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ORIGINS OF NONLINEARITY IN
DAVENPORT–SCHINZEL SEQUENCES∗

SETH PETTIE†

Abstract. A generalized Davenport–Schinzel sequence is one over a finite alphabet that ex-
cludes subsequences isomorphic to a fixed forbidden subsequence. The fundamental problem in this
area is bounding the maximum length of such sequences. Following Klazar, we let Ex(σ, n) be the
maximum length of a sequence over an n-letter alphabet excluding subsequences isomorphic to σ.
It has been proved that for every σ, Ex(σ, n) is either linear or very close to linear. In particular

it is O(n2α(n)O(1)
), where α is the inverse-Ackermann function and O(1) depends on σ. In much

the same way that the complete graphs K5 and K3,3 represent the minimal causes of nonplanarity,
there must exist a set ΦNonlin of minimal nonlinear forbidden subsequences. Very little is known
about the size or membership of ΦNonlin. In this paper we construct an infinite antichain of nonlin-
ear forbidden subsequences which, we argue, strongly supports the conjecture that ΦNonlin is itself
infinite. Perhaps the most novel contribution of this paper is a succinct, humanly readable code for
expressing the structure of forbidden subsequences.
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1. Introduction. A generalized Davenport–Schinzel sequence is one over a finite
alphabet, none of whose subsequences are isomorphic to a fixed forbidden subsequence.
Davenport–Schinzel sequences have played a major role in combinatorial and compu-
tational geometry and have recently been applied to bounding the running time of
self-adjusting data structures [27, 28]. A canonical example of their application is
in bounding the complexity of geometric objects, particularly the lower envelopes of
functions with a limited number of crossings, such as low degree polynomials or line
segments. See Agarwal and Sharir [2] for a survey of the geometric applications of
Davenport–Schinzel sequences up to 1995. In order to discuss prior work with any
precision we must first define some basic notation concerning sequences.

Notation and terminology. Let Σ(σ) be the alphabet (or set of distinct symbols)
of σ. Let |σ| be the length of σ and ‖σ‖ = |Σ(σ)|. For the following definitions
let σ = (σj)1≤j≤|σ| and σ̂ = (σ̂j)1≤j≤|σ̂| be two sequences over possibly different
alphabets. We say that equal length σ and σ̂ are isomorphic, or σ ∼ σ̂, if there is a
bijection f : Σ(σ) → Σ(σ̂) such that f(σj) = σ̂j . We say σ is a subsequence of σ̂ if
there are indices j1 < j2 < · · · < j|σ| such that σi = σ̂ji . We write σ ≺̄ σ̂ and σ ≺ σ̂
to mean that σ is, respectively, a subsequence of σ̂ and isomorphic to a subsequence
of σ̂. A sequence σ̂ (or class of sequences) is σ-free if σ �≺ σ̂. A sequence σ = (σj) is
c-sparse if σi = σj implies |j − i| ≥ c. A sequence σ is a palindrome if it is isomorphic
to its reversal, denoted σ.

Definition 1.1. Ex(σ, n) is the maximum length of a σ̂ such that σ �≺ σ̂, ‖σ̂‖ = n,
and σ̂ is ‖σ‖-sparse. (The condition that σ̂ be ‖σ‖-sparse simply rules out uninteresting
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sequences. For instance, the infinite sequence ababababa · · · is (abc)-free, but in the
least interesting way.)

1.1. Standard Davenport–Schinzel sequences. Much of the work in this
area follows the original definition of Davenport and Schinzel [8], who considered
alternating forbidden subsequences of the form ababa . . .. It is not difficult to prove
that Ex(aba, n) = n and Ex(abab, n) = 2n − 1, but for longer alternating forbidden
subsequences the problem becomes much harder, even if we are only interested in
asymptotic bounds. A celebrated result of Hart and Sharir [13] is that Ex(ababa, n) =
Θ(nα(n)), where α is the slowly growing inverse of Ackermann’s function.1 The best
known bounds on Ex((ab)k, n) and Ex((ab)ka, n) are also slightly nonlinear in n for
all k ≥ 3. However, tight asymptotic bounds are only known for Ex(ababab, n):

Ex(ababab, n) = Θ(n · 2α(n)),(1.1)

Ex((ab)k, n) = n · 2(1+o(1))α(n)k−2/(k−2)! for all k ≥ 4,(1.2)

Ex((ab)ka, n) ≤ n · 2(1+o(1))α(n)k−2 logα(n)/(k−2)! for all k ≥ 3.(1.3)

The lower bounds in (1.1)–(1.3) were provided by Agarwal, Sharir, and Shor [3]
as well as the upper bound in (1.1). Nivasch [24] provided the upper bounds in (1.2),
(1.3). Note that for Ex((ab)k, n) the upper and lower bounds are tight up to the lower
order terms in the exponent. It has been conjectured [5] that the upper bound (1.3)
is tight; however, there are no lower bounds on Ex((ab)ka, n) that are stronger than
those for Ex((ab)k, n).

Much less is known about the behavior of Ex(σ, n) when σ is not of the form
ababa . . .. Nivasch [24], improving on [19], showed that for any σ with |σ| ≥ ‖σ‖+ 3

Ex(σ, n) ≤
{

n · 2(1+o(1))α(n)t

t! , t = |σ|−‖σ‖−2
2 , and |σ| − ‖σ‖ even,

n · 2(1+o(1))α(n)t

t! logα(n), t = |σ|−‖σ‖−3
2 , and |σ| − ‖σ‖ odd.

(1.4)

Aside from (1.1)–(1.2), which are special cases of (1.4), there are no σ for which
(1.4) is known to be tight.

1.2. Nonlinearity. Perhaps the most basic problem regarding the functions
Ex(σ, n) is to explain the difference between linear and nonlinear forbidden subse-
quences, that is, to identify the features of σ that cause Ex(σ, n) to be O(n) or ω(n).2

One can easily see that the set of all nonlinear forbidden subsequences can be
characterized by a set of minimal such forbidden subsequences, denoted ΦNonlin.

Definition 1.2. The set ΦLin = {σ | Ex(σ, n) = O(n)}. Define ΦNonlin to be
any minimal set such that

Ex(σ, n) = ω(n) if and only if ∃σ′ ∈ ΦNonlin : σ′ ≺ σ or σ′ ≺ σ.

Note that ΦNonlin is not unique since we can exchange a σ′ ∈ ΦNonlin for its
reversal σ′ if σ′ is not a palindrome. Furthermore, we show that ΦNonlin contains
nonpalindromes.

1There are several commonly used definitions of Ackermann’s function that are essentially
equivalent. It can be defined as A(1, j) = 2j for j ≥ 1, A(i, 1) = A(i − 1, 2) for i > 1, and
A(i, j) = A(i − 1, A(i, j − 1)) for i > 1, j > 1. The two and one argument inverses are defined
as α(m, n) = min{i | A(i, �m+n

n
�) ≥ n} and α(n) = α(n, n). Most perturbations of this definition

have no significant effect on the inverses. For example, if we redefined the base case as A(1, j) = j+1,
this would increase α(m, n) and α(n) by at most 3.

2Recall that f = ω(g) is short for limn→∞ g(n)/f(n) = 0 and f = Ω(g) is short for f(n) ≥ c ·g(n)
for some c and infinitely many n.
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Given the volume of research on (generalized) Davenport–Schinzel sequences, it is
rather surprising how little we know about ΦNonlin. Hart and Sharir’s result [13] shows
that ababa ∈ ΦNonlin, and Adamec, Klazar, and Valtr [1] proved that ababa is the
only 2-letter sequence in ΦNonlin. Klazar [17] showed that ΦNonlin contains at least
two elements: ababa and another which is currently unknown, but is a subsequence
of abcbdadbcd. In other words, the presence of ababa ≺ σ is not the sole cause of
nonlinearity in Ex(σ, n). Klazar’s result [17] is actually more general in that he shows
that any 2-sparse (repetition free) σ for which a directed graph G(σ) is strongly
connected has Ex(σ, n) = Ω(nα(n)). The vertex set of G(σ) is Σ(σ), and an edge
(x, y) exists if and only if either xyyx ≺̄σ or yxyx ≺̄ σ. See Figure 1.1.3

Fig. 1.1. The digraph G(σ) has one vertex for each letter in the alphabet of a repetition-free σ.
An edge (x, y) appears in G(σ) if σ contains as a subsequence either xyyx or yxyx. (Left) G(ababa);
(right) G(abcbdadbcd).

