
Splay Trees, Davenport-Schinzel Sequences,

and the Deque Conjecture

Seth Pettie
The University of Michigan

Abstract

We introduce a new technique to bound the asymp-
totic performance of splay trees. The basic idea is
to transcribe, in an indirect fashion, the rotations
performed by the splay tree as a Davenport-Schinzel
sequence, none of whose subsequences are isomorphic
to a fixed forbidden subsequence. We direct this tech-
nique towards Tarjan’s deque conjecture and prove
that n deque operations take only O(nα∗(n)) time,
where α∗(n) is the minimum number of applications
of the inverse-Ackermann function mapping n to a
constant. We are optimistic that this approach could
be directed towards other open conjectures on splay
trees such as the traversal and split conjectures.

1 Introduction

Sleator and Tarjan proposed the splay tree [29] as a
self-adjusting alternative to traditional search trees
like red-black trees and AVL-trees. Rather than
enforce some type of balance invariant, the splay tree
simply adjusts its structure in response to the access
pattern by rotating accessed elements towards the
root in a prescribed way; see Figure 1. By letting
the access pattern influence its own shape, the splay
tree can inadvertently learn to perform optimally
on a variety of access patterns. For example, the
static optimality theorem states that splay trees are
no worse than any fixed search tree. The working set,
and dynamic finger theorems show that the access
time is logarithmic in the distance to the accessed
element, where distance is either temporal (working
set [29]) or with respect to key-space (dynamic finger
[9, 8]). Sleator and Tarjan went a step further and
conjectured that splay trees are, to within a constant
factor, just as efficient as any dynamic binary search
tree, even one that knows the whole access sequence
in advance. Despite a fair amount of attention over
the years, this dynamic optimality conjecture is still
open. In fact, there is currently no non-trivial (i.e.,
sub-logarithmic) bound on the competitiveness of
splay trees. The difficulty of this problem stems from
the fact that splay trees were deliberately designed

not to “play along” with our standard notions of
good structure. Whether good structure refers to
a balance invariant [14] or a more subtle structural
invariant [10, 33, 15], any type of structural property
must allow some tree configurations and precludes
others, or perhaps regulate the speed with which
one tree configuration could be transformed into
another [14]. Thus, one could argue that if there is an
online dynamically optimal search tree, its behavior
must resemble that of splay trees: haphazard and
eager to respond to accesses with major structural
adjustments.

The revived interest in the dynamic optimality
question is largely due to the invention of tango
trees [10]. By appealing to the interleave lower
bound of Wilbur [34] Demaine, Harmon, Iacono, and
Pǎtraşcu [10] proved that tango trees perform within
a O(log log n) factor of the optimal dynamic search
tree. Tango trees make use of red-black trees but it is
easy to see that just about any standard binary search
tree could be used as a black box in its place. Wang
et al. [33] (see also [15]) showed that if splay trees
are employed instead of red-black trees it is possible
to have O(log log n)-competitiveness and retain some
properties of splay trees, such as O(log n) amortized
time per access and sequential access in linear time.
Wang et al. also extended their data structure to
handle insertions and deletions.

If one’s immediate goal is to prove that splay
trees are simply o(log n)-competitive, it suffices to
show that they run in o(n log n) time on any class of
access sequences for which the optimal binary search
tree runs in O(n) time. There is currently no “the-
ory” of access sequences whose inherent complexity is
linear. It is, therefore, not too surprising that all the
major open conjectures on splay trees (corollaries of
dynamic optimality) concern sequences whose opti-
mal complexity is linear. Whether one’s goal is mod-
est or ambitious, i.e., proving sub-logarithmic com-
petitiveness or the full dynamic optimality conjec-
ture, the first step must be to understand how splay
trees behave on very easy access sequences. We re-
state below three unresolved conjectures on the opti-

z

y

x

A B

C

D

z

y

x

A

B

C D

z

y

xA

D

B C

zy

x

A B C D

Figure 1: Splay trees’ restructuring heuristics. After accessing an element x the tree rotates it to the root
position by repeatedly applying a zig-zig, zig-zag, or zig as appropriate. On the left is the zig-zig case: x
and its parent y are both left children (or both right children); the edges (y, z) and (x, y) are rotated in that
order. On the right is the zig-zag case; the edges (x, y) and (x, z) are rotated in that order. Not depicted is
the zig case, when y is the tree root and the edge (x, y) is rotated.

mality of splay trees [32, 29, 26].

Deque Conjecture Tarjan [32] conjectured that all
double-ended queue operations1 (push, pop, and
their symmetric counterparts inject and eject)
take O(1) amortized time if implemented with a
splay tree. A push makes the root of the splay
tree the right child of a new vertex and a pop
splays the leftmost leaf to the root position and
deletes it. Inject and eject are symmetric.

