled in round j − 1.

Proof. Let F ′ and F be the violated event sets just be-
fore and after the resampling step at round j − 1. If A is
not in F ′ but is in F then its variables vbl(A) must have
been changed in round j−1, which could only occur if some
B ∈ Γ(A) were resampled. Now suppose A is in both F ′
and F . It was not resampled in round j − 1 but was in
round j, meaning ID(A) is not a local minimum in ΓF′(A)
but is a local minimum in ΓF (A). This implies that some
neighbor B ∈ Γ(A) with ID(B) < ID(A) is in F ′ but not F ,
which could only occur if some C ∈ Γ+(B) ⊆ Γ2+(A) were
resampled in round j − 1.

We can now proceed to bound the number of rounds of
Algorithm 2 needed to find a satisfying assignment.

Theorem 3.3. (Asymmetric LLL) Let P be a finite set
of mutually independent random variables in a probability
space. Let A be a finite set of events determined by these
variables. If there exists an assignment of reals x : A →
(0, 1) such that

∀A ∈ A : Pr(A) ≤ (1− ε)x(A)
∏

B∈Γ2(A)

(1− x(B)),

then the probability any bad event occurs after k resampling

rounds of Algorithm 2 is at most (1− ε)k
∑
A∈A

x(A)
1−x(A)

.

Note the difference with Theorem 3.1 is that the product is
over all B ∈ Γ2(A) not B ∈ Γ(A).

Corollary 3.4. (Symmetric LLL) Let P be a finite set
of mutually independent random variables in a probability
space. Let A be a finite set of events determined by these
variables, such that for ∀A ∈ A

1. Pr(A) ≤ p < 1, and

2. A shares variables with at most d of the other events.

If epd2 < 1, then w.h.p. none of the bad events occur after
O(log 1

epd2
n) rounds of Algorithm 2.

Proof. Setting x(A) = 1/d2 and ε = 1−epd2 in Theorem
3.3, we have

(1− ε)x(A)
∏

B∈Γ2(A)

(1− x(B)) ≥ 1− ε
d2

(1− 1/d2)|Γ
2(A)|

≥ 1− ε
d2

(1− 1/d2)(d2−1) ≥ 1− ε
ed2

≥ p ≥ Pr(A).

Therefore, the probability a bad event occur after k rounds

of resampling is at most (1 − ε)k
∑
A∈A

x(A)
1−x(A)

= (1 −
ε)kn/(d2 − 1), which is 1/ poly(n) if k = O(log 1

1−ε
n) =

O(log 1
epd2

n).

Following Moser and Tardos [24], we analyze the following
Galton-Watson process for generating an r-witness tree and
prove the following lemma. See Appendix B for the proof.

Lemma 3.5. If for all A ∈ A, we have Pr(A) ≤ (1 −
ε)x(A) ·

∏
B∈Γr(A)(1 − x(B)), then the probability that any

r-witness tree of size at least k occurs is at most (1 − ε)k ·∑
A∈A

x(A)
1−x(A)

.

Let C be the record of Algorithm 2 and Sj be the segment
of the record corresponding to resamplings in round j. The
following lemma relates the number of resampling rounds
with the occurence of 2-witness trees.

Lemma 3.6. If there is still a violated event after k re-
sampling rounds in Algorithm 2 then some 2-witness tree of
size at least k occurs in C.

Proof. Let Ak be any event in Sk and t be its position in
the record C. By Lemma 3.2 there exist events Ak−1, . . . , A1

in Sk−1, · · · , S1 such that for all j < k, Aj ∈ Γ2+(Aj+1).
This implies that Ak−1, . . . , A1 are mapped to distinct nodes
in the 2-witness tree τC(t), whose root is labeled Ak.

Therefore, by Lemma 3.6, if there is a violated event after
k resampling rounds, then a 2-witness tree of size at least
k occurs. However, by Lemma 3.5, it happens with proba-

bility at most (1 − ε)k ·
∑
A∈A

x(A)
1−x(A)

. Thus, Theorem 3.3

holds. Note that if x(A) is bounded away from 1, then after
O(log 1

1−ε
n) rounds, w.h.p. no bad event occurs.

3.2 Resampling by Weak MIS
In this section we analyze the efficiency of Moser and Tar-

dos’s Algorithm 1 when a new weak MIS procedure (Al-
gorithm 3) is used in lieu of an actual MIS. The Weak-
MIS procedure produces, in O(log2 d) time, an indepen-
dent set S such that the probability that a node is not in
Γ+(S) = S ∪ Γ(S) is 1/poly(d). The procedure consists of
O(log d) iterations where the probability that a vertex avoids
Γ+(S) is constant per iteration. Each iteration consists of
log d phases where, roughly speaking, the goal of phase i is
to eliminate vertices with degree at least d/2i with constant
probability. Each phase is essentially one step of Luby’s
MIS algorithm, though applied only to a judiciously chosen
subset of the vertices. See Algoirthm 3.