Klazar [19] posed the intriguing question of whether ΦNonlin is finite or infinite.
The results of [17] raised the possibility that strong connectivity of G(σ) could be the
cause of nonlinearity of Ex(σ, n). This hypothesis, which was never put forward in [17],
has some aesthetic appeal. It says that out of the meaningless muck of ΦNonlin—
which is just a set of inert sequences—we could nonetheless explain the true cause
semantically as a statement about the connectivity of G(σ). However, even if this
hypothesis were true, it would not resolve the question of whether ΦNonlin is finite
since there is no known infinite antichain of minimal, strongly connected G(σ).

1.3. Linearity. Adamec, Klazar, and Valtr [1] and Klazar and Valtr [20] stud-
ied ways in which forbidden subsequences could be combined and manipulated that
preserved (or did not significantly affect) their extremal functions. Adamec, Klazar,
and Valtr [1] proved that Ex(abbaab) = O(n) and made several trivial observations
on the extremal functions of related forbidden subsequences. Below, a, b are symbols,
σ’s are sequences, and k is any fixed integer.

Ex(σ, n) = Ex(σ, n),(1.5)

Ex(aa, n) = n,(1.6)

Ex(σ1 ≺ σ2, n) = O(Ex(σ2, n)),(1.7)

Ex(aaσ, n) = O(n+ Ex(aσ, n)),(1.8)

Ex(σ1a
kσ2, n) = O(Ex(σ1aaσ2, n)).(1.9)

It follows from (1.5)–(1.9) and Ex(abbaab, n) = O(n) that ababa is the only 2-
letter sequence in ΦNonlin. Klazar and Valtr [20] proved two nontrivial theorems on
forbidden subsequences that are derived from simpler ones. Lines (1.10), (1.11) are

3Klazar [17] actually exhibited G(abcbadadbcd) as a strongly connected graph. Nivasch [23] noted
that the second “a” is redundant, i.e., that G(abcbdadbcd) is also strongly connected.
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corollaries that pertain to the set ΦLin:

σ̂, σ1aaσ2 ∈ ΦLin implies σ1aσ̂aσ2 ∈ ΦLin,(1.10)

where Σ(σ1aaσ2) ∩ Σ(σ̂) = ∅,
σ1aaσ2a ∈ ΦLin implies σ1abbaσ2ab ∈ ΦLin,(1.11)

where b �∈ Σ(σ1σ2).

We define ΦKV to be the set of all linear sequences that can be derived from
lines (1.5)–(1.11). Among others, ΦKV includes all N -shaped sequences of the form
ab · · · yzy · · · bab · · · yz. Valtr [32] used the linearity of such sequences to prove that
geometric graphs with no k = O(1) pairwise crossing edges have size O(n logn). It
remains an open problem whether ΦKV = ΦLin.

1.4. New results. We exhibit an infinite antichain Ψ (with respect to ≺) of
nonlinear forbidden subsequences that constitutes the first plausible candidate for
ΦNonlin. The elements of Ψ are not fundamentally different but naturally divide
themselves into 9 classes, where each class has a constant number of primitive types.
Why 9? This number arises from a new code we use for describing the structure of
a forbidden subsequence. Each element in Ψ can be represented as a finite string
over {♥,

♥

,♠,

♠

,♦,♣,

♣

, (, )}. Such strings must obey several grammatical rules, and
there just happens to be 9 natural classes of grammatical strings. Our result refutes
the possibility that strong connectivity of G(σ) is the cause of nonlinearity of Ex(σ, n)
and implies, nonconstructively, that |ΦNonlin| ≥ 3. In the conclusion we discuss why
the infinitude of Ψ supports the proposition that ΦNonlin is also infinite.

1.5. Related work. Davenport–Schinzel sequences are part of a class of
problems concerning combinatorial objects with forbidden substructures. Klazar [19]
surveys generalizations of Davenport–Schinzel sequences to trees, permutations, hy-
pergraphs, matrices, ordered digraphs, and partitions. Other examples in this vein
include graphs avoiding a fixed set of minors (e.g., planar graphs), matrices with the
Monge property [7], and (partially defined) monotone matrices [4, 16, 15]. Below we
survey the results concerning trees and matrices.

Trees. ADavenport–Schinzel tree is a tree whose nodes are assigned one of n labels
such that all nodes with a common label lie on a path. If the tree is directed, then

edges point toward a specified root. The functions ExT (σ, n) and Ex
�T (σ, n) are the

maximum size of undirected and directed trees, respectively, all of whose paths avoid
subsequences isomorphic to σ. Valtr [33] studied both the directed and undirected
versions of this problem and, in both cases, fully characterized the nonlinear forbidden
subsequences σ ∈ {a, b}∗ over the 2-letter alphabet. In particular, ExT (σ, n) = ω(n)

if and only if σ contains either ababa or abbaab, and Ex
�T (σ, n) = ω(n) if and only if σ

contains either ababa or abbab. Valtr also exhibited some minimal nonlinear forbidden
subsequences over the 3-letter alphabet. The question of whether there are an infinite
number of causes of nonlinearity in this context is open and independent of whether
ΦNonlin is infinite.

Matrices. Let A and B be two matrices whose entries are either 1 or blank. We
write A ≺ B if there is a submatrix B′ of B with the same dimensions as A such
that for each 1 in A there is a corresponding 1 in B′. (In other words, blanks in B
are “don’t cares.”) We let ExM (A, n) be the maximum number of 1’s in an n × n
matrix avoiding A. Füredi [10] and Bienstock and Györi [6] initiated the study of
this problem and showed that ExM (

(
1 1
1 1

)
, n) = Θ(n logn). The original application
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for this particular pattern was in bounding the number of unit distances in a convex
polygon [10]. This pattern and similar ones have since found uses in other geometric
problems [25, 9, 26] and analyzing the complexity of several data structures [28].
Füredi and Hajnal [11] and Tardos [30] gave sharp asymptotic bounds on ExM (A, n)
for all A’s containing at most four 1’s, as well as some sharp bounds when there are
multiple forbidden submatrices. In general it is known that ExM (A, n) = O(n) for
any permutation matrix A [22], that ExM (A, n) = O(n2−Ω(1)) for any matrix A [11],

and that ExM (A, n) < n · 2α(n)O(1)

if A contains one 1 in each column [18]. Results
of Keszegh [14] and Geneson [12] imply that there are an infinite number of minimal
nonlinear forbidden submatrices whose extremal function is Ω(n logn), yet only a
constant number of these matrices can actually be identified. See Pettie [29] for a
longer discussion of minimal nonlinear forbidden matrices.

1.6. Overview. In section 2 we construct a class of n-letter sequences with
length Ω(nα(n)). In section 3 we exhibit the 9 classes of nonlinear forbidden subse-
quences and show how to generate an infinite number of such sequences. The con-
struction of Ω(nα(n))-length sequences in section 2 can easily be adapted to give
Ω(nα(n))-size labeled trees. In section 4 we reprove some of Valtr’s results [33] con-
cerning Davenport–Schinzel trees and exhibit an infinite antichain of forbidden sub-
sequences that are nonlinear with respect to ExT . In section 5 we conclude with some
remarks and conjectures.

2. Constructing nonlinear sequences. We construct sequences with length
Ω(nα(n)) in much the same way as those constructions from [13, 2, 34]. As an in-
termediate step, our construction builds a model tree that is used extensively in the
proofs. If u and v are nodes in a rooted tree, u � v means that u is a strict descendant
of v, and u � v means u � v or u = v. When referring to nodes, the relations below
and above are synonymous with � and �.

Constructing the model tree. Our nonlinear sequences are associated with full,
rooted binary trees {T (i, j)}i,j≥1, where the leaves are assigned a left-to-right order
and where each node v is assigned a label L (v), which is a sequence of distinct symbols.
Let |T | be the number of leaves in tree T . Our trees will satisfy the following property.

Property 2.1. For any i, j ≥ 1,
1. the labels of T (i, j) are drawn from an alphabet of j · |T (i, j)| symbols.
2. each leaf’s label has length j.
3. every symbol appears in the label of exactly one leaf.
4. every symbol appears in exactly i labels.
5. the root has no label.

We construct the trees in the following doubly inductive manner. Let T (1, j)
be a rooted tree with 3 nodes: a root r and leaves v1, v2 with labels L (v1) =
(aj , aj−1, . . . , a1) and L (v2) = (a2j , a2j−1, . . . , aj+1), where the symbols a1, . . . , a2j
are distinct. Clearly T (1, j) satisfies Property 2.1 list items 1–5.

