Generalized Davenport-Schinzel sequences and their 0-1 matrix counterparts ${ }^{\text {** }}$

S. Pettie*

University of Michigan, Department of Electrical Engineering and Computer Science, 2260 Hayward St., Ann Arbor, MI 48109, United States

ARTICLE INFO

Article history:

Received 8 August 2010
Available online xxxx

Keywords:

Forbidden substructure
Sequences
0-1 matrices

Abstract

A generalized Davenport-Schinzel sequence is one over a finite alphabet whose subsequences are not isomorphic to a forbidden subsequence σ. What is the maximum length of such a σ-free sequence, as a function of its alphabet size n ? Is the extremal function linear or nonlinear? And what characteristics of σ determine the answers to these questions? It is known that such sequences have length at most $n \cdot 2^{(\alpha(n))^{0(1)}}$, where α is the inverse-Ackermann function and the O (1) depends on σ. We resolve a number of open problems on the extremal properties of generalized Davenport-Schinzel sequences. Among our results:

1. We give a nearly complete characterization of linear and nonlinear $\sigma \in\{a, b, c\}^{*}$ over a three-letter alphabet. Specifically, the only repetition-free minimally nonlinear forbidden sequences are ababa and abcacbc.
2. We prove there are at least four minimally nonlinear forbidden sequences.
3. We prove that in many cases, doubling a forbidden sequence has no significant effect on its extremal function. For example, Nivasch's upper bounds on alternating sequences of the form $(a b)^{t}$ and $(a b)^{t} a$, for $t \geqslant 3$, can be extended to forbidden sequences of the form $(a a b b)^{t}$ and $(a a b b)^{t} a$.
4. Finally, we show that the absence of simple subsequences in σ tells us nothing about σ 's extremal function. For example, for any t, there exists a σ_{t} avoiding ababa whose extremal function is $\Omega\left(n \cdot 2^{\alpha^{t}(n)}\right)$.
[^0]0097-3165/\$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcta.2011.02.011

Abstract

Most of our results are obtained by translating questions about generalized Davenport-Schinzel sequences into questions about the density of $0-1$ matrices avoiding certain forbidden submatrices. We give new and often tight bounds on the extremal functions of numerous forbidden 0-1 matrices.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

A generalized Davenport-Schinzel sequence over an n-letter alphabet is one whose subsequences are not isomorphic to some fixed forbidden subsequence σ. Let $\operatorname{Ex}(\sigma, n)$ be the extremal function for σ, i.e., the maximum length of such a σ-free sequence. The major open problems in this area are to determine $\operatorname{Ex}(\sigma, n)$ for specific σ, to identify properties of σ that give rise to specific extremal functions, and to understand how altering a forbidden sequence affects the resulting extremal function. In short, what can be said about $\operatorname{Ex}(\sigma, n)$ with a cursory examination of σ ? This problem is understood fairly well when σ is of the form $a b a b \cdots$. Sequences avoiding such σ are generally known as order($|\sigma|-2$) Davenport-Schinzel sequences [5]. They have found numerous applications in discrete and computational geometry and the analysis of dynamic data structures [2,22]. However, our knowledge of forbidden sequences not of this form, particularly those over an alphabet of three or more letters, is rather incomplete. Before discussing prior work and our contributions we need to settle on some notation.

1.1. Definitions and notation

The length of a sequence is denoted by $|\sigma|$. If $\sigma=\left(\sigma_{i}\right)_{1 \leqslant i \leqslant|\sigma|}$ is a sequence let $\Sigma(\sigma)=\left\{\sigma_{i}\right\}_{i}$ be its alphabet and $\|\sigma\|=|\Sigma(\sigma)|$ be the alphabet size. Two equal length sequences σ, σ^{\prime} are isomorphic, written as $\sigma \sim \sigma^{\prime}$, if there is a bijection $f: \Sigma(\sigma) \rightarrow \Sigma\left(\sigma^{\prime}\right)$ for which $f\left(\sigma_{i}\right)=\sigma_{i}^{\prime}$. We say σ is a subsequence of σ^{\prime}, written as $\sigma \prec \sigma^{\prime}$, if there is a strictly increasing function $f:\{1, \ldots,|\sigma|\} \rightarrow\left\{1, \ldots,\left|\sigma^{\prime}\right|\right\}$ for which $\sigma_{i}=\sigma_{f(i)}^{\prime}$, for $1 \leqslant i \leqslant|\sigma|$. We write $\sigma \prec \sigma^{\prime}$ if σ is isomorphic to a subsequence of σ^{\prime}, that is, $\sigma \sim \sigma^{\prime \prime} \prec \sigma^{\prime}$ for some $\sigma^{\prime \prime}$. The phrase σ appears in (or occurs in) σ^{\prime} means either $\sigma \prec \sigma^{\prime}$ or $\sigma \prec \sigma^{\prime}$; which one should be clear from context. A sequence σ^{\prime} (or class of sequences) is σ-free is $\sigma \nprec \sigma^{\prime}$. A sequence σ is k-sparse if whenever $\sigma_{i}=\sigma_{j}$ and $i \neq j$, then $|i-j| \geqslant k$. A block is a sequence of distinct symbols. If σ is understood to be partitioned into a sequence of blocks, $\llbracket \sigma \rrbracket$ is the number of blocks. Absent any knowledge of σ, the predicate $\llbracket \sigma \rrbracket=m$ asserts that there is some way to partition σ into at most m blocks. Let $\operatorname{dbl}(\sigma)$ be the sequence derived from σ by doubling each symbol excluding the first and last, e.g., $\mathrm{dbl}(a b c a b c)=a b b c c a a b b c$.

$$
\begin{aligned}
& \operatorname{Ex}(\sigma, n, m)=\max \{|S| \mid \sigma \nprec S,\|S\|=n, \text { and } \llbracket S \rrbracket=m\} \\
& \operatorname{Ex}(\sigma, n)=\max \{|S| \mid \sigma \nprec S,\|S\|=n, \text { and } S \text { is }\|\sigma\| \text {-sparse }\}
\end{aligned}
$$

The $\|\sigma\|$-sparseness criterion guarantees that $\operatorname{Ex}(\sigma, n)$ is finite. We say a sequence σ is linear or nonlinear depending on whether $\operatorname{Ex}(\sigma, n)$ is linear or nonlinear in n. It is minimally nonlinear if no strict subsequence of σ is nonlinear.

We extend much of the notation for sequences to $0-1$ matrices. Let $S \in\{0,1\}^{n \times m}$ and $P \in$ $\{0,1\}^{k \times l}$ be two matrices. We say P is contained in S if there are two strictly increasing functions $f:\{1, \ldots, k\} \rightarrow\{1, \ldots, n\}$ and $g:\{1, \ldots, l\} \rightarrow\{1, \ldots, m\}$ such that $P(i, j)=1$ implies $S(f(i), g(j))=1$, i.e., a 1 in P matches a 1 and a 0 in P matches either a 0 or 1 . The two functions f, g define a submatrix of S. If P is not contained in S then S is P-free. Let $|S|$ be the number of 1 s in S, also called its weight.

$$
\begin{aligned}
& \operatorname{Ex}(P, n, m)=\max \{|S| \mid S \text { is a } P \text {-free, } n \times m 0-1 \text { matrix }\} \\
& \operatorname{Ex}(P, n)=\operatorname{Ex}(P, n, n)
\end{aligned}
$$

A matrix P is linear or nonlinear if $\operatorname{Ex}(P, n)=O(n)$ or $\omega(n)$, respectively. A matrix is light if it contains one 1 in each column. Following a common convention, we write $0-1$ matrices using bullets for 1 s and blanks for 0 s.

1.1.1. Nonlinearity in generalized Davenport-Schinzel sequences

A large body of work $[5,6,26,10,24,25,3,1,12,13,16,19,21,20$] has been dedicated to answering the following question: what characteristics of a forbidden sequence σ make it linear or nonlinear, and in general, what is the degree of nonlinearity of $\operatorname{Ex}(\sigma, n)$? Hart and Sharir [10] made an important step in answering this question by showing $\operatorname{Ex}(a b a b a, n)=\Theta(n \alpha(n))$ is minimally nonlinear. Adamec, Klazar, and Valtr [1] proved that dbl(abab) is linear, a consequence of which is that ababa is the only minimally nonlinear two-letter sequence. Klazar and Valtr [16] showed that doubled N-shaped sequences of the form $\operatorname{dbl}\left(a_{1} \cdots a_{k-1} a_{k} a_{k-1} \cdots a_{2} a_{1} a_{2} \cdots a_{k}\right)$ are linear and that embedding one linear sequence in another results in a linear sequence. Specifically, if $\mathbf{u}=\mathbf{u}_{1} a a \mathbf{u}_{2}$ and \mathbf{v} are linear forbidden sequences over disjoint alphabets, then $\mathbf{u}_{1} a \mathbf{v} a \mathbf{u}_{2}$ is linear as well. Using results on forbidden $0-1$ permutation matrices $[18,9]$, Pettie [20] showed that any sequence σ of the form $\pi_{1} \mathrm{dbl}\left(\pi_{2}\right)$ is linear, where π_{1} and π_{2} are permutations of $\Sigma(\sigma)$. For example, $a b c d a c c b b d$ is linear. The shortest sequences not covered by $[1,16,20]$ are $a b c a c b c$ and $a b c b c a c$, meaning that any forbidden sequence over three letters must be linear unless it contains one of these sequences, their reversals, or ababa. Klazar [13] asked how many minimally nonlinear forbidden sequences there are. Pettie [21] gave an infinite antichain of nonlinear sequences (none known to be minimal) and proved, non-constructively, that there are at least three minimally nonlinear sequences.

It has been known for some time that $\operatorname{Ex}(\sigma, n)$ is no more than $n \cdot 2^{\operatorname{poly}(\alpha(n))}$ where α is the inverse-Ackermann function and the polynomial depends on σ. Improving on early results of Szemerédi [26], Sharir [24], Agarwal, Sharir, and Shor [3], and Klazar [12], Nivasch [19] provided the following upper bounds on $\operatorname{Ex}(\sigma, n)$, where $t=\left\lfloor\frac{|\sigma|-||\sigma|,-2}{2}\right\rfloor$.

$$
\operatorname{Ex}(\sigma, n)< \begin{cases}n \cdot 2^{(1+o(1)) \alpha^{t}(n) / t!} & \text { for }|\sigma|-\|\sigma\| \text { even } \tag{1}\\ n \cdot 2^{(1+o(1)) \alpha^{t}(n) \log \alpha(n) / t!} & \text { for }|\sigma|-\|\sigma\| \text { odd }\end{cases}
$$

In the case of standard Davenport-Schinzel sequences, when σ is of the form abab \cdots, Eq. (1) gives the best known upper bounds:

$$
\begin{array}{ll}
\operatorname{Ex}(a b a b a, n)=\Theta(n \alpha(n)) & \text { See [10] } \\
\operatorname{Ex}(a b a b a b, n)=\Theta\left(n \cdot 2^{\alpha(n)}\right) & \text { See [3] } \\
\operatorname{Ex}\left((a b)^{t+2}, n\right)=n \cdot 2^{(1 \pm o(1)) \alpha(n)^{t} / t!} & \text { for all } t \geqslant 1 \text {. See [3,19] } \\
\operatorname{Ex}\left((a b)^{t+2} a, n\right) \leqslant n \cdot 2^{(1+o(1)) \alpha(n)^{t} \log \alpha(n) / t!} & \text { for all } t \geqslant 1 \text {. See }[3,19]
\end{array}
$$

The lower bounds of Hart and Sharir [10] and Agarwal, Sharir, and Shor [3] prove that Eq. (1) is asymptotically tight for $\sigma \in\{a b a b a, a b a b a b\}$, and is tight enough (up to the $\pm o(1)$ in the exponent) for any right thinking person when $\sigma=(a b)^{t+2}$. Alon et al. [4] have conjectured that in odd-order Davenport-Schinzel sequences, the $\log \alpha(n)$ factor in the exponent is a natural phenomenon and that Eq. (1) is essentially tight when $\sigma=(a b)^{t+2} a$. However, Eq. (1) generally gives a very loose upper bound on $\operatorname{Ex}(\sigma, n)$. The quantity $|\sigma|-\|\sigma\|$ is not a good indicator of the complexity of σ, especially when the length of σ is comparable to its alphabet size, as in, for example, the N-shaped sequences [16], all of which are linear.

1.1.2. Open problems

In a remarkable survey on the history, applications, and generalizations of Davenport-Schinzel sequences, Klazar [15] asked a number of intriguing questions about the relationship between a forbidden sequence and its extremal function. In general, is it possible to determine the extremal function (even roughly) of a forbidden sequence "just by looking at it"? Can we even distinguish linear from nonlinear forbidden sequences? And how do mechanical syntactic operations on forbidden sequences affect their extremal functions? Given that short forbidden sequences are more likely to
find applications (in discrete geometry, the analysis of algorithms, or elsewhere), can we determine the extremal functions for forbidden sequences over two, three, and four letters?

At one level of granularity, the upper bounds in Eq. (1) categorize all forbidden sequences σ according to the smallest t for which $\operatorname{Ex}(\sigma, n)=n \cdot 2^{O\left(\alpha^{t}(n)\right)}$. Call this the rank of σ. Moreover, the lower bounds $[3,19]$ demonstrate that the set $\left\{(a b)^{t+2}\right\}$ has one sequence at each rank. Can we determine the rank of a forbidden sequence, even to within some fixed constant? In some cases the answer is yes: from [16] it follows that any abab-free forbidden sequence is linear. Klazar [15] asked the next logical question, namely, does the ababa-freeness of a forbidden sequence let us put a cap on its rank?

Problem 1.1. For each t, is there a σ_{t} for which ababa $\nprec \sigma_{t}$ and $\operatorname{Ex}\left(\sigma_{t}, n\right)=n \cdot 2^{\Omega\left(\alpha^{t}(n)\right)}$?
Adamec, Klazar, and Valtr [1] showed that $\mathrm{dbl}(a b a b)=a b b a a b$ is linear and observed that repeating each symbol more than twice (or repeating the first and last symbols at all) cannot affect the extremal function asymptotically. In other words, all the interesting sequences over two letters are contained in $\operatorname{dbl}\left((a b)^{t}\right)$ or $\operatorname{dbl}\left((a b)^{t} a\right)$ for some t. Klazar [15] asked whether it is true, in general, that doubling does not affect the extremal function, that is:

Problem 1.2. Are $\operatorname{Ex}(\mathrm{dbl}(\sigma), n)$ and $\operatorname{Ex}(\sigma, n)$ asymptotically equivalent, for all σ with $|\sigma|>\|\sigma\|$? If not, by how much could they diverge? What are the answers to these questions when $\sigma \in\{a, b\}^{*}$?

Finally, Klazar [15] asked what makes a forbidden sequence nonlinear and in particular, which 3letter sequences are nonlinear. Is it possible to decide if σ is nonlinear with some quick examination?

Problem 1.3. Determine which sequences are (minimally) nonlinear. Are there infinitely many of them?

1.1.3. New results

We answer the question posed in Problem 1.1 in the affirmative. In particular we exhibit a highly structured set of forbidden sequences $\left\{\tau_{s}\right\}_{s \geqslant 3}$, each avoiding ababa, for which:

$$
\operatorname{Ex}\left(\tau_{s}, n\right)> \begin{cases}n \alpha(n) & \text { for } s=3 \\ n 2^{\alpha(n)} & \text { for } s=4 \\ n \cdot 2^{(1-o(1)) \alpha^{t}(n) / t!} & \text { for } s \text { even, } t=(s-2) / 2 \\ n \cdot 2^{(1-o(1)) \alpha^{t}(n) \log \alpha(n) / t!} & \text { for } s \text { odd, } t=(s-3) / 2\end{cases}
$$

$$
\text { where } \tau_{s}=1213 \cdots 1(s-1) 1 s 1 s 2 s \cdots(s-2) s(s-1) s
$$

Roughly speaking, τ_{s} is obtained by shuffling the sequences $11 \cdots 11 s 1 s s \cdots$ ss with $23 \cdots(s-$ 1) $23 \cdots(s-1)$. Observe that τ_{s} avoids not just ababa but numerous simpler subsequences, e.g., abbaa, $a a b b a, a b c c b a, a a a b b b c c, a a b b b c c c$, and $a a b b c c d d$. Thus, $a b a b-$ freeness of σ guarantees $\operatorname{Ex}(\sigma, n)$ is linear but very little can be said if $a b a b-$ freeness is replaced by infinitesimally weaker restrictions. If one can put a fixed cap on the rank of σ using simple syntactic properties, they will probably not relate to the absence of interesting subsequences. We give a special treatment to the sequence $\bar{\tau}_{3}=a b c a c b c<\tau_{3}$, where it is shown that $\operatorname{Ex}\left(\bar{\tau}_{3}, n\right)=\Omega(n \alpha(n))$. Since every subsequence of $\bar{\tau}_{3}$ is known to be linear, $\bar{\tau}_{3}$ the first minimally nonlinear sequence to be identified, after ababa [10]. We also prove that abcbcac is linear, an implication of which is that ababa and abcacbc are the only repetition-free minimally nonlinear forbidden sequences over three letters. In addition to these two sequences, we prove, non-constructively, that there exist two more minimally nonlinear forbidden sequences. This constitutes some progress on Problem 1.3.

Nearly all of our results are obtained by representing a sequence as a $0-1$ matrix and analyzing the two in tandem. The representation of sequences as matrices is not new. Füredi and Hajnal [8] already observed an equivalence between $a b a b a$-free sequences and $0-1$ matrices avoiding several small patterns. Our results are distinguished by the extent to which they exploit this dual representation.

Many of the proofs would be unimaginably complex were we to completely avoid the use of 0-1 matrices. Among our results, we show the lower bound $\operatorname{Ex}\left(\bar{\tau}_{3}, n\right)=\operatorname{Ex}(a b c a c b c, n)=\Omega(n \alpha(n))$ is asymptotically tight and that doubling standard Davenport-Schinzel sequences with order 4 and greater has no significant effect on the extremal function. For example, $\operatorname{Ex}(\operatorname{dbl}(a b a b a b), n)=\Theta\left(n \cdot 2^{\alpha(n)}\right)$, $\operatorname{Ex}\left(\operatorname{dbl}\left((a b)^{3} a\right), n\right)<n \cdot 2^{(1+o(1)) \alpha(n) \log \alpha(n)}, \operatorname{Ex}\left(\operatorname{dbl}\left((a b)^{4}\right), n\right)=n \cdot 2^{(1 \pm o(1)) \alpha^{2}(n) / 2}$, and so on. These are the first asymptotically tight bounds on nonlinear forbidden sequences that are not of the form $a b a b \cdots a b$. For order-3 Davenport-Schinzel sequences, we are only able to show $\operatorname{Ex}(\operatorname{dbl}(a b a b a), n)=$ $O\left(n \alpha^{2}(n)\right)$, which is within an $\alpha(n)$ factor of the lower bound. Our technique for handling doubled forbidden sequences suggests that $\operatorname{Ex}(\operatorname{dbl}(\sigma), n)<\operatorname{Ex}(\sigma, n) \cdot(\alpha(n))^{0(1)}$ for all σ, i.e., it has a minimal effect on the extremal function. This is true when $\operatorname{Ex}(\sigma, n)=O(n)$ but we are unable to prove it in general.

1.1.4. Overview

In Section 2 we establish new upper and lower bounds on three-letter forbidden sequences and in Section 3 we analyze the effect of doubling on standard (two-letter) Davenport-Schinzel sequences. In Section 4 we analyze $\left\{\tau_{s}\right\}$ and prove that these sequences achieve extremal functions of arbitrarily large rank. In Section 5 we prove that there are at least four minimally nonlinear forbidden sequences. In Section 6 we analyze a number of weight-5 light forbidden matrices. Section 7 concludes by highlighting a number of open problems.

1.2. Review of forbidden $0-1$ matrices

If P is a $0-1$ matrix, we let $P^{\oplus}, P^{\ominus}, P^{\ominus}, P^{\ominus}, P^{\ominus}, P^{\ominus}, P^{\ominus}$ denote the horizontal, vertical, and diagonal reflections of P, and the right rotations by one, two, and three quarters, respectively. Lemma 1.4 reviews some trivial properties that we use without explicit reference.

Lemma 1.4 (Trivial observations). Let $P \in\{0,1\}^{k \times l}$ and $P^{\prime} \in\{0,1\}^{k^{\prime} \times l^{\prime}}$.
(1) If P^{\prime} is contained in P then $\operatorname{Ex}\left(P^{\prime}, n, m\right) \leqslant \operatorname{Ex}(P, n, m)$.
(2) If $P^{\prime} \in\left\{P^{\oplus}, P^{\ominus}, P^{\odot}\right\}$ then $\operatorname{Ex}\left(P^{\prime}, n, m\right)=\operatorname{Ex}(P, n, m)$.
(3) If $P^{\prime} \in\left\{P^{\oslash}, P^{\ominus}, P^{\ominus}, P^{\ominus}\right\}$ then $\operatorname{Ex}\left(P^{\prime}, n, m\right)=\operatorname{Ex}(P, m, n)$.
(4) If $k^{\prime}=k, l^{\prime}=l+1, P^{\prime}(i, j)=P(i, j)$, for $i \in[k], j \in[l], P^{\prime}\left(i^{\prime}, l\right)=P^{\prime}\left(i^{\prime}, l+1\right)=1$ and $P^{\prime}\left(i^{\prime \prime}, l+1\right)=0$ for $i^{\prime \prime} \neq i^{\prime}$, then $\operatorname{Ex}\left(P^{\prime}, n, m\right) \leqslant \operatorname{Ex}(P, n, m)+n$. In other words, P^{\prime} is P after appending a column with one 1 , whose position matches that of a 1 in the last column of P.

Lemma $1.4(1)$, (4) can be used to stretch a matrix P by appending a column with one 1 then flipping the 1 to its left to 0 . Stretching can only reduce the extremal function of a matrix asymptotically or increase it by up to n. Fig. 1 defines a number of $0-1$ matrices referred to later. Theorem 1.5 summarizes what is known about the linear matrices from Fig. 1. All other matrices known to be linear but not included in Theorem 1.5 are covered by [18,9,11].

Theorem 1.5 (Linear matrices).

(1) (Trivial) $\operatorname{Ex}(B, n, m)<n+m$.
(2) (Trivial) $\operatorname{Ex}(C, n, m)<2 n+m$.
(3) (Füredi and Hajnal [8]) $\operatorname{Ex}(\tilde{C}, n, m)<6 n+m$.
(4) (Tardos [27]) $\operatorname{Ex}\left(D_{2}, n, m\right)<3 n+2 m$.
(5) (Füredi and Hajnal [8]) $\operatorname{Ex}\left(D_{3}, n, m\right)<12 n+12 m$.
(6) (Tardos [27]) $\operatorname{Ex}\left(D_{4}, n, m\right)<2 n+2 m$.
(7) (Fulek [7]) $\operatorname{Ex}\left(\bar{E}_{5}, n, m\right)<8 n+2 m$.