Our main results are as follows.

Theorem 3.7. (Assymmetric LLL) Let P be a finite set
of mutually independent random variables in a probability
space. Let A be a finite set of events determined by these
variables. If there exists an assignment of reals x : A →
(0, 1) such that

∀A ∈ A : Pr(A) ≤ (1− ε)x(A)
∏

B∈Γ(A)

(1− x(B)),

then the probability any bad event occurs after k resampling
rounds using the Weak-MIS algorithm is at most n( 1

d+1
)k +

(1− ε)k/2
∑
A∈A

x(A)
1−x(A)

.



Corollary 3.8. (Symmetric LLL) Let P be a finite set
of mutually independent random variables in a probability
space. Let A be a finite set of events determined by these
variables, such that for ∀A ∈ A,

1. Pr(A) ≤ p < 1, and

2. A shares variables with at most d of the other events.

If ep(d + 1) < 1, then w.h.p. none of the bad events occur
after O(max(logd+1 n, log 1

ep(d+1)
n)) Weak-MIS resampling

rounds.

Corollary 3.8 follows directly by plugging in x(A) = 1/(d+
1) for all A ∈ A and k = O(max(logd+1 n, log 1

ep(d+1)
n)).

Notice that if 1
ep(d+1)

> d+1, we can apply the faster simple

distributed algorithm, so the running time in Corollary 3.8
will be dominated by O(log 1

ep(d+1)
n · log2 d).

S ← ∅
for iteration 1 . . . , t = 4e2 ln(2e(d+ 1)4) do
G′ ← GF \ Γ+(S)
for phase i = 1 . . . dlog de do
Vi ← {v ∈ G′ | degG′(v) ≥ d/2i}.
For each vertex v ∈ G′, set b(v) = 1 with probability

pi = 1/( d
2i−1 + 1) and 0 otherwise.

For each vertex v ∈ G′, if b(v) = 1 and b(w) = 0 for all
w ∈ ΓG′(v), then set S ← S ∪ {v}.

G′ ← G′ \ (Γ+(S)∪Vi) (i.e., remove both Γ+(S) and Vi
from G′.)

end for
Let S′ be the (isolated) vertices that remain in G′.
Set S ← S ∪ S′

end for
return S

Algorithm 3: Weak-MIS

Consider the first iteration of the Weak-MIS algorithm.
For each phase i, G′ is the subgraph of GF containing ver-
tices with degree at most d/2i and not adjacent to the in-
dependent set S. Let Vi = {v ∈ G′ | degG′(v) ≥ d/2i}.
Note that every vertex in GF must end up isolated in S′

or one of the Vi’s. Let (u, v) be an edge in G′. Following
Peleg’s analysis [26], define E(u,w) to be the event that at
phase i, b(u) = 0 and b(w) = 1 and for all other neighbors
x of u and w, b(x) = 0. Define E(u) =

⋃
w∈ΓG′ (u) E(u,w)

to be the event that exactly one neighbor joins S in this
phase. Since these events are disjoint, we have Pr(E(u)) =∑
w∈ΓG′ (u) Pr(E(u,w)).

Lemma 3.9. If v ∈ Vi, then Pr(E(u)) ≥ 1
4e2

.

Proof. Pr(E(u,w)) ≥ pi(1 − pi)
degG′ (u)+degG′ (w) ≥

pi(1 − pi)
2d/2i−1

≥ pie
−2. Since degG′(u) ≥ d/2i,

Pr(E(u)) ≥ d
2i
pie
−2 ≥ 1

4e2

Therefore, if v ∈ GF \Γ+(S) at the beginning of iteration
l, the probability that v ∈ Γ+(S) at the end of iteration l
is at least 1/(4e2). We say a vertex in GF fails if, after all
t = 4e2 ln(2e(d+ 1)4) iterations, it is still not in Γ+(S).

Lemma 3.10. Let S be an independent set selected by
Weak-MIS. If v ∈ F then Pr(Γ+(v) ∩ S = ∅) ≤ 1

2e(d+1)4
.

Proof. By Lemma 3.9, the probability that v survives
iteration ` conditioned on it surviving iterations 1 through
` − 1 is at most 1 − 1/(4e2). Over t = 4e2 ln(2e(d + 1)4

iterations the probability of failure is at most (1−1/(4e2))t ≤
e− ln(2e(d+1)4) = 1

2e(d+1)4
.

The next step is to relate the number of rounds of Weak-
MIS resampling with the size of witness trees.

Lemma 3.11. Suppose a bad event is violated after k
rounds of Weak-MIS resampling and the maximum depth
of the witness trees is t, then there exists a sequence of not
necessarily distinct vertices v1, . . . , vk such that the following
hold:

(1) vi ∈ Gi, where Gi is the violated subgraph GF the be-
ginning of round i.

