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The shortest path and minimum spanning tree problems are two of the classic

textbook problems in combinatorial optimization. They are simple to describe and

admit simple polynomial-time algorithms. However, despite years of concerted research

e�ort, the asymptotic complexity of these problems remains unresolved.

The main contributions of this dissertation are a number of asymptotically faster

algorithms for the minimum spanning tree and shortest path problems. Of equal interest,

we provide some clues as to why these problems are so diÆcult. In particular, we

show why certain modern approaches to the problems are doomed to have super-linear

complexity.

A sampling of our results are listed below. We emphasize that all of our algo-

rithms work with general graphs, and make no restrictive assumptions on the numerical

representation of edge-lengths.

� A provably optimal deterministic minimum spanning tree algorithm. (We give a

constructive proof that the algorithmic complexity of the minimum spanning tree

problem is equivalent to its decision-tree complexity.)

� An all-pairs shortest path algorithm for general graphs running in time O(mn+

n2 log log n), where m and n are the number of edges and vertices. This provides

the �rst improvement over approaches based on Dijkstra's algorithm.

� An all-pairs shortest path algorithm for undirected graphs running in O(mn log�)

time, where � = �(m;n) is the inverse-Ackermann function.

vi



� A single-source shortest path algorithm running inO(m�+minfn log log r; n logng)
time, where r bounds the ratio of any two edge lengths. For r polynomial in n

this is O(m+ n log log n), an improvement over Dijkstra's algorithm.

� An inverse-Ackermann style lower bound for the online minimum spanning tree

veri�cation problem. This is the �rst inverse-Ackermann type lower bound for a

comparison-based problem.

� An 
(m+ n logn) lower bound on any hierarchy-type single-source shortest path

algorithm, implying that this type of algorithm cannot improve upon Dijkstra's

algorithm. (All of our shortest path algorithms are of the hierarchy type.)

� The �rst parallel minimum spanning tree algorithm that is optimal w.r.t. to both

time and work. Our algorithm is for the EREW PRAM model.

� A parallel, expected linear-work minimum spanning tree algorithm using only a

polylogarithmic number of random bits.

� An O(mn log�) bound on the comparison-addition complexity of all-pairs shortest

paths. This is within a tiny log� factor of optimal when m = O(n).
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Chapter 1

Introduction

As optimization problems go, the minimum spanning tree and shortest path problems

are as old as the hills. They are so �rmly established in the canon of computer science

education that today no student can avoid learning the algorithms of Dijkstra, Prim,

Bellman-Ford, Floyd-Warshall, Kruskal, and Bor�uvka. Given the rich history of both

problems (the minimum spanning tree problem dates back 75 years) and the vigor of

recent research e�orts, it is thoroughly surprising that neither problem is solved. In

particular, the question of their inherent algorithmic complexity has yet to be fully

answered.

The primary focus of this dissertation is obtaining asymptotically faster algorithms

for three classical graph optimization problems: single-source shortest paths, all-pairs

shortest paths, and minimum spanning trees. For each problem we o�er algorithms that

achieve optimality, or make substantial strides toward optimality. Highlights of our

results include a provably optimal minimum spanning tree algorithm (with unknown

running time) and an all-pairs shortest paths algorithm that improves on Dijkstra's

textbook algorithm from 1959. We survey our results in more detail in Section 1.1.1

(shortest paths) and Section 1.1.2 (minimum spanning trees). Before delving into details,

we would like to highlight our assumptions concerning the model of computation.

Any discussion of an algorithmic result must begin with the answers to two fun-

damental questions: What does the input to the algorithm look like? and what can our

(imaginary) computer do (and at what cost)? The answers to these questions de�ne the

computational model, or simply model. Most researchers choose a model by consider-

ing aesthetic simplicity, historical precedent, realism, convenience, or some combination

thereof. In this dissertation we study the shortest path and minimum spanning tree

problems under the traditional textbook model. The input is assumed to be given as

a real-weighted general graph, either directed or undirected, and the de�ning charac-

teristic of the machine model is that real numbers are only subject to a speci�c set of

unit-time operations, e.g., addition, subtraction, and comparison. (See Sections 2.4 and

1



7.2.1 for the speci�cs.)