Traversal Conjecture Sleator and Tarjan [29] con-
jectured that for two binary search trees S and T
(defined on the same node set) accessing the ele-
ments in T by their preorder number in S takes
linear time.

Split Conjecture Lucas conjectured [26] that any
sequence of splittings in a splay tree takes linear
time. A split at x consists of splaying x to the
root and deleting it, leaving two splay trees, each
subject to more splittings.

Sundar [30] established a bound of O(nα(n)) on
the time taken for n deque operations, where α is
the inverse-Ackermann function. Lucas [26] showed
that when the initial splay tree is a path (each node
a left child), n split operations take O(nα(n)) time.
Notice that the split conjecture subsumes a special
case of the deque conjecture, where only pops and
ejects are allowed. We are aware of no published work
concerning the traversal conjecture as such, though
Chaudhuri and Höft [7] did prove it for the very
special case when S = T .

Our Contributions. We introduce a new tech-
nique in the analysis of splay trees that is funda-
mentally different from all previous work on the sub-
ject [29, 32, 30, 9, 8, 14, 11]. The idea is to bound

1Also called a deque, pronounced “deck.”

the time taken to perform a sequence of accesses
by transcribing the rotations performed by the splay
tree as a Davenport-Schinzel sequence S , i.e., one
avoiding a specific forbidden subsequence. We ap-
ply this technique to the deque problem and show
that n deque operations take O(nα∗(n)) time, where
α∗(n) is the number of applications of the inverse-
Ackermann function mapping n down to a constant.
This time bound is established by generating not
one sequence S but a hierarchy of sequences, each
of which avoids subsequences isomorphic to abababa.
Nearly tight bounds on the length of such sequences
were given by Agarwal, Sharir, and Shor [2]. We
believe that a generalized version of this technique
should be useful in resolving other open conjectures
on splay trees. For instance, a particularly clean
way to prove the deque, split, or traversal conjectures
would be to transcribe their rotations as a generalized
Davenport-Schinzel sequence with length O(n), i.e.,
one avoiding a fixed forbidden subsequence, not nec-
essarily one of the form abab · · · . There is a large fam-
ily of forbidden subsequences whose extremal func-
tion is known to be linear [22] as well as some rather
simple forbidden subsequences, abacabc and abacacb
for example, whose linear/non-linear status is still
open.

Related Work. Iacono [17] defined a weaker
notion of dynamic optimality called key independent
optimality. One assumes that keys are assigned to
elements randomly. The optimal cost of a sequence
of operations is the expected optimal cost over all key
assignments. Iacono showed that any data structure
having the working set property is also optimal in
the key independent sense. Blum et al. [5] defined
another weaker notion of dynamic optimality called
dynamic search optimality. In this cost model the
(online) search tree can perform any number of rota-
tions for free after each access, i.e., it only pays for

actually doing searches. Georgakopoulos [14] showed
that splay trees are competitive against a large class
of dynamic balanced binary search trees, which can be
“self adjusting” in the sense that they change shape
in preparation for future searches. Iacono defined a
unified property for search structures that subsumes
the working set and dynamic finger properties. In his
data structure [19] the access time for an element is
logarithmic in its distance, where distance is a natu-
ral combination of temporal distance and key-space
distance. Iacono’s data structure [19] is not a binary
search tree and it is currently open whether any of-
fline binary search tree has the unified property. In
other words, it is not known to be a corollary of dy-
namic optimality.

Just after the invention of splay trees [29], Fred-
man et al. [13] invented the pairing heap as a kind
of self-adjusting version of Fibonacci heaps. There is
no obvious (and still interesting) analogue of dynamic
optimality for priority queues, though Iacono [18] did
show that pairing heaps possess an analogue of the
working set property. See Fredman [12] and Pet-
tie [27] for the best lower and upper bounds on the
performance of pairing heaps.

List maintenance and caching algorithms (such
as move-to-front or least-recently-used [28]) are some-
times described as being self adjusting heuristics. In
these problems the (asymptotic) dynamic optimal-
ity questions are pretty well understood [28], though
the leading constants have not yet been pinned
down [3, 4].

Organization. In Section 2 we describe a
known reduction [32, 30, 26] from the deque prob-
lem to a restrictive system of path compressions. In
Section 3 we define some notation for Davenport-
Schinzel sequences, path compressions, and slowly
growing functions. Section 4 introduces a recurrence
relation for a type of path compression system and
shows how it can be analyzed easily using bounds
on Davenport-Schinzel sequences. Section 5 gives the
proof that n deque operations take O(nα∗(n)) time.