Fig. 1. Several 0-1 matrices. By convention 1s and 0 s are represented by bullets and blanks.

2. Forbidden sequences over three letters

We obtain a nearly complete characterization of linear forbidden sequences over three letters. Theorem 2.1 is a consequence of prior work $[10,16,1]$ and Theorems $2.10,2.6,2.3$, and 2.4 , which we explain below.

Theorem 2.1 (Three letter forbidden sequences).
(1) The sequences ababa and abcacbc are minimally nonlinear and the only 2-sparse minimally nonlinear sequences over three letters.
(2) $\operatorname{Ex}(\sigma, n)=\Omega(n \alpha(n))$ if σ contains ababa or abcacbc and $\operatorname{Ex}(\sigma, n)=\Theta(n \alpha(n))$ if $\sigma \in\{a b a b a$, abcacbc $\}$.
(3) For $\sigma \in\{a, b, c\}^{*}, \operatorname{Ex}(\sigma, n)=O(n)$ if σ avoids ababa, abcacbc, and the three sequences obtained from abcbcac by doubling one of the three underlined symbols.

Klazar and Valtr [16] showed that $\mathrm{dbl}(a b c b a b c)$ and $\mathrm{dbl}(a b c b c a)$ are linear, one implication of which is that a forbidden sequence over three letters is linear unless it contains $a b a b a, a b c a c b c$, $a b c b c a c$ or their reversals. Hart and Sharir [10] already showed that $\operatorname{Ex}(a b a b a, n)=\Theta(n \alpha(n))$ and therefore that $a b a b a$ is minimally nonlinear. Theorem 2.10 establishes that $\operatorname{Ex}(a b c a c b c, n)=\Omega(n \alpha(n))$ and therefore that $a b c a c b c$ is minimally nonlinear as well. Theorem 2.6 states that this lower bound is in fact tight. Theorem 2.3 states that abcbcac is linear, an implication of which is that a 2 -sparse (i.e., repetition free) sequence over three letters is nonlinear if and only if it or its reversal contains $a b a b a$ or $a b c a c b c$. However, this does not rule out the possibility that various subsequences of $\mathrm{dbl}(a b c b c a c)$ are nonlinear. Theorem 2.4 states that $\operatorname{Ex}(a b c b b c c a c, n)=O(n)$, meaning that any remaining minimally nonlinear sequence must be obtained from $a \underline{b c} b c \underline{a c}$ by doubling one or more of the three underlined symbols.

2.1. Upper bounds for three letter forbidden sequences

In this section we establish asymptotically tight upper bounds on the length of $a b c a c b c, a b c b c a c$, and $a b c b b c c a c$-free sequences. All our proofs represent sequences as $0-1$ matrices, usually in canonical form.

Fig. 2. (a) The set \mathscr{Q} of overlapping boxes. The two 1 s defining the dimensions of each box are indicated. (b) A partition into non-overlapping boxes \mathscr{R}.

Definition 2.2 (Canonical form). Let $S=s_{1} \cdots s_{m}$ be an m-block sequence over an n-symbol alphabet. The canonical matrix of S, denoted by $A=A(S)$, is an $n \times m 0-1$ matrix obtained by ordering $\Sigma(S)$ according to the first appearance in S, then letting $A(i, j)=1$ if and only if the i th symbol appears in s_{j}.

Theorem 2.3. $\operatorname{Ex}\left(E_{3}, n, m\right)<7 n+5 m$ and $\operatorname{Ex}(a b c b c a c, n)<42 n$.

Proof. Let S be an $a b c b c a c$-free sequence with length $\operatorname{Ex}(a b c b c a c, n)$. Greedily partition $S=s_{1} s_{2} \cdots s_{m}$ into maximal $b c b c a c$-free sequences $\left(s_{i}\right)$, i.e., s_{1} is the longest $b c b c a c$-free prefix of S, s_{2} is the longest $b c b c a c$-free prefix of the remaining sequence, and so on. Since each s_{i} contains the first occurrence of some symbol, namely the ' a ' in bcbcac, $m<n$. Let $S^{\prime}=\Sigma\left(s_{1}\right) \Sigma\left(s_{2}\right) \cdots \Sigma\left(s_{m}\right)$ (i.e., replace each s_{i} by its alphabet $\Sigma\left(s_{i}\right)$, listed according to its order in $\left.s_{i}\right)$ and let $A=A\left(S^{\prime}\right)$ be the $n \times m$ canonical matrix for S^{\prime}. Since $s_{i} \leqslant \operatorname{Ex}\left(b c b c a c,\left\|s_{i}\right\|\right) \leqslant 3.5\left\|s_{i}\right\|,|S| \leqslant 3.5\left|S^{\prime}\right| .^{1}$ If A contains E_{3} this implies that S contains an ordered subsequence isomorphic to 42313 , and, since A is canonical, that S contains $1232313 \sim$ $a b c b c a c$. We will show that $|A| \leqslant \operatorname{Ex}\left(E_{3}, n, m\right)<7 n+5 m$, and therefore that $\operatorname{Ex}(a b c b c a c, n) \leqslant 3.5$. $\operatorname{Ex}\left(E_{3}, n, n\right)<42 n$.

The remainder of the proof is structured as follows. Given A, we construct a set \mathscr{Q} of overlapping boxes (submatrices) then convert \mathscr{Q} into a set \mathscr{R} of disjoint boxes with several properties: (i) after removing $3 n 1 \mathrm{~s}$, no row or column has a non-zero intersection with more than one box in \mathscr{R}, (ii) each matrix in \mathscr{R} is D_{4}-free, and (iii) the number of 1 s not contained in any box is less than $2 n+3 \mathrm{~m}$. By Theorem 1.5(6) the total number of 1 s is at most $5 n+3 m+\operatorname{Ex}\left(D_{4}, n, m\right)<7 n+5 m$.

To construct the set \mathscr{Q} we examine each 1 in increasing order by column then increasing order by row. Let (i, j) be the current 1 and let \mathscr{Q} be the set of boxes obtained so far. If (i, j) is the first 1 in its column, skip to the next 1 . If (i, j) already lies in a box in \mathscr{Q} then skip to the next 1 . Otherwise let $\left(i^{\prime}, j^{\prime}\right) \in A$ be the 1 in A maximizing i^{\prime} such that $j^{\prime}<j$ and $i^{\prime}>i$; if there is no such 1 then skip to the next 1. Include in \mathscr{Q} the box $\left(i, i^{\prime}\right) \times(j, \infty)$. (Here $(x, y)=\{x+1, \ldots, y-1\},[x, y)=\{x, \ldots, y-1\}$, etc.) Let $\mathscr{Q}=\left\{Q_{1}, Q_{2}, \ldots\right\}$ be the set of boxes in the order they were included in \mathscr{Q}. Let the set of boxes $\mathscr{R}=\left\{R_{1}, R_{2}, \ldots\right\}$ be such that $R_{k}=Q_{k} \backslash \bigcup_{l>k} Q_{l}$. Clearly boxes in \mathscr{R} are disjoint. See Fig. 2 for an example.

[^1]

Fig. 3. (b) No row in \hat{A} has a 1 in two distinct \mathscr{R}-boxes. (b) No column in \hat{A} has a 1 in two distinct \mathscr{R}-boxes. (c) Every \mathscr{R}-box is D_{4}-free. Arrows indicate 1s that can be inferred to exist.

Before moving on we note that the matrix of 1 s outside \mathscr{R} is L-free, where

$$
L=\left(\begin{array}{c}
\bullet \\
\bullet \\
\bullet
\end{array}\right)
$$

and therefore has weight less than $2 n+3 m$. If there were such an L outside \mathscr{R}, the overlined 1 in the third column would have been placed in a box when the underlined 1 was examined.

Let $\left(i_{k}, j_{k}\right),\left(i_{k}^{\prime}, j_{k}^{\prime}\right)$ be the 1 s in A defining the dimensions of Q_{k} and R_{k}, i.e., R_{k} is of the form $\left(i_{k}, i_{k}^{\prime}\right) \times\left(j_{k}, *\right)$. Let $f(j)$ be the row of the first 1 in column j.

Let \hat{A} be derived from A be removing all 1 s not contained in \mathscr{R} and then removing the first two 1 s and last 1 in each row. We claim that no row in \hat{A} has a non-zero intersection with more than one box. Suppose, to the contrary, that (i, j) and $\left(i, j^{\prime}\right)$ are 1 s in boxes R_{q} and R_{r}, where $j<j^{\prime}$ and $q<r$. Fig. 3(a) gives an example with (i, j) and (i, j^{\prime}) underlined. If $j<j_{r}$ (Fig. 3(a) depicts the case when $j=j_{r}$) then the points $\left(i_{q}^{\prime}, j_{q}^{\prime}\right)$, $\left(i_{q}, j_{q}\right),(i, j),\left(f\left(j_{r}\right), j_{r}\right)$, $\left(i, j^{\prime}\right)$ form an instance of E_{3}. If $j=j_{r}$ (as in Fig. 3(a)) then let $\left(i, j^{\prime \prime}\right) \in A$ be the first 1 in row i intersecting a box, say R_{p}. Then the 1 s at positions $\left(i_{p}^{\prime}, j_{p}^{\prime}\right),\left(i_{p}, j_{p}\right),\left(i, j^{\prime \prime}\right),\left(f\left(j_{r}\right), j_{r}\right),\left(i, j^{\prime}\right)$ form an instance of E_{3}. Observe that R_{p}, R_{q}, and R_{r} may all have the same upper boundary (contrary to the depiction in Fig. 3(a)), requiring us to use the point $\left(f\left(j_{r}\right), j_{r}\right)$ rather than $\left(i_{r}, j_{r}\right)$ since it may be that $i_{p}=i_{q}=i_{r}$. We claim, further, that no column in \hat{A} has a non-zero intersection with more than one box. Again, suppose to the contrary that (i, j) appears in box R_{q} and $\left(i^{\prime}, j\right)$ in R_{p}, where $i^{\prime}<i$ and $p<q$; see Fig. 3(b). In $A,(i, j)$ must appear between 1 s at $\left(i, j^{\prime}\right)$ and $\left(i, j^{\prime \prime}\right)$, where $j^{\prime}<j<j^{\prime \prime}$. The point $\left(i, j^{\prime \prime}\right)$ might appear outside R_{q} but (i, j^{\prime}) will be in R_{q}, for if the two 1 s in A preceding (i, j) lie in another box, they would create an instance of E_{3}, as in Fig. 3(a). Thus, the 1 s at positions $\left(i_{q}^{\prime}, j_{q}^{\prime}\right),\left(i_{q}, j_{q}\right),\left(i, j^{\prime}\right),\left(i^{\prime}, j\right),\left(i, j^{\prime \prime}\right)$ form an instance of E_{3}. Finally, each box is clearly D_{4}-free. A D_{4} in \hat{A} lying in R_{p} implies the existence of a D_{2} in A lying in R_{p}, since \hat{A} omits the first two 1 s in each row. This D_{2} and the point $\left(i_{p}^{\prime}, j_{p}^{\prime}\right)$ form an instance of E_{3}. See Fig. 3(c).

The row- and column-disjointness properties of \hat{A} and the D_{4}-freeness of each box imply that $|\hat{A}| \leqslant \operatorname{Ex}\left(D_{4}, n, m\right)<2 n+2 m$. Thus, the number of 1 s contained in \mathscr{R} is less than $5 n+2 m$ and $|A|<7 n+5 m$.

Theorem 2.4. $\operatorname{Ex}\left(\tilde{E}_{3}, n, m\right)<11 n+7 m$ and $\operatorname{Ex}(a b c b b c c a c, n)<198 n$.

Proof. Let S be an $a b c b b c c a c$-free sequence with length $\operatorname{Ex}(a b c b b c c a c, n)$. As in the proof of Theorem 2.3, we partition $S=s_{1} \cdots s_{m}$ into bcbbccac-free subsequences, where $m \leqslant n$. Let $S^{\prime}=$ $\Sigma\left(s_{1}\right) \cdots \Sigma\left(s_{m}\right)$ and let $A=A\left(S^{\prime}\right)$ be the $n \times m$ canonical matrix for S^{\prime}. Since, by [14], $\left|s_{i}\right| \leqslant$ $\operatorname{Ex}\left(b c b b c c a c,\left\|s_{i}\right\|\right)<11\left\|s_{i}\right\|$, we have $|S| \leqslant 11\left|S^{\prime}\right|=11|A|$. The canonical matrix argument shows that A is \tilde{E}_{3}-free. We will show that $\operatorname{Ex}\left(\tilde{E}_{3}, n, m\right)<11 n+7 m$ and, therefore, that $\operatorname{Ex}(a b c b b c c a c, n) \leqslant$ $11 \cdot \operatorname{Ex}\left(\tilde{E}_{3}, n, n\right)<198 n$.

To show that $\operatorname{Ex}\left(\tilde{E}_{3}, n, m\right)=O(n+m)$ we require a few nontrivial modifications to the proof of Theorem 2.3, beginning with the construction of \mathscr{Q}. We scan the 1 s in exactly the same order. Let

Fig. 4. An instance of D_{4}^{\otimes} in an $R \in \mathscr{R}$ (underlined) implies an instance of \tilde{E}_{3} in A.
$(i, j) \in A$ be the current 1 , let \mathscr{Q} be the boxes constructed so far, and let i^{\prime} be maximal such that $\left(i, j^{\prime}\right),\left(i^{\prime}, j^{\prime \prime}\right) \in A$ where $i<i^{\prime}$ and $j^{\prime \prime}<j^{\prime}<j$. If (i, j) is the first 1 in its column, or if it is already contained in a box in \mathscr{Q}, or if i^{\prime} does not exist, then skip to the next 1 . Otherwise include in \mathscr{Q} the box $(i, \hat{i}) \times(j, \infty)$, where \hat{i} is defined as:

$$
\hat{i}=\min \left\{i^{\prime}, \min \left\{i_{0}+1 \mid\left(i_{0}, i_{1}\right) \times\left(j_{0}, \infty\right)=Q \in \mathscr{Q} \text { and } i^{\prime} \in\left[i_{0}+2, i_{1}\right)\right\}\right\}
$$

In other words, we force the rows spanned by \mathscr{Q}-boxes to be laminar. The new box would naturally span rows in the interval (i, i^{\prime}) but if $i^{\prime} \in\left[i_{0}+2, i_{1}\right.$) then it would only partially intersect the rows spanned by an existing box Q. In this case we artificially make the lower boundary of the new box meet the upper boundary of Q. As before we let $\mathscr{R}=\left\{R_{1}, R_{2}, \ldots\right\}$ where $R_{k}=Q_{k} \backslash \bigcup_{l>k} Q_{l}$. Clearly \mathscr{R} consists of rectangular, non-overlapping boxes. We claim the matrix $A \backslash \mathscr{R}$ is J-free, where:

$$
J=\left(\begin{array}{lll}
& \bullet \\
\bullet & \bullet_{\bullet} \\
\bullet & & \bullet
\end{array}\right)
$$

To see this, consider the moment the underlined 1 is examined during the construction of \mathscr{Q}. A box will be created that contains the overlined 1, which means that it cannot appear in $A \backslash \mathscr{R}$. After removing the first 1 in each row and each column of $A \backslash \mathscr{R}$ the resulting matrix is D_{4}^{\ominus}-free, which, by Theorem $1.5(6)$, implies $|A \backslash \mathscr{R}|<3 n+3 m$. Recall the definitions of D_{4}^{\ominus} and D_{4}^{\ominus} :

$$
D_{4}^{\ominus}=\left(\begin{array}{ll}
\bullet \bullet \\
\bullet & \bullet
\end{array}\right), \quad D_{4}^{\ominus}=(\bullet \bullet)
$$

Obtain the matrix \hat{A} by removing all 1 s outside \mathscr{R}, then removing the first three 1 s and last 1 in each row, then removing every alternate 1 in each row. Thus, $|A|<2|\hat{A}|+7 n+3 m$. An argument similar to that in the proof of Theorem 2.3 shows that no column or row has a non-zero intersection with two boxes in \mathscr{R}. Furthermore, every 1 in $\hat{A} \cap R$, for an $R \in \mathscr{R}$, is preceded by two 1 s in its row in $A \cap R$. We claim each box in \mathscr{R} is D_{4}^{\ominus}-free, which, if true, implies that $|A|<2\left(\operatorname{Ex}\left(D_{4}^{\ominus}, n, m\right)\right)+$ $7 n+3 m \leqslant 11 n+7 m$. Suppose that D_{4}^{\ominus} appeared in $R \in \mathscr{R}$. See Fig. 4, where the underlined bullets form a D_{4}^{\ominus}. Each 1 in $R \cap \hat{A}$ is preceded by a 1 in its row in $R \cap A$ and followed by a 1 in its row in A. Furthermore, two consecutive 1 s in a row in $R \cap \hat{A}$ contain a 1 between them in A. These implied 1 s and one 1 used in the formation of R give an instance of \tilde{E}_{3}.

To prove inverse-Ackermann type bounds we need to settle on a convenient definition of Ackermann's function and its inverse. All definitions from the literature are essentially the same inasmuch as their column inverses differ by only ± 0 (1).

Definition 2.5 (Ackermann's function and its inverses).

$$
\begin{array}{ll}
A_{1}(j)=2^{j} & \text { for } j \geqslant 1 \\
A_{i}(1)=2 & \text { for } i \geqslant 2 \\
A_{i}(j)=A_{i}(j-1) \cdot A_{i-1}\left(A_{i}(j-1)\right) & \text { for } i \geqslant 2, j \geqslant 2
\end{array}
$$

$$
\begin{array}{ll}
\alpha(n, m)=\min \left\{i \mid A_{i}(4\lceil n / m\rceil) \geqslant m\right\} & \text { for } n, m>1 \\
\alpha(n)=\alpha(n, n) & \text { short form } \\
a_{i, j}=A_{i}(j) & \text { short form }
\end{array}
$$

In the proof of Theorem 2.6 (as well as Theorems $3.2-3.5$ and 6.1-6.3) we establish inverseAckermann type bounds assuming, for simplicity, that the given $0-1$ matrices have dimensions of the form $n \times a_{i, j}$ for some i and j. At the end of the proof of Theorem 2.6 we explain how such a bound can be interpolated to hold for all $n \times m$ matrices. This is a standard technique; see $[2,19]$ for examples.

Theorem 2.6. $\mathrm{Ex}(a b c a c b c, n)=O(n \alpha(n))$.
Proof. Let S^{\prime} be an $a b c a c b c$-free sequence with length Ex $(a b c a c b c, n)$. Greedily partition $S^{\prime}=s_{1}^{\prime} \cdots s_{m}^{\prime}$ into $b c a c b$-free sequences $\left(s_{i}^{\prime}\right)$ and let $S=\Sigma\left(s_{1}^{\prime}\right) \cdots \Sigma\left(s_{m}^{\prime}\right)$, where $\Sigma\left(s_{i}^{\prime}\right)$ lists the alphabet of s_{i}^{\prime} according to first appearance in s_{i}^{\prime}. Since $\left|s_{i}^{\prime}\right| \leqslant \operatorname{Ex}\left(b c a c b,\left\|s_{i}^{\prime}\right\|\right)<3\left\|s_{i}^{\prime}\right\|$ we have that $\left|S^{\prime}\right|<3|S|,{ }^{2}$ and since each s_{i}^{\prime} contains either the first or last occurrence of some symbol, m is less than $2 n$. Now we assume, without loss of generality, that $m=a_{i, j}$ for some i and j. Let $A=A(S)$ be the canonical $n \times a_{i, j}$ matrix of S. It follows that $A(S)$ is E_{2}-free and E_{4}-free. We will show $|A|=O(n \alpha(n))$ by making use of its E_{2}-freeness; however, we are unable to show that $\operatorname{Ex}\left(E_{2}, n\right)=O(n \alpha(n))$ in general. It seems necessary to analyze A without "forgetting" that it was obtained from an abcacbc-free S. We will refer to subsequences of S or submatrices of A, whichever is more convenient.