(2) vi+1 ∈ Γ+(vi) for 1 ≤ i ≤ k − 1.

(3) For at least k − t indices 1 < l ≤ k, vl failed in the call
to Weak-MIS in round l − 1.

Proof. For 1 ≤ i ≤ k, let Si be the segment of the record
C corresponding to events resampled at round i. Suppose
that an event A is violated after k resampling rounds. Build
a witness tree τ with root labeled A, adding nodes in the
usual fashion, by scanning the record C in time-reversed
order. For each j, in decreasing order, attach a node labelled
C(j) to the deepest node in τ whose label is in Γ+(C(j)),
if such a node in τ exists. Let vk+1 = A. We will build
vk, vk−1, . . . , v1 in backward manner. For k ≥ i ≥ 1, we
claim there is an event vi ∈ Γ+(vi+1) such that either vi ∈ Si
or vi ∈ Gi and vi failed at round i. If vi+1 6∈ Gi is not
violated at the beginning of round i, then it must be the case
that there exists an event vi ∈ Γ+(vi+1) resampled at round
i to cause vi+1 ∈ Gi+1. On the other hand, if vi+1 ∈ Gi
is violated at the beginning of round i, then either there
exists vi ∈ Γ+(vi+1) resampled at round i or vi+1 failed at
round i. In the latter case, we let vi = vi+1. Notice that
τ (excluding its artificial root labeled A) is a witness that
occured and thus has depth at most t. Since in each of the
k rounds, either the depth of our witness tree grows or a
vertex is failed, at least k − t vertices must have failed in
their respective rounds.

Notice that the total possible number of sequences satis-
fying (2) in Lemma 3.11 is at most n(d + 1)k−1. Given a
sequence of vertices P = (v1, . . . , vk) satisfying (2), define

X
(i)
P to be 1 if vi ∈ Gi and vi failed, 0 otherwise. Let XP =∑k
i=1 X

(i)
P . If a sequence satisfying (1–3) occured, then there

exists P such that XP ≥ k − t. Since X
(1)
P , . . . , X

(i−1)
P

are determined by S1, . . . , Si−1 and G1, . . . , Gi−1, E(Xi
P |

X1, . . . , Xi−1) = E(Xi
P | S1, . . . , Si−1, G1, . . . , Gi−1) ≤ q

def
=

1
2e(d+1)4

by Lemma 3.10. Fixing t = k/2, we have k − t =

k/2 = kq · e(d + 1)4 ≤ E[XP ] · e(d + 1)4. By Corollary A.4
(Conditional Chernoff Bound):

Pr(XP ≥ k/2) ≤

(
ee(d+1)4−1

(e(d+ 1)4)e(d+1)4

) k
2e(d+1)4

≤
(

1

(d+ 1)2

)k
.



By the union bound over all possible P satsfying (2), the
probability that any such sequence in Lemma 3.11 occurs is
at most

n (d+ 1)k−1 ·
(

1

(d+ 1)2

)k
≤ n ·

(
1

d+ 1

)k
.

Moser and Tardos showed that the probability that any
witness tree of size at least t occurs is at most (1 −
ε)t
∑
A∈A

x(A)
1−x(A)

. Thus, either a witness tree of depth at

least t = k/2 occurs or there exists a sequence of ver-
tices (as in Lemma 3.11) such that t − k = k/2 of them
failed. The probability either of these occurs is at most

n ·
(

1
d+1

)k
+ (1− ε)k/2

∑
A∈A

x(A)
1−x(A)

by the union bound.

3.3 A Sublogarithmic Algorithm
We have seen a faster algorithm for LLL when the general

condition ep(d + 1) < 1 is replaced by a stronger condition
p · f(d) < 1, where f(d) is a faster growing function than
e(d+ 1). The question of how fast we can do for a stronger
condition arises. Does there exists a sublogarithmic algo-
rithm for faster growing f(d), independent of n? We answer
this affirmatively for an exponential function of d.

Inspired by [3], our approach is a two-stage approach. In
the first stage, we run Algorithm 2 for k rounds. Then we
identify the dangerous events, who are likely to become vio-
lated if some subset of its neighbors are resampled. We will
show there is a feasible solution by re-assigning the variables
belonging to dangerous events. Moreover, we show the com-
ponents induced by the dangerous events are likely to have
weak diameter at most k. The weak diameter of a compo-
nent is the maximum distance w.r.t. the original graph of
any pair in the component. In the second stage, each com-
ponent computes the answer independent of others in time
proportional to its weak diameter.

Consider an event A. Let P1(A), P2(A) be probabilities
such that P1(A)P2(A) = 2d · Pr(A). Given an assignment
of the random variables, we say A is dangerous w.r.t. the
current assignment if resampling of some subset of neighbors
causes A to become violated with probability more than
P2(A). We will show that the probability for A to become
dangerous is at most P1(A).