2 Deque Operations and Path Compression
Schemes

The relationship between deque operations on a splay
tree and halving path compressions on an arbitrary
tree was noted by Lucas [25, 26] and implicitly in
[32, 30]. Let us briefly go through the steps of the
reduction. At the beginning of a phase we divide the
k-node splay tree into left and right halves of size k/2.
The phase ends when one half has been deleted due to
pops and ejects. We ignore the right half for now and
look at the binary tree induced by the left half; call

it L and its root r.2 The root of this tree may or may
not correspond to the root of the whole splay tree. In
any case, we imagine rotating the nodes on the right
spine of L across the root until the root has only one
(left) child; call this tree L′. Finally, we transform the
binary tree L′ into a general tree L′′ as follows. The
left child of a vertex in L′ corresponds to its leftmost
child in L′′ and its right child in L′ corresponds with
its right sibling in L′′. See Figure 2. Notice that if v
and its L-parent pL(v) lie on the left spine of L, and
pL(v) 6= r, rotating the edge (v, pL(v)) corresponds
to making v the leftmost child of its grandparent in
L′′. If pL(v) = r rotating (v, pL(v)) makes v the root
of L but does not change the structure of L′ or L′′. In
an almost symmetric way, if v, pL(v), and p

(2)
L (v) 6= r

lie on the right spine of L then rotating (v, pL(v)) in
L corresponds to rotating (p(2)

L (v), pL(v)) in L′ and
making p

(2)
L (v) the leftmost child of its grandparent

(v) in L′′. Notice that v = pL′(pL(v)) = p
(2)
L′ (p(2)

L (v)).
Observation 2.1 summarizes the relationship between
deque operations and path compressions; see also [26,
30].

Observation 2.1. A pop operation corresponds to a
halving path compression in L′′ that begins at the left-
most leaf and terminates at r, followed by a deletion
of the leftmost leaf and a possible root relocation from
r to its leftmost child. A push operation causes a new
leaf v to be added as the leftmost child of r in L′′, fol-
lowed by a root relocation from r to v. An eject oper-
ation corresponds to a halving path compression orig-
inating at r and terminating at some ancestor (not
necessarily the root of L′′), followed by a possible root
relocation from r to pL′′(r). An inject operation has
no effect on L′′.

It is clear that if the amortized cost per deque
operation in a phase is f(k) then the overall cost
for m deque operations on an initial n-node splay
tree is O((m + n)f(m + n)); see [32, 30, 11]. Using
Observation 2.1 we can (and do) restrict our attention
to bounding the total length of a sequence of halving
path compressions up the left spine of an arbitrary
rooted tree. However, we may still lapse into deque
terminology. The terms “pop” and “push”, for
instance, are basically equivalent to “halving path
compression” and “leaf addition.”

Related Work. Restricted forms of path com-
pressions have been studied in a number of situations.
The most well known example is Hart and Sharir’s

2By induced we mean the following: L is the unique binary
tree on the set of left nodes that preserves the ancestor-

descendant relationship from the original splay tree.

Splay Tree to L L to L' L' to L''

one pop
(splay at leftmost leaf

+
deletion of new root)

halving path
compression

+
deletion of

leftmost leaf

r

r

r

r r

r

Figure 2: Top row: the transformation from the splay tree (left nodes black, right nodes white) to L,L′, and
L′′. Bottom: the effect of a pop on the splay tree and L′′.

result [16] on the equivalence between (ababa)-free
Davenport-Schinzel sequences and generalized pos-
tordered path compressions; both have maximum
length Θ(nα(n)). Loebl and Nes̆etr̆il [23] and Lu-
cas [25] independently proved that standard pos-
tordered path compressions with the so-called ris-
ing roots condition take linear time. Buchsbaum,
Sundar, and Tarjan [6] generalized this result to
what they called deque-ordered path compressions,
again assuming the rising roots condition. Hart and
Sharir [16] have conjectured that the rising roots con-
dition is not essential and that standard postordered
path compressions take linear time. The path com-
pressions corresponding to deque operations are sim-
ilar to the special cases studied earlier. Some dif-
ferences are that the compressions are halving (not
full), and although the compressions are spinal, due
to pushes and ejects they are not performed in pos-
torder and do not satisfy the rising roots condition.

3 Notation

We say two sequences are isomorphic if they are the
same up to a renaming of symbols. The relations
σ ≺̄ Σ and σ ≺ Σ hold, respectively, when σ is
a subsequence of Σ and when σ is isomorphic to a
subsequence of Σ. A subsequence of Σ is any sequence
derived by deleting symbols from Σ. A sequece Σ is
called c-regular if any two occurrences of the same

symbol appear at distance at least c. We denote
by |Σ| and ‖Σ‖ the length and alphabet size of Σ,
respectively. Following Klazar [21] we let Ex(σ, n) be
the maximum length of σ-free sequences:

Definition 3.1.

Ex(σ, n) = max{|Σ|
∣∣ σ ⊀ Σ, ‖Σ‖ = n,

and Σ is ‖σ‖-regular}

It is known [20] that Ex(σ, n) = n · 2α(n)O(1)
,

where the O(1) depends on the length and alphabet
size of σ. Nearly tight bounds on Ex(σ, n) are known
[2] when σ is of the form ababa · · · . Here α(n) is the
inverse-Ackermann function, which can be defined as
follows. If f(n) is a strictly decreasing function on
the positive integers f∗(n) = min{i : f (i)(n) ≤ 2},
where f (i+1)(n) = f(f (i)(n)) and f (1)(n) = f(n).