The strength of the traditional model is its weakness. It is weak in that it makes

minimal assumptions about the form of the input, and minimal assumptions about how

the abstract computer can manipulate the input. As a consequence, algorithms designed

for the traditional model map easily onto actual physical computers, usually without

modi�cation. The traditional model also forces us, as theoreticians, to concentrate on

the problem at hand. A number of algorithms these days | even for shortest paths and

minimum spanning trees | apply very model-speci�c techniques and, as such, reveal

less about the problem than they do about the power of the underlying machine.

1.1 Overview of the Results

1.1.1 Shortest Paths

In 1997 Thorup invented what we dub the hierarchy-based approach to shortest paths.

Thorup's original algorithm was designed for integer-weighted undirected graphs, and

the powerful RAM model, or random access machine. Because the hierarchy approach

seemed to depend on all kinds of model-speci�c techniques, it was unclear whether the

more general problem | shortest paths on real-weighted graphs | would admit an

eÆcient hierarchy-based algorithm. In Chapters 2{6 we develop a number of faster

shortest path algorithms, all hierarchy-based, and explore the inherent limitations of

the approach.

In Chapter 3 we de�ne a large class of hierarchy-type algorithms, and prove that,

in general, no hierarchy-type algorithm can improve on Dijkstra's classical single-source

shortest path (SSSP) algorithm. Basically, we show that there is an inherent \sorting

bottleneck" in the approach, just as there is in Dijkstra's algorithm. However our lower

bound does not scale up well. For instance it does not say that computing SSSP 5 times

from di�erent sources is 5 times as hard as SSSP. This is because shortest paths on the

same graph are, by their nature, highly dependent. Knowing some shortest paths might

give you a great deal of information about others.

The main theoretical contributions of our shortest path algorithms are some new

techniques for identifying and exploiting the dependencies among shortest paths in the

same graph. In Chapter 4 we give a new all-pairs shortest path (APSP) algorithm

that runs in time O(mn + n2 log logn), where m and n are the number of edges and

vertices respectively. This is the �rst theoretical improvement over Dijkstra's 1959

algorithm, which runs in O(mn+ n2 log n) time if implemented with a Fibonacci heap.

In Chapter 4 we also address the non-uniform complexity of APSP. In particular we

give an APSP algorithm making O(mn log�(m;n)) numerical operations, where � is

the inverse-Ackermann function. Due to the trivial lower bound of 
(n2), our algorithm

2



is within a tiny log�(n; n) factor of optimal when m = O(n).

In Chapter 5 we give a faster shortest path algorithm for undirected graphs. As

an undirected APSP algorithm, it runs in O(mn log�(m;n)) time | again, nearly

optimal for m = O(n). As an undirected SSSP algorithm it runs in O(m�(m;n) +

n log log r) time, where r bounds the ratio of any two edge lengths. Thus for r = poly(n),

our undirected SSSP algorithm runs in O(m + n log log n) time, an improvement over

Dijkstra's. In Chapter 6 we present the results of some experiments with a simpli�ed

version of our undirected shortest path algorithm. It consistently outperforms Dijkstra's

on a variety of sparse graph types, and comes surprisingly close to the speed of breadth

�rst search, which we use as a benchmark linear-time algorithm.

1.1.2 Minimum Spanning Trees

The minimum spanning tree problem (MST) has been studied for over 75 years, though

it was only in recent years that sophisticated techniques were applied to the problem.

In 1994 Karger, Klein, and Tarjan [127] developed a randomized expected linear time

algorithm based on two key techniques: random sampling and minimum spanning tree

veri�cation. In 1997 Chazelle [28] addressed the deterministic complexity of the MST

problem. The running time of his algorithm was slightly super-linear (of the inverse-

Ackermann variety) and was based on a new approximate priority queue called the Soft

Heap [29].

In Chapter 8 we solve part of the MST problem. We give, in particular, a provably

optimal MST algorithm, and show that the decision-tree (comparison) complexity of the

problem is equivalent to its algorithmic complexity. Thus, we have separated the issues

of �nding an optimal algorithm with analyzing its complexity. Our algorithm, like

Chazelle's [28], is based on the Soft Heap.