Before we get to T (i, j), for i ≥ 2, let us first define the composition of labeled
trees. If T and T ′ are labeled trees, we derive T ◦ T ′ by making |T ′| copies of T , each
with alphabets disjoint from T ′ and each other, and by identifying each copy of T with
a leaf of T ′. The previously unlabeled root of a T inherits the label of its associated
leaf from T ′. Obviously |T ◦ T ′| = |T | · |T ′|. Let T (i, 0) be a 3-node, 2-leaf tree with
empty labels.

Structurally T (i, j) = T (i, j − 1) ◦ T (i − 1, |T (i, j − 1)|), where i, j ≥ 1. See Fig-
ure 2.1. Let vk be the kth leaf of T (i−1, |T (i, j − 1)|) and vk,l be its lth leaf descendant
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Fig. 2.1. Composition of trees in the construction of T (i, j).

in T (i, j). If L (vk) = (ak,|T (i,j−1)|, . . . , ak,1), we prepend ak,l to L (vk,l). All other
labels in T (i, j) are kept as is. One may verify that T (i, j) satisfies Property 2.1.

The leaves of any T (i, j) (which may live in a larger tree T (i′, j′) for i′ > i) are
called i-nodes. If a symbol a appears in the label of a leaf v, we say that a originates
from v.

Lemma 2.2 (locations of symbols). Let a be any symbol in the alphabet of T (i, j).
Then a appears in the labels of i distinct nodes v1, . . . , vi such that vi � vi−1 � · · · �
v1. Furthermore, vk is the first k-node encountered on the path from v1 to vi; that is,
v1 and vi uniquely determine v2, . . . , vi−1.

Proof. The claim follows easily by induction over the construction of T (i, j).
We adopt the following global ordering for symbols in T (i, j). The alphabet is

1, . . . , j · |T (i, j)|, and the label of the kth leaf vk of T (i, j) is L (vk) = (kj, kj −
1, . . . , (k − 1)j + 1). In general, we say that a labeled tree is sorted if, for any two
leaves v1, v2, L (v1) is in descending order and if v1 is to the left of v2, all symbols in
L (v1) are smaller than those in L (v2).

Lemma 2.3 (symbol ordering). Let v be an i′-node in some T (i, j), for i′ ≤ i,
and let L (v) = (al, al−1, . . . , a1) be its label. Then

1. a1 < a2 < · · · < al.
2. let v1, v2, . . . , vl be v’s nearest (i′ − 1)-node ancestors, in least-to-most an-

cestral order, and let vl+1 be its nearest i′-node ancestor or the root if there is none.
Then, for each k ∈ [1, l], all occurrences of ak that are strictly above v must appear
above vk and strictly below vk+1.

Proof. We first prove part 1. Our claim is that if T (i, j) possesses a sorted labeling,
then the labels of all nodes are in descending order. If i = 1, the claim holds trivially.
We may then write T (i, j) = T (i, j−1)◦T (i−1, |T (i, j − 1)|). By induction the claim
holds for each individual T (i, j − 1). One can quickly check that if T (i, j) is sorted,
then the tree T (i−1, |T (i, j − 1)|) is also sorted; thus, by induction the claim holds for
all nodes in a sorted T (i, j). Part 2 follows easily by induction over the construction
of T (i, j).

Lemma 2.4 (the trapping lemma). Let v, w, x be vertices with v � w � x, and
suppose that t appears in L (w) and s appears in both L (v) and L (x). If the symbol
t originates at a descendant of v, then t ∈ L (v).

Proof. Suppose v is an i′-node. Lemma 2.2 implies that v is the first i′-node on
the path from x to the origin of s. Since w � x and t originates below v, v is also the
first i′-node on the path from w to the origin of t. By Lemma 2.2 this implies that t
appears in L (v); see Figure 2.2.
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Fig. 2.2. The situation that causes t to make an “implied” appearance in L (v).

Lemma 2.4 is a useful tool for generating nonlinear forbidden subsequences. In
the terminology developed later in section 3, the symbol s appearing at L (v) and
L (x) functions as a trap for the captive symbol t at L (w). Whenever this situation
can be created, we can conclude that t makes an “implied” appearance L (v); see
Figure 2.2.

2.1. Constructing the nonlinear sequence. We form the sequence Si,j di-
rectly from the labeled tree T (i, j). Property 2.1(1) says the alphabet size of T (i, j) is
j · |T (i, j)|. The effective alphabet size of Si,j will also be j · |T (i, j)|. However, we will
introduce some garbage symbols to guarantee that Si,j is c-sparse, for some c = O(1),
in order to comply with Definition 1.1. Let v1, . . . , v2|T (i,j)|−1 be the nodes of T (i, j)
listed in postorder,4 and let L ′(vk) = L (vk) · (gk,1, . . . , gk,c) be vk’s augmented label,
where gk,1, . . . , gk,c are garbage symbols associated only with vk. The sequence Si,j

is defined as
Si,j = L ′(v1) · L ′(v2) · · ·L ′(v2|T (i,j)|−1).

Lemma 2.5 (sparsity). Si,j is c-sparse.
Lemma 2.5 follows from the fact that L (vk) contains only distinct symbols and,

in Si,j , there are c garbage symbols between L (vk) and L (vk+1), all of which occur
only once. Lemma 2.6 expresses the length of Si,j in terms of the standard one- and
two-argument versions of the inverse-Ackermann function.

Lemma 2.6 (nonlinear length). Let n = ‖Si,j‖ and l = |T (i, j)|. Then |Si,j | =
Θ(nα(n, l)), and if j = O(1), |Si,j | = Θ(nα(n)).

With the addition of garbage symbols we have n = j |T (i, j)|+ c(2 |T (i, j)|− 1) =
O(j |T (i, j)|), where |T (i, j)| satisfies the recurrence

|T (1, j)| = 2 for j ≥ 1,

|T (i, 1)| = 2 · |T (i− 1, 2)| for i ≥ 2,

|T (i, j)| = |T (i, j − 1)| · |T (i− 1, |T (i, j − 1)|)| for i, j ≥ 2.

It is a simple, but tedious, exercise to show that the row-inverses of T are asymp-
totically equivalent to the corresponding row-inverses of Ackermann’s function, un-
der Tarjan’s definition [31] or a similar one. In particular, this implies that i =
α(j |T (i, j)| , |T (i, j)|) ± O(1). Alon et al. [5] presented a systematic way to prove
bounds of this kind.

4For a rooted, ordered tree, the unique postorder consists of the postorder of the root’s left
subtree, followed by the postorder of its right tree, followed by the root.
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In the remainder of the paper S and T refer to Si,1 and T (i, 1) for an arbitrary
i and some sufficiently large sparsity constant c.

Lemma 2.7 is often invoked to determine the correct order of two symbols. In
particular, if stst ≺̄S , we can infer that s < t; i.e., the origin of s is to the left of the
origin of t.

Lemma 2.7 (ababa-freeness). For s < t, tsts ¯�≺S .
Proof. Let u, v, w, x be the vertices in T associated with the respective occurrences

of t and s in the purported subsequence tsts appearing in S . That is, t appears in
L (u) and L (w), s appears in L (v) and L (x). The postordering of vertex labels in S
and the ordering s < t imply that u � v � w � x. Lemma 2.4 and the descending order
of vertex labels imply that t appears in L (v) and precedes s in L (v). Thus w � x.
However, Lemma 2.3(2) then implies that t must follow s in L (v), a contradiction,
since an occurrence of t precedes that of s on the path from v to the root.

One consequence of Lemma 2.7 is that Ex(ababa, n) = Ω(nα(n)). This is one half
of Hart and Sharir’s proof [13] that Ex(ababa, n) = Θ(nα(n)).

3. Nonlinear forbidden subsequences. Lemma 2.4 is a trivial but powerful
tool for generating a slew of nonlinear forbidden subsequences. It says that under the
correct circumstances we can force symbols to appear in undesirable places. Whereas
our forbidden subsequence may be (ababa)-free, it may contain a . . . b . . . b . . . a. If
using Lemma 2.4 we could force an implied appearance of a between the two b’s, we
would arrive at a contradiction, by Lemma 2.7. To create the right circumstances
we require an ensemble cast of symbols, each of which will play a specific role in
effecting the final contradiction. In the first ensemble cast (the one-trap cast) there
are five distinct roles, which we call the binder, the trap, the inner captive, the outer
captive, and the guard. In order to specify a forbidden subsequence over the alphabet
{a, b, c, d, e} we simply need to say which symbol plays which of the five roles. Of
the 5! role assignments only a small fraction lead to nonlinear, (ababa)-free forbidden
subsequences. Symbols can play multiple roles (leading to forbidden subsequences
with fewer than five symbols), and some roles can be split among many symbols,
which lead to arbitrarily long nonlinear forbidden subsequences. Our second ensemble
cast is slightly more complicated than the first. Its five roles (two traps, two binders,
and a captive) achieve the same ends via slightly different means.