Define α(m,n) = min{i ≥ 1 : log

i−1︷ ︸︸ ︷
∗ ∗ · · · ∗(n) ≤

2 + m
n } and α(n) = α(n, n). This definition of α

differs from others in the literature [31, 16] by at most
a small constant.

In this paper all trees are rooted and the children
of any vertex assigned some left-to-right order. The
trees we deal with are occasionally restructured with
path compressions. Let p(u) be the parent of u at
some specific time. If C = (u1, . . . , uk) is a path,

where ui+1 = p(ui), performing a total compression
of C means to reassign p(ui) = uk, for all 1 ≤ i ≤
k − 2. A halving compression of C sets p(ui) = ui+2

for all odd i ≤ k − 2. If k is even a halving
compression may set p(uk−1) = p(uk). A specific
case of interest is when uk is the tree root: setting
p(uk−1) = p(uk) causes uk−1 to be a tree root as
well. We say that C originates at u1 and terminates
at uk. A total/halving path compression that does
not terminate at the tree root is stunted. The length
of a total/halving path compression is the number of
vertices whose parent pointers are altered. We never
consider compressions with zero length.

A postordering of a tree rooted at v, having chil-
dren v1, . . . , vk from left to right, is the concatena-
tion of the postorderings of the subtrees rooted at
v1, . . . , vk followed by v. The spine of a tree is the
path from its root to its leftmost leaf. A path com-
pression is spinal if it affects a subpath of the spine; it
need not include the leftmost leaf nor the tree root. It
is easy to see that a total/halving spinal compression
can be postorder preserving. For a total compression
(u1, . . . , uk) we just prepend u1, . . . , uk−2 to the pre-
existing left-right ordering on the children of uk. For
a halving compression we make ui the new leftmost
child of ui+1 for all odd i.

In order to use a clean inductive argument we
look at a restrictive type of instance called a spinal
compression system. The initial structure consists of
a single path containing a mixture of essential nodes
and and fluff nodes. The tree is manipulated through
halving spinal path compressions, leaf deletions, and
spontaneous compressions. Let us go through each
of these in turn. Whenever a fluff node becomes
a leaf it is automatically deleted. The leftmost
essential node (always a leaf) may be deleted at any
time. We are mainly interested in the total length
of the “official” path compressions, which are always
halving and spinal. Spontaneous compressions are
any postorder preserving path compressions, the cost
of which we need not account for. Let R(n, f, m) be
the maximum total length of the official compressions
on an instance with n essential nodes and f fluff
nodes, where at most m of the compressions are
stunted. In Section 4 we derive a recursive expression
bounding R(n, f, m) and in Section 5 we relate R to
the time taken by deque operations.

4 Recursive Bounds on Spinal Compression
Systems

Consider an initial instance with n essential nodes
and f fluff nodes. We first divide up the path into
n/B blocks, each containing B essential nodes, where
the bottommost node in each block is essential. The

sequence of official compressions is partitioned into
n/B epochs, where the jth epoch begins at the first
compression when the leftmost leaf belongs to the
jth block and ends at the beginning of the (j + 1)th
epoch. Let Ij be the set of nodes, not including
those in the jth block, that are touched by some
compression in the jth epoch. It follows that at the
commencement of the jth epoch Ij is a single path;
see Figure 3. At this time some members of Ij may

jI

Block j

Figure 3:

be affiliated with previous epochs. It is always the
case that nodes affiliated with any j′ < j appear as a
connected subpath of the spine. We call an essential
node v exposed if it has no essential ancestor that
either shares an affiliation with v or lies in the same
block as v. Let Îj ⊆ Ij be the set of essential exposed
nodes. We call epoch j sparse if |Îj | log |Îj | < |Ij |
and dense otherwise. If epoch j is dense we affiliate
all nodes in Ij with j. We view Ij as a separate
spinal compression system, where Îj is the set of
essential nodes and all others in Ij\Îj are fluff. Notice
that a subpath of Ij can be affiliated with j and a
previous epoch, say j′. If a compression influences
nodes affiliated with both j and j′ we charge the
cost to the jth spinal compression system and call its
effect on the j′th compression system a spontaneous
compression. If the jth epoch is sparse we do not
affiliate any nodes with j.

Lemma 4.1. Let f ≥
∑

j fj and m ≥
∑

j m̄j +

∑
j m̃j.