In [28] Chazelle wondered what sort of data structure might be the key to an

explicit linear-time MST algorithm. Clearly inspired by the success of MST veri�cation

in the randomized algorithm of Karger et al. [127], he proposed a \dynamic equivalent"

to MST veri�cation. In Chapter 9 we give an inverse-Ackermann type lower bound for

the online MST veri�cation problem, which may be considered the simplest dynamic

equivalent. Our lower bound seems to rule out a faster explicit MST algorithm based on

online MST veri�cation. Parenthetically, this is the �rst inverse-Ackermann type lower

bound for any comparison-based problem.

In Chapter 10 we give the �rst randomized time-work optimal parallel MST algo-

rithm. Our algorithm improves on a long line of results, some time-optimal and some

work-optimal.

One disadvantage of the randomized MST algorithms is that they use a number of

random bits that is linear in the size of the problem. In reality however random bits are

usually considered a scarce resource. In Chapter 11 we develop a new randomized MST

3



algorithm that runs in expected linear-time, even if only a polylogarithmic number of

random bits are available. It is parallelizable, and also gives an eÆcient parallel con-

nectivity algorithm using polylogarithmic random bits. (A simple tweak of our optimal

MST algorithm yields one that runs in expected linear time using o(log�n) random bits.

However this algorithm is not parallelizable.)

1.2 Preliminaries

We assume no specialized background knowledge. However the reader should be familiar

with asymptotic notation (O;
;�; !; o), graph terminology (tree, path, vertex, edge,

cycle, etc.), and a little probability for the latter chapters. Refer to any standard

algorithms textbook [47] for the necessary de�nitions.

We have summarized the standard asymptotic notation in Section 1.2.1. In Section

1.2.2 we summarize the chapter dependencies.

1.2.1 Asymptotic Notation

We use the standard asymptotic notations. Below, f and g are functions from naturals

to naturals.

f(n) = O(g(n)) � 9c1; c2 8n > 0 : f(n) � c1 � g(n) + c2

f(n) = 
(g(n)) � g(n) = O(f(n))

f(n) = �(g(n)) � f(n) = O(g(n)) and f(n) = 
(g(n))

f(n) = !(g(n)) � limn!1 g(n)=f(n) = 0

f(n) = o(g(n)) � g(n) = !(f(n))

Remark. Some sources in the literature use the asymmetric de�nition: f(n) = 
(g(n))

if there exists a constant c such that c � f(n) � g(n) for in�nitely many integers n.

1.2.2 Chapter Dependencies

Parts I and II, on shortest paths and minimum spanning trees, respectively, are entirely

independent.

Chapters 4 (directed shortest paths) and 5 (undirected shortest paths) are both

built on the foundation of Chapters 2 and 3. Chapter 6 (experimental shortest paths)

may be read separately, though it does frequently refer to the algorithm from Chapter

5.
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Chapters 8{11 (results on minimum spanning trees) are independent of one an-

other, though each should be read following the introduction to minimum spanning

trees, in Chapter 7.
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Part I

Shortest Paths
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Chapter 2

Introduction to Shortest Paths

2.1 History

In Sections 2.1.1 and 2.1.2 we survey the history of the single-source and all-pairs shortest

path problems, which are the \textbook" shortest path problems and the subject of

subsequent chapters. In Section 2.1.3 we attempt to survey a slew of results extending

the shortest path problem in various directions.

2.1.1 Single-Source Shortest Paths

The single-source shortest path problem, or SSSP, is a deceptively diÆcult problem. As

early as 1960 there were two algorithmic solutions: Bellman and Ford's [17, 65, 47],

which worked on arbitrarily weighted graphs, and Dijkstra's [52], which was a bit faster

but assumed non-negatively weighted graphs. To date neither of these algorithms have

been improved in the context of general real-weighted graphs. However there have been

a number of quali�ed successes, as we shall see.

The Bellman-Ford algorithm runs in O(mn) time, where m and n are the number

of edges and vertices respectively. However this cost is generally very pessimistic; a

�ner analysis shows it runs in O(hm) time, where h is the maximum number of edges in

any shortest path. Goldberg [87], improving very slightly on Gabow and Tarjan's work

[77, 80], gave an SSSP algorithm for integer-weighted graphs running in O(
p
nm logN)

time, where N bounds the magnitude of the negative edge-lengths.