Given that P2(A) is small enough for all A ∈ A, we can
find a feasible solution by resassiging the variables belonging
to the dangerous vertices. Also, given that P1(A) is small
enough, we will show that the weak diameter of each com-
ponent after the first stage is at most k w.h.p. We explain
the idea roughly. If we build a 2-witness tree rooted at a
dangerous vertex after the first stage, the 2-witness tree has
size at least k. If there exists a path consisting of danger-
ous vertices of length k after the first stage, we will show
the union of the witness trees rooted at these vertices has
size at least Ω(k log k). Then, we will glue them together
into a 3-witness tree. By choosing k = Θ(logn/ log logn),
we would have a 3-witness tree with size Θ(logn), which
does not occur w.h.p. We defer the proof for the following
theorem and corollary to the full version.

Theorem 3.12 (Asymmetric LLL). Let Pr(A) ≤
P2(A) ≤ 1 and P1(A) = 2d · Pr(A)

P2(A)
, where d is the maximum

degree of the dependency graph. If there exists an assgiments
of reals x1, x2 : A → (0, 0.99] such that for all A ∈ A

1. P1(A) ≤ (1− ε)x1(A)
∏
B∈Γ3(A)(1− x1(B))

2. P2(A) ≤ x2(A)
∏
B∈Γ(A)(1− x2(B))

then the LLL problem can be solved in

O
(

log1/(1−ε) n/ log log1/(1−ε) n
)

rounds.

Corollary 3.13 (Symmetric LLL). Suppose that
for all A ∈ A, Pr(A) ≤ p and A is dependent with at most
d other events in A. Let z = 4ep2dd4. If z < 1, then a sat-
isfying assignment can be found in O(log1/z n/ log log1/z n)
rounds.

3.4 Lower Bound
Linial [17] proved that in an n-vertex ring, any distributed

(log(k) n)-coloring algorithm requires Ω(k) rounds of com-
munication, even if randomization is used. In particular,
O(1)-coloring a ring requires Ω(log∗ n) time. We prove that
Linial’s lower bound implies that even weak versions of the
Lovász Local Lemma cannot be computed in constant time.

Theorem 3.14. Let P, A, and GA be defined as usual.
Let d be the maximum degree of any vertex in GA, p =
maxA∈A Pr(A) be the maximum probability of any bad event,
and f : N → N be an arbitrarily quickly growing function,
where f(d) ≥ e(d+ 1). If p ·f(d) < 1 then Pr(

⋂
A∈AA) > 0.

However, Ω(log∗ |A|) rounds of communication are required
for the vertices of GA to agree on a point in

⋂
A∈AA.

The purpose of the function f is to show that our lower
bound is insensitive to significant weakening of the standard
criterion “ep(d+ 1) < 1.” We could just as easily substitute

ee
d

p < 1 or any similar criterion, for example.

Proof. Consider the following coloring procedure. Each
vertex in an n-vertex ring selects a color from {1, . . . , c}
uniformly at random. An edge is bad if it is monochromatic,
an event that holds with probability p = 1/c. Let A be the
dependency graph for these events having maximum degree
d = 2 and choose c to be (the constant) f(2) + 1, for any
quickly growing function f . It follows from the LLL that a
good c-coloring exists since p · f(2) < 1. However, by [17],
the vertices of GA require Ω(log∗ n − log∗ c) = Ω(log∗ n)
time to find a good c-coloring.

It is also possible to obtain conditional lower bounds
on distributed versions of the LLL. For example, the
best known randomized O(∆)-coloring algorithm takes
exp(O(

√
log log n)) time [6], though better bounds are pos-

sible if ∆ � logn [30]. If LLL could be solved in less than
exp(O(

√
log log n)) time then we could improve on [6], as

follows. Each vertex in G selects a color from a palette of
size c ≥ 2e∆ uniformly at random. As usual, an edge is
bad if it is monochromatic. The dependency graph of these
bad events corresponds to the line graph of G, which has
maximum degree d = 2∆ − 2. Since e(1/c)(d + 1) < 1, a
valid coloring can be found with one invocation of an LLL
algorithm.