Partition $S=S_{1} \cdots S_{a_{i, j} / w}$ into $a_{i, j} / w$ groups consisting of $w=a_{i, j-1}$ blocks each, and partition $A=A_{1} \cdots A_{a_{i, j} / w}$ into corresponding slabs, i.e., contiguous sets of columns. Observe that $a_{i, j} / w=$ $a_{i-1, w}$. A row is local if its 1 s appear in a single slab and global otherwise. Define n_{k} to be the number of local rows having a non-zero intersection with A_{k}, n^{*} the number of global rows, and n_{k}^{*} the number of global rows intersecting A_{k}. A 1 in A_{k} is a right occurrence (or right 1) if its row is global and does not intersect any A_{l} with $l>k$. Note that global rows generally have more than one right 1 , all lying in the same slab. Left 1 s are defined analogously and middle 1 s are global 1 s that are neither right nor left. Let \grave{n}_{k}^{*} be the number of global rows with a right occurrence in A_{k}. We claim that Eqs. (2), (3) hold:

$$
\begin{array}{ll}
\operatorname{Ex}\left(a b c a c b c, n, a_{1, j}\right)<\sum_{k=1,2} \operatorname{Ex}\left(a b c a c b c, n_{k}, w\right)+6 n^{*}+2 a_{1, j} & \text { for } i=1, j>1 \\
\operatorname{Ex}\left(a b c a c b c, n, a_{i, j}\right) & \\
\quad<\sum_{k} \operatorname{Ex}\left(a b c a c b c, n_{k}, w\right)+\operatorname{Ex}\left(a b c a c b c, n^{*}, a_{i-1, w}\right)+4 n^{*}+4 a_{i, j} & \text { for } i, j>1 \tag{3}
\end{array}
$$

The sum $\sum_{k} \operatorname{Ex}\left(a b c a c b c, n_{k}, w\right)$ accounts for the contribution of local 1 s in A. Let \grave{S}_{k}^{*} be the subsequence of S_{k} consisting of right occurrences and let $\grave{A}_{k}^{*}=A\left(\grave{S}_{k}^{*}\right)$ be the $\grave{n}_{k}^{*} \times w$ canonical matrix for \grave{S}_{k}^{*}. It follows that \grave{A}_{k}^{*} is K-free, where

$$
K=(\bullet \bullet)
$$

If we give the rows of K the names b, c, and a, an occurrence of K in \grave{A}_{k}^{*} corresponds to a sequence $a c b c$. Because $b<c<a$ and \grave{A}_{k}^{*} is canonical, $a c b c ₹ \grave{S}_{k}^{*}$ implies bcacbc $₹ \grave{S}_{k}^{*}$, which implies that $a b c a c b c<S$ since each symbol in $\Sigma\left(\grave{S}_{k}^{*}\right)$ occurs in S before S_{k}. Clearly $\operatorname{Ex}\left(K, \grave{n}_{k}^{*}, w\right)<3 \grave{n}_{k}^{*}+2 w$ and, since the first slab contains no right $1 \mathrm{~s}, \sum_{k \geqslant 2} \operatorname{Ex}\left(K, \grave{n}_{k}^{*}, w\right)<3 n^{*}+2\left(a_{i, j}-w\right)$. (That is, we need

[^2]

Fig. 5. The first three columns form an instance of D_{4}^{Φ} in A^{\prime}; the vertical line is the edge of the slab containing the third column of D_{4}^{\oplus}. The underlined 1 s must exist since each 1 in A^{\prime} implies the existence of two more 1 s in A : one following it in the same slab and, since A^{\prime} consists solely of left and middle 1 s , one following it outside the slab.
to remove at most $2\left(n^{*}+a_{i, j}-w\right)$ right 1 s so that each global row contains exactly one right 1 .) We now consider the contribution of middle and left 1 s in A. Let A^{\prime} be the $n \times\left(a_{i, j}-w\right)$ matrix consisting of global 1s that are not the last 1 at the intersection of their row and slab. (In other words, after excluding right 1 s and those 1 s in A^{\prime}, the intersection of a global row and slab contains at most one 1.) Then A^{\prime} must be D_{4}^{Φ}-free (see Fig. 5), which, according to Theorem 1.5(6), makes $\left|A^{\prime}\right|<2 n^{*}+2\left(a_{i, j}-w\right)$. If $i=1$ then there are no middle 1 s and there are at most n^{*} left 1 s not counted in A^{\prime}. Eq. (2) then follows from the fact that $a_{1, j}-w=a_{1, j} / 2=a_{1, j-1}$. If $i>1$, let S^{*} ₹ S be an $a_{i-1, w}$-block sequence whose k th block consists of the global symbols in $\Sigma\left(S_{k}\right)$. Then S^{*} must be ($a b c a c b c$)-free and Eq. (3) follows from the bound $\left|S^{*}\right| \leqslant \operatorname{Ex}\left(a b c a c b c, n^{*}, a_{i-1, w}\right.$). We prove by induction that $\operatorname{Ex}\left(a b c a c b c, n, a_{i, j}\right)<(4 i+2) n+4 i j a_{i, j}$. For $i=1$ and $j \leqslant 2$ the claim holds trivially; for $i=1, j>2$ we have

$$
\begin{aligned}
\operatorname{Ex}\left(a b c a c b c, n, a_{1, j}\right) & <6\left(n-n^{*}\right)+4(j-1) a_{1, j}+6 n^{*}+2 a_{1, j} \quad \text { Ind. hyp., Eq. (2) } \\
& \leqslant 6 n+4 j a_{1, j}
\end{aligned}
$$

and for $i, j>1$ we have

$$
\begin{array}{rlrl}
\operatorname{Ex}\left(a b c a c b c, n, a_{i, j}\right) & & \\
\qquad \begin{array}{rlr}
< & (4 i+2)\left(n-n^{*}\right)+4 i(j-1) a_{i, j}+(4(i-1)+2) n^{*} & \\
& +4(i-1) w a_{i-1, w}+4 n^{*}+4 a_{i, j} & \\
\leqslant & (4 i+2) n+[4 i(j-1)+4(i-1)+4] a_{i, j} & \\
=(4 i+2) n+4 i j a_{i, j} & & \text { Note: hyp., Eq. } w a_{i-1, w}=a_{i, j}
\end{array}
\end{array}
$$

In particular, $\operatorname{Ex}(a b c a c b c, n, m)=O(n \alpha(n, m))$, for $m=a_{i, j}$ and $n=j a_{i, j}$. One can easily extend this asymptotic bound to all n and $m=O(n)$ using standard interpolation between different values of Ackermann's function, which we now sketch. (See [19, §6.1] for a more detailed presentation.) Let U be an $a b c a c b c$-free sequence with length $\operatorname{Ex}(a b c a c b c, n, m)$. If $\lceil n / m\rceil=j$ and i is such that $a_{i, j-1}<$ $m \leqslant a_{i, j}$, let U^{*} be the concatenation of $r=\left\lfloor a_{i+1, j} / m\right\rfloor$ copies of U, each with disjoint alphabets. Clearly U^{*} is abcacbc-free, has at most $a_{i+1, j}$ blocks, and, by our analysis, has length at most $4(i+$ 3) $n \cdot r+4(i+1) j a_{i+1, j}$. Since $r m \geqslant a_{i+1, j} / 2$, it follows that U has length at most $4(i+3) n+4(i+$ 1) $j a_{i+1, j} / r<4(i+3) n+8(i+1) j m=O(i n)=O(n \alpha(n, m))$.

Remark 2.7. The proof of Theorem 2.6 can actually be strengthened to show that $\operatorname{Ex}(a b c c a c b c, n)=$ $O(n \alpha(n))$. The canonical matrix $A(S)$ will avoid the matrix obtained from E_{2} by duplicating the first column.

2.2. Lower bounds for three letter forbidden sequences

We give a construction of sequences with length $\Theta(n \alpha(n, m))$, where n and m are the alphabet size and number of blocks, that is almost identical to prior constructions with this length [10,2,17,19, 21] but avoids completely different substructures. Our sequences will be shown to avoid abcacbc and a number of others. However, they do not avoid ababa.

Let $S_{\text {bot }}=I_{1} J_{1} I_{2} J_{2} \cdots I_{g} J_{g}$ be a sequence consisting of live blocks I_{1}, \ldots, I_{g} interleaved with groups of zero or more dead blocks J_{1}, \ldots, J_{g}, and let $S_{\text {top }}=I_{1}^{\prime} J_{1}^{\prime} \cdots I_{h}^{\prime} J_{h}^{\prime}$ be a sequence similarly

Fig. 6. White and gray rectangles denote live and dead blocks, respectively. Here $S_{\text {top }}=I_{1}^{\prime} J_{1}^{\prime} \cdots I_{h}^{\prime} J_{h}^{\prime}$ and $S_{\text {bot }}=I_{1} J_{1} \cdots I_{g} J_{g}$, where the Is are live blocks and the Js sequences of zero or more dead blocks. To form $S_{\text {top }} \star S_{\text {bot }}$ we first take $S_{\text {bot }}^{*}=$ $S_{\text {bot }}^{(1)} \cdots S_{\text {bot }}^{(h)}$ to be the concatenation of h copies of $S_{\text {bot }}$ over disjoint alphabets. We then shuffle the i th block $I_{i}^{\prime}=\left[a_{1}, \ldots, a_{g}\right]$ of $S_{\text {top }}$ with $S_{\text {bot }}^{(i)}$, that is, we prefix $I_{j}^{(i)}$ with a_{j}. Finally, we insert $I_{i}^{\prime} J_{i}^{\prime}$ after $S_{\text {bot }}^{(i)}$, designating I_{i}^{\prime} dead. That is, in $S_{\text {top }} \star S_{\text {bot }}$ the group of dead blocks following $\left[a_{g} I_{g}^{(i)}\right]$ is $J_{g}^{(i)} I_{i}^{\prime} J_{i}^{\prime}$.
defined, where each live block in $S_{\text {top }}$ has length g. Let $S_{\text {top }} \star S_{\text {bot }}$ be the shuffle of $S_{\text {top }}$ and $S_{\text {bot }}{ }^{3}$ obtained as follows. First, let $S_{\text {bot }}^{*}$ be the concatenation of h copies of $S_{\text {bot }}$, whose alphabets do not intersect with each other or with a copy of $S_{\text {top }}$. Let $S_{\text {bot }}^{(i)}=I_{1}^{(i)} J_{1}^{(i)} \cdots I_{g}^{(i)} J_{g}^{(i)}$ be the i th copy of $S_{\text {bot }}$ in $S_{\text {bot }}^{*}$ and let $I_{i}^{\prime}=\left[a_{1} \cdots a_{g}\right]$ be the i th live block in $S_{\text {top }}$. We obtain $S_{\text {top }} \star S_{\text {bot }}$ by replacing each $S_{\text {bot }}^{(i)}$ with $\left[a_{1} \cdot I_{1}^{(i)}\right] J_{1}^{(i)}\left[a_{2} \cdot I_{2}^{(i)}\right] J_{2}^{(i)} \cdots\left[a_{g} \cdot I_{g}^{(i)}\right] J_{g}^{(i)} I_{i}^{\prime} J_{i}^{\prime}$, that is, we insert a_{j} at the beginning of the j th live block and append $I_{i}^{\prime} J_{i}^{\prime}$ to the end of $S_{\text {bot }}^{(i)}$. Furthermore, we designate I_{i}^{\prime} a dead block. See Fig. 6. If σ is a sequence partitioned into live and dead blocks, let $\llbracket \sigma \rrbracket \rrbracket_{\ell}$ be the number of live blocks. For example, $\llbracket S_{\text {bot }} \rrbracket \rrbracket_{\ell}=g$ and $\llbracket S_{\text {top }} \rrbracket_{\ell}=h$. One may verify that $\llbracket S_{\text {top }} \star S_{\text {bot }} \rrbracket_{\ell}=\llbracket S_{\text {top }} \rrbracket \rrbracket_{\ell} \cdot \llbracket S_{\text {bot }} \rrbracket{ }_{\ell}$, $\left|S_{\text {top }} \star S_{\text {bot }}\right|=\llbracket S_{\text {top }} \rrbracket \ell \cdot\left(\left|S_{\text {bot }}\right|+\llbracket S_{\text {bot }} \rrbracket \ell\right)+\left|S_{\text {top }}\right|$, and $\left\|S_{\text {top }} \star S_{\text {bot }}\right\|=\llbracket S_{\text {top }} \rrbracket \ell \cdot\left\|S_{\text {bot }}\right\|+\left\|S_{\text {top }}\right\|$.

The sequences $\left\{R_{k, \delta}(j)\right\}_{\delta \geqslant 1, k \geqslant 1, j \geqslant 0}$ will have the property that each live block has length precisely j.

$$
\begin{aligned}
& R_{1, \delta}(j)=[1 \cdots j][(j+1) \cdots 2 j] \\
& R_{k, \delta}(0)=[]^{\delta} \\
& R_{k, \delta}(j)=R_{k-1, \delta}\left(\llbracket R_{k, \delta}(j-1) \rrbracket \ell \star R_{k, \delta}(j-1)\right.
\end{aligned}
$$

two live blocks, for $j \geqslant 0$
δ empty live blocks, for $k>1$

The construction of these sequences barely differs from many standard ababa-free sequences from the literature. If we were to substitute $I_{i}^{\prime}=\left[a_{g} \cdots a_{1}\right]$ for $I_{i}^{\prime}=\left[a_{1} \cdots a_{g}\right]$ in the definition of the shuffle operation, we would obtain sequences essentially identical to those in [2,10,21].

We extend the subsequence notation (\prec and \Longleftarrow) to include block boundary constraints. A pattern is a sequence of symbols annotated with square and curly brackets. A square-bracketed sequence, e.g., [ab], indicates that the sequence should appear within one block and symbols outside the brackets appear in different blocks. A curly-bracketed sequence indicates that some permutation of the symbols appear within one block. For example $a b c[b a] a b c<S$ asserts that S contains a subsequence isomorphic to abcbaabc in which the middle ba lie in the same block and the other symbols lie outside that block. On the other hand, $a b c\{b a\} a b c \prec S$ asserts the same thing, except that b and a can appear in either order in the block.

Lemma 2.8. Let $S_{\mathrm{sh}}=R_{k, \delta}(j)$. If $k>1$ and $j>0$, let $S_{\text {bot }}=R_{k, \delta}(j-1)$ and $S_{\mathrm{top}}=R_{k-1, \delta}\left(\llbracket R_{k, \delta}(j-1) \rrbracket \ell\right)$ be the sequences used in the creation of $S_{\text {sh }}$.
(1) The first occurrence of each symbol is in a live block, each occurrence in a live block is a first occurrence, and every live block of $S_{\text {sh }}$ has length j.
(2) Each symbol in $S_{\text {sh }}$ occurs k times.
(3) $\llbracket S_{\mathrm{sh}} \rrbracket_{\ell}$ is a multiple of δ, the length of each dead block in S_{sh} is a multiple of δ, and S_{sh} is δ-sparse.

[^3](4) If abab $₹ S_{\text {sh }}$ or baab $₹ S_{\text {sh }}$ then it cannot be that $a \in \Sigma\left(S_{\text {top }}\right)$ while $b \in \Sigma\left(S_{\text {bot }}^{*}\right)$.
(5) $\{a b\}\{a b\} \nprec S_{\text {sh }}$.
(6) $[a b] a b, b a[a b] \nprec S_{\text {sh }}$.
(7) $\{a b\} a b a, a b a\{a b\} \nprec S_{\text {sh }}$.
(8) $\{a b\} c b c a c \nprec S_{\text {sh }}$.

Proof. Parts (1)-(3) are easily proved by induction on the construction of $S_{\text {sh }}$. Part (4) (originally observed by Klazar [13]) follows from the fact that each copy of $S_{\text {bot }}$ receives the first and only the first occurrence of any symbol from $S_{\text {top }}$. For parts (5)-(8), assume that the pattern occurs in $S_{\text {sh }}$, but not $S_{\text {top }}$ or $S_{\text {bot }}$. Part (5) could only occur if a 's copy of $S_{\text {bot }}$ received two copies of b from $S_{\text {top }}$ (or vice versa), an impossibility. Turning to part (6), [ab]ab $\prec S_{\text {sh }}$ holds since each live block in $S_{\text {bot }}$ is prefixed by a symbol from $S_{\text {top }}$, so $a \in \Sigma\left(S_{\text {top }}\right), b \in \Sigma\left(S_{\text {bot }}^{*}\right)$, and a 's copy of $S_{\text {bot }}$ receives two copies of b, an impossibility. For the second claim in part (6), note that the block γ containing [ab] must have been live in $S_{\text {top }}$ and dead in $S_{\text {sh }}$. When γ is shuffled with a copy of $S_{\text {bot }}, a$ and b are placed in separate blocks, forming the pattern $a b[a b]<S_{\text {sh }}$. Furthermore, a and b are not intertwined in subsequent shuffling events. Part (7) follows from part (6).

For part (8), it must be that a, b occur in that order in their common block (avoiding a violation of part (6)) and that $a \in \Sigma\left(S_{\text {top }}\right)$ and $b \in \Sigma\left(S_{\text {bot }}^{*}\right)$. We cannot have $c \in \Sigma\left(S_{\text {bot }}^{*}\right)$, otherwise b and c 's copy of $S_{\text {bot }}$ receives two copies of a. On the other hand, c cannot be in $\Sigma\left(S_{\text {top }}\right)$ either. If it were then the first occurrences of a and c in $\{a b\} c b c a c$ would have come from a single live block in $S_{\text {top }}$. Moreover, the last occurrences of c and a in [ab]cbcac could not lie in that live block: the second-to-last c forbids it. Thus, $[a c] a c<S_{\text {top }}$, contradicting part (6).

The sparseness variable δ is not relevant if we only wish to show that $\operatorname{Ex}(a b c a c b c, n)=\Omega(n \alpha(n))$. However, these sequences are also used in the constructions of Section 4, where δ can be arbitrarily large. We refer to Appendix A for the proof of Lemma 2.9.

Lemma 2.9. Let $n=\left\|R_{k, \delta}(j)\right\|$ and $m=\llbracket R_{k, \delta}(j) \rrbracket \ell$, where δ is fixed. Then $\left|R_{k, \delta}(j)\right|=k n=k j m=$ $\Omega(n \alpha(n, m))$.

Theorem 2.10. $\operatorname{Ex}(a b c a c b c, n)=\Omega(n \alpha(n))$.
Proof. By Lemma 2.9 it suffices to show that abcacbc $\nprec R_{k, \delta}(j)$ for all k, δ, j. Suppose that $R_{k, \delta}(j)$ is the shortest counterexample. Clearly we have $k>1$ and $j>0$, so let $S_{\text {bot }}$ and $S_{\text {top }}$ be the sequences from which $S_{\mathrm{sh}}=R_{k, \delta}(j)=S_{\text {top }} \star S_{\text {bot }}$ was formed. Lemma 2.8(4) (applied to the pairs (a, c), (b,c), and ($c, b)$) implies that either (i) $a \in \Sigma\left(S_{\text {bot }}^{*}\right)$ and $b, c \in \Sigma\left(S_{\text {top }}\right)$ or that (ii) $a, b, c \in \Sigma\left(S_{\text {top }}\right)$. If we are in case (i) then the suffix $c b c$ of $a b c a c b c$ is taken from $S_{\text {top }}$. However, since b and c share a live sequence in $S_{\text {top }}$, it follows that [bc]bc $\prec S_{\text {top }}$, contradicting Lemma 2.8(6). See Fig. 7(a).

In case (ii) abcacbc is not a subsequence of $S_{\text {top }}$ so it must appear in $S_{\text {sh }}$ in the act of shuffling $S_{\text {top }}$ with $S_{\text {bot }}^{*}$, that is, some subset of $\{a, b, c\}$ must share a live block in $S_{\text {top }}$. If a, b, and c share a live block in $S_{\text {top }}$ then, by Lemma 2.8(6), the subsequence of $S_{\text {top }}$ restricted to $\{a, b, c\}$ is of the form $[a b c] c^{*} b^{*} a^{* 4}$ and the subsequence of $S_{\text {sh }}$ restricted to $\{a, b, c\}$ is of the form ($a b c$) $[a b c] c^{*} b^{*} a^{*}$, where $(a b c)$ indicates the occurrences of a, b, and c that arise from shuffling the block [abc] with a copy of $S_{\text {bot }}$. See Fig. 7(b). One may check that ($a b c$) $[a b c] c^{*} b^{*} a^{*}$ does not contain a subsequence isomorphic to abcacbc. If only two symbols, say x and y, share a live block in $S_{\text {top }}$ then their occurrences in $S_{\text {sh }}$ are of the form $(x y)[x y] y^{*} x^{*}$. Observe that in $a b c a c b c$, there are only two contiguous subsequences of the form $x y x$ (namely the middle cac and suffix $c b c$) but neither contains the first occurrences of these symbols. Thus, substituting the live block [$x y$] (consisting only of first occurrences) in $S_{\text {top }}$ with $(x y)[x y]$ in $S_{\text {sh }}$ cannot create a new appearance of $a b c a c b c$.

[^4]

Fig. 7. White and gray rectangles denote live and dead blocks, respectively. (a) The live block in $S_{\text {top }}$ containing b and c is shuffled with the i th copy of $S_{\text {bot }}$ in $S_{\text {bot }}^{*}$, which contains a. The curly brackets indicate the locus of the contradiction: if $a b c a c b c<S_{\text {sh }}$ then $[b c] b c<S_{\text {top }}$, contradicting Lemma 2.8(4). (b) A live block in $S_{\text {top }}$ contains a, b, and c. The restriction of $S_{\text {top }}$ to $\{a, b, c\}$ is of the form $[a b c] c^{*} b^{*} a^{*}$, and in $S_{\text {sh }}$ it must be of the form $[a b c][a b c] c^{*} b^{*} a^{*}$, which does not contain a subsequence isomorphic to $a b c a c b c$.

We have closed a number of open problems concerning three-letter forbidden sequences. However, the situation could still be understood better. The key to simplifying Theorem 2.1 is to resolve the status of $\mathrm{dbl}(a b c b c a c)$. If it is linear, this would imply that $a b a b a$ and $a b c a c b c$ are the only minimally nonlinear sequences over three letters.

3. Forbidden sequences over two letters

Given that $\mathrm{dbl}(a b a b)$ is known to be linear $[1,14]$ and repeating any symbol more than twice has no effect on the extremal function, the unresolved forbidden sequences over two letters are subsequences of $\mathrm{dbl}(a b a b a), \mathrm{dbl}(a b a b a b), \ldots$, excluding $a b a b a$ and $(a b)^{t+2}$ for $t \geqslant 1$ [10,3,19]. Klazar and Valtr [16] claimed that $\operatorname{Ex}(\mathrm{dbl}(a b a b a), n)=\Theta(n \alpha(n))$. However, this claim was later retracted and highlighted as an open problem [15].

In this section we show that all subsequences of $\mathrm{dbl}(a b a b a)$ have extremal functions $O\left(n \alpha^{2}(n)\right)$, which is tight to within an $\alpha(n)$ factor, and that all of Nivasch's bounds [19] can be extended to doubled sequences, i.e., $\operatorname{Ex}\left(\mathrm{dbl}\left((a b)^{t+2}\right), n\right)$ and $\operatorname{Ex}\left(\mathrm{dbl}\left((a b)^{t+2} a\right), n\right)$ are bounded by $n \cdot 2^{(1+o(1)) \alpha^{t}(n)}$ and $n \cdot 2^{(1+o(1)) \alpha^{t}(n) \log \alpha(n)}$, respectively, for $t \geqslant 1$.

Theorem 3.1 (Doubling Davenport-Schinzel sequences).
(1) For $\sigma \in\{a b a b a, a b b a b a\}, \operatorname{Ex}(\sigma, n)=O\left(\operatorname{Ex}\left(D_{1}, n, 2 n\right)\right)=O(n \alpha(n))$.
(2) For $\sigma \in\{a b b a a b a, a b a a b a, a b b a b b a\}, \operatorname{Ex}(\sigma, n)=O\left(\operatorname{Ex}\left(\hat{D}_{1}, n, 2 n\right)\right)=O\left(n \alpha^{2}(n)\right)$.
(3) $\operatorname{Ex}(\mathrm{dbl}(a b a b a), n)=O\left(\operatorname{Ex}\left(\tilde{D}_{1}, n, 2 n\right)\right)=O\left(n \alpha^{2}(n)\right)$.
(4) $\operatorname{Ex}(\mathrm{dbl}(a b a b a b), n)=O\left(\operatorname{Ex}\left(\tilde{E}_{1}, n, 2 n\right)\right)=O\left(n 2^{\alpha(n)}\right)$.

Proof. In each part, given a 2-sparse sequence S avoiding the given forbidden subsequence σ, we can easily find an m-block σ-free subsequence $S^{\prime} \prec S$ such that $m<2 n$ and $\left|S^{\prime}\right|=\Theta(|S|)$. The technique is employed in the proof of Theorems 2.6 and 2.3. Thus, without loss of generality we assume S is composed of $m<2 n$ blocks. Let $A=A(S)$ be the canonical matrix for S. If σ is ababa or abaaba then A is clearly D_{1}-free or \hat{D}_{1}-free, respectively. If σ is $a b b a b a, a b b a a b a, a b b a b b a, \mathrm{dbl}(a b a b a)$, or $\mathrm{dbl}(a b a b a b)$ then remove the first 1 in each row in A; the resulting matrix is clearly free of, respectively, D_{1}, $\hat{D}_{1}, \hat{D}_{1}^{\odot}, \tilde{D}_{1}$, and \tilde{E}_{1}. Thus, once we establish the stated bounds on $\operatorname{Ex}\left(D_{1}, n, 2 n\right), \operatorname{Ex}\left(\tilde{D}_{1}, n, 2 n\right)$, and $\operatorname{Ex}\left(\tilde{E}_{1}, n, 2 n\right)$, in Theorems $3.2-3.5$, the theorem will follow. We are unable to show that $\operatorname{Ex}\left(\hat{D}_{1}, n, 2 n\right)$ is asymptotically slower than $\operatorname{Ex}\left(\tilde{D}_{1}, n, 2 n\right)$.