Dijkstra's 1959 SSSP algorithm [52] runs in O(n2) time if implemented in a

straightforward fashion; this is optimal for dense graphs. It was quickly observed that

speeding up Dijkstra's algorithm is tantamount to implementing a fast priority queue.

Using Johnson's d-ary heap [118, 119], a generalization of Williams' binary heap [205],

Dijkstra's algorithm runs in O(m log2+m=n n) time, which is optimal for moderately

dense graphs, say when m=n = n
(1). The fastest implementation of Dijkstra's algo-
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rithm to date runs in O(m + n logn) time, making it optimal for m=n = 
(log n). It

uses Fredman and Tarjan's Fibonacci heap [73]. In a comparison-based model of compu-

tation, one can easily show that Fibonacci heaps are asymptotically optimal, and that

in the worst case Dijkstra's algorithm requires 
(m+ n log n) time to solve. Thus any

research on the SSSP problem must depart from the general comparison-based model,

or keep the comparison model and depart from Dijkstra's algorithm. We take the latter

approach. E�orts on the former have focused on implementations of Dijkstra's algorithm

for integer-weighted graphs in the unit-cost RAM (random access machine) model of

computation.1

Fredman and Willard [74, 75] showed that in the RAM model it is possible to sort

n integers in o(n log n) time, and to implement priority queue operations in o(log n) time.

(In other words the information-theoretic bottlenecks inherent in a comparison-based

model do not apply here.) To date the best implementations of Dijkstra's algorithm on

integer-weighted graphs run in time O(m
p
log logn) [102] (expected) and time O(m +

n log log n) [199].

In 1997, Thorup [196] invented the hierarchy-based approach to shortest paths |

a clean break from Dijkstra's algorithm | and gave a linear-time SSSP algorithm for

the restricted case of non-negative integer-weighted undirected graphs. The question of

whether the hierarchy-based approach could be adapted to directed graphs and/or a

comparison-based model of computation was left unanswered. Hagerup [98], in 2000,

showed that indeed the hierarchy approach can be applied to directed integer-weighted

graphs. His SSSP algorithm ran in O(m log logN) time, where N is the largest edge

length. Hagerup's algorithm provided no speedup over existing RAM-based SSSP algo-

rithms, though it was deterministic and used only linear space.

2.1.2 All-Pairs Shortest Paths

The APSP problem | �nd the shortest path from every vertex to every other | can

easily be solved with n SSSP computations. Thus, Bellman-Ford solves APSP inO(mn2)

time and Dijkstra solves APSP (on non-negative edge lengths) in O(mn + n2 log n) =

O(n3) time. However a more direct approach to APSP can give better bounds.

Dense Graphs

The Floyd-Warshall algorithm [47] computes APSP in O(n3) time, and has the prac-

tical advantages of being simple and streamlined. It is well known that a (min;+)

matrix multiplier can be used to solve the all-pairs distance problem (APD), which does

not ask for shortest paths per se. This gives an obvious O(n3 log n)-time APD/APSP

1The phrase unit-cost here emphasizes that all operations take unit time, even non-AC0 ones like
multiplication, and that all memory accesses take unit time, i.e., there is no cache in the model.
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algorithm. What is less obvious is that the complexity of APD is asymptotically equiv-

alent to (min;+) matrix multiplication | see Aho et al. [4]. Fredman [69] gave a

min-plus multiplier that performs O(n2:5) numerical operations; however there is no

known polynomial-time implementation of Fredman's algorithm. The fastest min-plus

algorithm to date is due to Takaoka [188], who uses Fredman's approach on small sub-

problems. Takaoka's algorithm runs in time O(n3
q

log log n
log n ), which is a sub-logarithmic

improvement over standard matrix multiplication.

One cannot directly apply the \fast" matrix multipliers, such as those of Strassen

[186] or Coppersmith and Winograd [45], because (min;+) is not a ring: min has no

inverse. However, ring-based matrix multiplication can be used in less obvious ways to

compute APSP. The algorithms of [180, 82, 182, 9, 189, 209] take this approach, and

yield improved, o(n3) APSP algorithms on integer-weighted graphs, provided that the

magnitude of the integers is suÆciently small | always sublinear in n.