R(n, f, m) =
n/B∑
j=1

R(B, fj , m̃j)

+
∑

epoch j
dense

3R(|Îj |, |Îj | log |Îj |, m̄j)

+ 2m + n + f

Proof. Consider a compression C occurring in the jth
epoch. We can always break C into three parts: (i)
a compression C ′ inside the jth block followed by
(ii) an edge e leading from the jth block to some
vertex in Ij , followed by (iii) a compression C ′′ lying
entirely within Ij . Notice that if C ′′ is present
it may be either stunted or unstunted. However,
if C ′′ is present then C ′ (if present) must be an
unstunted compression. We call C ′′ short if it has
unit cost, i.e., if only one node changes parent.
Whether C ′ is stunted or not its cost is covered in
the R(B, fj , m̃j) term, where fj is the number of
fluffy nodes and m̃j the number of compressions that
are stunted with respect to block j. Similarly, if the
jth epoch is dense the cost of C ′′, whether stunted
or not, is covered in the term R(|Îj |, |Îj | log |Îj |, m̄j),
where m̄j is the number of stunted compressions
that terminate in the spinal compression system on
Ij . We account for the cost of e in one of two
ways. If C ′′ (and therefore C) is stunted we charge
it to the compression; hence the m term. If not,
notice that after every unstunted compression C ′′

the number of nodes whose grandparents are roots
or nonexistent increases by at least one. This can
obviously happen at most n + f times. Consider
the compression C ′′ when the jth epoch is sparse.
If C ′′ is short we charge its cost to the compression;
hence the other m term. In general, C ′′ will intersect
one or more previously spawned spinal compression
systems. That is, it can be divided up into pieces
C ′′

1 , C ′′
2 , C ′′

3 , . . ., where for odd i, C ′′
i intersects an

existing compression system. The costs of C ′′
1 , C ′′

3 , . . .
are covered in the

∑
j′ R(|Îj′ |, |Îj | log |Îj |, m̄j′) terms.

By doubling this sum we can account for some of
C ′′

2 , C ′′
4 , . . .; at the very least this includes those with

unit cost. Over all of epoch j, the total length of
the other mini-compressions of the form C ′′

i (i even)
is |Îj | log |Îj |; see Sundar [30].3 By tripling the sum∑

j′ R(|Îj′ |, |Îj′ | log |Îj′ |, m̄j′) we account for the cost
of these mini-compressions as well.

3In Sundar’s terminology each of these mini-compressions

is a k-cascade for some k ≥ 2.

Lemma 4.1 looks as though it may be effectively
vacuous. We are trying to bound the growth of
R(n, f, m) and all Lemma 4.1 can say is that it
depends on the magnitude of the {Îj}j sets. It does
not even suggest a trivial bound on their size. Our
strategy is to transcribe the {Îj}j sets as a repetition-
free sequence S that avoids a specific forbidden
subsequence. It follows from the results of Agarwal
et al. [2] that |S | is nearly linear in the size of its
alphabet. By choosing an appropriate block size B
we can apply Lemma 4.1 to obtain useful bounds on
R.

Our transcription method for S is very similar to
the one used by Hart and Sharir [16]. In Lemma 4.2
we show that abaabba ⊀ S and abababa ⊀ S . Us-
ing bounds on Ex(abababa, ·) from Agarwal, Sharir,
and Shor [2] we are able to show, in Lemmas 4.3 and
4.4 that R(n, f, m) is O((n + f + m)α∗(n)).

Before giving the actual transcription method
we give a simpler one, point out why it isn’t quite
what we need, then adjust it. The transcription
is based on an evolving labeling of the nodes. A
label is simply a sequence of block/epoch indices,
listed in descending order. Since nodes can belong
to several spinal compression systems a node may
keep several labels, one for each system. At the
commencement of the jth epoch we selected out of
Ij a subset Îj with several properties, one of which
was that Îj has at most one node from any block. If
the jth epoch is dense we prepend j to the label of
each node in Îj . The sequence S ′ consists of the
concatenation of all node labels, where the nodes
are given in postorder. An equivalent definition is
that S ′ begins empty; whenever the leftmost leaf
is deleted we append its label to S ′ and continue.
Besides having the property that abaabba, abababa ⊀
S ′, we need S ′ to be repetition-free and contain
not too many occurrences of any one symbol, say, at
most t occurrences. To enforce this, if |Îj | > t we
simply split it up into d|Îj |/te pieces and treat each
piece as a distinct spinal compression system. Thus,
the number of systems could exceed the number
of blocks/epochs. There may be repetitions in S ′

but not too many. Note that the labels of nodes
appearing in any block share no symbols in common.
Therefore, S can only contain repetitions at block
boundaries. By removing at most n/B − 1 symbols
from S ′ we can eliminate all repetitions. Using the
above two observations, let S be a repetition-free
sequence derived from S ′ in which no symbol occurs
more than t times.

Lemma 4.2. For σ ∈ {abaabba, abababa}, σ ⊀ S ′.