One virtue of our cast system is that it allows us to reveal the structure of a forbid-
den subsequence using a succinct code. By representing roles as suits we can describe
a forbidden subsequence semantically as a string over {♥,

♥

,♠,

♠

,♦,♣,

♣

, (, )}, where
each suit is identified with a specific role. Without the assistance of this coding system
we would have found it impossible to fully explore the space of our nonlinear forbid-
den subsequences. After setting out some grammatical rules for legal encodings, it
becomes very simple to enumerate all possibilities. In sections 3.1 and 3.2 we present
the one-trap and two-trap systems for designing forbidden subsequences.

3.1. The one-trap cast. In order to motivate the cast’s five roles we will start
with some examples of specific forbidden subsequences.

Theorem 3.1. Ex(abcaccbc, n) = Ω(nα(n)).
Proof. Suppose that σ = abcaccbc were to occur in S . Note that abab, bcbc ≺̄σ.

By Lemma 2.7 we can therefore eliminate all cases except a < b < c. Let vx,k be
the vertex in T corresponding to the kth occurrence of x in σ. It follows from the
postordering of the labels in S that va,1, vb,1, vc,1 � va,2 and that va,2 � vc,2 � vc,3 �
vb,2 � vc,4. See Figure 3.1. We apply Lemma 2.4 to the symbols b and c occurring
in L (vc,2),L (vb,2), and L (vc,4) and conclude that b must also appear in L (vc,2).
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Fig. 3.1. The vertex vx,k ∈ T is such that L (vx,k) contains the symbol corresponding to the
kth occurrence of x in σ. Dashed lines connect vertices that may be the same.

In other words, if abcaccbc appears in S , then abcacbcbc appears as well. Since, by
Lemma 2.7, S contains no subsequences isomorphic to bcbcb, it must also be σ-free.
Therefore, Ex(σ, n) ≥ |S | = Ω(nα(n)).

Let us analyze the functions of a, b, and c in the proof of Theorem 3.1. The sym-
bol a did not appear in the ultimate contradiction (the implied subsequence bcbcb),
but it did facilitate the contradiction by forcing vb,1 and vc,1 to be descendants of
vc,2, vc,3, vb,2, and vc,4. In our terminology a is the binder (symbolized by ♥) because it
binds previous symbols (i.e., vertices in T ) under one common ancestor. The locations
of b and c were chosen with the preconditions of Lemma 2.4 in mind. For the proof to
go through we need c to appear in L (vc,2) and L (vc,4) and b to appear in L (vb,2) and,
crucially, that vc,2 � vb,2. This last condition is enforced by the immediate repetition of
c in σ. In our terminology c acts as a guard, making sure vb,2 is a strict ancestor of vc,2,
and both b and c are captives (one outer, one inner) of the trap c, meaning that the sym-
bols b and c appear at vertices that lie strictly above one occurrence of c and strictly
below another occurrence of c. The guard, outer captive, inner captive, and trap are
represented by ♦,♠,

♠

, and ♣, respectively. Thus, we can represent σ as ♥♠(♦ ♠♣): a
acts as the binder, b as the outer captive, and c as the guard, inner captive, and trap.

Obviously, the discussion above suggests that c’s triple role could be replaced by
three separate symbols. Before we analyze one-trap casts in their full generality, let
us look at one more example.

Theorem 3.2. Ex(abcdebeadce, n) = Ω(nα(n)).
Proof. As before, suppose that σ = abcdebeadce ≺ S , and let vx,k be the vertex

in T corresponding to the kth occurrence of x in σ. Since acac, bcbc, adad, bdbd, cece,
and dede appear in σ, we can conclude from Lemma 2.7 that {a, b} < {c, d} < e. From
the postordering of the vertex labels in S we have vc,1, vd,1, ve,1 � vb,2, i.e., b binds
the origins of c, d, and e under a common ancestor vb,2; see Figure 3.2. We also have
that vb,2 � ve,2 � va,2 � vd,2 � vc,2 � ve,3, where the strict descendent relationships
come from the fact that vertex labels are in descending order. The purpose of a is to
guard e from the outer captive c and inner captive d and, in particular, to guarantee
that vc,2 �= ve,2. From Lemma 2.4 we conclude that c makes an implied appearance
in L (ve,2) and, consequently, that cdcdc ≺ S , a contradiction.

In our succinct encoding we would express abcdebeadce as ♦♥♠ ♠♣. Generally
speaking, the argument employed in Theorem 3.2 will go through if the binder binds,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

220 SETH PETTIE

Fig. 3.2. The vertex vx,k ∈ T is such that L (vx,k) contains the symbol corresponding to the
kth occurrence of x in σ. Dashed lines connect vertices that may be the same.

the guard guards, and the trap traps. In terms of our encoding system, the binder can
only bind if the ♥ precedes ♣,♠, and

♠

, and the guard guards only if the ♦ precedes
or is equal to

♠

. In order for the forbidden subsequence to be (ababa)-free it turns
out that the trap ♣ must come last, though it can be equal to the guard and inner
captive. What is not obvious is that the binder need not be one symbol. The binding
role, that is, getting the first occurrences of the captives and trap under a common
ancestor, can be played by an arbitrarily large set of semibinders. All semibinders are
represented by ♥.

3.1.1. One-trap encoding. Definition 3.3 defines the set of legal one-trap en-
codings in two equivalent ways: as an exhaustive list of regular expressions and as a set
of rules. We give a procedure for translating an encoding into a forbidden subsequence,
and in Theorem 3.4 we prove that if σ is derived from a legal one-trap encoding, then
Ex(σ, n) is nonlinear. Below X∗ represents zero or more repetitions of X .

Definition 3.3. A string over {♥,♦,♣,♠,

♠

, (, )} is a legal one-trap encoding
if it appears in 1–5

1. ♥♠♥∗(♦ ♠♣),
2. ♥♠♥∗(♦ ♠

)♥∗♣,
3. ♥♠♥∗♦♥∗ ♠♥∗♣,
4. ♥♦♠♥∗ ♠♥∗♣,
5. ♦♥♠♥∗ ♠♥∗♣.

or, equivalently, if it satisfies rules (i)–(v)

(i) It contains one ♦,♣,♠, and

♠

, at least one ♥, and at most one
parenthesized expression, which is either (♦ ♠

) or (♦ ♠♣).
(ii) ♦ precedes

♠

.
(iii) ♠ precedes

♠

.
(iv) The first ♥ precedes ♠, which precedes all other ♥’s.
(v) The last suit is ♣.
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Fig. 3.3. An example τλ. The dashed lines represent possible parent-child relationships. We
have σλ = abcadcedf [eg, ge]h[fi, if ]jhjgibj, where the bracketed expressions correspond to the parent
options of v7 and v9.

The illegal encodings are illegal for one of three reasons: either the corresponding
forbidden subsequence contains ababa and is trivially nonlinear, or it cannot be proved
nonlinear by our method, or it is redundant, i.e., a strict subsequence can be proved
nonlinear.

3.1.2. Translating an encoding. Let λ be a legal one-trap encoding. We create
a forbidden subsequence in two stages. In the first we translate λ into a rooted vertex
labeled tree τλ; in the second we translate τλ into a sequence σλ. There is often a
little ambiguity in encoding λ, which lets us choose τλ among O(1) possibilities. The
sequence σλ depends solely on τλ.

Let |λ| be the number of its symbols, where a parenthesized expression (♦♠) or
(♦♠♣) counts as one symbol, and let λ(j) be its jth symbol. Our forbidden subse-
quence will be over the alphabet {1, . . . , |λ|}.

If λ contains B (semi)binders, let {j♥i }1≤i≤B be the indices for which λ(j♥i ) = ♥.
Similarly, let j♦, j♠, j

♠

, j♣ be the indices of the guard, outer captive, inner captive,
and trap, respectively. If λ contains a parenthesized expression, some of j♦, j

♠

, j♣

may be equal. As we describe the general construction of τλ, the reader may wish to
examine τ♥♠♥♥♥♥♦♥ ♠♣ depicted in Figure 3.3.

We create |λ| leaf nodes v1, . . . , v|λ| and B+3 internal nodes y1, . . . , yB, z1, z2, z3.
The nodes are arranged as follows:

1. y1, . . . , yB, z1, z2, z3 appear on a path in least-to-most ancestral order; i.e., y1
and z3 are the least and most ancestral nodes.