4. APPLICATIONS
The Lovász Local Lemma has applications in many col-

oring problems, such as list coloring, frugal coloring, total
coloring and coloring triangle-free graphs [20]. We give a
few examples of constructing these colorings distributively.
In these applications, the existential bounds are usually



achieved by the so called “Rödl Nibble” method or the semi-
random method. The method consists of one or more iter-
ations. Each iteration is a random process and some local
properties are maintained in the graph. The properties de-
pend on the randomness within a constant radius. Each
property is associated with a bad event, which is the event
that the property fails to hold. The Lovász Local Lemma
can then be used to show the probability none of the bad
events hold is positive, though it may be exponentially small
in the size of the graph. This probability can then be am-
plified in a distributed fashion using a Moser-Tardos-type
resampling algorithm. Notice that we will need to find an
independent set (e.g., an MIS or Weak-MIS or set of events
with locally minimal IDs) in the dependency graph induced
by the violated local properties. Since we assumed the LO-
CAL model, the violated local properties can be identified in
constant time and the algorithms for MIS/Weak-MIS can be
simulated with a constant factor overhead, where each prop-
erty is taken care by one of the processors nearby (within
constant distance). The important point here is that the
dependency graph and the underlying distributed network
are sufficiently similar so that distributed algorithms on one
topology can be simulated on the other with O(1) slowdown.

Most applications of the LLL demand epd2 < 1 or even
weaker bounds. In this case, the efficient simple distributed
algorithm can be applied. (The local properties are often
that some quantities do not deviate too much from their
expectations. Thus, the the failure probability of each lo-
cal property is often bounded via standard Chernoff-type
concentration inequalities.)

In the following, we present the distributed defective col-
oring and the frugal coloring algorithms. The other applica-
tions mentioned in the introduction will be deferred to the
full version due to the page limit.

4.1 Distributed Defective Coloring
We begin with a simple single-iteration application that

uses the local lemma. Given a k-coloring φ : V →
{1, 2, . . . , k}. Define defφ(v) to be the number of neigh-
bors w ∈ N(v) such that φ(v) = φ(w). φ is said to be
f -defective if maxv defφ(v) ≤ f . Barenboim and Elkin ([4],
Open Problem 10.7) raised the problem of devising an ef-
ficient distributed algorithm for computing an f -defective
O(∆/f)-coloring. Here we extend one of their procedures for
obtaining a O(logn)-defective O(∆/ logn)-coloring to ob-
taining an f -defective O(∆/f)-coloring in O(logn/f) time
w.h.p., for f ≥ 7 + 28 ln ∆. Suppose each vertex colors itself
with a color selected from {1, 2, . . . , d2∆/fe} uniformly at
random. For every v ∈ N(u), let Xv be 1 if v is colored the
same as u, 0 otherwise. Let X =

∑
v∈Γ(u) Xv denote the

number of neighbors colored the same as v. Let Au denote
the bad event that X > f at u. Clearly, whether Au occurs
is locally checkable by u in a constant number of rounds.
Moreover, the event Au only depends on the the random
choices of u’s neighbors. If Au occured and is selected for
resampling, the colors chosen by Au and its neighbors will
be resampled. The dependency graph GA has maximum de-
gree d = ∆2, because two events share variables only if they
are within distance two. Now we will calculate the probabil-
ity that Au occurs. If we expose the choice of u first, then
Pr(Xv = 1) ≤ f/(2∆) and it is independent among other
v ∈ N(u). Letting M = f/2, we have E[X] ≤ f/2 = M .
By Corollary A.3 (a useful form of the Chernoff Bound),

Pr(X > f) ≤ e−f/6. Let Au denote the bad event that

X > f at u. Therefore, epd2 ≤ e−(f/6−1−4 ln ∆) ≤ e−(f/42),
since f ≥ 7 + 28 ln ∆. By using the simple distributed algo-
rithm, it takes O(log1/epd2 n) = O(logn/f) rounds to avoid
the bad events w.h.p.

4.2 Distributed Frugal Coloring
A β-frugal coloring of a graph G is a proper vertex-

coloring of G such that no color appears more than β times
in any neighborhood. Molloy and Reed [20] showed the fol-
lowing by using an asymmetric version of the local lemma:

Theorem 4.1. For any constant integer β ≥ 1, if G has
maximum degree ∆ ≥ ββ then G has a β-frugal proper vertex

coloring using at most 16∆
1+ 1

β colors.

Here we outline their proof and show how to turn it into a
distributed algorithm that finds such a coloring in O(logn ·
log2 ∆) rounds. If β = 1, then simply consider the square
graph of G, which is obtained by adding the edges between
vertices whose distance is 2. A proper coloring in the square
graph is a 1-frugal coloring in G. Since the square graph has
maximum degree ∆2, it can be (∆2 + 1)-colored by simulat-
ing distributed algorithms for (∆ + 1)-coloring.