Fig. 8. The vertical lines indicate the boundaries of some slab T_{l}^{\prime}. Each slab must contain the last 1 in some row in T^{\prime}, namely i^{\prime}, or be immediately followed by the first 1 in some row in T^{\prime}, namely i. If neither were true then there must be an occurrence of D_{1} in T.

Theorem 3.2 was established by Füredi and Hajnal [8] and implicitly by Hart and Sharir [10]. We reprove it in our style as a warm-up exercise for Theorems 3.3-3.5.

Theorem 3.2. $\operatorname{Ex}\left(D_{1}, n, m\right)=\Theta(n \alpha(n, m)+m)$.
Proof. Suppose T is an $n \times m$ matrix avoiding D_{1}. If $m>2 n$ we can transform T to an $n \times 2 n, D_{1}$-free matrix S such that $|T|<|S|+m+2 n$. (In subsequent proofs we will leave this preliminary step as an exercise and simply assume that $m=O(n)$.) Remove the first and last 1 in each row of T, yielding T^{\prime}, so T^{\prime} is free of L_{1}, L_{2}, and L_{3} as well, where $L_{1}=(. \because), L_{1}=(: \cdot)$, and $L_{1}=(: \because)$. Greedily partition the columns of T^{\prime} into B-free slabs (sets of consecutive columns), so $T^{\prime}=T_{1}^{\prime} \cdots T_{p}^{\prime}$. Let ($\left.i^{\prime}, j^{\prime}\right),(i, j)$ be 1 s in T^{\prime} forming an instance of B, where $\left(i^{\prime}, j^{\prime}\right) \in T_{l}^{\prime}$ and (i, j) appears in the column immediately following T_{l}^{\prime}, which prevented T_{l}^{\prime} from extending to column j. Then (i, j) is either the first 1 in its row or T_{l}^{\prime} contains the last 1 in row i^{\prime}. If neither holds then T^{\prime} must contain an occurrence of D_{1}, L_{1}, L_{2}, or L_{3}. See Fig. 8. It follows that $p \leqslant 2 n$. Form an $n \times 2 n$ matrix S by contracting each slab of T^{\prime} to a single column, that is, $S(i, l)=1$ if and only if $T_{l}^{\prime}(i, j)=1$ for some j in slab l. Since each slab is B-free, it follows from Theorem 1.5(1) that $|S| \geqslant\left|T^{\prime}\right|-m \geqslant|T|-m-2 n$.

Without loss of generality, we can assume that S is an $n \times a_{i, j}$ matrix avoiding D_{1}, for some i, j. We claim $|S|<\operatorname{cin}+c^{\prime} i j a_{i, j}$, for two constants c and c^{\prime} to be determined below. If $j=1$ then S has two columns, $|S| \leqslant 2 a_{i, j}$, and the claim follows for $c^{\prime} \geqslant 2$. Otherwise we partition S into $a_{i, j} / a_{i, j-1}$ slabs, each consisting of $w=a_{i, j-1}$ consecutive columns. Note that $a_{i, j} / w=a_{i-1, w}$. Define local rows and global rows as in Theorem 2.6, as well as the partition of global 1s into left, middle, and right. Let n_{k} be the number of rows local to slab k, n^{*} the number of global rows, and n_{k}^{*} the number of global rows with a 1 in slab k. Let \tilde{n}_{k}^{*} and \grave{n}_{k}^{*} be the number of global rows with left and right 1 s in slab k. It follows that $n=n^{*}+\sum_{k} n_{k}$ and $\sum_{k}\left(\tilde{n}_{k}^{*}+\grave{n}_{k}^{*}\right)=2 n^{*}$. The number of 1 s in local rows is $\sum_{k} \operatorname{Ex}\left(D_{1}, n_{k}, w\right)$. Since the first global rows intersecting any slab must form a C-free matrix and the last global rows intersecting a slab form a C^{\ominus}-free matrix, the number of 1 s in such submatrices is $\sum_{k}\left[\operatorname{Ex}\left(C, \tilde{n}_{k}^{*}, w\right)+\operatorname{Ex}\left(C^{\ominus}, \grave{n}_{k}^{*}, w\right)\right] \leqslant 2 \cdot \operatorname{Ex}\left(C, n^{*}, a_{i, j}\right)$, which is at most $4 n^{*}+2 a_{i, j}$, by Theorem $1.5(2)$. If $i=1$ then there are only $a_{i, j} / a_{i, j-1}=2$ slabs and no middle 1 s . Let us proceed under the assumption that $i>1$ and return to this base case later. Let S^{\prime} be the $n^{*} \times a_{i, j}$ matrix of middle 1 s , which we have not yet accounted for. We form an $n^{*} \times a_{i-1, w}$ matrix $S^{\prime \prime}$ by contracting each slab of S^{\prime} to a single column. Since each slab of S^{\prime} is B-free, $\left|S^{\prime}\right| \leqslant \sum_{k} \operatorname{Ex}\left(B, n_{k}^{*}, w\right)<\sum_{k} n_{k}^{*}+a_{i, j}$ and $\left|S^{\prime \prime}\right| \leqslant \sum_{k} n_{k}^{*}$ by definition. ${ }^{5}$ Furthermore, since $S^{\prime \prime}$ is D_{1}-free, $\left|S^{\prime \prime}\right| \leqslant \operatorname{Ex}\left(D_{1}, n^{*}, a_{i-1, w}\right)$. Summing everything up, we have shown that:

$$
\begin{equation*}
\operatorname{Ex}\left(D_{1}, n, a_{i, j}\right)<\sum_{k} \operatorname{Ex}\left(D_{1}, n_{k}, w\right)+\operatorname{Ex}\left(D_{1}, n^{*}, a_{i-1, w}\right)+4 n^{*}+3 a_{i, j} \tag{4}
\end{equation*}
$$

The first term counts local 1 s , the 3 rd and 4 th terms count first and last 1 s and the at most $a_{i, j} 1 \mathrm{~s}$ lost in contracting S^{\prime} to form $S^{\prime \prime}$. The 2nd term counts all remaining global 1s. In the base case $i=1$ and the second term is not present. Invoking the inductive hypothesis for $i=1$ and $j-1$ we may bound the right-hand side of (4) as:

$$
\begin{aligned}
\operatorname{Ex}\left(D_{1}, n, a_{1, j}\right) & <c\left(n-n^{*}\right)+c^{\prime}(j-1) a_{1, j}+4 n^{*}+3 a_{1, j} \\
& \leqslant c n^{*}+c^{\prime} j a_{1, j}
\end{aligned}
$$

[^5]where the last line holds for $c=4$ and $c^{\prime}=3$. For $i, j>1$ we invoke the inductive hypothesis again and bound the right-hand side of (4) as:
\[

$$
\begin{align*}
& \leqslant c i\left(n-n^{*}\right)+c^{\prime} i(j-1) a_{i, j}+c(i-1) n^{*}+c^{\prime}(i-1) a_{i, j}+4 n^{*}+3 a_{i, j} \\
& \leqslant \operatorname{cin}+c^{\prime} i j a_{i, j} \\
& =4 i n+3 i j a_{i, j} \tag{5}
\end{align*}
$$
\]

The first inequality follows from the fact that $a_{i, j}=w \cdot a_{i-1, w}$. For $n=j a_{i, j}$ and $m=a_{i, j}$, cin + $c^{\prime} i j a_{i, j}=O(n \alpha(n, m))$. This bound extends to all n and m by standard interpolation. See the proof of Theorem 2.6 or [19, §6.1] for details.

Theorem 3.3. $\operatorname{Ex}\left(\tilde{D}_{1}, n, m\right)=O\left(n \alpha^{2}(n, m)+m\right)$.
Proof. Let S be an $n \times a_{i, j} \tilde{D}_{1}$-free matrix with weight $\operatorname{Ex}\left(\tilde{D}_{1}, n, a_{i, j}\right)$. We partition S into slabs and define $w, n^{*}, n_{k}, n_{k}^{*}, \tilde{n}_{k}^{*}, \grave{n}_{k}^{*}$ as in the proof of Theorem 3.2. Our first goal is to prove the following recurrence, for $i>1$ and/or $j>1$.

$$
\begin{align*}
\operatorname{Ex}\left(\tilde{D}_{1}, n, a_{i, j}\right)< & \sum_{k} \operatorname{Ex}\left(\tilde{D}_{1}, n_{k}, w\right)+2 \cdot \operatorname{Ex}\left(\tilde{C}, n^{*}, a_{i, j}\right)+2 \cdot \operatorname{Ex}\left(D_{1}, n^{*}, a_{i-1, w}\right) \\
& +\operatorname{Ex}\left(\tilde{D}_{1}, n^{*}, a_{i-1, w}\right)+2 n^{*}+a_{i, j} \tag{6}
\end{align*}
$$

The first term covers the number of local 1 s . If we restrict our attention to the left 1 s in a given slab, then remove the last 1 in this slab in each row, we are left with a \tilde{C}-free submatrix. Similarly, taking the right 1 s in a slab and removing the first 1 in each row leaves a $\tilde{C} \ominus$-free matrix. Thus, the number of left and right 1 s is at most $2 n^{*}+\sum_{k}\left[\operatorname{Ex}\left(\tilde{C}, \tilde{n}_{k}^{*}, w\right)+\operatorname{Ex}\left(\tilde{C}^{\ominus}, \dot{n}_{k}^{*}, w\right)\right]$, which is at most $2 n^{*}+2 \cdot \operatorname{Ex}\left(\tilde{C}, n^{*}, a_{i, j}\right)<14 n^{*}+2 a_{i, j}$. We partition the middle 1 s in a given slab S_{k} into $S_{k}^{\prime}, S_{k}^{\prime \prime}$, and $S_{k}^{\prime \prime \prime}$ as follows: retain the first 1 in each row in S_{k}^{\prime}, the last two 1 s in each row (or last 1 , if there are only two) in $S_{k}^{\prime \prime}$, and all others in $S_{k}^{\prime \prime \prime}$. Let S^{\prime} be the $n^{*} \times a_{i-1, w}$ matrix derived by contracting the slabs $\left\{S_{k}^{\prime}\right\}$ to single columns. Clearly S^{\prime} retains the \tilde{D}_{1}-freeness of S, so $\left|S^{\prime}\right| \leqslant \operatorname{Ex}\left(\tilde{D}_{1}, n^{*}, a_{i-1, w}\right)$. Let $S^{\prime \prime}$ be defined analogously. Since each 1 in $S^{\prime \prime}$ in, say, column k, represents two 1 s in the same row in $S_{k}^{\prime \prime}$, any occurrence of D_{1} in $S^{\prime \prime}$ implies an occurrence of \tilde{D}_{1} in S. Thus, $\sum_{k}\left|S_{k}^{\prime \prime}\right| \leqslant 2 \cdot \operatorname{Ex}\left(D_{1}, n^{*}, a_{i-1, w}\right)$, which, by Theorem 3.2, Eq. (5), is at most $2 \cdot\left[4(i-1) n^{*}+3(i-1) w a_{i-1, w}\right]=8(i-1) n^{*}+6(i-1) a_{i, j}$. Let $S^{\prime \prime \prime}$ be the concatenation of the $\left\{S_{k}^{\prime \prime \prime}\right\}$, that is, we do not contract the slabs into single columns. It must be that $\left|S^{\prime \prime \prime}\right| \leqslant a_{i, j}$. If $(:)$ appeared in, say, $S_{k}^{\prime \prime \prime}$, then $(\because .$.$) would as well, since each 1$ in $S_{k}^{\prime \prime \prime}$ is preceded by a 1 and followed by two 1 s . Since 1 s in $S_{k}^{\prime \prime \prime}$ are neither left nor right, this implies an occurrence of \tilde{D}_{1} in S. Eq. (6) follows.

Combining the bounds established above, Eq. (6) reduces to:

$$
\begin{array}{ll}
\operatorname{Ex}\left(\tilde{D}_{1}, n, a_{1, j}\right)<\sum_{k=1,2} \operatorname{Ex}\left(\tilde{D}_{1}, n_{k}, a_{1, j-1}\right)+14 n^{*}+2 a_{1, j} & \text { for } i=1 \\
\operatorname{Ex}\left(\tilde{D}_{1}, n, a_{i, j}\right) & \\
\quad<\sum_{k} \operatorname{Ex}\left(\tilde{D}_{1}, n_{k}, w\right)+\operatorname{Ex}\left(\tilde{D}_{1}, n^{*}, a_{i-1, w}\right)+(8 i+6) n^{*}+(6 i-3) a_{i, j} & \text { for } i>1 \tag{8}
\end{array}
$$

We claim that $\operatorname{Ex}\left(\tilde{D}_{1}, n, a_{i, j}\right)<5(i+1)^{2} n+3 i^{2} j a_{i, j}$. When $j=1$ the claim is trivial. The case $i=1$ follows from a simple induction on Eq. (7). When $i, j>1$ we invoke the induction hypothesis on Eq. (8), yielding

$$
\begin{aligned}
\operatorname{Ex}\left(\tilde{D}_{1}, n, a_{i, j}\right)< & 5(i+1)^{2}\left(n-n^{*}\right)+3 i^{2}(j-1) a_{i, j}+5 i^{2} n^{*}+3(i-1)^{2} w a_{i-1, w} \\
& +(8 i+6) n^{*}+(6 i-3) a_{i, j}
\end{aligned}
$$

$$
\begin{aligned}
= & 5(i+1)^{2} n+n^{*}\left[5 i^{2}+8 i+6-5(i+1)^{2}\right] \\
& +a_{i, j}\left[3 i^{2}(j-1)+3(i-1)^{2}+6 i-3\right] \\
< & 5(i+1)^{2} n+3 i^{2} j a_{i, j}
\end{aligned}
$$

For $n=j a_{i, j}, m=a_{i, j}$ this is $O\left(n \alpha^{2}(n, m)\right)$.
Theorem 3.4. $\operatorname{Ex}\left(E_{1}, n, m\right)=\Theta\left(n 2^{\alpha(n, m)}+m\right)$.
Proof. We begin by observing that the proof of Theorem 3.2 can be modified to show that $\operatorname{Ex}\left(D_{1}, n, a_{i, j}^{2}\right) \leqslant 4 i n+6 i j a_{i, j}^{2}{ }^{6}$ Let S be an E_{1}-free $n \times a_{i, j}^{2}$ matrix. We partition S into slabs with width $w^{2}=a_{i, j-1}^{2}$ and define n_{k}, n^{*}, etc. as usual. Note that for $i>1, a_{i, j}^{2} / w^{2}=a_{i-1, w}^{2}$. We claim that $\operatorname{Ex}\left(E_{1}, n, m\right)$ satisfies the following bound:

$$
\begin{align*}
\operatorname{Ex}\left(E_{1}, n, a_{i, j}^{2}\right)< & \sum_{k}\left[\operatorname{Ex}\left(E_{1}, n_{k}, w^{2}\right)+\operatorname{Ex}\left(D_{1}, \hat{n}_{k}^{*}, w^{2}\right)+\operatorname{Ex}\left(D_{1}^{\ominus}, \grave{n}_{k}^{*}, w^{2}\right)\right] \\
& +2 \operatorname{Ex}\left(E_{1}, n^{*}, a_{i-1, w}^{2}\right)+a_{i, j}^{2} \tag{9}
\end{align*}
$$

The summation counts local 1 s , left 1 s , and right 1 s , since the submatrix of any slab consisting of left 1 s avoids D_{1} and that consisting of right 1 s avoids D_{1}^{\ominus}. We argue the last two terms count middle ones, which are present only if $i>1$. Let S_{k}^{\prime} be the submatrix of the k th slab containing middle 1 s and let S^{\prime} be the $n^{*} \times a_{i-1, w}^{2}$ matrix derived by contracting each S_{k}^{\prime} to a single column. Since S_{k}^{\prime} is C^{\ominus} free, implying that $\left|S_{k}^{\prime}\right| \leqslant 2 n_{k}^{*}+w^{2}$, it follows that $\sum_{k}\left|S_{k}^{\prime}\right| \leqslant 2\left|S^{\prime}\right|+a_{i, j}^{2}$. ${ }^{7}$ Eq. (9) follows. We prove that $\operatorname{Ex}\left(E_{1}, n, a_{i, j}^{2}\right) \leqslant\left(2^{i+4}-8 i-16\right) n+c^{\prime} i j^{2} a_{i, j}^{2}$ for a c^{\prime} to be determined. The bound holds for $j=1$, any i, and $c^{\prime} \geqslant 4$ since there are only $4=a_{i, 1}^{2}$ columns. For $i=1, j>1$ we prove by induction that $\operatorname{Ex}\left(E_{1}, n, a_{1, j}\right)<8 n+3 j^{2} a_{1, j}$. The following recursive expression for $\operatorname{Ex}\left(E_{1}, n, a_{1, j}\right)$ reflects a partition into $a_{1, j} / a_{1, j-1}=2$ slabs and where no 1 s are classified as middle.

$$
\begin{aligned}
\operatorname{Ex}\left(E_{1}, n, a_{1, j}\right)< & \sum_{k=1,2} \operatorname{Ex}\left(E_{1}, n_{k}, a_{1, j-1}\right)+2 \cdot \operatorname{Ex}\left(D_{1}, n^{*}, a_{1, j-1}\right) \\
< & 8\left(n-n^{*}\right)+3(j-1)^{2} a_{1, j} \\
& +8 n^{*}+6(j-1) a_{1, j} \quad \text { Ind. hyp., Theorem 3.2, Eq. } 5 \\
< & 8 n+3 j^{2} a_{1, j}
\end{aligned}
$$

This shows that when $i=1, \operatorname{Ex}\left(E_{1}, n, a_{1, j}^{2}\right)=\operatorname{Ex}\left(E_{1}, n, a_{1,2 j}\right) \leqslant\left(2^{i+4}-8 i-16\right) n+c^{\prime} i j^{2} a_{i, j}^{2}$ for $c^{\prime}=12$. We now invoke the inductive hypothesis on Eq. (9), for $i, j>1$:

$$
\begin{aligned}
\operatorname{Ex}\left(E_{1}, n, a_{i, j}^{2}\right)< & \left(2^{i+4}-8 i-16\right)\left(n-n^{*}\right)+c^{\prime} i(j-1)^{2} a_{i, j}^{2} & & \text { local 1s } \\
& +2\left[\left(2^{i+3}-8(i-1)-16\right) n^{*}+c^{\prime}(i-1) a_{i, j}^{2}\right]+a_{i, j}^{2} & & \text { middle 1s } \\
& +2\left[4 i n^{*}+6 i(j-1) a_{i, j}^{2}\right] & & \text { left and right 1s } \\
= & \left(2^{i+4}-8 i-16\right) n+n^{*}[8 i+16-16(i-1)-32] & & \\
& +a_{i, j}^{2}\left[c^{\prime} i(j-1)^{2}+2 c^{\prime}(i-1)+12 i(j-1)+1\right] & &
\end{aligned}
$$

[^6]\[

$$
\begin{aligned}
& <\left(2^{i+4}-8 i-16\right) n+c^{\prime} a_{i, j}^{2}\left[i(j-1)^{2}+2 i+i(j-1)\right] \quad \text { for } c^{\prime}=12 \\
& \leqslant\left(2^{i+4}-8 i-16\right) n+c^{\prime} i j^{2} a_{i, j}^{2}
\end{aligned}
$$
\]

This last bound is $O\left(n \cdot 2^{\alpha(n, m)}\right)$ for $n=\left(j a_{i, j}\right)^{2}, m=a_{i, j}^{2}$.
Theorem 3.5. $\operatorname{Ex}\left(\tilde{E}_{1}, n, m\right)=\Theta\left(n 2^{\alpha(n, m)}+m\right)$.
Proof. Suppose we are given an \tilde{E}_{1}-free, $n \times a_{i, j}^{2}$ matrix S. As in the proof of Theorem 3.4 we partition it into slabs with width $w^{2}=a_{i, j-1}^{2}$. Let $n_{k}, \check{n}_{k}^{*}, \grave{n}_{k}^{*}$ be defined as usual. Let $n^{*}=n_{L}^{*}+n_{H}^{*}$ be the number of global rows, partitioned into n_{L}^{*} light rows and n_{H}^{*} heavy rows, where light and heavy will be defined shortly. We claim that Eq. (10) holds for $i, j>1$ and any n_{L}^{*}, n_{H}^{*}, etc.

$$
\begin{align*}
\operatorname{Ex}\left(\tilde{E}_{1}, n, a_{i, j}^{2}\right)< & \sum_{k}\left[\operatorname{Ex}\left(\tilde{E}_{1}, n_{k}, w^{2}\right)+\operatorname{Ex}\left(\tilde{D}_{1}, \tilde{n}_{k}^{*}, w^{2}\right)+\operatorname{Ex}\left(\tilde{D}_{1}^{\ominus}, \tilde{n}_{k}^{*}, w^{2}\right)\right] \\
& +\frac{3}{2} \cdot \operatorname{Ex}\left(\tilde{E}_{1}, n_{L}^{*}, a_{i-1, w}^{2}\right)+24 \cdot \operatorname{Ex}\left(E_{1}, n_{H}^{*}, a_{i-1, w}^{2}\right)+2 n^{*}+3 a_{i, j}^{2} \tag{10}
\end{align*}
$$

Eq. (10) is obtained as follows. The weight of local 1 s is at most $\sum_{k} \operatorname{Ex}\left(\tilde{E}_{1}, n_{k}, w^{2}\right)$. The weight of left 1 s and right 1 s is at most $2 n^{*}+\sum_{k}\left[\operatorname{Ex}\left(\tilde{D}_{1}, \tilde{n}_{k}^{*}, w^{2}\right)+\operatorname{Ex}\left(\tilde{D}_{1}^{\ominus}, \tilde{n}_{k}^{*}, w^{2}\right)\right]$. This follows since, after we delete the last left 1 in each row and the first right 1 in each row ($2 n^{*} 1 \mathrm{~s}$), the submatrices of first 1 s and last 1 s in any slab are \tilde{D}_{1}-free and \tilde{D}_{1}^{\ominus}-free, respectively. The proof of Theorem 3.3 can be modified to show that $\operatorname{Ex}\left(\tilde{D}_{1}, n, a_{i, j}^{2}\right) \leqslant 5(i+1)^{2} n+6 i^{2} j a_{i, j}^{2} .{ }^{8}$ Thus, the number of first and last 1 s is $2 n^{*}+2\left[5(i+1)^{2} n^{*}+6 i(j-1) a_{i, j}^{2}\right]$. Call a middle 1 a singleton if it is the only 1 in the intersection of its row and block. A global row is light if more than $2 / 3$ of its middle 1 s are singletons and heavy otherwise. Let n_{L}^{*} and n_{H}^{*} be the numbers of light and heavy rows, let S^{*} be the submatrix of S containing only middle 1 s , and let S_{L} and S_{H} be the submatrices of S^{*} containing 1 s in light rows and heavy rows, respectively. We form two contracted matrices: S_{L}^{\prime} is an $n_{L}^{*} \times a_{i-1, w}^{2}$ matrix derived by contracting each slab, retaining only singletons in light rows, and S_{H}^{\prime} is an $n_{H}^{*} \times a_{i-1, w}^{2}$ matrix derived by contracting each slab but retaining only non-singletons in heavy rows. The definition of light implies that $\left|S_{L}\right| \leqslant \frac{3}{2} \cdot\left|S_{L}^{\prime}\right|$. If we remove the first and last 1 in each row of a given slab in S^{*}, the slab must necessarily be $\tilde{C}{ }^{\ominus}$-free. Thus, if T is a slab in S_{H} and T^{\prime} the resulting column in S_{H}^{\prime}, Theorem $1.5(3)$ implies that $|T| \leqslant 8\left|T^{\prime}\right|+a_{i, j-1}^{2}$. Since non-singleton 1 s in heavy rows account for at least $1 / 3$ of the weight, $\left|S_{H}\right| \leqslant 24\left|S_{H}^{\prime}\right|+3 a_{i, j}^{2}$. Observe that each 1 in S_{H}^{\prime} represents at least two 1 s from the original matrix S. If S is \tilde{E}_{1}-free then S_{H}^{\prime} must be E_{1}-free. Eq. (10) follows.