2. vj♥1
is the child of y1, and for k > 1, vj♥k

is the child of yk−1.

3. vj♣ = v|λ| is the child of yB. Define the artificial index j♥B+1 = |λ|+ 1. If an

index j ∈ {j♠, j ♠

, j♦} appears strictly between j♥k and j♥k+1, then vj can be made
the child of either yk−1 or yk. (Note first that if k = 1, then yk−1 does not exist
and second that Definition 3.3(iv) implies j♥1 < j♠ < j♥2 .) If two such indices j < j′

appear between j♥k and j♥k+1, their choice of parents cannot cross; i.e., vj cannot be
the child of yk while vj′ is the child of yk−1.

4. If j♦ = 1, i.e., if λ belongs to Definition 3.3(5), v1 is the child of z1.
The labels are assigned as follows. Let vk get the label (k), yk get the label (j♥k ),

and z1, z2, z3 get the labels (j♣j♦), (j

♠

j♠), and (j♣). There is only one exception: if
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Fig. 3.4. The primitive forms of our one-trap (1–5) and two-trap (6–9) encodings. The symbolic
encodings (7–9) can be translated into two distinct sequences via distinct trees.

j♣ = j♦ = j

♠

, i.e., λ is in Definition 3.3(1), z1 gets the label (j♣). This concludes
the construction of τλ. One can verify that there are at most four ways to map λ to
τλ; it could be the case that both vj♦ and vj ♠have a choice between two parents.

We generate σλ by concatenating the vertex labels in the unique postorder traver-
sal of τλ in which v1, . . . , v|λ| appear in that order. The similarity between the con-
struction of σλ from τλ and that of S from T is no accident. The tree τλ captures
the necessary ancestor-descendant relationships between nodes in T that are involved
in some (hypothetical) occurrence of σλ ≺ S .

Figure 3.4 summarizes the primitive types (those with the fewest semibinders) of
our one-trap and two-trap encodings. Some of the two-trap primitive types can be
translated into different trees and hence different forbidden subsequences. In one-trap
encodings, ambiguity in the encoding-to-tree translation arises only when there are
multiple semibinders.

Let Ψ1 be the set of all sequences that can be generated from a legal one-trap
encoding.
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Theorem 3.4. For all σ ∈ Ψ1, Ex(σ, n) = Ω(nα(n)).
A proof of Theorem 3.4 appears in Appendix A.

3.2. The two-trap cast. A two-trap cast also has five roles: the inner and
outer traps, the inner and outer binders, and a single captive, which are symbolized
by

♣

,♣,

♥

,♥, and ♠, respectively. As before, we motivate these roles by first analyzing
some specific examples from scratch.

Theorem 3.5. Ex(abcdbdeaedce, n) = Ω(nα(n)).
Proof. Let vx,k be defined as in Theorems 3.1 and 3.2. It follows from the con-

struction of S that {vb,1, vc,1, vd,1} � vb,2 � vd,2 and that {va,1, vd,2, ve,1} � va,2 �
ve,2 � vd,3 � vc,2 � ve,3. See Figure 3.5. Lemma 2.4 applied to the pairs c, e and d, e
shows that c and d both appear in L (ve,2). We can then apply Lemma 2.4 to the pair
c, d, which shows that c also appears in L (vd,2). Thus, if abcdbdeaedce ≺ S , then,
cddcdc ≺ S as well, a contradiction.

Fig. 3.5. The vertex vx,k ∈ T is such that L (vx,k) contains the symbol corresponding to the
kth occurrence of x in σ. Dashed lines connect vertices that may be the same.

In the proof of Theorem 3.5 a and b simply acted as binders, with two different
functions. It was b’s role to ensure that vd,2 was ancestral to both vc,1 and vd,1, and
it was a’s role to ensure that ve,2 was ancestral to both vd,2 and ve,1. The symbol c
was a captive in e’s trap, and, after a couple applications of Lemma 2.4, an implied
occurrence of c (in L (ve,2)) pops up in d’s trap. We call e and d the outer and inner
trap, and a and b the outer and inner binder. Thus, abcdbdeaedce is represented as
♥ ♥♠ ♣♣.

As in the one-trap system, it is possible for one symbol to play more than one
of the five roles. Let us briefly look at one such example and the resulting encoding
before moving on.

Theorem 3.6. Ex(abcbdadbcd) = Ω(nα(n)).
Proof. Suppose that abcbdadbcd ≺ S . It follows from S ’s construction that

{vc,1, vb,1} � vb,2 and that {vb,2, vd,1} � va,2 � vd,2 � vb,3 � vc,2 � ve,3. See
Figure 3.6. Lemma 2.4 shows that b and c appear in L (vd,2), and another appli-
cation of Lemma 2.4 shows that c appears in L (vb,2). Thus, if abcbdadbcd ≺ S , then
bcbcbc ≺ S as well, a contradiction.
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Fig. 3.6. Solid lines represent strict ancestor-descendant relationships. Dashed lines connect
vertices that may be the same.

In Theorem 3.6 d played the role of the outer trap, a the outer binder, and c
the captive. The inner trap (into which the implied occurence of the captive c fell)
was played by b, which also doubled as the inner binder. Thus, the encoding for this
forbidden subsequence is ♥(

♥♣

)♠♣.

3.2.1. Two-trap encoding. As in the one-trap system, there are several strin-
gent rules for generating legal encodings. With the exception of ♥(

♥♣
)♠♣ the captive

must precede the inner trap, which precedes the outer trap. There are several ways
the inner and outer binder can be positioned, and, furthermore, the duties of both
the inner and outer binders can be split among many symbols. Definition 3.7 gives
all legal encodings in the two-trap system. Below we show how to translate a legal
encoding into a sequence.

Definition 3.7. A string over {♥,

♥

,♣,

♣

,♠, (, )} is a legal two-trap encoding
if it appears in 6–9

6. ♥(

♥♣

)♠♥∗♣,
7. ♥ ♥♠ ♥∗ ♣♥∗♣,
8.

♥♥ ♥∗♠ ♥∗ ♣♥∗♣,
9.

♥♠ ♥∗♥ ♥∗ ♣♥∗♣.

or, equivalently, if it satisfies rules (vi)–(x)

(vi) It contains one ♠,♣, and

♣

, at least one ♥, and at least one

♥

.
It is either in ♥(

♥♣)♠♥∗♣ or satisfies (vii)–(x).
(vii) The first

♥

precedes ♠, which precedes

♣

.
(viii) Exactly one ♥ precedes

♣

; all

♥

’s precede

♣

.
(ix) The first two

♥

’s are not adjacent.
(x) The last suit is ♣.

3.2.2. Translating an encoding. Let λ be a legal two-trap encoding. As before
we translate λ into a labeled tree τλ and then into a sequence σλ. The slight ambiguity
found in the one-trap system also arises here; there are often two or more equally good
topologies for τλ. In the two-trap system there is another degree of ambiguity. As we
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will see, the nodes of τλ can usually be labeled in two slightly different ways. One
may wish to follow along with the two specific examples of τλ depicted in Figure 3.7
for λ =

♥♠ ♥2♥ ♥♣♥2♣ and ♥ ♥♠ ♥♣♥2♣.
Let j♣, j

♣

, j♠ be the indices in λ of the outer trap, inner trap, and captive.
Let {j♥k }1≤k≤B and {j

♥

k }1≤k≤B′ be the indices of the outer and inner (semi)binders,
respectively.

Fig. 3.7. (Left) an example τλ for which σλ = abcad[ce, ec]fdgfgheihjij[gb, bg]j. The brack-
eted expressions reflect the possible parents of v5 and y3. (Right) an example τλ for which
σλ = abcdbedefagfhgh[ec, ce]h.

Our model tree is made up of leaves v1, . . . , v|λ| and up to B + B′ + 4 inter-
nal nodes x1, . . . , xB′ , y1, . . . , yB, z1, . . . , z4. The inner binder nodes are arranged in
a path x1, . . . , xB′ , from least-to-most ancestral order, as are the outer binder nodes
y1, . . . , yB and outer trap nodes z2, z3, z4. The inner trap node z1 is the parent of xB′ ,
and the child of y1 and yB is the child of z2. There is one exception; if λ ∈ ♥(

♥♣

)♠♥∗♣
(Definition 3.7(6)), then j

♥

1 = j

♥

B′ = j

♣

. In this case z1 does not exist; i.e., xB′ = x1

is the child of y1. The parentage of the leaves are assigned as follows:
1. vj

♥

1
is a child of x1.