Proof. First note that if the lemma holds for S ′

affiliated with a

affiliated with a

labeled b

fluff
oth

ers
 no

des
 la

bel
ed
b

oth
ers

 no
des

 la
bel

ed
b

Ib

Ib

Figure 4:

it holds for S as well. We show that for any
b > a, babba ⊀̄ S ′. This would prove the lemma
since, for any σ′ ∈ {babba, abaab} and σ′′ ∈
{abaabba, abababa}, σ′ ≺̄ σ′′. Consider the com-
mencement of the bth epoch. If no nodes affiliated
with a appear on the path Ib then all nodes labeled
with b occur, in postorder, strictly before or strictly
after all nodes labeled with a; see the left part of Fig-
ure 4. In this case baba ⊀̄ S ′. The more interesting
case is when some interval of the nodes in Ib are affil-
iated with a. Recall that in our transcription method
only exposed nodes were labeled and there could be
at most one exposed node in each set of nodes with
a common affiliation. Thus, only one node affiliated
with a can be labeled b. All other nodes labeled b
occur strictly before or strictly after all nodes labeled
a. Thus, after the appearance of babb in S ′ all nodes
labeled a would have been deleted. We conclude that
babba ⊀̄ S ′.

Lemma 4.3 incorporates the recursive character-
ization of R from Lemma 4.1 and the (abababa)-
freeness of S established in Lemma 4.2.

Lemma 4.3.

R(n, f, m) =
n/B∑
j=1

R(B, fj , m̃j)

+ 3
q∑

i=1

R(li, li log li, 2li log2 li)

+ 2m + n + f

where

f ≥
∑

j fj , m ≥
∑

j m̃j , li ≤ t,

q ≤
P

i lj
t + n

B ,
∑

i li ≤ Ex(abababa, q)

Proof. Here {li}i represent the sizes of the spawned
spinal compression systems. They would correspond
with the epochs/blocks if we did not artificially break
them up to guarantee that each li ≤ t. It fol-
lows that the number of spawned systems is at most
q = (

∑
i li)/t+n/B. By Lemma 4.2 we have

∑
i li ≤

Ex(abababa, q). The term R(li, li log li, 2li log2 li) re-
flects the cost of the ith spawned compression system,
with li essential nodes and at most li log li fluff nodes.
By [30] the number of stunted compressions (with
greater than unit cost) terminating in this system is
at most (li + li log li) log(li + li log li) ≤ 2li log2 li.

Lemma 4.4. R(n, f, m) = O((n + f + m)α∗(n))

Proof. Let min{Ex(abaabba, z),Ex(abababa, z)} = z ·
β(z). From the bounds established by Hart and
Sharir [16] and Agarwal et al. [2] we only know
that β(z) = Ω(α(z)) and O(α(z))α(z).4 We apply

4Klazar’s and Valtr [22] claimed that Ex(abaabba, n) =
Θ(nα(n)) could be had by fiddling with Hart and Sharir’s proof

[16]. This claim was later retracted [21].

Lemma 4.3 with B = t = β2(n):∑
i

li ≤ min{Ex(abababa, q),Ex(abaabba, q)}

≤ min
{

Ex
(

abababa,

∑
j lj

t
+

n

B

)
,

Ex
(

abaabba,

∑
j lj

t
+

n

B

)}
≤ (

∑
i li
t

+
n

B
)β(n)

≤
∑

i li
β(n)

+
n

β(n)

Thus
∑

j lj ≤ n/(β(n) − 1). Assume inductively
that R(n, f, m) ≤ c(n+f +m)γ(n), where γ(n) is the
minimum i such that (β2)(i)(n) is less than some large
enough constant. (We need this constant threshold
since β2(n) is not necessarily decreasing for very small
n.)

R(n, f, m) ≤
n/B∑
j=1

R(B, fj , m̃j)

+
q∑

i=1

3R(li, li log li, 2li log2 li) + 2m + n + f

≤ c(n + f +
∑

j m̃j)γ(β(n)2)

+ 3c
(

n
β(n)−1

) (
1 + log(β2(n))

+ 2 log2(β2(n))
)

γ(β2(n)) + 2m + n + f

≤ c(n + f +
∑

j m̃j)(γ(n)− 1)
+ o(n) + 2m + n + f

≤ c(n + f + m)γ(n) {for c sufficiently large}

It is easy to see that β2(β2(n)) < α(n) for n
sufficiently large, from which it follows that γ(n) =
O(α∗(n)).

5 Upper Bounds on Deque Operations

Theorem 5.1. Starting with an n-node splay tree,
the time for m deque operations is O((m+n)α∗(m+
n)).

Proof. We reduce the deque problem to a set of spinal
compression systems. The main difference between
these systems and the deque problem as a whole is
that spinal compression systems do not allow general
insertion/deletion of leaves and the initial tree is
always a single path.