For β ≥ 2, let k = 16∆
1+ 1

β . Suppose that each vertex
colors itself with one of the k colors uniformly at random.
Consider two types of bad events. For each edge uv, the
Type I event Au,v denotes that u and v are colored the
same. For each subset {u1, . . . , uβ+1} of the neighborhood of
a vertex, Type II event Au1,...,uβ+1 denotes that u1, . . . , uβ+1

are colored the same. If none of the events occur, then the
random coloring is a β-frugal coloring. For each Type I
event Au,v, Pr(Au,v) is at most 1/k. For each Type II event
Au1,...,uβ+1 , Pr(Au1,...,uβ+1) ≤ 1/kβ . For each bad event A,
let x(A) = 2 Pr(A). Notice that x(A) ≤ 1/2, we have:

x(A)
∏

B∈Γ(A)

(1− x(B)) ≥ x(A)
∏

B∈Γ(A)

exp (−x(B) · 2 ln 2)

{(1− x) ≥ e−x·2 ln 2 for x ≤ 1/2}

= x(A) exp

−2 ln 2 ·
∑

B∈Γ(A)

2 Pr(B)


Since A shares variables with at most (β+1)∆ Type I events
and (β + 1)∆

(
∆
β

)
Type II events,

∑
B∈Γ(A)

Pr(B) ≤ (β + 1)∆ · 1

k
+ (β + 1)∆

(
∆

β

)
· 1

kβ

<
(β + 1)∆

k
+

(β + 1)∆β+1

β!kβ

=
β + 1

16∆
1
β

+
β + 1

β!(16)β

< 1/8 (for ∆ ≥ ββ and β ≥ 2)

Therefore,

x(A)
∏

B∈Γ(A)

(1− x(B)) ≥ x(A) exp

(
− ln 2

2

)
=
√

2 Pr(A).

By letting 1 − ε = 1/
√

2 in Theorem 3.7, we need at most
O(log√2 n) rounds of weak MIS resampling. In each re-
sampling round, we have to identify the bad events first.



Type I events Au,v can be identified by either u or v in con-
stant rounds, where ties can be broken by letting the node
with smaller ID check it. If {u1, . . . , uβ+1} is in the neigh-
borhood of u, then the Type II event Au1,...,uβ+1 will be
checked by u. If {u1, . . . , uβ+1} is in the neighborhood of
multiple nodes, we can break ties by letting the one hav-
ing the smallest ID to check it. All Type II events in the
neighborhood of u can be identified from the colors selected
by the neighbors of u. Next we will find a weak MIS in-
duced by the bad events in the dependency graph. Each
node will simulate the weak MIS algorithm on the events it
is responsible to check. Each round of the weak MIS al-
gorithm in the dependency graph can be simulated with
constant rounds. The maximum degree d of the depen-
dency graph is O((β+1)∆

(
∆
β

)
). Therefore, we need at most

O(logn · log2 d) = O(logn · log2 ∆) rounds, since β is a con-
stant and (β + 1)∆

(
∆
β

)
≤ (β + 1)∆β+1 = poly(∆).

4.2.1 β-frugal, (∆ + 1)-coloring
The frugal (∆ + 1)-coloring problem for general graphs is

studied by Hind et al. [13], Pemmaraju and Srinivasan [27],
and Molloy and Reed [21]. In particular, the last one gave
an upper bound of O(log ∆/ log log ∆) on the frugality of
(∆ + 1)-coloring. This is optimal up to a constant factor,
because it matches lower bound of Ω(log ∆/ log log ∆) given
by Hind et al. [21]. However, it is not obvious whether it can
be implemented efficiently in a distributed fashion, because
they used a structural decomposition computed by a sequen-
tial algorithm. Pemmaraju and Srinivasan [27] showed an
existential upper bound of O(log2 ∆/ log log ∆). Further-
more, they gave a distributed algorithm that computes an
O(log ∆· logn

log logn
)-frugal, (∆+1)-coloring in O(logn) rounds.

We show how to improve it to find a O(log2 ∆/ log log ∆)-
frugal, (∆+1)-coloring also in O(logn) rounds. They proved
the following theorem:

Theorem 4.2. Let G be a graph with maximum vertex
degree ∆. Suppose that associated with each vertex v ∈ V ,
there is a palette P (v) of colors, where |P (v)| ≥ deg(v) + 1.
Furthermore, suppose |P (v)| ≥ ∆/4 for all vertices v in G.
Then, for some subset C ⊆ V , there is a list coloring of the
vertices in C such that:

(a) G[C] is properly colored.

(b) For every vertex v ∈ V and for every color x, there are
at most 9 · ln ∆

ln ln ∆
neighbors of v colored x.

(c) For every vertex v ∈ V , the number of neighbors of v

not in C is at most ∆(1− 1
e5

) + 27
√

∆ ln ∆.

(d) For every vertex v ∈ V , the number of neighbors of v in

C is at most ∆
e5

+ 27
√

∆ ln ∆.