2. vj

♥

k
is a child of xk−1 for 1 < k ≤ B′.

3. vj ♣is a child of xB′ .
4. If a symbol j appears between j

♥

k and j

♥

k+1, vj can be the child of either
xj

♥

k−1
or xj

♥

k
. (Note that for k = 1, j

♥

k−1 does not exist.) If it appears between j

♥

B′ and
j

♣

, its parent can be either xB′−1 or xB .
5. If j♥1 < j

♥

1 , i.e., the parent of vj♥1
has not already been accounted for in (4),

we let vj♥1
be the child of y1.

6. vj♥k
is the child of yj♥k−1

for 1 < k ≤ B.

7. vj♣ is the child of yB.
The labeling of nodes is as follows. Each leaf vk gets the label (k), and each xk gets

the label (j

♥

k ) (for k ∈ [1, B′]), and each yk gets the label (j♥k ) (for k ∈ [1, B]). There
are two ways to label z1, . . . , z4. In the first z1, . . . , z4 get the labels (j

♣

), (j♣j♠), (j

♣

),
and (j♣), respectively. In the second they get the labels (j

♣

), (j♣j

♣

j♠), (j♣), and ()
(empty label), respectively. This concludes the construction of τλ. The sequence σλ



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

226 SETH PETTIE

is derived by concatenating the vertex labels of τλ in the unique postorder in which
v1, . . . , v|λ| appear in that order.

Let Ψ2 be the set of all sequences that can be generated from a legal two-trap
encoding, and let Ψ = Ψ1 ∪Ψ2. A proof of Theorem 3.8 appears in the Appendix B.

Theorem 3.8. For all σ ∈ Ψ2, Ex(σ, n) = Ω(nα(n)).

3.3. A lower bound on the size of ΦNonlin. Klazar [17] proved that ΦNonlin

contains at least two elements, though he could only identify one of them, namely,
ababa. The second is some subsequence of abcbdadbcd. In the same vein we prove,
nonconstructively, that |ΦNonlin| ≥ 3.

Theorem 3.9. |ΦNonlin| ≥ 3.
Proof. Consider the one-trap encodings ♥♠(♦ ♠♣) and ♥♠♥(♦ ♠♣) in Defini-

tion 3.3(1), which correspond to the nonlinear forbidden subsequences σ1 = abcaccbc
and σ2 = abcadcddbd, both in Ψ1. One consequence of [20] is that any sequence over
{a, b, c} is linear (specifically, in ΦKV ) unless it contains ababa, abcacbc, abcbcac, or
their reversals. That is, the only strict subsequence of σ1 not known to be linear is
σ′
1 = abcacbc. One may check that σ′

1 is not a subsequence of σ2 or σ2. Thus, ΦNonlin

must contain at least three elements: ababa and two subsequences of σ1 and σ2.
Every sequence in Ψ contains either abcacbc or abcbcac, so as long as the status of

these remain open, it will be very difficult to improve our lower bounds on |ΦNonlin|.
4. Davenport–Schinzel trees. As an interim step in our construction of the

nonlinear sequences Si,j , we constructed a set of model trees {T (i, j)}i,j. The only
salient difference between our model trees and the Davenport–Schinzel trees studied
in [33] is in the labeling. The node labels in our model tree were sequences of symbols,
whereas in Davenport–Schinzel trees they are single symbols. By replacing every node
v ∈ T (i, j) with a path of |L (v)| nodes, each labeled with one symbol from L (v), we
can rederive some of Valtr’s results [33] using the machinery developed in section 2.

In section 4.3 we introduce a simple coding scheme for nonlinear forbidden sub-
sequences (with respect to Davenport–Schinzel trees) that is similar in spirit to the
one-trap and two-trap encodings from section 3. By enumerating valid encodings we
are able to generate an infinite antichain of nonlinear forbidden subsequences.

4.1. Notation and definitions. For a tree Z with node set V (Z), a function
L T : V (Z) → {1, . . . , n} is a valid, c-sparse labeling if (i) for 1 ≤ j ≤ n, the nodes

in L T−1
(j) lie along a path in Z, and (ii) if L T (v1) = L T (v2), then v1 and v2 are

at distance at least c.
The number of nodes in Z and the alphabet size of Z (the number of distinct

labels) are |Z| and ‖Z‖, respectively. An in-tree is one whose edges are directed toward
a distinguished root vertex. If σ is a sequence and Z a labeled (in-)tree, the notation

σ ≺T Z (σ ≺�T ) means that for some sequence σ′ corresponding to a (directed) path

in Z, σ ≺ σ′. The relations ≺̄T and ≺̄�T are defined analogously. If σ �≺T Z (or σ �≺�T ),
then Z is σ-free.

Definition 4.1. Analogous to the extremal function Ex for sequences, ExT and

Ex
�T are defined as

ExT (σ, n) = max
{ |Z| : Z is a σ-free, ‖σ‖-sparse, validly labeled

undirected tree with ‖Z‖ = n
}
,

Ex
�T (σ, n) = max

{ |Z| : Z is a σ-free, ‖σ‖-sparse, validly labeled

in-tree with ‖Z‖ = n
}
.
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Valtr [33] defined Ex
�T with respect to out-trees, not in-trees, but the two are

obviously equivalent. We prefer in-trees because it is consistent with our construction
of S from section 2.

Definition 4.2. Let ΦT
Nonlin and Φ

�T
Nonlin be minimal sets such that

ExT (σ, n) = ω(n) if and only if ∃μ ∈ ΦT
Nonlin : μ ≺ σ or μ ≺ σ,

Ex
�T (σ, n) = ω(n) if and only if ∃μ ∈ Φ

�T
Nonlin : μ ≺ σ.

Note that, unlike with sequences and undirected trees, the identity Ex
�T (σ, n) =

Ex
�T (σ, n) does not necessarily hold. If the in-tree Z is σ-free, we can only say that

the out-tree version of Z is σ-free.

4.2. Construction of trees. Let T be a labeled tree derived from T through
the following transformations. The vertex set of T is a superset of T , and the number
of nodes in T is equal to total length of all vertex labels in T , i.e., |T | = |S |. If v is
a vertex in T with parent p and label L (v) = (a1, . . . , ak), there exist vertices v1 =
v, v2, . . . , vk in T , where vj is the child of vj+1, vk is the child of p, and L T (vj) = aj .
Just as we referred to T when analyzing S , we still identify every T -vertex vj with

the T -vertex v. We use T and �T to refer to its undirected and directed versions.
Lemma 4.3 (relations between S ,T , �T ).

1. If σ ≺�T �T , then σ ≺ S .
2. If σ cannot be written as σ1σ2 where σ1 and σ2 have disjoint alphabets, then

σ ≺T T implies that σ ≺ S or σ ≺ S .
Proof. Part (1) follows from the fact that S was generated from T by concate-

nating labels in postorder, which is consistent with the direction of paths in �T . For
part (2), let P be a minimal (oriented) path in T containing an occurrence of σ. If
P connects a node to one of its ancestors, then σ ≺ S , and if it connects an ancestor
to a descendent, then σ ≺ S . If neither of the above hold, let u be the least common
ancestor of the endpoints of P . Then u divides σ into two pieces σ1, σ2. From the
construction of T (and by extension, T ), no symbol can appear in the labels of two
unrelated nodes. Thus σ1 and σ2 have disjoint alphabets.

Lemma 4.3(1) implies that Ex
�T (ababa, n) ≥ |T | = Ω(nα(n)), where n = ‖T ‖.

Since ababa is a palindrome, Lemma 4.3(2) implies that ExT (ababa, n) = Ω(nα(n)).
We treat ababa as the prototypical nonlinear forbidden subsequence for ExT and

Ex
�T and derive many other nonlinear sequences from it. Lemma 4.4 is analogous to

Lemma 2.4
Lemma 4.4. Suppose abab ≺̄�T �T and let u be the T -node corresponding to the

first occurrence of b in abab. Then a appears after b in L (u), i.e., a < b.
Proof. Let vx,k, x ∈ {a, b}, k ∈ {1, 2} be the T -node corresponding to the kth

occurrence of x in abab. We have, trivially, that va,1 � vb,1 � va,2 � vb,2. If u = vb,1
is an i-node, then by Lemma 2.4 it must be the first i-node on the path from vb,2 to
the origin of b. Since va,2 � vb,2 and a originates below vb,1, u is also the first i-node
on the path from va,2 to the origin of a. By Lemma 2.4, a appears in L (u) and, by
Lemma 2.3, a < b.