We claim that $\operatorname{Ex}\left(\tilde{E}_{1}, n, a_{i, j}^{2}\right) \leqslant c 2^{i} n+c^{\prime} i j^{2} a_{i, j}^{2}$, where $c=200$ and $c^{\prime}=288$. This is easy to prove when $i=1$ and/or $j=1$. When $i, j>1$ we bound Eq. (10) using our existing bounds on E_{1}-free and \tilde{D}_{1}-free matrices and the inductive hypothesis for \tilde{E}_{1}-free matrices:

$$
\begin{aligned}
\operatorname{Ex}\left(\tilde{E}_{1}, n, a_{i, j}^{2}\right)< & c 2^{i}\left(n-n^{*}\right)+c^{\prime} i(j-1)^{2} a_{i, j}^{2} \\
& +2\left[5(i+1)^{2} n^{*}+6 i(j-1) a_{i, j}^{2}\right]+2 n^{*} \\
& +\frac{3}{2}\left[c 2^{i-1} n_{L}^{*}+c^{\prime}(i-1) a_{i, j}^{2}\right]
\end{aligned}
$$

local 1s
left and right 1 s

light rows

[^7]\[

$$
\begin{aligned}
& +24\left[\left(2^{i+3}-8(i-1)-16\right) n_{H}^{*}+12(i-1) a_{i, j}^{2}\right]+3 a_{i, j}^{2} \quad \text { heavy rows } \\
= & c 2^{i} n+n_{L}^{*} \Gamma_{1}+n_{H}^{*} \Gamma_{2}+a_{i, j}^{2} \Gamma_{3}
\end{aligned}
$$
\]

where Γ_{1}, Γ_{2}, and Γ_{3} are expressions to be analyzed below. We must show that $\Gamma_{1}, \Gamma_{2} \leqslant 0$ and $\Gamma_{3} \leqslant c^{\prime} i j^{2}$.

$$
\begin{array}{rlrl}
\Gamma_{1} & =3 c 2^{i-2}-c 2^{i}+10(i+1)^{2}+2<0 & \text { Note } c=200 \\
\Gamma_{2} & =24\left(2^{i+3}-8(i-1)-16\right)-c 2^{i}+10(i+1)^{2}+2 \\
& <(192-200) 2^{i}+10(i+1)^{2}-574<0 & \text { Note } 24 \cdot 8=192,(24)^{2}=576, c=200 \\
\Gamma_{3} & =c^{\prime} i(j-1)^{2}+12 i(j-1)+\frac{3}{2} c^{\prime}(i-1)+(24 \cdot 12)(i-1)+3 \\
& <c^{\prime} i\left[(j-1)^{2}+12(j-1) / c^{\prime}+\frac{5}{2}\right] & & \text { Note } c^{\prime}=288=12 \cdot 24 \\
& <c^{\prime} i j^{2} & & \text { Note } 2 j-1>\frac{12}{288}(j-1)+\frac{5}{2} \text { for } j \geqslant 2
\end{array}
$$

Thus, $\operatorname{Ex}\left(\tilde{E}_{1}, n, m\right)=O\left(n \cdot 2^{\alpha(n, m)}\right)$ for $n=\left(j a_{i, j}\right)^{2}, m=a_{i, j}^{2}$.
The lower bounds claimed in Theorems 3.2, 3.4, and 3.5 are obtained by taking the canonical matrices of $a b a b a$-free and $a b a b a b$-free Davenport-Schinzel sequences [10,3].

Remark 3.6. The separation of global rows into light and heavy, used in the proof of Theorem 3.5, is a generic operation that can be used to replicate Nivasch's bounds [19] on all higher-order DavenportSchinzel sequences. Unfortunately, we do not see a way to use a light/heavy decomposition to improve the $O\left(n \alpha^{2}(n)\right)$ bound on $\operatorname{Ex}\left(\tilde{D}_{1}, n\right)$ and $\operatorname{Ex}(\operatorname{dbl}(a b a b a), n)$.

4. A hierarchy of simple forbidden sequences

In this section we exhibit a set of forbidden sequences $\left\{\tau_{s}\right\}$ that attain extremal functions of any rank, i.e., of the form $n 2^{\Omega\left(\alpha^{t}(n)\right)}$ for any t. This result is somewhat unexpected because the $\left\{\tau_{s}\right\}$ do not seem sufficiently complex to achieve arbitrarily large rank; they all avoid ababa as well as even simpler patterns like $a b b a a, ~ a a b b a$, and $a b c c b a$. We show, specifically, that for integer parameters s, k, j there is a τ_{s}-free sequence $S_{k}^{s}(j)$, where the parameters j and k control the block size and density (the sequence length/alphabet ratio), respectively. For $n=\left\|S_{k}^{s}(2)\right\|$ we show the length of $S_{k}^{s}(2)$ is $n 2^{(1-o(1)) \alpha^{t}(n) / t!}$, for s even and $t=(s-2) / 2$, and $n 2^{(1+o(1)) \alpha^{t}(n) \log \alpha(n) / t!}$, for s odd and $t=$ $(s-3) / 2$. For even s our construction is the same as Nivasch's [19]; however, we are aware of no prior constructions that are comparable when s is odd. Indeed, this seems to be the first construction of a sequence with length, say, $n 2^{(1-o(1)) \alpha(n) \log \alpha(n)}$ that has some "natural" forbidden substructure. Whether standard Davenport-Schinzel sequences can have this type of extremal function is an open question.

4.1. The construction

We construct sequences $S_{k}^{S}(j)$ recursively using two generic composition operations called substitution and shuffing. Let S be a sequence partitioned into blocks with length j and let S^{\prime} be a sequence with $\left\|S^{\prime}\right\|=j$. Recall that blocks are sequences of distinct symbols. Then $S \circ S^{\prime}$ is a sequence with length $|S| \cdot\left|S^{\prime}\right| / j$ obtained by replacing each block γ in S with a copy $S^{\prime}(\gamma)$ of S^{\prime} over the same alphabet, that is, $\Sigma(\gamma)=\Sigma\left(S^{\prime}(\gamma)\right)$. Furthermore, the order of symbols in γ coincides with their first appearance in $S^{\prime}(\gamma)$. Now suppose S is a sequence partitioned into j blocks and S^{\prime} is a sequence of blocks of length j. To obtain $S^{\prime} \diamond S$ we let S^{*} be the concatenation of $\llbracket S^{\prime} \rrbracket=\left|S^{\prime}\right| / j$ copies of S, whose alphabets do not intersect with each other or S^{\prime}, then append the i th symbol of S^{\prime} to the i th block of S^{*}, that is, each block of S^{\prime} is shuffled with one copy of S.

Fig. 9. The sequence $S_{k}^{s}(j)$ is obtained by taking a copy of $S_{\text {top }}=S_{k-1}^{s}\left(\left\|S_{\text {mid }}\right\|\right)$, substituting a copy of $S_{\text {mid }}=S_{k-1}^{s-2}\left(\llbracket S_{\text {bot }} \rrbracket\right)$ for each block of $S_{\text {top }}$ (over the same alphabet), yielding $S_{\text {sub }}$, then shuffling $S_{\text {sub }}$ with the concatenation $S_{\text {bot }}^{*}$ of $\llbracket S_{\text {sub }} \rrbracket$ copies of $S_{\text {bot }}=S_{k}^{S}(j-1)$. That is, the l th symbol of the m th block of $S_{\text {sub }}$ is appended to the lth block of the m th copy of $S_{\text {bot }}$ in $S_{\text {bot }}^{*}$. The resulting sequence is $S_{\text {sh }}=S_{k}^{S}(j)$.

Recall that $R_{k, \delta}(j)$ from Section 2.2 had both live and dead blocks, and that the length of dead blocks were arbitrarily multiples of δ. We define $S_{k}^{3}(j)$ to be the sequence $R_{k, 4 j}(j)$, that is, the sparsity constant is fixed at $\delta=4 j$. (Ensuring that $\delta \geqslant 4$ makes some proofs simpler; setting $\delta=j$ works just as well.) However, we interpret $S_{k}^{3}(j)$ as a sequence of blocks each with length j. Since $\left|R_{k, 4 j}(j)\right|=$ $\llbracket R_{k, 4 j}(j) \rrbracket_{\ell} \cdot k j$, it follows that $\llbracket S_{k}^{3}(j) \rrbracket=\left|R_{k, 4 j}(j)\right| / j=\llbracket R_{k, 4 j}(j) \rrbracket_{\ell} \cdot k$.

For each $s \geqslant 2, k \geqslant 0$, and $j \geqslant 1$ we construct a sequence $S_{k}^{S}(j)$ in which each block has length j and each symbol appears exactly μ_{k}^{s} times. Thus, $\left|S_{k}^{s}(j)\right|=j \llbracket S_{k}^{s}(j) \rrbracket=\mu_{k}^{s}\left\|S_{k}^{s}(j)\right\|$. When $s \in\{1,2,3\}$ or $k=0$ or $j=1$ we have the following base cases. Blocks are indicated by brackets.

$$
\begin{array}{ll}
S_{k}^{2}(j)=[12 \cdots(j-1) j][j(j-1) \cdots 21] & \text { two blocks; } k \geqslant 0 \\
S_{0}^{s}(j)=[12 \cdots(j-1) j] & \text { one block; } s \geqslant 4 \\
S_{k}^{3}(j)=R_{k, 4 j}(j) & \text { with reinterpreted } \\
S_{k}^{s}(1)=[1]_{k}^{\mu_{k}^{s}} & \mu_{k}^{s} \text { identical blocks }
\end{array}
$$

We define μ_{k}^{s} as follows:

$$
\begin{array}{ll}
\mu_{k}^{2}=2 & \text { for } k \geqslant 0 \\
\mu_{0}^{s}=1 & \text { for } s \geqslant 3 \\
\mu_{k}^{3}=k & \text { for } k \geqslant 0 \\
\mu_{k}^{s}=\mu_{k-1}^{s} \cdot \mu_{k-1}^{s-2} &
\end{array}
$$

For $k \geqslant 1, s \geqslant 4$, and $j>1$ we construct $S_{k}^{s}(j)$ from three sequences: $S_{\text {bot }}=S_{k}^{s}(j-1), S_{\text {mid }}=$ $S_{k-1}^{s-2}\left(\llbracket S_{\text {bot }} \rrbracket\right)$, and $S_{\text {top }}=S_{k-1}^{s}\left(\left\|S_{\text {mid }}\right\|\right)$.

$$
\begin{aligned}
& S_{\mathrm{sub}}=S_{\mathrm{top}} \circ S_{\mathrm{mid}} \\
& S_{k}^{s}(j)=S_{\mathrm{sh}}=S_{\mathrm{sub}} \diamond S_{\mathrm{bot}}
\end{aligned}
$$

In other words, $S_{k}^{s}(j)$ (referred to as $S_{\text {sh }}$ when k, j, s are not relevant) is obtained by substituting a copy of $S_{\text {mid }}$ for each block in $S_{\text {top }}$, then shuffling that sequence with the concatenation $S_{\text {bot }}^{*}$ of many copies of $S_{\text {bot }}$. See Fig. 9. This substitution operation is possible because the block length of $S_{\text {top }}$ is by definition the alphabet size of $S_{\text {mid }}$. It is clear that the shuffling operation is possible since the block length of $S_{\text {sub }}$ is by definition the number of blocks in $S_{\text {bot }}$. By induction each symbol in $S_{\text {top }}$ appears precisely μ_{k-1}^{s} times, each symbol in $S_{\text {sub }}$ precisely $\mu_{k-1}^{s} \mu_{k-1}^{s-2}=\mu_{k}^{s}$ times (since each symbol in $S_{\text {mid }}$ appears μ_{k-1}^{s-2} times) and symbols in copies of $S_{\text {bot }}$ precisely μ_{k}^{s} times. Thus, all symbols in $S_{k}^{S}(j)$ appear precisely μ_{k}^{s} times. We can now derive an inductive expression for $\llbracket S_{\mathrm{sh}} \rrbracket=\llbracket S_{k}^{S}(j) \rrbracket$.

$$
\begin{aligned}
\llbracket S_{\text {sh }} \rrbracket=\llbracket S_{k}^{s}(j) \rrbracket= & \left|S_{\text {sub }}\right| \\
= & \left|S_{\text {mid }}\right| \cdot \llbracket S_{\text {top }} \rrbracket \\
= & \left|S_{\text {mid }}\right| \cdot \llbracket S_{k-1}^{s}\left(\left\|S_{\text {mid }}\right\|\right) \rrbracket \\
= & \left|S_{k-1}^{s-2}\left(\llbracket S_{\text {bot }} \rrbracket\right)\right| \cdot \llbracket S_{k-1}^{s}\left(\left(\llbracket S_{\text {bot }} \rrbracket / \mu_{k-1}^{s-2}\right) \llbracket S_{\text {mid }} \rrbracket\right) \rrbracket \\
= & \llbracket S_{\text {bot }} \rrbracket \cdot \llbracket S_{k-1}^{s-2}\left(\llbracket S_{\text {bot }} \rrbracket\right) \rrbracket \cdot \llbracket S_{k-1}^{s}\left(\left(\llbracket S_{\text {bot }} \rrbracket / \mu_{k-1}^{s-2}\right) \llbracket S_{k-1}^{s-2}\left(\llbracket S_{\text {bot }} \rrbracket\right) \rrbracket\right) \rrbracket \\
= & g \cdot \llbracket S_{k-1}^{s-2}(g) \rrbracket \cdot \llbracket S_{k-1}^{s}\left(\left(g / \mu_{k-1}^{s-2}\right) \llbracket S_{k-1}^{s-2}(g) \rrbracket\right) \rrbracket \\
& \quad g=\llbracket S_{\text {bot }} \rrbracket=\llbracket S_{k}^{s}(j-1) \rrbracket
\end{aligned}
$$

Recall that $\left(g / \mu_{k-1}^{s-2}\right) \llbracket S_{k-1}^{s-2}(g) \rrbracket$ is the alphabet size of $S_{\text {mid }}$ and $g \cdot \llbracket S_{k-1}^{s-2}(g) \rrbracket$ is the length of $S_{\text {mid }}$. In Appendix A we prove Lemma 4.1, which relates $\llbracket S_{k}^{S}(j) \rrbracket$ to Ackermann's function, as defined in Section 2.1, and bounds μ_{k}^{s} in terms of $\alpha\left(\left\|S_{k}^{s}(j)\right\|, \llbracket S_{k}^{s}(j) \rrbracket\right)$.

Lemma 4.1. Let $n=\left\|S_{k}^{s}(j)\right\|$ and $m=\llbracket S_{k}^{s}(j) \rrbracket$, where $s \geqslant 4, k \geqslant 1$, and $j \geqslant 2$. Then:
(1) $k \geqslant \alpha(n, m)-1$.
(2) For $s=2 t+2, \mu_{k}^{s}=2^{\binom{k}{t}}=2^{(1 \pm o(1)) \alpha^{t}(n, m) / t!}$.
(3) For $s=2 t+3, \mu_{k}^{s}=\prod_{i=t}^{k-2}(k-i)^{\left(C_{t-1}^{i-1}\right)}=2^{(1 \pm o(1)) \alpha^{t}(n, m) \log \alpha(n, m) / t!}$.

It is known [19] that $S_{k}^{2 t}(j)$ avoids subsequences isomorphic to $(a b)^{t+1}$, for any k and j. Lemma 4.2 gives a set of universally forbidden patterns, that is, patterns that do not appear in any $S_{k}^{s}(j)=S_{\text {sh }}$. Recall from Section 2.2 the definition of patterns annotated with square and curly brackets: sequences in square brackets must appear in a single block and symbols in curly brackets must appear in some permutation in a single block.

Lemma 4.2. Let $S_{\text {sh }}=S_{k}^{s}(j)$, where k, j are arbitrary and $s \geqslant 4$, and let $S_{\text {top }}, S_{\text {mid }}, S_{\text {bot }}, S_{\text {bot }}^{*}$, and $S_{\text {sub }}$ be the sequences used in the construction of $S_{\text {sh }}$.
(1) If $a b b c, a b\{b c\}$, or $\{a b\} b c$ appear in $S_{\text {sh }}$, where a and c may be equal, then it cannot be that $b \in \Sigma\left(S_{\text {top }}\right)$ and $a, c \in \Sigma(\beta)$, for some copy β of $S_{\text {bot }}$ in $S_{\text {bot }}^{*}$.
(2) $\{a b\}\{a b\} \nprec S_{\text {sh }}$.
(3) $[b a] a b \nprec S_{\text {sh }}$ and $b a[b a] \nprec S_{\text {sh }}$.
(4) $\{a b\} a b a, a b a\{a b\} \nprec S_{\text {sh }}$.
(5) $\{a b c\} c a c b c \nprec S_{\text {sub }}$ and $c b c a c\{a b c\} \nprec S_{\text {sub }}$.

Proof. All of the claims will follow from the following three facts: (i) the alphabets of $S_{\text {sub }}$ and each of the $S_{\text {bot }}$ are disjoint, (ii) when forming $S_{\text {sh }}$, each copy of $S_{\text {bot }}$ receives symbols from only one block of $S_{\text {sub }}$, and (iii) each block of $S_{\text {sh }}$ contains one symbol from $S_{\text {sub }}$, that is, no two symbols from $S_{\text {sub }}$ appear in the same block in $S_{\text {sh }}$. Facts (i)-(iii) immediately yield part (2), that $\{a b\}\{a b\} \nprec S_{\text {sh }}$, that is, no two symbols appear in two distinct blocks. They also imply part (1), since if $b \in \Sigma\left(S_{\text {top }}\right)=\Sigma\left(S_{\text {sub }}\right)$ and both a and c are in the alphabet of some copy β of $S_{\text {bot }}$, two copies of b cannot be shuffled into $\beta .{ }^{9}$ Part (3) follows by induction if b and a are both in or both not in $\Sigma\left(S_{\text {top }}\right)$ and part (1) implies that the remaining case is when $a \in \Sigma\left(S_{\text {bot }}^{*}\right)$ and $b \in \Sigma\left(S_{\text {top }}\right)$; however, this case is impossible since b precedes a in their common block. Part (4) is a corollary of part (3) since an occurrence of $\{a b\} a b a$ implies an occurrence of [ab]ba or [ba]ab.

Turning to part (5), suppose $\sigma=\{a b c\} c a c b c$ appears in $S_{\text {sub }}$, let γ be the block in $S_{\text {top }}$ containing a, b, and c, and let Γ be the copy of $S_{\text {mid }}$ in $S_{\text {sub }}$ substituted for γ. (Note that $\{a, b, c\}$ also appear in a common block in Γ.) The prefix $\{a b c\} c a c ~ ₹ \sigma$ cannot appear in Γ, by part (4), if $s \neq 5$, and by Lemma 2.8(7) if $s=5$. On the other hand, Γ cannot exclude the suffix $c b c \precsim \sigma$, otherwise

[^8]

Fig. 10. The first half of a bi-block γ (containing b, c, d) is shuffled with the i th copy of $S_{\text {bot }}$ in $S_{\text {bot }}^{*}$, containing a. The curly braces mark the locus of the contradiction: if abacadadbdcd $\prec S_{\text {sh }}$ it must be that $\{c d\} d c d<S_{\text {top }}$, a contradiction.
$\{a b c\} c b c$ or $\{a b c\}\{c b\}$ would appear in $S_{\text {top }}$, again, contradicting parts (2), (4). A symmetric proof shows cbcac $\{a b c\} \nprec S_{\text {sub }}$.

Theorem 4.3 is due to B. Wyman. It was discovered through an exhaustive search over 4-letter sequences avoiding ababa.

Theorem 4.3. $\operatorname{Ex}(\sigma, n)=\Omega\left(n \cdot 2^{\alpha(n)}\right)$, for $\sigma \in\{$ abacadadbdcd, abacadadcdbd\}.
Proof. We show that a supersequence $\hat{S}_{k}^{4}(j)$ of $S_{k}^{4}(j)$ avoids the two forbidden sequences, which is conceptually a bit easier to deal with. Let $\hat{S}_{k}^{4}(j)=S_{k}^{4}(j) \circ[1 \cdots(j-1) j][(j-1) \cdots 1]$, that is, we replace each block in $S_{k}^{4}(j)$ with two blocks over the same symbols; call these pairs bi-blocks. Then $\hat{S}_{k}^{4}(j)=S_{\text {sh }}$ is obtained by taking one copy of $\hat{S}_{k}^{4}\left(\llbracket S_{k}^{4}(j-1) \rrbracket\right)=S_{\text {top }}$ and shuffling it with $2 \cdot \llbracket S_{k-1}^{4}\left(\llbracket S_{k}^{4}(j-1) \rrbracket\right) \rrbracket$ copies of $\hat{S}_{k}^{4}(j-1)=S_{\text {bot }}$. (Note that rather than append a symbol to a block, we insert it in the middle of a bi-block, splitting into two copies the previous middle symbol.) The whole point of this modification is to obtain $\hat{S}_{k}^{4}(j)$ via one shuffling event rather than a substitution/shuffling event. One can verify that Lemma 4.2(1) still holds for $\hat{S}_{k}^{4}(j)$ and Lemma 4.2(4) still holds if the curly brackets are interpreted as grouping symbols in the same bi-block.