Sparse Graphs

Johnson [119] gave an interesting solution to the problem of negative edge-lengths. As-

suming that no negative-length cycles exist, he showed that the shortest path problem

is reducible in O(mn) time to one of the same size, but having only non-negative edge

lengths. Combined with Dijkstra's algorithm this immediately yields an APSP algo-

rithm for arbitrarily weighted graphs running in O(mn + n2 logn) time. Surprisingly

Dijkstra's algorithm (with or without Johnson's reduction) remained the fastest general

APSP algorithm for many years. (Refer to Chapters 4 and 5 for our improved APSP

algorithms.)

In the context of integer-weighted graphs and the RAM model, the existing im-

plementations of Dijkstra's SSSP algorithm [102, 199] imply some bounds on APSP:

O(minfmn
p
log logn; mn + n2 log logng). The hierarchy-type algorithms of Thorup

[196] and Hagerup [98] also give bounds on APSP. Hagerup's algorithm solves APSP

in O(mn+ n2 log logn) time,2 and Thorup's algorithm [196] solves undirected APSP in

O(mn) time.

2.1.3 Variations

Due to the practical signi�cance of shortest paths, a number of variations on the problem

have been proposed, each restricting or generalizing some aspect of the SSSP or APSP

problems.

2Although their running times are identical, Hagerup's APSP algorithm is theoretically cleaner than
the one derived from an implementation of Dijkstra's algorithm with Thorup's recent integer priority
queue [199]. Thorup uses multiplication whereas Hagerup only uses standard AC0 operations.
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The case of planar graphs has been studied extensively [151, 152, 66, 67, 105, 61].

Interestingly the SSSP problem on planar graphs is only slightly more diÆcult under

arbitrary edge-lengths [61] as opposed to positive edge lengths [105]. A number of al-

gorithms have been analyzed under the assumption of a complete graph with randomly

chosen edge lengths [184, 165, 128, 140, 187, 44], and two SSSP algorithms were pre-

sented recently [160, 89] that run in expected linear time when the edge-lengths are

selected uniformly from some interval. There are shortest path algorithms guaranteeing

approximate solutions (see Zwick's survey [208]), dynamic shortest path algorithms (see

Demetrescu and Italiano [50] for more references), preprocessing schemes for answering

(approximate) shortest path queries [200, 197, 136, 96, 144, 51], parallel shortest path

algorithms [201, 137, 101, 161], cache-eÆcient shortest path algorithms [155, 156, 162],

geometric shortest path algorithms [164], and a zillion others. (We have only sampled

the available literature and make no claim to completeness.)

2.1.4 Organization

In Section 2.2 we summarize our contributions to the shortest path problem, which are

revealed in merciless detail in Chapters 3{6. In Section 2.3 we give a formal de�nition

of the problem and introduce some notational conventions. In Section 2.4 we de�ne the

comparison-addition model, and discuss various aspects of the model. In Section 2.5 we

describe Dijkstra's algorithm and discuss a class of Dijkstra-like algorithms. In Section

2.6 we give a gentle introduction to the hierarchy-based approach to shortest paths.

2.2 Our Contributions

Thorup's hierarchy approach [196] to shortest paths is designed for integer-weighted

graphs, and at �rst glance, seems to depend essentially on the RAM model and the

assumption of integral edge-lengths. Indeed, any straightforward \port" of Thorup's

SSSP algorithm to the comparison-addition model (see Section 2.4) will incur a sorting

bottleneck, that is, a running time of 
(n logn). In Section 3.6 we give a fairly strong

lower bound showing that any hierarchy-type SSSP algorithm must, in the worst case,

perform 
(m + n logn) numerical operations, even if the graph is undirected. The

implications for hierarchy-type APSP algorithms are less severe. Our lower bound shows

that solving APSP with n independent executions of a hierarchy-type SSSP algorithm

is sure to lead to running times of at least 
(mn + n2 log n) | no improvement over

Dijkstra | since each SSSP computation is subject to the lower bound.