We impose a linear order on all nodes that ever
appear in the splay tree. A pushed node (injected
node) precedes (proceeds) all nodes that are currently
in or were in the splay tree in the past. As in the
general reduction from Section 2 we divide the access
sequence into phases. At the beginning of each phase
the nodes are separated into equally sized left and
right sets, say m′ in each set. We partition the
left set into blocks of size B = β(m′)2. Let the
jth period begin at the first pop of an element in
the jth block and end when all of the jth block has
been popped. Note that the pop that begins the jth
period could delete any element from the jth block,
not necessarily the first. Also note that periods are
not necessarily disjoint. For example, just after the
jth period begins we could push B elements and then
perform a pop. This would have the effect of starting
the j′th period without ending the jth period, where
j′ > j. Only one period is active, namely, the one
whose block contains the leftmost leaf in the tree.
All other periods are on hold.

Let Jj be the set of nodes that participate in a
compression in the active part of the jth period, ex-
cluding those that lie in block j. Clearly the nodes
in Jj lie on one path when the jth period begins.
However, they are not necessarily contiguous. For
example, if the jth period is put on hold, compres-
sions from later periods could evict non-Jj nodes from
the path between two Jj nodes. If we put ourselves
in one period’s point of view we can assume with-
out loss of generality that Jj does form a contiguous
segment since, by definition, this period never “sees”
any non-Jj nodes that would expose its misbelief.

Let D(m′) be the maximum cost of deque op-
erations (i.e., the cost of push, pop, and eject opera-
tions that affect the left set) when the total number of
nodes is m′. After the jth period begins the jth block
functions as a mini-deque structure and its total cost
at most D(B). Until the jth period begins the block-
j nodes may participate in compressions, the total
cost of which is B. (Whenever a node is evicted from
the left spine of the tree induced by block-j nodes it
can only be seen again after the jth period begins.)
The cost of compressions inside the {Jj}j sets can
be expressed in terms of the R function. Again, at
the commencement of the jth period we identify the
exposed nodes Ĵj ⊆ Jj . We do nothing if it is sparse
(|Ĵj | log |Ĵj | < |Jj |) and if it is dense, we affiliate all
nodes in Jj with j and spawn a separate spinal com-
pression system on Jj . The proofs of Lemmas 4.1 and

4.3 can easily be adapted to show that:

D(m′) ≤ m′

B
D(B)

+ O(m′ +
m′/B∑
j=1

R(|Ĵj |, |Ĵj | log |Ĵj |, 2|Ĵj | log2 |Ĵj |))

where
∑

j |Ĵj | ≤ Ex(abababa,m′/B) =
(m′/B)β(m′/B) ≤ m′/β(m′). A simple proof
by induction (along the lines of Lemma 4.4) shows
that D(m′) = O(m′α∗(m′)).

6 Conclusion

It’s fair to say that previous analyses of splay
trees could be characterized as using potential func-
tions [29, 14], counting arguments [32, 26, 30, 11] or
a complex synthesis of the two [9, 8]. Although these
techniques have been wildly successful in proving (or
nearly proving) the corollaries of dynamic optimality,
they have had no impact on the dynamic optimal-
ity question itself. The reason for this is probably
the fact that so little is known about the behavior
of the optimal (offline) dynamic binary search tree;
see [24, 5]. It is worth noting that the O(log log n)-
competitiveness of tango trees and their variants
[10, 33, 15] was established not by comparing them
against an optimal search tree (the standard way to
establish competitiveness results) but indirectly, by
way of one of Wilber’s lower bounds on any binary
search tree [34].

The strategy taken in this paper is quite different
from previous work and is clearly general enough to
be applied to other open problems concerning splay
trees. By transcribing the rotations performed by the
splay tree into a Davenport-Schinzel sequence avoid-
ing abaabba and abababa we were able to use an off-
the-shelf result of Agarwal et al. [2] and avoid an un-
manageable bookkeeping problem. One direction for
future research is to study the relationship between
splay operations, various transcription methods, and
various forbidden subsequences. Of particular inter-
est are those forbidden subsequences whose extremal
function is linear since it is these that would be fit
for finally settling the deque, split, and traversal con-
jectures. Adamec et al. [1] and Klazar and Valtr [22]
have exhibited a large family of linear forbidden sub-
sequences.

References

[1] R. Adamec, M. Klazar, and P. Valtr. General-
ized Davenport-Schinzel sequences with linear upper
bound. Discrete Math., 108(1-3):219–229, 1992.

[2] P. Agarwal, M. Sharir, and P. Shor. Sharp upper and
lower bounds on the length of general Davenport-
Schinzel sequences. J. Combinatorial Theory, Series
A, 52, 1989.

[3] S. Albers. Improvd randomized on-line algorithms
for the list update problem. SIAM J. Comput.,
27(3):682–693, 1998.

[4] S. Albers, B. von Stengel, and R. Werchner. A
combined BIT and TIMESTAMP algorithm for the
list update problem. Info. Proc. Lett., 56, 1995.