Suppose that $\sigma=$ abacadadbdcd does not appear in $S_{\text {top }}$ or $S_{\text {bot }}$ but does appear in $S_{\text {sh }}$. Lemma 4.2(1) implies that there are only two options for the (strict) subset of symbols appearing in $\Sigma\left(S_{\text {top }}\right)$, namely $\{b, c, d\}$ and $\{a, b, c\} .{ }^{10}$ These two cases are symmetric since σ is a palindrome that exchanges the roles of a and d. Suppose only a appears in a copy β of $S_{\text {bot }}$. Let γ be the bi-block in $S_{\text {top }}$ containing b, c, d. If γ 's first block is shuffled with β then $[b c d][d c b] ₹ \gamma$, which implies that the suffix $d c d$ of σ appears strictly after γ in $S_{\text {top }}$, contradicting Lemma 4.2(4). See Fig. 10. Shuffling γ 's second block with β leads to the same contradiction. The same proof shows that abacadadcdbd $\nprec S_{\text {sh }}$. Lemma 4.2(1) implies the subset of symbols appearing in $S_{\text {top }}$ is either $\{a, b, c\}$ or $\{b, c, d\}$, and that the two ways of shuffling γ with β lead to a contradiction of Lemma 4.2(4).

The remainder of this section constitutes a proof of Theorem 4.4.
Theorem 4.4. Define τ_{s} to be $1213 \cdots 1(s-1) 1 s 1 s 2 s \cdots(s-2) s(s-1) s$. Then $\operatorname{Ex}\left(\tau_{2 t+2}, n, m\right)>n$. $2^{(1-o(1)) \alpha^{t}(n, m) / t!}$ and $\operatorname{Ex}\left(\tau_{2 t+3}, n, m\right)>n \cdot 2^{(1-o(1)) \alpha^{t}(n, m) \log \alpha(n, m) / t!}$.

We prove that $S_{k}^{s}(j)$ avoids τ_{s} by induction, which will establish the claim. Theorems 2.10 and 4.3 prove the claim for $s \in\{3,4\}$. Assuming the claim holds for τ_{s-2} we show it holds for τ_{s}. Consider the sequence $S_{\text {sh }}^{\prime}=S_{k}^{S}(j)$, where $j \geqslant 2$, derived from $S_{\text {top }}^{\prime}, S_{\text {mid }}^{\prime}, S_{\text {bot }}^{\prime}$, and $S_{\text {sub }}^{\prime}$, and let $S_{\text {top }}^{\prime}=S_{\text {sh }}$ be derived from $S_{\text {top }}, S_{\text {mid }}, S_{\text {bot }}$, and $S_{\text {sub }}$. That is, we look at the last two substitution/shuffling events that created $S_{k}^{s}(j)$. Without loss of generality, assume that τ_{s} makes its first appearance in either $S_{\text {sh }}$ or $S_{\text {sub }}^{\prime}$, but does not appear in $S_{\text {top }}, S_{\text {mid }}, S_{\text {sub }}$, or $S_{\text {bot }}$.

[^9](a)

(b)

(c)

(d)

Fig. 11. Contradictions obtained in establishing that sequences of the form $S_{*}^{s}(*)$ are τ_{s}-free. (a) If a block γ in $S_{\text {sh }}$ contains 1 and s but not 2 or $s-1$ then $\{34 s\} s 3 s 4 s \prec S_{\text {sub }}$, contradicting Lemma $4.2(5)$. (b) If γ contains 1,2 , and s, but not $s-1$, then the 121 in $S_{\text {sub }}^{\prime}$ must have appeared literally in $S_{\text {sh }}$ or have been generated by a block (different from γ) in $S_{\text {sh }}$ containing $\{1,2\}$. Thus, either $121\{12\}<S_{\text {sh }}$ or $\{12\}\{12\} \prec S_{\text {sh }}$, contradicting Lemma 4.2(4), (2). (c) In light of (b), the second 1 in τ_{s} must have been generated by substituting Γ for γ, which means that $1,2, s$, and $s-1$ are in γ. The same argument, applied to the other end of τ_{s}, then shows that the second to last s in τ_{s} must have been generated by substituting Γ for γ. Otherwise either $\{(s-$ $1) s\} s(s-1) s \prec S_{\text {sh }}$ or $\{(s-1) s\}\{(s-1) s\} \prec S_{\text {sh }}$, a contradiction. (d) From (b) and (c) it follows that $131 \cdots(s-1) 1 s 1 s 2 \cdots s(s-$ 2) $s \sim \tau_{s-2}$ must have been generated by substituting Γ for γ. This, however, contradicts our inductive assumption since Γ, a sequence of the form $S_{*}^{s-2}(*)$, avoids τ_{s-2}.

Claim 4.5. If τ_{s} makes its first appearance in $S_{\text {sh }}$, then the subset of $\Sigma\left(\tau_{s}\right)$ appearing in $\Sigma\left(S_{\text {top }}\right)$ is either $\{1,2, \ldots, s-1\}$ or $\{2, \ldots, s-1, s\}$.

Proof. The claim follows from Lemma 4.2(1). To see this, first consider the possibility that $1, s \in$ $\Sigma\left(S_{\text {bot }}^{*}\right)$. Since 1aas $\prec \tau_{s}$ for all $a \in\{2, \ldots, s-1\}$, Lemma $4.2(1)$ implies that all of $\{1, \ldots, s\}$ is contained in $\Sigma\left(S_{\text {bot }}^{*}\right)$, contradicting the assumption that $S_{\text {bot }}$ does not already contain τ_{s}. Thus, at least one of $1, s$ must be in $\Sigma\left(S_{\text {top }}\right)$. Now suppose some $a \in\{2, \ldots, s-1\}$ appears in $\Sigma\left(S_{\text {bot }}^{*}\right)$ rather than $S_{\text {top }}$. Since $a 11 a$, assa $₹ \tau_{s}$, Lemma 4.2(1) implies that 1 and s appear in $\Sigma\left(S_{\text {bot }}^{*}\right)$ as well, and, according to the argument above, that all of $\{1, \ldots, s\}$ appear in $\Sigma\left(S_{\text {bot }}^{*}\right)$.

Claim 4.6. $S_{\text {sh }}$ does not contain τ_{s}.

Proof. Claim 4.5 constrains how τ_{s} might appear in $S_{\text {sh }}$. Suppose that 1 appears in $\Sigma\left(S_{\text {bot }}^{*}\right)$ while $\{2, \ldots, s\} \subset \Sigma\left(S_{\text {top }}\right)$. Since $2,3, \ldots, s$ are shuffled with copies of 1 to form τ_{s}, it follows that $\{34 s\} s 3 s 4 s ₹ S_{\text {sub }}$, contradicting Lemma 4.2(5). (Recall that the base cases $s \in\{3,4\}$ have already been established, so $s>4$.) See Fig. 11(a) for an illustration. In the figure boxes represent blocks and curly braces mark the locus of the contradiction, that is, patterns forbidden by Lemma 4.2. The case when s appears in $\Sigma\left(S_{\text {bot }}^{*}\right)$ while $\{1, \ldots, s-1\} \subset \Sigma\left(S_{\text {top }}\right)$ is symmetric.

Suppose that τ_{s} makes its first appearance in $S_{\text {sub }}^{\prime}$ rather than $S_{\text {sh }}$, that is, the act of substituting copies of $S_{\text {mid }}^{\prime}$ for blocks in $S_{\text {sh }}=S_{\text {top }}^{\prime}$ creates an instance of τ_{s}. The only question is which symbols from $\Sigma\left(\tau_{s}\right)$ share blocks in S_{sh}. Let τ_{s}^{\prime} be a pattern appearing in S_{sh} (with brackets marking block boundaries) that, in the act of substitution, leads to an occurrence of τ_{s} in $S_{\text {sub }}^{\prime}$. For example, if $s=6$, $\tau_{6}^{\prime}=12\{1345\} 61626364\{56\}$ could lead to an occurrence of τ_{6} by substituting 1314151 for the first block and 656 for the second. Furthermore, we can assume that τ_{s}^{\prime} did not already exist in $S_{\text {bot }}$, that is, it was created while shuffling $S_{\text {sub }}$ with $S_{\text {bot }}^{*}$.

Claim 4.7. The symbols 1 and s share a block in τ_{s}^{\prime}.
Proof. Suppose 1 and s do not share a block in τ_{s}^{\prime}. The argument in Claim 4.5 still shows that the strict subset of $\Sigma\left(\tau_{s}^{\prime}\right)$ appearing in $\Sigma\left(S_{\text {top }}\right)$ must be either $\{1,2, \ldots, s-1\}$ or $\{2,3, \ldots, s\}$. To recapitulate, if $1, s \in \Sigma\left(S_{\text {bot }}^{*}\right)$, then $2,3, \ldots, s-1 \in \Sigma\left(S_{\text {bot }}^{*}\right)$ as well, since 1aas $₹ \tau_{s}^{\prime}$, for $a \in\{2, \ldots, s-1\}$. Here '1aas' may actually appear in τ_{s}^{\prime} as \{1a\}as or $1 a\{a s\}$ or $\{1 a\}\{a s\}$. Note that if 1aas did not appear in τ_{s}^{\prime} then some block in τ_{s}^{\prime} would have to contain $1, s$, and a, contradicting our assumption. If some $a \in\{2, \ldots, s-1\}$ appears in $\Sigma\left(S_{\text {bot }}^{*}\right)$ then $1, s \in \Sigma\left(S_{\text {bot }}^{*}\right)$ as well, since a11a, assa $₹ \tau_{s}^{\prime}$, which then implies that all of $\{1, \ldots, s\}$ appear in $\Sigma\left(S_{\text {bot }}^{*}\right)$. Thus, $\Sigma\left(S_{\text {top }}\right) \cap \Sigma\left(\tau_{s}^{\prime}\right)$ must be either $\{1, \ldots, s-1\}$ or $\{2, \ldots, s\}$. Suppose we are in the latter case; the former is symmetric. Since each of $2,3, \ldots, s$ is shuffled between two 1 s or into a common block with a 1 , it follows that $2,3, \ldots, s$ shared a block in $S_{\text {sub }}$, and therefore that $\{34 s\} s 3 s 4 s ₹ S_{\text {sub }}$, contradicting Lemma 4.2(5). Thus, 1 and s must share a block in τ_{s}^{\prime}.

Claim 4.7 guarantees that there is some block γ in $S_{\text {sh }}$ containing $1, s$, and possibly other symbols. Let Γ be the copy of $S_{\text {mid }}^{\prime}$ substituted for γ to form $S_{\text {sub }}^{\prime}$.

Claim 4.8. No block in τ_{s}^{\prime} contains $\{1, s\}$ and excludes $\{2, \ldots, s-1\}$.
Proof. If γ contains only 1 and s then without loss of generality $1 \in \Sigma\left(S_{\text {bot }}^{*}\right), s \in \Sigma\left(S_{\text {top }}\right)$, and, by Lemma 4.2(1), it must be that $2, \ldots, s-1 \in \Sigma\left(S_{\text {top }}\right)$ as well; see Fig. 11(a). Since 3, 4, and s are shuffled between copies of 1 this implies that $\{34 s\} s 3 s 4 s ₹ S_{\text {sub }}$, contradicting Lemma 4.2(5).

Claim 4.9. If Γ if τ_{s-2}-free then $S_{\text {sub }}^{\prime}$ is τ_{s}-free.
Proof. We first need to establish that $\{12 \cdots(s-1) s\} ₹ \gamma$. By Claim 4.8 we may assume γ contains $1,2, s$, and possibly other symbols (or, symmetrically, $1, s-1, s$, and other symbols). See Fig. 11(b). Since $121\{12\}$ and $\{12\}\{12\}$ are precluded from appearing in $S_{\text {sh }}$, by Lemma 4.2(2), (4), the second 1 in τ_{s} must have been generated by substituting Γ for γ, since it could not have existed outside γ in $S_{\text {sh. }}$. See Fig. 11(c). It follows that $1,2,3,4, \ldots, s$ appear in γ. Since $s-1$ must now appear in γ and both $\{(s-1) s\} s(s-1) s$ and $\{(s-1) s\}\{(s-1) s\}$ cannot appear in $S_{\text {sh }}$, it follows that the second-to-last s in τ_{s} also must have been generated by substituting Γ for γ. Thus, $\sigma=13141 \cdots 1(s-$ 1) $1 \mathrm{~s} 1 s 2 s \cdots s(s-3) s(s-2) s \prec \Gamma$. See Fig. 11(d). Note that σ contains the sequence τ_{s-2} on the alphabet $\{1,3,4, \ldots, s-3, s-2, s\}$, contradicting the τ_{s-2}-freeness of Γ.

Recall that $\Gamma=S_{\text {mid }}^{\prime}$ is a sequence of the form $S_{*}^{s-2}(*)$, which we have already established, inductively, is τ_{s-2}-free. Thus, $S_{\text {sub }}^{\prime}$ and $S_{\text {sh }}^{\prime}=S_{k}^{s}(j)$ must be τ_{s}-free as well, where k, j are arbitrary. This concludes the proof of Theorem 4.4.

We have proved that $\tau_{2 t+2}$ has rank at least t, which means that, in general, the $a b a b a-$ freeness of a forbidden sequence does not place any fixed bound on its rank. Furthermore, this property holds even if we replace $a b a b a$ by numerous simpler forbidden sequences. However, the structure of the ensembles $\left\{\tau_{s}\right\}$ and $\left\{(a b)^{t}\right\}$ does suggest another way to bound the rank of a sequence, namely the maximum number of occurrences of any one symbol. If σ repeats no symbol more than t times, can we say that σ has rank at most $O(t)$? We conjecture that the answer is no. Specifically, there should be some way to modify the $\left\{\tau_{s}\right\}$ ensemble so that all symbols appear $O(1)$ times.

5. The number of minimal nonlinear subsequences

Klazar [15] conjectured that there are infinitely many minimally nonlinear forbidden sequences and proved that there are at least two. In prior work [21] we constructed an infinite anti-chain of nonlinear forbidden sequences, though none are known to be minimal, and proved that there are at least three minimally nonlinear forbidden sequences. We now prove that there are at least four such sequences.

Lemma 5.1. Let $\bar{\tau}_{3}=\bar{\tau}_{3,1}=a b c a c b c$ and, in general, let $\bar{\tau}_{3, q}=a_{1} b a_{2} a_{1} a_{3} a_{2} a_{4} a_{3} \cdots a_{q} a_{q-1} c a_{q} c b c$. Then $\operatorname{Ex}\left(\bar{\tau}_{3, q}, n\right)=\Omega(n \alpha(n))$ for all q.

Proof. It suffices to show that $\bar{\tau}_{3, q} \nprec R_{k, \delta}(j)$ for all k, δ, j. Suppose that $R_{k, \delta}(j)$ is the shortest counterexample. Clearly we have $k>1$ and $j>0$, so let $S_{\text {bot }}$ and $S_{\text {top }}$ be the sequences from which $S_{\mathrm{sh}}=R_{k, \delta}(j)=S_{\text {top }} \star S_{\text {bot }}$ was formed. Before arguing that $\bar{\tau}_{3, q} \nprec S_{\text {sh }}$ we prove that $\left[b a_{1}\right] a_{2} a_{1} a_{3} a_{2} \cdots a_{q} a_{q-1} c a_{q} c b c \nprec S_{\text {sh }}$ by induction. If this sequence were to occur in $S_{\text {sh }}$ then several applications of Lemma 2.8(4) (on the pairs $\left(a_{1}, a_{2}\right), \ldots,\left(a_{q-1}, a_{q}\right),\left(a_{q}, b\right),(b, c)$, and (c, b)) imply that for some $1 \leqslant i \leqslant q, a_{1}, \ldots, a_{i} \in \Sigma\left(S_{\text {bot }}^{*}\right)$ and $a_{i+1}, \ldots, a_{q}, b, c \in \Sigma\left(S_{\text {top }}\right)$. If $i=q$ then it follows that $[b c] b c<S_{\text {top }}$, contradicting Lemma 2.8(6). If $i<q$ then this implies that $\left[b a_{i+1}\right] a_{i+2} a_{i+1} \cdots a_{q} a_{q-1} c a_{q} c b c \prec S_{\text {top }}$, contradicting the inductive hypothesis. Given an occurrence of $\bar{\tau}_{3, q}$ in $S_{\text {sh }}$, if $a_{1}, \ldots, a_{i} \in \Sigma\left(S_{\text {bot }}^{*}\right)$ and the remaining symbols are in $\Sigma\left(S_{\text {top }}\right)$, the same arguments used above show that $\left[b a_{i+1}\right] a_{i+2} a_{i+1} \cdots a_{q} a_{q-1} c a_{q} c b c \prec S_{\text {top }}$, a contradiction.

It seems likely that every $\bar{\tau}_{3, q}$ is minimally nonlinear for any q, though we only know this to be true for $\bar{\tau}_{3,1}$. Nonetheless, we can use $\bar{\tau}_{3,2}$ and $\bar{\tau}_{3,3}$ to prove the existence of two additional minimal such sequences without actually identifying them.

Theorem 5.2. There are at least four minimally nonlinear sequences: ababa, abcacbc, and two subsequences obtained from $\bar{\tau}_{3,2}=$ abcadcdbd and $\bar{\tau}_{3,3}=$ abcadcedebeb by possibly deleting an underlined symbol.

Proof. The first two sequences are known to be minimally nonlinear. If we delete the $a s, b s$, or cs from $\bar{\tau}_{3,2}$ or just the first d, we obtain a sequence known to be linear, due to [16] and Theorem 2.4. If we delete the last d from $\bar{\tau}_{3,2}$ then $\operatorname{Ex}(a b c a d c d b, n)=O(\operatorname{Ex}(c b c c d c d b, n))=O(n)$, where the first equality is due to [16] and the second by Theorem 2.4 , since $\overline{c b c c d c d b} \sim a b c b c c a c$. If we delete the $b s$, cs, or $d s$ from $\bar{\tau}_{3,3}$ we obtain a sequence known to be linear, by [16] and Theorem 2.4. If we delete the first e from $\bar{\tau}_{3,3}$ then $\operatorname{Ex}(a b c a d c d e b e, n)=O(\operatorname{Ex}(a b c a d c d b, n))$, which we just showed is $O(n)$.

6. More forbidden 0-1 matrices

In Sections 2 and 3 we analyzed the forbidden matrices $D_{1}, \tilde{D}_{1}, E_{3}, E_{1}$, and \tilde{E}_{1}. In order to flesh out our understanding of small forbidden matrices, we analyze the remaining matrices from Fig. 1. We are not aware of prior analyses of these forbidden matrices.

Theorem 6.1. $\operatorname{Ex}\left(\tilde{D}_{2}, n, m\right)=O(n \alpha(n, m)+m)$.
Proof. Let S be a \tilde{D}_{2}-free matrix with weight $|S|=\operatorname{Ex}\left(\tilde{D}_{2}, n, a_{i, j}\right)$. We decompose S into slabs in the usual way and define $S^{\prime}, S^{\prime \prime}$, and $S^{\prime \prime \prime}$ exactly as in the proof of Theorem 3.3. We claim that

$$
\begin{align*}
\operatorname{Ex}\left(\tilde{D}_{2}, n, a_{i, j}\right)< & \sum_{k} \operatorname{Ex}\left(\tilde{D}_{2}, n_{k}, w\right)+\operatorname{Ex}\left(D_{4}^{\ominus}, n^{*}, a_{i, j}\right)+\operatorname{Ex}\left(\tilde{C}, n^{*}, a_{i, j}\right) \\
& +2 \cdot \operatorname{Ex}\left(D_{2}, n^{*}, a_{i-1, w}\right)+\operatorname{Ex}\left(\tilde{D}_{2}, n^{*}, a_{i-1, w}\right)+3 n^{*}+2 a_{i, j} \tag{11}
\end{align*}
$$

The first term accounts for the contribution of local rows. The second and third terms account for left and right 1 s . Specifically, if we take the left 1 s in a slab and remove the last two 1 s in each row in the slab, the resulting matrix is D_{4}^{\otimes}-free. Similarly, if we take the right 1 s in a slab and remove the

Fig. 12. The vertical bars are the boundaries of one slab. If there are three 1 s in one column of $S^{\prime \prime \prime}$, then within this slab, in S, the first 1 in the column is followed by two more 1 s and the third 1 in the column is preceded by another 1 . Furthermore, since $S^{\prime \prime \prime}$ consists only of middle 1 s , the second 1 is preceded by a 1 outside the slab, and the third 1 is followed by a 1 outside the slab. Three 1 s in a column of $S^{\prime \prime \prime}$ therefore imply an occurrence of \tilde{D}_{2} in S.
first 1 in each row the resulting matrix is \tilde{C}-free. Thus the contribution of left and right 1 s is

$$
\begin{aligned}
& \sum_{k}\left[\operatorname{Ex}\left(D_{4}^{\ominus}, \dot{n}_{k}^{*}, w\right)+2 \grave{n}_{k}^{*}+\operatorname{Ex}\left(\tilde{C}, \grave{n}_{k}^{*}, w\right)+\grave{n}_{k}^{*}\right] \\
& \quad \leqslant \operatorname{Ex}\left(D_{4}^{\otimes}, n^{*}, a_{i, j}\right)+\operatorname{Ex}\left(\tilde{C}, n^{*}, a_{i, j}\right)+3 n^{*} \\
& \quad<11 n^{*}+3 a_{i, j}
\end{aligned}
$$

Theorem 1.5(6), (3)
By the definition of $S^{\prime}, S^{\prime \prime}$, and $S^{\prime \prime \prime}$ the remaining middle 1s have weight at most $\left|S^{\prime}\right|+2\left|S^{\prime \prime}\right|+\left|S^{\prime \prime \prime}\right|$. S^{\prime} is trivially \tilde{D}_{2}-free and has weight at most $\operatorname{Ex}\left(\tilde{D}_{2}, n^{*}, a_{i-1, w}\right), S^{\prime \prime}$ is D_{2}-free and therefore $2\left|S^{\prime \prime}\right| \leqslant$ $2 \cdot \operatorname{Ex}\left(D_{2}, n^{*}, a_{i-1, w}\right)<6 n^{*}+4 a_{i-1, w} \leqslant 6 n^{*}+2 a_{i, j}$. Finally, $S^{\prime \prime \prime}$ cannot contain three 1 s in the same column as this would imply the existence of a \tilde{D}_{2} in S. See Fig. 12.