Theorem 4.5 reproves some results of Valtr [33].

Theorem 4.5. For σ ∈ {abbab, abcabc, abcbac}, Ex�T (σ, n) = Ω(nα(n)).

Proof. Define vx,k as usual. If σ = abbab ≺̄�T �T , by Lemma 4.4 a must appear in

L (vb,1) and L (vb,2), implying that ababab ≺�T �T , a contradiction. For σ = abcabc
or σ = abcbac, Lemma 4.4 implies that a and b appear in L (vc,1). Since a originates
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below vb,1, Lemma 2.4 then implies that a also appears in L (vb,1). Thus, whether

σ = abcabc or abcbac, if σ ≺�T �T , then ababa ≺�T �T as well, a contradiction.
Since abcabc is a palindrome, Lemma 4.3 implies that ExT (abcabc, n) = Ω(nα(n)).

However, the same conclusion cannot be drawn for abcbac or abbab since their reversals

do appear in �T and hence T as well. Theorem 4.6 provides a general way to construct
new nonlinear forbidden subsequences. To show that ExT (σ, n) = Ω(nα(n)) we just
have to make sure that σ cannot appear on a path directed toward the root, a path
directed away from the root, or a path connecting two unrelated vertices.

Theorem 4.6. Let σ′ ∈ {abbab, abcbac} and σ′′ ∈ {abaab, abcacb}. Let σ be any
minimal sequence such that (i) σ′, σ′′ ≺ σ, and (ii) σ cannot be written as σ1σ2 where
σ1 and σ2 have disjoint alphabets and σ′′

∼ σ1, σ
′
∼ σ2. Then ExT (σ, n) = Ω(nα(n)).

Proof. Suppose an occurrence of σ in T lies on an oriented path from v to w,
and let u be the least common ancestor of v and w. If u = w (w is ancestral to

v), then σ′ ≺ σ ≺�T �T , a contradiction by Theorem 4.5. If u = v (v is ancestral to

w), then σ′′ ≺ σ ≺�T �T , also a contradiction by Theorem 4.5. Otherwise u breaks
σ into pieces σ1σ2 with disjoint alphabets. Because σ is minimal there are only two

possibilities: σ1 ∼ σ′ and σ2 ∼ σ′′ or the reverse. In the first case σ1 ∼ σ′ ≺�T �T ,
a contradiction; the second case is precluded by the assumptions. Thus, in all cases
ExT (σ, n) ≥ |T | = Ω(nα(n)).

4.3. Encoding nonlinear forbidden subsequences. Let ΨT be the set con-
sisting of {ababa, abcabc} and the minimal nonlinear forbidden subsequences implied
by Theorem 4.6; i.e., ΨT is an antichain with respect to ≺. In order to systematically
explore ΨT it is useful to have a succinct code that expresses how a nonlinear sub-
sequence σ is selected in Theorem 4.6. We have two ways to choose σ′, two ways to
choose σ′′, some number of ways to decide how the alphabets of σ′ and σ′′ intersect,
and, finally, to decide how many new symbols (not appearing in Σ(σ′) ∪ Σ(σ′′)) to
introduce. After these choices are made there are numerous ways to select a minimal
sequence σ that contains both σ′ and σ′′ and satisfies Theorem 4.6(ii). Nearly all of
the sequences generated in this way will be redundant, inasmuch as they contain a
strict subsequence already known to be nonlinear.

In our code we use male and female (| and ~) to indicate the symbols belong-
ing to the alphabets of σ′ and σ′′, respectively. If there are two |’s, then σ′ will be
isomorphic to abbab; if there are three |’s, then σ′ will be isomorphic to abcbac. In a
symmetric fashion two ~’s and three ~’s correspond to σ′′ being isomorphic to abaab
and abcacb. A symbol can take part in both σ′ and σ′′; in this case it would be a
hermaphrodite }. Let us look at a few examples. The code }} represents a set of
forbidden subsequences over two letters, say, a and b. There are two |’s and two ~’s,
each identified with the letters a and b, so σ′ must equal (not be isomorphic to) abbab
and σ′′ must equal abaab. For sequences X,Y let X⊕Y be the set of minimal superse-
quences containing both X and Y . (We consider only normalized sequences in which
the first appearance of a precedes the first appearance of b, and so on.) By Theorem 4.6

every member σ ∈ abbab⊕ abaab = {abbaab, ababab} has Ex
�T (σ, n) = Ω(nα(n)). We

already know ababab is nonlinear, but abbaab is new. The code}~| is over a three let-
ter alphabet, say, {a, b, c}, in which σ′ (corresponding to the |’s) is accac and σ′′ (the
~’s) is abaab. The sequences in abaab⊕ accac = {abccaacb, abaabccac, abcaacacb, . . .}
do not add anything to our repertoire of minimal nonlinear forbidden subsequences be-
cause they all contain a substring isomorphic to ababa, abcabc, or abbaab. For one last
example, consider }~}. Here there is a three letter alphabet: two |’s, so σ′ = accac,
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Code Translation New Seqs. Code Translation New Seqs.

2-letter Sequences 4-letter Sequences, cont.
}} abbab⊕ abaab abbaab |}~} abdbad⊕ bcdbdc —

abcdbdac,
3-letter Sequences

|}}~ abcbac⊕ bcdbdc
abcdbadc

|~} accac⊕ bcbbc — abccbcdaad,
|}~ abbab⊕ bcbbc abbacbbc

~||~ adaad⊕ bccbc
abccbdcaad

|}} abcbac⊕ bcbbc abcbbac ~||} adaad⊕ bcdcbd —
~}| abaab⊕ bccbc abaaccbc ~|~| acaac⊕ bddbd —
~|} acaac⊕ bccbc — ~|~} acdadc⊕ bddbd —
~}} abcacb⊕ bccbc — ~|}| acaac⊕ bcdcbd abcaadcbd
}|~ abbab⊕ acaac — ~|}~ acdadc⊕ bccbc abccbdadc
}|} abcbac⊕ acaac abcbaac ~|}} acdadc⊕ bcdcbd —
}~| abaab⊕ accac — abaacbddcd,
}~} accac⊕ abcacb abccacb ~~|| abaab⊕ cddcd abaacdbdcd,
}}| abaab⊕ abcbac — etc.
}}~ abbab⊕ abcacb abbcacb ~~|} abdadb⊕ cddcd —
}}} abcacb⊕ abcbac — ~~}| abcacb⊕ cddcd abcaddcdb

~}|| abaab⊕ bcdcbd abaacdcbd
4-letter Sequences ~}|~ abdadb⊕ bccbc —

abbabcdccd, ~}|} abdadb⊕ bcdcbd —
||~~ abbab⊕ cdccd abbacbdccd, ~}~| abcacb⊕ bddbd abcacddbd

etc. ~}}| bcdcbd⊕ abcacb abcadcbd
||~} abdbad⊕ cdccd — }||~ abcbac⊕ adaad —
||}~ abcbac⊕ cdccd abcbadccd }|~| abdbad⊕ acaac —
|~|~ accac⊕ bdbbd — }|~~ abbab⊕ acdadc —
|~|} acdcad⊕ bdbbd — }|~} abdbad⊕ acdadc —
|~~| addad⊕ bcbbc — }|}~ abcbac⊕ acdadc abcbdadc
|~~} addad⊕ bcdbdc — }~|| abaab⊕ acdcad —
|~}~ accac⊕ bcdbdc — }~|~ abdadb⊕ accac —
|~}| acdcad⊕ bcbbc abcbbdcad }~|} abdadb⊕ acdcad —
|~}} acdcad⊕ bcdbdc — }~~| abcacb⊕ addad —
|}|~ abcbac⊕ bdbbd — }~}| abcacb⊕ acdcad —
|}~| abdbad⊕ bcbbc — }}|~ abcbac⊕ abdadb —

abbabcdbdc, }}~| abcacb⊕ abdbad —|}~~ abbab⊕ bcdbdc
abbacdbdc

Fig. 4.1. Encodings for forbidden subsequences that are nonlinear for ExT .

and three ~’s, so σ′′ = abcacb. Among the sequences in accac⊕ abcacb only abccacb

is not already known to be nonlinear. Of course, this implies that abccacb ∼ abcbbac
is also nonlinear, which corresponds to the encoding |}}.