They showed by iteratively applying the theorem for
O(log ∆) iterations, an O(log2 ∆/ log log ∆)-frugal, (∆ + 1)-
coloring can be obtained. Let Gi be the graph after round i
obtained by deleting already colored vertices and ∆i be the
maximum degree of Gi. The palette P (u) for each vertex u
contains colors that have not been used by its neighbors. It
is always true that |P (v)| ≥ deg(v) + 1. Notice that to ap-
ply Theorem 4.2, we also need the condition |P (v)| ≥ ∆/4.
The worst case behavior of ∆i and pi is captured by the

recurrences:

∆i+1 = ∆i(1−
1

e5
) + 27

√
∆i ln ∆i

pi+1 = pi −
∆i

e5
− 27
√

∆i ln ∆i. (1)

They showed the above recurrence can be solved to obtain
the following bounds on ∆i and pi:

Lemma 4.3. Let α = (1 − 1/e5). There is a constant C
such that for all i for which ∆i ≥ C, ∆i ≤ 2∆0α

i and
pi ≥ ∆0

2
αi.

Therefore, |P (v)| ≥ ∆/4 always holds. The two assumptions
of Theorem 4.2 are always satisfied and so it can be applied
iteratively until ∆i < C, which takes at most log1/α

(
2∆0
C

)
=

O(log ∆) iterations. Since each iteration introduces at most
O(log ∆/ log log ∆) neighbors of the same color to each ver-
tex, the frugality will be at most O(log2 ∆/ log log ∆). In
the end, when ∆i < C, one can color the remaining graph
in O(∆i + log∗ n) time using existing (∆i + 1)-coloring al-
gorithms [5]. This will only add O(1) copies of each color
to the neighborhood, yielding a O(log2 ∆/ log log ∆)-frugal,
(∆ + 1)-coloring. In order to make it suitable for our sim-
ple distributed algorithm and achieve the running time of
O(logn), we will relax the criteria of (b),(c),(d) in Theorem
4.2:

(b’) For every vertex v ∈ V and for every color x, there are
at most 18 · ln ∆0

ln ln ∆0
neighbors of v colored x.

(c’) For every vertex v ∈ V , the number of neighbors of v

not in C is at most ∆(1− 1
e5

) + 40
√

∆ ln ∆.

(d’) For every vertex v ∈ V , the number of neighbors of v

in C is at most ∆
e5

+ 40
√

∆ ln ∆.

In (b’), ∆ is replaced by ∆0, which is the maximum degree
of the initial graph. Also, the constant 9 is replaced by
18. In (c’) and (d’), the constant 27 is replaced by 40 and√

ln ∆ is replaced by ln ∆. It is not hard to see that Lemma
4.3 still holds and an O(log2 ∆/ log log ∆)-frugal coloring is
still obtainable. Originally, by Chernoff Bound and Azuma’s
Inequality, they showed

Pr
(
# neighbors of v colored x exceeds 9 · ln ∆

ln ln ∆

)
<

1

∆6

(2)
and

Pr

(∣∣∣∣Pv − deg(v)

e5

∣∣∣∣ > 27
√

∆ ln ∆

)
<

2

∆4.5
(3)

where Pv is the number of colored neighbors of v. Theorem
4.2 can be derived from (2) and (3). The relaxed version (b’),
(c’), and (d’) can be shown to fail with a lower probability.

Pr
(

# neighbors of v colored x exceeds 18 · ln ∆0
ln ln ∆0

)
<

1

∆12
0

(4)
and

Pr

(∣∣∣∣Pv − deg(v)

e5

∣∣∣∣ > 40
√

∆ ln ∆

)
<

2

∆9 ln ∆
(5)

The bad event Av is when the neighbors of v col-
ored x exceeds 18 · ln ∆0

ln ln ∆0
for some color x or |Pv −

deg(v)

e5
| > 40

√
∆ ln ∆ happens. By (4), (5), and



the union bound, Pr(Av) ≤ (∆ + 1)/∆12
0 + 2/∆9 ln ∆.

In their random process, they showed Av depends
on variables up to distance two. Thus, the depen-
dency graph GA has maximum degree d less than ∆4.
Note that epd2 = e∆8((∆ + 1)/(2∆12

0 ) + 2/∆9 ln ∆) ≤
1/(2∆0) + 1/(2∆ln ∆) < 2 · max(1/(2∆0), 1/(2∆ln ∆)) =
max(1/∆0, 1/∆

ln ∆). The number of resampling rounds
needed is at most O(log 1

epd2
n), which is at most

lnn
min(ln ∆0,ln2 ∆)

≤ lnn
ln ∆0

+ lnn
ln2 ∆

. Therefore, the total num-

ber of rounds needed is at most:

c ln ∆0∑
i=1

(
lnn

ln ∆0
+

lnn

ln2 ∆i

)

≤
c ln ∆0∑
i=1

(
lnn

ln ∆0
+

lnn

ln2(2∆0αi)

)

= c ln ∆0 ·
lnn

ln ∆0
+ lnn

c ln ∆0∑
i=1

1

(ln ∆0 − i ln 1
α

+ ln 2)2

≤ c lnn+ lnn ·O

(
∞∑
i=1

1

i2

)
= O(logn)

where c > 0 is some constant, and α = (1− 1/e5).
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APPENDIX
A. TOOLS

The following lemma shows when conditioning on a very
likely event B, the probability of an event can only be af-
fected by a small amount.