Thus, the number of middle 1 s is at most $\operatorname{Ex}\left(\tilde{D}_{2}, n^{*}, a_{i-1, w}\right)+6 n^{*}+4 a_{i, j}$. Using these bounds to simplify Eq. (11) we obtain

$$
\begin{array}{ll}
\operatorname{Ex}\left(\tilde{D}_{2}, n, a_{1, j}\right)<\sum_{k=1,2} \operatorname{Ex}\left(\tilde{D}_{2}, n_{k}, a_{1, j-1}\right)+11 n^{*}+3 a_{1, j} & \text { for } i=1 \\
\operatorname{Ex}\left(\tilde{D}_{2}, n, a_{i, j}\right)<\sum_{k} \operatorname{Ex}\left(\tilde{D}_{2}, n_{k}, w\right)+\operatorname{Ex}\left(\tilde{D}_{2}, n^{*}, a_{i-1, w}\right)+17 n^{*}+7 a_{i, j} & \text { for } i>1 \tag{13}
\end{array}
$$

One may verify that Eqs. (12), (13) imply that $\operatorname{Ex}\left(\tilde{D}_{2}, n, a_{1, j}\right)<11 n+3 j a_{1, j}$ and $\operatorname{Ex}\left(\tilde{D}_{2}, n, a_{i, j}\right)<$ $17 \mathrm{in}+7 \mathrm{ij} a_{i, j}$, which is $O(n \alpha(n, m))$ for $n=j a_{i, j}, m=a_{i, j}$.

Theorem 6.2. $\operatorname{Ex}\left(E_{2}, n, m\right)=\Theta\left(n \alpha^{2}(n, m)+m\right)$.
Proof. Let S be an E_{2}-free $n \times a_{i, j}^{2}$ matrix with weight $\operatorname{Ex}\left(E_{2}, n, a_{i, j}^{2}\right)$. We partition S into slabs with width $w^{2}=a_{i, j-1}^{2}$. Let $n_{k}, \grave{n}_{k}^{*}, n^{*}$, etc. be defined as usual. We first establish Eq. (14) then bound $\operatorname{Ex}\left(E_{2}, n, a_{i, j}^{2}\right)$ inductively.

$$
\begin{align*}
\operatorname{Ex}\left(E_{2}, n, a_{i, j}^{2}\right)< & \sum_{k}\left[\operatorname{Ex}\left(E_{2}, n_{k}, w^{2}\right)+\operatorname{Ex}\left(D_{1}^{\ominus}, \grave{n}_{k}^{*}, w^{2}\right)\right]+\operatorname{Ex}\left(D_{4}^{\oplus}, n^{*}, a_{i, j}^{2}\right) \\
& +\operatorname{Ex}\left(E_{2}, n^{*}, a_{i-1, w}^{2}\right)+a_{i, j}^{2} \tag{14}
\end{align*}
$$

The weight of local 1 s is $\sum_{k} \operatorname{Ex}\left(E_{2}, n_{k}, w^{2}\right)$ and the weight of right 1 s is $a_{i, j}^{2}+\sum_{k} \operatorname{Ex}\left(D_{1}^{\ominus}, \grave{n}_{k}^{*}, w^{2}\right)$. Let S^{\prime} be the matrix consisting of left and middle 1 s that are not the last 1 in the intersection of their row and slab. It follows that $\left|S^{\prime}\right| \leqslant \operatorname{Ex}\left(D_{4}^{\Phi}, n^{*}, a_{i, j}^{2}\right)$ since any occurrence of D_{4}^{Φ} in S^{\prime} implies the existence of an E_{2} in S. See Fig. 5. Let $S^{\prime \prime}$ be derived by contracting each slab of S to a column, retaining only those 1 s not yet accounted for (that is, non-local, non-right 1 s that are the last in the intersection of their row and slab.) Trivially $S^{\prime \prime}$ is E_{2}-free and has weight at most $\operatorname{Ex}\left(E_{2}, n^{*}, a_{i-1, w}^{2}\right)$. Plugging in the bounds on D_{1}-free and D_{4}-free matrices (see footnote 6 and Theorem 1.5(6)), Eq. (14) becomes, for $i>1$:

$$
\begin{align*}
\operatorname{Ex}\left(E_{2}, n, a_{i, j}^{2}\right)< & \sum_{k} \operatorname{Ex}\left(E_{2}, n_{k}, w^{2}\right)+\operatorname{Ex}\left(E_{2}, n^{*}, a_{i-1, w}^{2}\right)+(4 i+2) n^{*} \\
& +(6 i(j-1)+3) a_{i, j}^{2} \tag{15}
\end{align*}
$$

To establish a base case at $i=1$ we consider breaking an $n \times a_{1, j}$ into two slabs with width $a_{i, j-1}$.

$$
\begin{equation*}
\operatorname{Ex}\left(E_{2}, n, a_{1, j}\right)<\sum_{k=1,2} \operatorname{Ex}\left(E_{2}, n_{k}, a_{1, j-1}\right)+7 n^{*}+\frac{3}{2} j a_{1, j} \tag{16}
\end{equation*}
$$

Here the number of local 1 s is $\sum_{k} \operatorname{Ex}\left(E_{2}, n_{k}, a_{1, j-1}\right)$, the number of right 1 s (only in the second slab) is, by Theorem 3.2, Eq. (5), at most $a_{1, j-1}+\left(4 n^{*}+3(j-1) a_{1, j-1}\right)$, and the number of left 1 s (only in the left slab) is at most $n^{*}+\operatorname{Ex}\left(D_{4}^{\Phi}, n^{*}, a_{1, j-1}\right)<3 n^{*}+a_{1, j}$. An induction on j shows $\operatorname{Ex}\left(E_{2}, n, a_{1, j}\right)<$ $7 n+\frac{3}{4} j(j+1) a_{1, j}$, and therefore, that $\operatorname{Ex}\left(E_{2}, n, a_{1, j}^{2}\right)=\operatorname{Ex}\left(E_{2}, n, a_{1,2 j}\right)<7 n+\frac{3}{2} j(j+1) a_{1, j}^{2}$. We claim that $\operatorname{Ex}\left(E_{2}, n, a_{i, j}^{2}\right)<4 i(i+1) n+3 i j^{2} a_{i, j}^{2}$. Invoking the hypothesis on Eq. (15) we have

$$
\begin{array}{rlr}
\operatorname{Ex}\left(E_{2}, n, a_{i, j}^{2}\right)< & 4 i(i+1)\left(n-n^{*}\right)+3 i(j-1)^{2} a_{i, j}^{2}+4(i-1) i n^{*}+3(i-1) w^{2} a_{i-1, w}^{2} \\
& +(4 i+2) n^{*}+(3 i(j-1)+3) a_{i, j}^{2} \\
= & 4 i(i+1) n+i n^{*}(-4(i+1)+4(i-1)+4+2 / i) \\
& +i\left(3(j-1)^{2}+3(j-1)+3\right) a_{i, j}^{2} & \\
\leqslant & 4 i(i+1) n+3 i\left(j^{2}-j+1\right) a_{i, j}^{2} & \\
\leqslant & 4 i(i+1) n+3 i j^{2} a_{i, j}^{2} & \text { Note } i, j>1
\end{array}
$$

This last bound is $O\left(n \alpha^{2}(n, m)\right)$ for $n=\left(j a_{i, j}\right)^{2}$ and $m=a_{i, j}^{2}$.
Theorem 6.3. $\operatorname{Ex}\left(\tilde{E}_{5}, n, m\right)=O\left(n \alpha^{2}(n, m)+m\right)$.
Proof. Let S be an \tilde{E}_{5}-free, $n \times a_{i, j}^{2}$ matrix. Partition S into $a_{i, j}^{2} / w^{2}=a_{i-1, w}^{2}$ slabs of width $w^{2}=$ $a_{i, j-1}^{2}$. We first establish Eq. (17) then bound $\operatorname{Ex}\left(\tilde{E}_{5}, n, m\right)$ inductively.

$$
\begin{align*}
\operatorname{Ex}\left(\tilde{E}_{5}, n, a_{i, j}^{2}\right)< & \sum_{k}\left[\operatorname{Ex}\left(\tilde{E}_{5}, n_{k}, w^{2}\right)+\operatorname{Ex}\left(\tilde{D}_{2}, \hat{n}_{k}^{*}, w^{2}\right)+\operatorname{Ex}\left(\tilde{D}_{2}^{\oplus}, \grave{n}_{k}^{*}, w^{2}\right)\right] \\
& +\operatorname{Ex}\left(\tilde{E}_{5}, n^{*}, a_{i-1, w}^{2}\right)+8 \cdot \operatorname{Ex}\left(E_{5}, n^{*}, a_{i-1, w}^{2}\right)+2 n^{*}+2 a_{i, j}^{2} \tag{17}
\end{align*}
$$

The summation $\sum_{k} \operatorname{Ex}\left(\tilde{E}_{5}, n_{k}, w^{2}\right)$ counts local 1s, and $\sum_{k}\left[\operatorname{Ex}\left(\tilde{D}_{2}, \tilde{n}_{k}^{*}, w^{2}\right)+\operatorname{Ex}\left(\tilde{D}_{2}^{\Phi}, \grave{n}_{k}^{*}, w^{2}\right)\right]+2 n^{*}$ counts left and right 1 s. (Theorem 6.1 can be modified to show that $\operatorname{Ex}\left(\tilde{D}_{2}, n, a_{i, j}^{2}\right)<17 i n+7 i j a_{i, j}^{2}$, from which it follows that the number of left and right 1 s is at most $\left.2\left[(17 i+1) n^{*}+7 i(j-1) a_{i, j}^{2}\right].\right)$ Call a middle 1 a singleton if it is the only 1 at the intersection of its row and slab. Let S_{k}^{\prime} consist of the singletons in the k th slab and $S_{k}^{\prime \prime}$ the non-singletons, having, respectively, n_{k}^{\prime} and $n_{k}^{\prime \prime}$ non-zero rows. Let S^{\prime} and $S^{\prime \prime}$ be the $n^{*} \times a_{i-1, w}^{2}$ matrices derived by contracting the slabs $\left\{S_{k}^{\prime}\right\}$ and $\left\{S_{k}^{\prime \prime}\right\}$. It follows that S^{\prime} and $S^{\prime \prime}$ are \tilde{E}_{5}-free and E_{5}-free, respectively, and that $\left|S^{\prime}\right|=\sum_{k}\left|S_{k}^{\prime}\right|=\sum_{k} n_{k}^{\prime}$. We claim $\left|S_{k}^{\prime \prime}\right| \leqslant 8 n_{k}^{\prime \prime}+2 w$, which would imply that $\left|S^{\prime \prime}\right| \leqslant 8 \cdot \operatorname{Ex}\left(E_{5}, n^{*}, a_{i-1, w}^{2}\right)+2 a_{i, j}^{2}$, which, according to Theorem $1.5(7)$, is at most $64 n^{*}+16 a_{i-1, w}^{2}+2 a_{i, j}^{2} \leqslant 64 n^{*}+6 a_{i, j}^{2}$. Form the matrix S_{k}^{o} from $S_{k}^{\prime \prime}$ by deleting the first and last 1 in each non-zero row, then keeping only the odd non-zero rows. Let S_{k}^{e} be defined similarly, but keeping the even non-zero rows, and let n_{k}^{o} and n_{k}^{e} be the number of non-zero rows in each. We claim S_{k}^{o} and S_{k}^{e} are \tilde{C}-free, implying that $\left|S_{k}^{\prime \prime}\right|<2 n_{k}^{\prime \prime}+\operatorname{Ex}\left(\tilde{C}, n_{k}^{o}, w^{2}\right)+$ $\operatorname{Ex}\left(\tilde{C}, n_{k}^{e}, w^{2}\right)$, which is less than $8 n_{k}^{\prime \prime}+2 w^{2}$ by Theorem $1.5(3)$. Any occurrence of a \tilde{C} in $S_{k}^{\prime \prime}$ would imply an occurrence of \tilde{E}_{5} in S. See Fig. 13.

Summing up the contributions of local, left, right, and middle 1s, we arrive at:

$$
\begin{align*}
\operatorname{Ex}\left(\tilde{E}_{5}, n, a_{i, j}^{2}\right)< & \sum_{k} \operatorname{Ex}\left(\tilde{E}_{5}, n_{k}, w^{2}\right)+\operatorname{Ex}\left(\tilde{E}_{5}, n^{*}, a_{i-1, w}^{2}\right)+(34 i+66) n^{*} \\
& +(14 i(j-1)+6) a_{i, j}^{2} \tag{18}
\end{align*}
$$

Fig. 13. The vertical lines indicate the boundaries of $S_{k}^{\prime \prime}$; underlined is an occurrence of \tilde{C} in S_{k}^{o} or S_{k}^{e}. Each 1 in this occurrence of \tilde{C} is neither the first nor last 1 in its row in $S_{k}^{\prime \prime}$. Moreover, there must be a non-zero row in $S_{k}^{\prime \prime}$ between the top and bottom row of \tilde{C}. (The pattern of 1 s in this row is unimportant; the figure merely depicts one scenario.) Since all 1 s in $S_{k}^{\prime \prime}$ are middle, each is preceded by and followed by a 1 outside $S_{k}^{\prime \prime}$. These implications show that any \tilde{C} in S_{k}^{o} or S_{k}^{e} is contained in an \tilde{E}_{5} in S.

Here the second term is only present if $i>1$. We claim that $\operatorname{Ex}\left(\tilde{E}_{5}, n, a_{i, j}^{2}\right)<c(i+1)^{2} n+c^{\prime} i j^{2} a_{i, j}^{2}$, where $c=34$ and $c^{\prime}=14$. This bound holds trivially when $j=1$. We leave the base case of $i=1$ as an exercise. Invoking the inductive hypothesis on Eq. (18) we arrive at:

$$
\begin{aligned}
\operatorname{Ex}\left(\tilde{E}_{5}, n, a_{i, j}^{2}\right)< & c(i+1)^{2}\left(n-n^{*}\right)+c^{\prime} i(j-1)^{2} a_{i, j}^{2}+c i^{2} n^{*}+c^{\prime}(i-1) w^{2} a_{i-1, w}^{2} \\
& +34(i+2) n^{*}+(14 i(j-1)+6) a_{i, j}^{2} \\
= & c(i+1)^{2} n+n^{*}\left[-c(i+1)^{2}+c i^{2}+34(i+2)\right] \\
& +a_{i, j}^{2}\left[c^{\prime} i(j-1)^{2}+c^{\prime}(i-1)+14 i(j-1)+6\right] \\
\leqslant & c(i+1)^{2} n+a_{i, j}^{2}\left[c^{\prime} i\left((j-1)^{2}+(j-1)+1\right)+\left(6-c^{\prime}\right)\right] \\
< & c(i+1)^{2} n+c^{\prime} i j^{2} a_{i, j}^{2}
\end{aligned}
$$

This bound is $O\left(n \alpha^{2}(n, m)\right)$ for $n=\left(j a_{i, j}\right)^{2}$ and $m=a_{i, j}^{2}$.
One could reasonably assume that E_{1} is the most complex light $0-1$ matrix with weight 5 , and that in general, the alternating light matrices (C, D_{1}, E_{1}, etc.) have the largest extremal functions, asymptotically. This is known to be true for weight-3 and weight-4 matrices. Theorem 6.4 states that it is true for weight- 5 matrices as well.

Theorem 6.4. If E is a light, weight- 5 matrix then $\operatorname{Ex}(E, n, m)=O\left(n 2^{\alpha(n, m)}+m\right)$.
Every weight-5 matrix not covered by Theorems $1.5,3.2-3.5$, and 6.1-6.3 is no more complex than $E_{6}^{a}, E_{6}^{b}, E_{6}^{c}$, or E_{7}, where E_{6}^{x} is obtained by substituting a 1 for x.

$$
E_{6}=\left(\begin{array}{llll}
& \bullet & & \bullet \\
& a & b & \\
\bullet & & & c
\end{array}\right), \quad E_{7}=\left(\begin{array}{lll}
\bullet & \bullet \\
\bullet & & \bullet
\end{array}\right)
$$

The proof that $\operatorname{Ex}(E, n, m)=O\left(n 2^{\alpha(n, m)}+m\right)$, for $E \in\left\{E_{6}^{a}, E_{6}^{b}, E_{6}^{c}, E_{7}\right\}$, follows exactly the same lines as Theorem 3.4. In all cases the contribution of left and right 1 s is either $O\left(n^{*}+a_{i, j}^{2}\right)$, when E is either E_{6}^{a} or E_{6}^{b}, or $O\left(i n^{*}+i j a_{i, j}^{2}\right)$ when E is either E_{6}^{c} or E_{7}. Slabs of middle 1 s are free of $(\cdot$.$) and$ (\because) when E is E_{6}^{a} and E_{6}^{b}, respectively, and free of (\because) when E is either E_{6}^{c} or E_{7}. Thus, the number of middle 1 s in a slab with n^{\prime} non-zero rows and m^{\prime} columns is at most $2 n^{\prime}+O\left(m^{\prime}\right)$, which lets us derive an $O\left(2^{i} n+i j^{2} a_{i, j}^{2}\right)$ bound on $\operatorname{Ex}\left(E, n, a_{i, j}^{2}\right)$, as in the proof of Theorem 3.4. We leave the full proof as an exercise for the reader.

We can ask a number of questions about forbidden $0-1$ matrices that are analogues of those asked about generalized Davenport-Schinzel sequences. For example, restricting ourselves just to light 0-1 matrices (those with one 1 in each column), which forbidden matrices are minimally nonlinear? As far as we know there may be just one cause of nonlinearity, namely the presence of M or one of its equivalents:

$$
M=(\bullet \bullet)
$$

In other words, M-freeness (and D_{1}-freeness) is precisely equivalent to ababa-freeness in sequences, but we know of no 0-1 matrix equivalent to abcacbc-freeness. Is there a light, nonlinear forbidden $0-$ 1 matrix avoiding M ? Just as the relationship between σ and $\mathrm{dbl}(\sigma)$ is open for a sequence σ, we can ask whether P and $\mathrm{dbl}(P)$ have the same extremal function, where $\mathrm{dbl}(P)$ is obtained by immediately repeating every column. Note that repeating a weight-1 column in a general non-light 0-1 matrix P can affect its extremal function, e.g., repeating the second column in D_{4} increases it by a factor of $\Theta(\log n)$ [27,11,23]. Finally, our analyses of forbidden $0-1$ matrices required a different argument for each matrix. What is the best general upper bound we can find for $\operatorname{Ex}(P, n)$? The obvious way to measure the complexity of P is by its size, but perhaps there are other characteristics of P that could be used to find tight bounds on $\operatorname{Ex}(P, n)$.

7. Conclusions and conjectures

The results of Sections 2 and 3 clarify our understanding of forbidden sequences over 2- and 3letter alphabets, and the results of Section 4 show that ababa-freeness of a forbidden sequence (or in general, avoidance of simple subsequences) tells us next to nothing about its extremal function. In terms of technique, we have demonstrated that results from 0-1 matrix theory can be leveraged to solve open problems in generalized Davenport-Schinzel sequences. We expect that future work will use the dual sequence-matrix representation in more elaborate ways.

Our work leaves open numerous problems. The foremost problem is to settle the status of all oddorder Davenport-Schinzel sequences, i.e., to determine $\operatorname{Ex}\left((a b)^{t+2} a, n\right)$ for $t \geqslant 1$. The issue is whether the $\log \alpha(n)$ in Nivasch's upper bound $\operatorname{Ex}\left((a b)^{t+2} a, n\right)<n \cdot 2^{(1+o(1)) \alpha^{t}(n) \log \alpha(n) / t!}$ is necessary or not. If it is shown to be unnecessary for any $t^{\prime} \geqslant 1$ then it is also unnecessary for all $t>t^{\prime}$; see [19]. We conjecture that $(a b)^{t+2} a$ has essentially the same extremal function as $(a b)^{t+2}$, which is contrary to our initial intuition.

Conjecture 7.1. $\operatorname{Ex}(a b a b a b a, n)=\Theta\left(n \cdot 2^{\alpha(n)}\right)$ and, in general, $\operatorname{Ex}\left((a b)^{t+2} a, n\right)=n \cdot 2^{(1 \pm o(1)) \alpha^{t}(n) / t!}$.

Proving Conjecture 7.1 would not settle the status of every 2 -letter forbidden sequence. We have shown that $\mathrm{dbl}\left((a b)^{t+2}\right)$ behaves essentially the same as $(a b)^{t+2}$ and our technique is general enough that it should apply to any (future) analysis of abababa and other odd-order Davenport-Schinzel sequences. However, the status of $\operatorname{dbl}(a b a b a)$ is still open. We have shown that $\operatorname{Ex}(\mathrm{dbl}(a b a b a), n)=$ $O\left(n \alpha^{2}(n)\right)$, which is most likely off by an $\alpha(n)$ factor.

Conjecture 7.2. $\operatorname{Ex}(\mathrm{dbl}(a b a b a), n)=\Theta(n \alpha(n))$ and $\operatorname{Ex}(\mathrm{dbl}(a b c b c a c), n)=O(n) . \operatorname{In}$ general, $\operatorname{Ex}(\mathrm{dbl}(\sigma), n)=$ $\Theta(\operatorname{Ex}(\sigma, n))$.

In light of Theorem 2.1, $\mathrm{dbl}(a b c b c a c)$ stands out as an important forbidden sequence. If it is proved to be linear then we will have a perfect understanding of the boundary between linear and nonlinear forbidden sequences over 2 - and 3-letter alphabets. What about larger alphabets? In Lemma 5.1 we identified variants of $\bar{\tau}_{3}=a b c a c b c$ having extremal functions in $\Omega(n \alpha(n))$. Recall that $\bar{\tau}_{3, q}=a_{1} b a_{2} a_{1} a_{3} a_{2} \cdots a_{q} a_{q-1} c a_{q} c b c$. To prove anything about these sequences (whether they are minimally nonlinear, for example) it seems necessary to understand the effect of the "daisy chaining" symbols $\left\{a_{i}\right\}$. Namely, can chain links be spliced out and does removing a link make the sequence unravel?

Conjecture 7.3. Let σ_{1}, σ_{2} be sequences and let a, b, c be distinct letters where $c \bar{\not} \sigma_{1} \sigma_{2}, a \bar{\not} \sigma_{2}$, and $b \bar{\not} \sigma_{1}$. Then:
(1) (Shortening a chain) $\operatorname{Ex}\left(\sigma_{1} c a b c \sigma_{2}, n\right)=O\left(n+\operatorname{Ex}\left(\sigma_{1} b a \sigma_{2}, n\right)\right)$.
(2) (Unraveling a broken chain) $\operatorname{Ex}\left(\sigma_{1} c b c \sigma_{2}, n\right)=O\left(n+\operatorname{Ex}\left(\sigma_{1} b \sigma_{2}, n\right)\right)$.