The encodings and consequences for 2-, 3-, and 4-letter forbidden subsequences
are given in Figure 4.1. One could continue to generate 5- and 6-letter forbidden sub-
sequences in the same way. However, it is not clear how Theorem 4.6 could generate
sequences over larger alphabets. To see how it does, consider the encoding ~~||,
which corresponds to sequences in S = σ1 ⊕ σ2, where σ1 = abaab and σ2 = cddcd.
All sequences in S are nonlinear with the exception of σ = σ1σ2, which violates Theo-
rem 4.6(ii). (Because the alphabets of σ1 and σ2 do not intermingle, it is possible for σ
to appear on a path in T between unrelated nodes.) One way to correct this problem is
to link σ1 and σ2 together using an auxiliary symbol, say, x. The string abaaxbcxddcd
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satisfies the criteria of Theorem 4.6(i) and 4.6(ii) and is therefore nonlinear. In the
same way that semibinders could be daisy chained in our one- and two-trap encodings,
any number of auxiliary symbols can be daisy chained. For example, using auxiliary
symbols x and y we can obtain the nonlinear sequence abaaxbyxcyddcd. It seems as
though auxiliary symbols are only useful for encodings where the ~’s precede the |’s.

5. Conclusion and open problems. Let us briefly summarize what is known
about linear and nonlinear forbidden subsequences. There is a large class ΦKV of linear
forbidden subsequences [20] though the containment ΦKV ⊆ ΦLin is not known to
be strict. The minimal set of nonlinear sequences ΦNonlin must contain at least three
elements (Theorem 3.9); however, the only specific sequence known to be in ΦNonlin

is ababa. Our set Ψ forms an infinite antichain of nonlinear forbidden subsequences
and, together with ababa, forms a possible candidate for the set ΦNonlin.

The extremal functions for the nonlinear sequences in Ψ are all Ω(nα(n)). It is
worthwhile distinguishing ΦNonlin from the set of minimal nonlinear sequences Φα

with growth rate Ω(nα(n)). Given what we know about Ex(μ, n) for specific μ and
the near total absence [21] of natural nonlinear functions o(nα(n)), we are compelled
to make the following conjecture.

Conjecture 5.1. ΦNonlin = Φα.
A good way to prove that ΦNonlin is infinite is to start proving that Ex(μ, n) =

O(n) for some μ that are contained in an infinite number of members in Ψ. Con-
sider those sequences Ψ(1) whose codes lie in ♥♠♥♥∗(♦ ♠♣), i.e., Definition 3.3(1),
excluding ♥♠(♦ ♠♣). The first few elements of Ψ(1) are abcadcddbd, abcadcedeebe,
and abcadcedfeffbf . According to our often misguided intuition, none of the strict
subsequences of the members of Ψ(1) are substantially more complex than abcbccac.
For example, in bcdcedeebe(≺̄abcadcedeebe) the c does not seem to add much to the
complexity of the sequence. It “sandwiches” the first occurrence of d but does not
mingle with other symbols. It is quite plausible that in this situation, splicing c out
of the forbidden subsequence would not affect its complexity. It may be possible to
prove Conjecture 5.2 by extending the techniques of Klazar and Valtr [20].

Conjecture 5.2. If a and b do not appear in σ1 and a does not appear in σ2,
then Ex(σ1abaσ2, n) = O(n+ Ex(σ1bσ2, n)).

One immediate consequence of Conjecture 5.2 is that Ex(abcbccac, n) = O(n).
Furthermore, it would imply the infinitude of ΦNonlin since no nonlinear forbidden
subsequence could be contained in an infinite number of the Ψ(1) sequences.

Appendix A. One-trap lower bounds. In this section we prove that all for-
bidden subsequences that could be generated from a one-trap legal compact encoding
are nonlinear.

Theorem 3.4. For all σ ∈ Ψ1, Ex(σ, n) = Ω(nα(n)).
Proof. Let λ be the legal compact encoding that generated σ. For simplicity we

omit those encodings with parenthesized expressions, e.g., ♥♠(♦ ♠

)♣. Let j♣, j♠, j

♠

,
and j♦ be the indices of the trap, two captives, and guard. Assuming that σ ≺ S let
vj,k be the node in T corresponding to the kth occurrence of j in σ. The argument
from Theorems 3.1 and 3.2 used to obtain a contradiction will go through for any σ,
provided we can establish the following ancestor-descendant relationships:

{vj♠,1, vj

♠

,1} � vj♣,2 the binder must bind,(A.1)

vj♣ ,2 � {vj♠,2, vj

♠

,2} the guard must guard,(A.2)

{vj♠,2, vj

♠

,2} � vj♣,3 the trap must trap.(A.3)
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Given (A.1), line (A.2) follows from the ordering j♦ < j

♠

(by the fact that
j♦j

♠

j♦j

♠≺̄σ and Lemma 2.7) and that vertex labels are in descending order. Given
(A.1), line (A.3) follows trivially from the construction of S . Thus, our only task is
to show (A.1): that the set of binders does, in fact, bind.

Let {j♥k }1≤k≤B be the set of B binders. It follows from the steps 2 and 3 of
the construction of τλ (see section 3.1.2) that the subsequence of σ restricted to the
binders and trap is

σ♥ = j♥1 j♥2 j♥1 j♥3 j♥2 j♥4 . . . j♥B j♥B−1j
♣j♥B j♣j♣.

Obviously vj♥1 ,2 is ancestral to vj♥1 ,1 and vj♥2 ,1. Assume inductively that vj♥i ,2 is an-

cestral to vj♥1 ,1, vj♥2 ,1, . . . vj♥i+1,1
, where j♣ goes by the pseudonym j♥B+1. The next

two symbols in σ♥ to appear are j♥i+2 (for the first time) and then j♥i+1 (for the
second time). It follows from the postordering of the vertex labels that vj♥i+1,2

is an-

cestral to vj♥i ,2 and vj♥i+2,1
. Thus, when i = B we have that vj♥B ,2 is ancestral to

vj♥1 ,1, . . . vj♥B ,1, vj♣,1. To establish (A.1) we need to show that vj♥B ,2 is also ancestral to

both vj♠,1 and vj ♠

,1. By Definition 3.3(iii)–3.3(v), both j♠ and j

♠

appear between j♥1
and j♥B+1 = j♣. From the postordering of the vertices, it follows that if j = j♠ or j

♠

and j is sandwiched between j♥i and j♥i+1, vj,1 must be a descendant of vj♥i ,2.

Appendix B. Two-trap lower bounds.
Theorem 3.8. For all σ ∈ Ψ2, Ex(σ, n) = Ω(nα(n)).
Proof. Let λ be the legal compact encoding that generated σ. For simplicity we

omit those encodings with parenthesized expressions, e.g., ♥(

♥♣

)♠♥♣. Let j♣, j

♣

, j♠

be the indices of the outer trap, inner trap, and captive. Assuming that σ ≺ S let
vj,k be the node in T corresponding to the kth occurrence of j in σ. The argument
from Theorems 3.5 and 3.6 used to obtain a contradiction will go through for any σ,
provided we can establish the following ancestor-descendant relationships:

vj♠,1 � vj ♣

,2 the inner binder must bind,(B.1)

vj ♣

,2 � vj♣,2 the outer binder must bind,(B.2)

vj♣,2 � {vj♠,2, vj

♣

,3} � vj♣,3 the outer trap must trap.(B.3)

Given (B.1) and (B.2), line (B.3) follows trivially from the postordering of the
vertex labels. Thus, our two tasks are to show that the inner binders and outer binders
do, in fact, bind as promised.

Let {j♥k }1≤k≤B be the set of B outer binders and {j

♥

k }1≤k≤B′ be the B′ inner
binders. The restriction of σ to the symbols

♥

and

♣

is precisely the same as that
found in the proof of Theorem 3.4. Similarly, the restriction of σ to the symbols ♥
and ♣ will also take precisely this form. In other words, the exact same argument
shows that vj♠,1 (where j♠ must lie between j

♥

1 and j

♣

, by Definition 3.7(viii))
will be a descendant of vj ♣

,2. Furthermore, it implies the descendant relationships
vj♥1 ,2 � vj♥2 ,2 � · · · � vj♥B ,2 and vj♣,1 � vj♥B ,2.

To show that the outer binder binds we need only to show that vj ♣

,2 � vj♥i ,2 for

some i. This will actually hold for i = 1. Consider the restriction of σ to the first two
♥s and

♣

, or if B = 1, the restriction to ♥,

♣

, and ♣. It will be either

j♥1 j

♣

j

♣

j♥2 j♥1 or j♥1 j

♣

j

♣

j♣j♥1 .

In either case, the postordering of the vertex labels implies that vj ♣

,2 � vj♥1 ,2.
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