Lemma A.1. Let A, B be two events, |Pr(A) −
Pr(A|B)| ≤ Pr(B).

Proof. Pr(A) = Pr(B) Pr(A|B) + Pr(B) Pr(A|B) =
Pr(A|B)+Pr(B)(Pr(A|B)−Pr(A|B)). Therefore, |Pr(A)−
Pr(A|B)| ≤ Pr(B).

Lemma A.2. (Chernoff Bound) Let X1, . . . , Xn be inde-
pendent trials such that Pr(Xi) = p. Let X =

∑n
i=1 Xi.

Then, for δ > 0:

Pr(X > (1 + δ) E[X]) ≤
[

eδ

(1 + δ)(1+δ)

]E[X]

Pr(X < (1− δ) E[X]) ≤
[

eδ

(1− δ)(1−δ)

]E[X]

The two bounds above imply that for 0 < δ < 1, we have:

Pr(X > (1 + δ) E[X]) ≤ e−δ
2 E[X]/3

Pr(X < (1− δ) E[X]) ≤ e−δ
2 E[X]/2.

The proof for the following corollaries will be included in the
full version.

Corollary A.3. Let X1, . . . , Xn be independent trials
such that Pr(Xi) = pi. Let X =

∑n
i=1 Xi. If M ≥ E[X]

and 0 < δ ≤ 1, then

Pr(X > E[X] + δM) ≤ e−δ
2M/3

Corollary A.4. Let X1, . . . , Xn be trials such that for
each 1 ≤ i ≤ n,

Pr(Xi | X1, . . . , Xi−1) ≤ p

Then the upper tail of X =
∑n
i=1 Xi can be bounded by

the upper tail Chernoff estimate for an independent set of
variables X ′1, X

′
2, . . . , X

′
n with E[X ′i] = p. In particular, for

δ > 0:

Pr(X > (1 + δ)np) ≤
[

eδ

(1 + δ)(1+δ)

]np
B. PROOF OF LEMMA 3.5

Lemma 3.5. If for all A ∈ A, we have Pr(A) ≤ (1 −
ε)x(A) ·

∏
B∈Γr(A)(1 − x(B)), then the probability that any

r-witness tree of size at least k occurs is at most (1 − ε)k ·∑
A∈A

x(A)
1−x(A)

.

Following Moser and Tardos [24] we analyze the follow-
ing Galton-Watson process for generating a r-witness tree
T . Fix an event A ∈ A. Begin by creating a root for T
labelled A. To shorten the notation, we let [v] := σT (v).
In each subsequent step, consider each vertex v created in
the previous step. For each B ∈ Γr+([v]), independently,
attach a child labelled B with probability x(B) or skip it
with probability 1 − x(B). Continue the process until no
new vertices are born. We prove a lemma analogous to one
in [24].

Lemma B.1. Let τ be a fixed proper r-witness tree with its
root vertex labelled A. The probability pτ that the Galton-
Watson process yields exactly the tree τ is

pτ =
1− x(A)

x(A)

∏
v∈V (τ)

x′([v])

where x′(B) = x(B) ·ΠC∈Γr(B)(1− x(C)).

Proof. Let Wv ⊆ Γr+([v]) denote the set of inclusive r-
neighbors of [v] that do not occur as a label of some child
node of v. Then,

pτ =
1

x(A)
·
∏

v∈V (τ)

(
x([v]) ·

∏
u∈Wv

(1− x([u])

)

=
1− x(A)

x(A)
·
∏

v∈V (τ)

 x([v])

1− x([v])
·

∏
u∈Γr+([v])

(1− x([u]))


=

1− x(A)

x(A)
·
∏

v∈V (τ)

x([v]) ·
∏

u∈Γr([v])

(1− x([u]))


=

1− x(A)

x(A)
·
∏

v∈V (τ)

x′([v])

Let T rA(k) denote the infinite set of r-witness trees hav-
ing root labelled A and containing at least k vertices. By
Lemma 3.6 and the union bound, the probability there exists
a violated event after k resampling rounds is at most∑

A∈A

∑
τ∈T r

A
(k)

Pr(τ r-occurs in C)

≤
∑
A∈A

∑
τ∈T r

A
(k)

∏
v∈V (τ)

Pr([v]) by Lemma 2.2

≤
∑
A∈A

∑
τ∈T r

A
(k)

∏
v∈V (τ)

(1− ε)x′([v]) cond. of Thm 3.3

≤ (1− ε)k
∑
A∈A

x(A)

1− x(A)

∑
τ∈T r

A
(k)

pτ by Lemma B.1

≤ (1− ε)k
∑
A∈A

x(A)

1− x(A)

The last inequality follows since the Galton-Watson process
grows exactly one tree.