Conjecture 7.3(1) implies that $\bar{\tau}_{3, q}$ is minimally nonlinear and that $\operatorname{Ex}\left(\bar{\tau}_{3, q}, n\right)=\Theta(n \alpha(n))$. However, to prove that there simply exist infinitely many minimally nonlinear forbidden sequences (thereby solving Problem 1.3) it suffices to prove Conjecture 7.3(2), which seems much easier. Klazar and Valtr's reductions [16] confirm that Conjecture 7.3 holds when σ_{1} is empty.

Whether there are infinitely many minimally nonlinear forbidden sequences is, in our opinion, not the interesting question, especially if it amounts to showing that broken daisy chains always unravel. Informally, the real question is how many genuinely different minimally nonlinear forbidden sequences there are. For example, $a b a b a$ and $a b c a c b c$ do seem nonlinear in genuinely different ways, inasmuch as we need different arguments and constructions to establish their nonlinearity. Let us try to outlaw daisy chaining in a precise way and then re-ask the question of what causes nonlinearity. Notice that sequences in $\left\{\bar{\tau}_{3, q}\right\}$ are distinguished by the fact that very few pairs of symbols intertwine, e.g., in $\bar{\tau}_{3,4}=a_{1} b a_{2} a_{1} a_{3} a_{2} a_{4} a_{3} c a_{4} c b c, a_{2}$ and a_{4} occupy disjoint intervals in the sequence, as do a_{1}, a_{3}, and c. Let the width of a sequence σ be the maximum set of symbols in $\Sigma(\sigma)$ that occupy disjoint intervals in σ. How many minimally nonlinear sequences are there with bounded width?

Conjecture 7.4. There are a finite number of width-1 minimally nonlinear forbidden sequences.

It is difficult to form a width-1 sequence that is complex enough to plausibly induce nonlinear behavior and yet avoids $a b c a c b c$, its reversal $a b a c a b c$, and $a b a b a$. There may, in fact, be no such sequences.

Appendix A. Variants of Ackermann's function and its inverse

The goal of this section is to prove Lemma 4.1, which we restate below.

Lemma 4.1. Let $n=\left\|S_{k}^{S}(j)\right\|$ and $m=\llbracket S_{k}^{S}(j) \rrbracket$, where $s \geqslant 4, k \geqslant 1$, and $j \geqslant 2$. Then:
(1) $k \geqslant \alpha(n, m)-1$.
(2) For $s=2 t+2, \mu_{k}^{s}=2^{\binom{k}{t}}=2^{(1 \pm o(1)) \alpha^{t}(n, m) / t!}$.
(3) For $s=2 t+3, \mu_{k}^{s}=\prod_{i=t}^{k-2}(k-i)^{\binom{i-1}{t-1}}=2^{(1 \pm o(1)) \alpha^{t}(n, m) \log \alpha(n, m) / t!}$.

To establish Lemma 4.1(1) we first need to relate $\llbracket S_{k}^{S}(j) \rrbracket$ to Ackermann’s function, as defined in Section 2.1. Let $B_{k, \delta}(j)=\llbracket R_{k, \delta}(j) \rrbracket \ell$ be the number of live blocks in $R_{k, \delta}(j)$ and let $B_{k}^{S}(j)=\llbracket S_{k}^{S}(j) \rrbracket$ be the number of blocks in $S_{k}^{S}(j)$. The recursive constructions of $R_{k, \delta}(j)$ and $S_{k}^{S}(j)$ immediately yield the following definitions:

$$
\begin{array}{ll}
B_{1, \delta}(j)=2 & \\
B_{k, \delta}(0)=\delta & \\
B_{k, \delta}(j)=B_{k, \delta}(j-1) \cdot B_{k-1, \delta}\left(B_{k, \delta}(j-1)\right) & \\
B_{k}^{2}(j)=2, & k \geqslant 0 \\
B_{k}^{3}(j)=k \cdot B_{k, 4 j}(j), & s \geqslant 4 \\
B_{0}^{s}(j)=1, & \\
B_{k}^{s}(1)=\mu_{k}^{s} & \\
B_{k}^{s}(j)=g \cdot B_{k-1}^{s-2}(g) \cdot B_{k-1}^{s}\left(\left(g / \mu_{k-1}^{s-2}\right) B_{k-1}^{s-2}(g)\right), & g=B_{k}^{s}(j-1)
\end{array}
$$

We first relate the row inverses of $B_{*, *}(*)$ to Ackermann's function A.

Lemma A.1. For $k \geqslant 2, j \geqslant 1$, and $\delta \geqslant 4, B_{k, \delta}(j) \leqslant A_{k-1}(\delta j)$.

Proof. For $k=2$ and $j \geqslant 1$ one can verify that $B_{2, \delta}(j)=\delta \cdot 2^{j}$, which is less than $A_{1}(j \delta)=2^{j \delta}$. For $k \geqslant 3$ and $j=1$ we have

$$
\begin{aligned}
B_{k, \delta}(1) & =\delta \cdot B_{k-1, \delta}(\delta) & & \text { By defn. } \\
& \leqslant \delta \cdot A_{k-2}\left(\delta^{2}\right) & & \text { Ind. hyp. } \\
& <A_{k-1}(\delta), & & \delta \geqslant 4
\end{aligned}
$$

In the general case $j>1$ and we have

$$
\begin{array}{rlrl}
B_{k, \delta}(j) & =B_{k, \delta}(j-1) \cdot B_{k-1, \delta}\left(B_{k, \delta}(j-1)\right) & & \text { By defn. } \\
& \leqslant A_{k-1}(\delta(j-1)) \cdot A_{k-2}\left(\delta \cdot A_{k-1}(\delta(j-1))\right) & & \text { Ind. hyp. } \\
& \leqslant A_{k-1}(\delta(j-1)) \cdot A_{k-2}\left(A_{k-1}(\delta(j-1)+1)\right) & \\
& \leqslant A_{k-1}(\delta j) & &
\end{array}
$$

To relate $B_{*}^{*}(*)$ to Ackermann's function we define an intermediary \hat{A} that resembles B but takes two arguments, namely k and j rather than k, j, and s.

$$
\begin{aligned}
& \hat{A}_{1}(j)=2^{2 j} \\
& \hat{A}_{k}(1)=2^{2^{k}} \\
& \hat{A}_{k}(j)=g \cdot \hat{A}_{k-1}(g) \cdot \hat{A}_{k-1}\left(g \cdot \hat{A}_{k-1}(g)\right), \quad g=\hat{A}_{k}(j-1)
\end{aligned}
$$

Lemmas A. 2 and A. 3 relate the row inverses of B and A via those of \hat{A}.
Lemma A.2. For all $k \geqslant 1, s \geqslant 3$, and $j \geqslant 1, B_{k}^{s}(j) \leqslant \hat{A}_{k}(j)$.
Proof. Consider $s=3$. The claim is true for $k=1$, since $B_{1}^{3}(j)=2<\hat{A}_{1}(j)$, and $k \geqslant 2$, since, by Lemma A.1, $B_{k}^{3}(j) \leqslant A_{k-1}\left(4 j^{2}\right) \leqslant A_{k-1}\left(2^{2 j}\right) \leqslant \hat{A}_{k}(j)$. Now consider $s \geqslant 4$. When $j=1, B_{k}^{s}(1)=\mu_{k}^{s} \leqslant$ $2^{2^{k}} \leqslant \hat{A}_{k}(1)$. When $k=1, B_{1}^{s}(j) \leqslant 2^{2 j}$ since $B_{0}^{s}(\cdot)$ is at most 2 . When $j, k>1$ the claim follows directly from the definition of B_{k}^{s} and \hat{A}_{k}.

Lemma A.3. For $j, k \geqslant 1, \hat{A}_{k}(j) \leqslant A_{k}(2 j+2)$.
Proof. We prove the stronger bound $\hat{A}_{k}(j) \leqslant A_{k}(2 j+2) / 2-1$. The claim clearly holds for $k=1$. A short induction shows $A_{k}(2)=2^{k+1}$ and for $j, k>1, A_{k}(j) \geqslant 2^{A_{k}(j-1)}$. Thus, for $k>1, j=1, \hat{A}_{k}(1)=$ $2^{2^{k}}<A_{k}(4) / 2-1$ since $A_{k}(4) \geqslant 2^{2^{2^{k}}}$. For $k>1, j>1$ we have

$$
\begin{aligned}
\hat{A}_{k}(j) & =\hat{A}_{k}(j-1) \cdot \hat{A}_{k-1}\left(\hat{A}_{k}(j-1)\right) \cdot \hat{A}_{k-1}\left(\hat{A}_{k}(j-1) \cdot \hat{A}_{k-1}\left(\hat{A}_{k}(j-1)\right)\right) & & \text { Defn. } \hat{A} \\
& <\frac{1}{2} A_{k}(2 j) \cdot \hat{A}_{k-1}\left(\frac{1}{2} A_{k}(2 j)-1\right) \cdot \hat{A}_{k-1}\left(\frac{1}{2} A_{k}(2 j) \cdot \hat{A}_{k-1}\left(\frac{1}{2} A_{k}(2 j)-1\right)\right) & & \text { Ind. hyp. } \\
& <\frac{1}{4} A_{k}(2 j) \cdot A_{k-1}\left(A_{k}(2 j)\right) \cdot \hat{A}_{k-1}\left(\frac{1}{4} A_{k}(2 j) \cdot A_{k-1}\left(A_{k}(2 j)\right)-1\right) & & \text { Ind. hyp. } \\
& <\frac{1}{8} A_{k}(2 j) \cdot A_{k-1}\left(A_{k}(2 j)\right) \cdot A_{k-1}\left(\frac{1}{2} A_{k}(2 j) \cdot A_{k-1}\left(A_{k}(2 j)\right)\right) & & \text { Ind. hyp. } \\
& <\frac{1}{8} A_{k}(2 j+1) \cdot A_{k-1}\left(\frac{1}{2} A_{k}(2 j+1)\right) & & \text { Defn. } A \\
& <\frac{1}{8} A_{k}(2 j+2) & & \text { Defn. } A
\end{aligned}
$$

We are now prepared to prove Lemma 4.1.
Proof of Lemma 4.1. Part 1. Recall that $m=B_{k}^{s}(j)=\llbracket S_{k}^{s}(j) \rrbracket$ by definition, that $n=\left\|S_{k}^{s}(j)\right\|=$ $\left(j / \mu_{k}^{s}\right) B_{k}^{s}(j)$, and that $\alpha(n, m)=\min \left\{i \mid A_{i}(4\lceil n / m\rceil) \geqslant m\right\}=\min \left\{i \mid A_{i}\left(4\left\lceil j / \mu_{k}^{s}\right\rceil\right) \geqslant m\right\}$. It easily follows that $\alpha(n, m) \leqslant k+1$:

$$
\begin{aligned}
A_{k+1}\left(4\left\lceil j / \mu_{k}^{s}\right\rceil\right) & >A_{k}\left(A_{k+1}\left(4\left\lceil j / \mu_{k}^{s}\right\rceil-1\right)\right) & & \text { Defn. of } A \\
& \geqslant A_{k}\left(2^{2^{k}} \cdot\left(4\left\lceil j / \mu_{k}^{s}\right\rceil-1\right)\right), & & A_{k+1}(j) \geqslant j \cdot 2^{2^{k}}, \text { for } j \geqslant 3 . \\
& \geqslant A_{k}(3 j), & & \mu_{k}^{s}<2^{2^{k}} \\
& \geqslant A_{k}(2 j+2) \geqslant \hat{A}_{k}(j) \geqslant B_{k}^{s}(j)=m & & \text { Lemmas A. } 3 \text { and A. } 2
\end{aligned}
$$

Part 2. The claim holds for $s \geqslant 4$ and $k=0$, since $\mu_{0}^{s}=1=2\left({ }_{t}^{0}\right)$, and it holds for $s=4$ and $k>0$ since $\mu_{k}^{4}=\mu_{k-1}^{2} \cdots \mu_{0}^{2}=2^{k}=2^{\binom{k}{t}}$. For other values of s and $k, \mu_{k}^{s}=\mu_{k-1}^{s} \cdot \mu_{k-1}^{s-2}=2^{\binom{k-1}{t}+\binom{k-1}{t-1}}=$ $2^{\binom{k}{t}}=2^{(1 \pm o(1)) k^{t} / t!}$.

Part 3. The claim holds for $s \geqslant 5$ and $k \in\{0,1\}$, since $\mu_{k}^{s}=1$ and the product $\prod_{i=t}^{k-2}(k-i){ }_{\left.()_{t-1}^{i-1}\right)}^{i}$ is trivially 1 . For $s=5, \mu_{k}^{5}=\mu_{k-1}^{5} \mu_{k-1}^{3}=(k-2)!(k-1)=(k-1)!=2^{(1-o(1)) k \log k}$. In general we have, for $s \geqslant 7$:

$$
\begin{aligned}
\mu_{k}^{s} & =\mu_{k-1}^{s} \mu_{k-1}^{s-2} & \text { by defn. of } \mu_{k}^{s} \\
& =\prod_{i=t}^{k-3}(k-1-i)^{\binom{i-1}{t-1}} \prod_{i=t-1}^{k-3}(k-1-i)^{\binom{i-1}{t-2}} & \text { ind. hyp. } \\
& =\prod_{i=t+1}^{k-2}(k-i)^{\binom{i-2}{t-1}} \prod_{i=t}^{k-2}(k-i)^{\binom{(i-2}{t-2}} & \text { reindexed } \\
& =\prod_{i=t}^{k-2}(k-i)^{\binom{i-2}{t-1}+\binom{i-2}{t-2}} & \\
& =\prod_{i=t}^{k-2}(k-i)^{\binom{i-1}{t-1}} & \text { observe }\binom{t-2}{t-1}=0
\end{aligned}
$$

Thus $\log _{2} \mu_{k}^{s}=\sum_{i=t}^{k-2}\binom{i-1}{t-1} \log (k-i)>\sum_{i=t}^{k-2} \frac{(i-t+1)^{t-1}}{(t-1)!} \log (k-i)=\frac{k^{t}}{t!} \log k-O\left(k^{t}\right)$. It is also easy to see that $\log _{2} \mu_{k}^{s}<\frac{k^{t}}{t!} \log k$.

References

[1] R. Adamec, M. Klazar, P. Valtr, Generalized Davenport-Schinzel sequences with linear upper bound, Discrete Math. 108 (1992) 219-229.
[2] P. Agarwal, M. Sharir, Davenport-Schinzel Sequences and Their Geometric Applications, Cambridge University Press, 1995.
[3] P. Agarwal, M. Sharir, P. Shor, Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences, J. Combin. Theory Ser. A 52 (1989) 228-274.
[4] N. Alon, H. Kaplan, G. Nivasch, M. Sharir, S. Smorodinsky, Weak ϵ-nets and interval chains, J. ACM 55 (2008), Art. 28, 32 pp.
[5] H. Davenport, A. Schinzel, A combinatorial problem connected with differential equations, Amer. J. Math. 87 (1965) 684694.
[6] H. Davenport, A. Schinzel, A note on sequences and subsequences, Elem. Math. 20 (1965) 63-64.
[7] R. Fulek, Linear bound on extremal functions of some forbidden patterns in 0-1 matrices, Discrete Math. 309 (2009) 17361739.
[8] Z. Füredi, P. Hajnal, Davenport-Schinzel theory of matrices, Discrete Math. 103 (1992) 233-251.
[9] J.T. Geneson, Extremal functions of forbidden double permutation matrices, J. Combin. Theory Ser. A 116 (2009) 1235-1244.
[10] S. Hart, M. Sharir, Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes, Combinatorica 6 (1986) 151-177.
[11] B. Keszegh, On linear forbidden submatrices, J. Combin. Theory Ser. A 116 (2009) 232-241.
[12] M. Klazar, A general upper bound in extremal theory of sequences, Comment. Math. Univ. Carolin. 33 (1992) 737-746.
[13] M. Klazar, Two results on a partial ordering of finite sequences, Comment. Math. Univ. Carolin. 34 (1993) 697-705.
[14] M. Klazar, Extremal functions for sequences, Discrete Math. 150 (1996) 195-203.
[15] M. Klazar, Generalized Davenport-Schinzel sequences: results, problems, and applications, Integers 2 (2002), A11, 39 pp.
[16] M. Klazar, P. Valtr, Generalized Davenport-Schinzel sequences, Combinatorica 14 (1994) 463-476.
[17] P. Komjáth, A simplified construction of nonlinear Davenport-Schinzel sequences, J. Combin. Theory Ser. A 49 (1988) 262267.
[18] A. Marcus, G. Tardos, Excluded permutation matrices and the Stanley-Wilf conjecture, J. Combin. Theory Ser. A 107 (2004) 153-160.
[19] G. Nivasch, Improved bounds and new techniques for Davenport-Schinzel sequences and their generalizations, J. ACM 57 (2010), Art. 17, 44 pp.
[20] S. Pettie, Degrees of nonlinearity in forbidden 0-1 matrix problems, 2010, submitted for publication.
[21] S. Pettie, Origins of nonlinearity in Davenport-Schinzel sequences, SIAM J. Discrete Math. 25 (1) (2011) 211-233.
[22] S. Pettie, Splay trees, Davenport-Schinzel sequences, and the deque conjecture, in: Proceedings 19th ACM-SIAM Symposium on Discrete Algorithms, 2008, pp. 1115-1124.
[23] S. Pettie, On nonlinear forbidden $0-1$ matrices: A refutation of a Füredi-Hajnal conjecture, in: Proceedings 21st ACM-SIAM Symposium on Discrete Algorithms (SODA), 2010, pp. 875-885.
[24] M. Sharir, Almost linear upper bounds on the length of general Davenport-Schinzel sequences, Combinatorica 7 (1987) 131-143.
[25] M. Sharir, Improved lower bounds on the length of Davenport-Schinzel sequences, Combinatorica 8 (1988) 117-124.
[26] E. Szemerédi, On a problem of Davenport and Schinzel, Acta Arith. 25 (1973/1974) 213-224.
[27] G. Tardos, On 0-1 matrices and small excluded submatrices, J. Combin. Theory Ser. A 111 (2005) 266-288.

[^0]: कर This work is supported by the NSF CAREER grant No. CCF-0746673 and a grant from the US-Israel Binational Science Foundation.

 * Fax: +1 (734) 7631260.

 E-mail address: pettie@umich.edu.

[^1]: 1 To see this, observe that any 3 -sparse $b c b c a c$-free sequence is also $b c b c c$-free as well; its 3 -sparseness guarantees that there must be some a distinct from b and c located between the last two $c s$. We remove the last occurrence of each symbol in the sequence, then remove up to $n / 2$ repetitions to restore 2 -sparseness. (Note that 3 -sparseness guarantees that $n / 2$ suffices.) Thus, the length of the original sequence is at most $3 n / 2+\operatorname{Ex}(b c b c, n)<3.5 n$.

[^2]: ${ }^{2}$ A 3-sparse $b c a c b$-free sequence has length at most $\operatorname{Ex}(b c c b, n)<3 n$. See Klazar [15].

[^3]: ${ }^{3}$ In this section the shuffle operation is tailored specifically to our ($a b c a c b c$)-free sequences. In Section 4 we define a generic shuffling operation.

[^4]: 4 This is without loss of generality since $\{a, b, c\}$ have to occur in some order in their common block. We are proving that $S_{\text {sh }}$ avoids subsequences isomorphic to abcacbc (coincidentally over the alphabet $\{a, b, c\}$) which includes other permutations such as cbacaba.

[^5]: 5 Note that these upper bounds are slightly weaker than they could be. The first and last 1 s in global rows have already been accounted for, while n_{k}^{*} counts all global rows in slab k, including those with only first or last 1 s .

[^6]: ${ }^{6}$ In the base case of the proof of Theorem 3.2 we showed that $\operatorname{Ex}\left(D_{1}, n, a_{1, j}\right) \leqslant 4 n+3 j a_{1, j}$. Since $a_{1, j}=2^{j}, \operatorname{Ex}\left(D_{1}, n, a_{1, j}^{2}\right)=$ $\operatorname{Ex}\left(D_{1}, n, a_{1,2 j}\right) \leqslant 4 n+3 \cdot 2 j a_{1,2 j}=4 n+6 j a_{1, j}^{2}$. The remainder of the proof of Theorem 3.2 goes through as is, with $a_{i, j}^{2}$ substituted for $a_{i, j}$.
 ${ }^{7}$ Since we already accounted for left and right 1 s , these upper bounds are slightly weak. We could replace n_{k}^{*} by the number of global rows with middle 1 s in slab k.

[^7]: 8 In the base case of $i=1$ it is proved that $\operatorname{Ex}\left(\tilde{D}_{1}, n, a_{1, j}\right) \leqslant 14 n+2 j a_{1, j}$, hence $\operatorname{Ex}\left(\tilde{D}_{1}, n, a_{1, j}^{2}\right)=\operatorname{Ex}\left(\tilde{D}_{1}, n, a_{1,2 j}\right) \leqslant$ $14 n+4 j a_{1,2 j}=14 n+4 j a_{1, j}^{2}$. For $i>1$ the induction proceeds in the same way, though we use the following upper bound rather than Eq. (8): $\operatorname{Ex}\left(\tilde{D}_{1}, n, a_{i, j}^{2}\right)<\sum_{k} \operatorname{Ex}\left(\tilde{D}_{1}, n_{k}, w^{2}\right)+\operatorname{Ex}\left(\tilde{D}_{1}, n^{*}, a_{i-1, w}^{2}\right)+(8 i+6) n^{*}+(12 i-9) a_{i, j}^{2}$. This is established via the same argument, though rather than use the upper bound on $\operatorname{Ex}\left(D_{1}, n, a_{i, j}\right)$ from Theorem 3.2 we use the upper bound $\operatorname{Ex}\left(D_{1}, n, a_{i, j}^{2}\right)<4 i n+6 i j a_{i, j}^{2} ;$ see footnote 6.

[^8]: ${ }^{9}$ Klazar [15] observed that this property holds for the construction [3] of ababab-free sequences with length $\Theta\left(n \cdot 2^{\alpha(n)}\right)$.

[^9]: ${ }^{10}$ If b were in a copy of $S_{\text {bot }}$ then a and d would need to be as well, since baab, $b d d b ₹ \sigma$, which then implies that c is as well, since accd $₹ \sigma$, implying that $\sigma \prec S_{\text {bot }}$, a contradiction. The same reasoning rules out c being in $S_{\text {bot }}$. Similarly, if any of the pairs $\{a, b\},\{a, c\},\{a, d\},\{b, d\},\{c, d\}$ appear in a copy of $S_{\text {bot }}$ then two applications of Lemma 4.2(1) force all of a, b, c, and d to be in $S_{\text {bot }}$, a contradiction.