The way out of this bind is to exploit the strong dependencies that exist among

shortest paths in the same graph. Our undirected shortest path algorithm [Chapter

5], for instance, constructs a linear-space hierarchy structure that encodes useful in-
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formation about every shortest path in the graph. Once the hierarchy structure is

built we can compute SSSP from any source in O(m log�(m;n)) time | essentially

linear | with a relatively simple and streamlined algorithm. This leads directly to an

O(mn log�(m;n)) APSP algorithm for undirected graphs. In the context of computing

APSP, or even SSSP multiple times, the cost of computing the hierarchy structure is

insigni�cant. However it may be the dominant cost when computing SSSP exactly once.

Our best bound on SSSP is O(m�(m;n)+minfn log log r; n log ng), where r bounds the
ratio of any two edge lengths. For r = poly(n) | a fairly reasonable assumption | the

bound becomes O(m+ n log logn), which is an improvement over Dijkstra's algorithm.

Directed graphs are a di�erent beast. At a high level our directed shortest path

algorithms [Chapter 4] are applying the same general technique: trimming costs by

exploiting certain dependencies among shortest paths. However the techniques we

develop for directed graphs are signi�cantly more sophisticated than those for undi-

rected graphs. In Section 4.1 we present a directed APSP algorithm that runs in time

O(mn + n2 log log n); this is the �rst improvement over Dijkstra's APSP algorithm on

real-weighted graphs. We cannot �nd a faster directed APSP algorithm, but in Section

4.2 we give a non-uniform APSP algorithm performing O(mn log�(m;n)) numerical

operations. Notice that for m = O(n), this bound is only a miniscule log�(n; n) factor

from optimal complexity. (This is very encouraging. It suggests that some part of the

APSP problem is actually soluble with existing techniques.)

In Chapter 6 we present the results of some experiments with a simpli�ed version

of our undirected shortest path algorithm [Chapter 5]. The results are fairly impressive.

After the hierarchy structure is built, our algorithm consistently outperforms Dijkstra's

algorithm on a variety of graph classes and sizes. It also performs between 1.81 and

2.77 times the speed of breadth �rst search, which can be considered a reasonable lower

bound on the practical limits of any shortest path algorithm.

2.3 Problem De�nition

The input is a weighted directed graph G = (V;E; `) where jV j = n; jEj = m, and

` : E ! R assigns a real length to every edge. It was mentioned in Section 2.1.2 that the

shortest path problem is reducible in O(mn) time to one of the same size but having

only non-negative edge lengths, assuming that no negative length cycles exist. We will

assume henceforth that ` : E ! R
+ assigns only non-negative lengths.

The length of a path is de�ned to be the sum of its constituent edge lengths, and

a shortest path, from one speci�ed vertex to another, is one having minimum length.

The distance from u to v, denoted d(u; v) is the length of a shortest path from u to

v, or 1 if none exists. The APSP problem is to compute the values d(u; v), for all

(u; v) 2 V �V , and the SSSP problem is to compute the values d(s; u) for a �xed source
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s 2 V and all u 2 V . The SSSP problem is sometimes de�ned to be that of �nding

shortest paths, not distances. However, one can easily show that given one | shortest

paths or distances | the other is computable in linear time. For the sake of simplicity

we focus on distances.

We frequently extend the distance notation to include objects other than vertices.

For instance, if H is a subgraph, a set of vertices, or any object identi�ed with a set of

vertices, we let d(u;H) denote the minimum distance from u to any vertex in H.

2.4 The Comparison-Addition Model

Many computational models, such as the Turing machine and the word RAM, have the

property that data is �nite, discrete, and inspectible. That is, the representation of an

elemental piece of data (a symbol on the tape of a Turing machine or the bits of a word

in a word RAM) can be fully known. For problems whose input consists of real-weighted

elements, such as the shortest path problem, it is impossible to work within a model

whose data is both �nite and inspectible. In the comparison-addition model we sacri�ce

inspectibility in order to retain the full generality of real-weighted data. Real numbers

are represented in special variables of type real. The only operations allowed on reals

are additions and comparisons, of the form:

a := b+ c

and

if a < b then . . . else . . .

The comparison-addition model is not really complete because we have yet to de�ne

what happens on non-real data. All of our algorithms work under the RAM model

(random access machine). Speci�cally, we assume the existence of a type integer, which,

like reals, is subject to comparisons and additions. We also assume that integers can be

used to index arrays. That is, if A is an array and i an integer, the element A[i] can be

retrieved in unit-time. We assume no primitive operations that convert reals to integers

or vice versa.