[5] A. Blum, S. Chawla, and A. Kalai. Static optimality
and dynamic search-optimality in lists and trees.
Algorithmica, 36, 2003.

[6] A. Buchsbaum, R. Sundar, and R. E. Tarjan. Data-
structural bootstrapping, linear path compression,
and catenable heap-ordered double-ended queues.
SIAM J. Comput., 24, 1995.

[7] R. Chaudhuri and H. Höft. Splaying a search tree in
preorder takes linear time. International Journal of
Mathematics and Mathematical Sciences, 13(1):186–
186, 1990.

[8] R. Cole. On the dynamic finger conjecture for splay
trees. II. The proof. SIAM J. Comput., 30(1):44–85,
2000.

[9] R. Cole, B. Mishra, J. Schmidt, and A. Siegel. On
the dynamic finger conjecture for splay trees. I. Splay
sorting log n-block sequences. SIAM J. Comput.,
30(1):1–43, 2000.

[10] E. Demaine, D. Harmon, J. Iacono, and M. Pǎtraşcu.
Dynamic optimality — almost. In Proceedings 45th
Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 484–490, 2004.

[11] A. Elmasry. On the sequential access theorem
and deque conjecture for splay trees. Theoretical
Computer Science, 314, 2004.

[12] M. L. Fredman. On the efficiency of pairing heaps
and related data structures. J. ACM, 46(4):473–501,
1999.

[13] M. L. Fredman, R. Sedgewick, D. D. Sleator, and
R. E. Tarjan. The pairing heap: a new form of self-
adjusting heap. Algorithmica, 1(1):111–129, 1986.

[14] G. F. Georgakopoulos. Splay trees: A reweighing
lemma and a proof of competitiveness vs. dynamic
balanced trees. J. Algor., 51, 2004.

[15] G. F. Georgakopoulos. How to splay for log log n-
competitiveness. In Proc. 4th Int’l Workshop on
Experimental and Efficient Algorithms, volume 3503,
pages 570–579, 2005.

[16] S. Hart and M. Sharir. Nonlinearity of Davenport-
Schinzel sequences and of generalized path compres-
sion schemes. Combinatorica, 6(2):151–177, 1986.

[17] Iacono. Key-independent optimality. Algorithmica,
42, 2005.

[18] J. Iacono. Improved upper bounds for pairing heaps.
In Scandinavian Workshop on Algorithm Theory
(SWAT, LNCS 1851, pages 32–43, 2000.

[19] John Iacono. Alternatives to splay trees with
o(log n) worst-case access times. In SODA, pages
516–522, 2001.

[20] M. Klazar. A general upper bound in extremal the-
ory of sequences. Comment. Math. Univ. Carolin.,
33(4):737–746, 1992.

[21] M. Klazar. Generalized Davenport-Schinzel se-
quences: results, problems, and applications. In-
tegers, 2:A11, 39 pp. (electronic), 2002.

[22] M. Klazar and P. Valtr. Generalized Davenport-
Schinzel sequences. Combinatorica, 14(4):463–476,
1994.

[23] M. Loebl and J. Nes̆etr̆il. Linearity and unprovabil-
ity of set union problem strategies. I. Linearity of
strong postorder. J. Algor., 23(2):207–220, 1997.

[24] J. M. Lucas. Canonical forms for competitive binary
search tree algorithms. Technical Report DCS-TR-
250, Rutgers University, 1988.

[25] Joan M. Lucas. Postorder disjoint set union is linear.
SIAM J. on Computing, 19(5):868–882, October
1990.

[26] Joan M. Lucas. On the competitiveness of splay
trees: Relations to the union-find problem. In
Lyle A. McGeoch and Daniel D. Sleator, editors,
On-line Algorithms, volume 7 of DIMACS Series
in Discrete Mathematics and Theoretical Computer
Science, pages 95–124, 1991.

[27] S. Pettie. Towards a final analysis of pairing heaps.
In Proceedings 46th Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 174–183,
2005.

[28] D. D. Sleator and R. E. Tarjan. Amortized efficiency
of list update and paging rules. Comm. ACM, 28,
1985.

[29] D. D. Sleator and R. E. Tarjan. Self-adjusting binary
search trees. J. ACM, 32(3):652–686, 1985.

[30] R. Sundar. On the deque conjecture for the splay
algorithm. Combinatorica, 12(1):95–124, 1992.

[31] R. E. Tarjan. Efficiency of a good but not linear set
merging algorithm. J. ACM, 22:215–225, 1975.

[32] R.E. Tarjan. Sequential access in play trees takes
linear time. Combinatorica, 5(4):367–378, 1985.

[33] C. Wang, J. Derryberry, and D. Sleator.
O(log log n)-competitive dynamic binary search
trees. In Proc. 17th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2006.

[34] R. Wilber. Lower bounds for accessing binary search
trees with rotations. SIAM J. Comput., 18(1):56–67,
1989.