A realist may argue that since real-life machines have �nite, discrete, and in-

spectible data, one should study optimization problems (e.g., shortest paths) whose

weighted elements are assumed to be integers. In the abstract this has certainly been

a very successful endeavor. For several important optimization problems, such as max-

imum ow [91], maximum weight matching [80, 81], and single-source shortest paths

[87, 80], the fastest algorithms for integer-weighted inputs can be faster than their coun-

terparts for real-weighted inputs by up to a polynomial factor, so long as the magnitude

of the integers does not get too large. These theoretical improvements are signi�cant,
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though they do not always result in corresponding real-world improvements. In practice

it is not unusual for an algorithm to have wildly di�ering worst-case and typical-case

running times (Bellman-Ford and nearly all maximum ow algorithms come to mind).

Depending on the problem, there may be no practical bene�t to assuming integer-

weighted graphs.

An often overlooked aspect of the comparison-addition model is that its restrictive,

algebraic framework is actually useful in practice. By not meddling with the internal

representation of numbers, algorithms in the comparison-addition model naturally work

with a variety of numerical types.3 Moreover, it is possible to prove the correctness of

such algorithms with clean mathematical arguments.

2.4.1 Non-Uniform Complexity

We will use the term comparison-addition complexity to refer to the number of real-

number operations performed by an algorithm. This is a non-uniform complexity mea-

sure, in the sense that an algorithm with a certain comparison-addition complexity will

not, in general, have the same running time asymptotically. The di�erence between

uniform and non-uniform computation is usually understood as the di�erence between

Turing machine complexity and circuit complexity. Our situation is basically analo-

gous to this one, where our souped-up RAM takes the place of the Turing machine and

algebraic decision trees replace circuits.4

2.4.2 Basic Techniques

We frequently make use of real number operations not included in the comparison-

addition model, such as subtraction, multiplication by an integer, division and the oor

operation. We show below how these operations can be simulated in the comparison-

addition model, sometimes without asymptotic penalty.

To simulate subtraction we represent each abstract real number a by two actual

real numbers a1 and a2 such that a = a1 � a2. Both abstract addition and abstract

subtraction are accomplished with two actual additions, since a+b = (a1+b1)�(a2+b2)
and a � b = (a1 + b2) � (a2 + b1). An abstract comparison between a and b translates

into an actual comparison between (a1 + b2) and (a2 + b1).

Multiplication by an integer is also not diÆcult. Suppose a is a real and N an

integer. We can calculate Na in O(logN) time as follows. Produce the set of reals

B = fa; 2a; 4a; 8a; : : : ; 2blogNcag, using logN additions, then produce Nx by summing

3LEDA [157], for instance, has a number of numerical data types beyond the usual int and float,
as do the Java & C# programming languages.

4This analogy is not entirely tight. A family of circuits solving a problem would have one circuit per
problem size, whereas in the shortest path problem we would have one algebraic decision tree for each
distinct input graph.
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up the appropriate subset of B. Division by an integer is accomplished in a similar

fashion. Suppose we set a := b=N . If we want to compare a with another number,

say c, we can substitute the equivalent comparison between b and Nc. Here b=N is not

calculated but represented symbolically. (In general division can be very ineÆcient; it

can cause a large blow-up in the time to simulate future comparisons.)

An operation that comes in very handy is taking the oor (or ceiling) of the

ratio of two reals, i.e., computing the integer
�
a
b

�
. This operation is di�erent from the

ones discussed above because the result is an integer rather than a real number. We

compute the oor of a ratio using a method similar to our simulation of multiplication.

To compute
�
a
b

�
we �rst produce the set B = fb; 2b; 4b; 8b; : : : ; 2dlog a

b ebg, then use

the elements of B to implement a binary search to �nd the integer
�
a
b

�
. This takes

O(1 + log a
b ) time

2.4.3 Lower Bounds

There are several known lower bounds on various shortest path problems in the comparison-

addition model. However, they are all very weak. Spira and Pan [185] showed that,

regardless of additions, 
(n2) comparisons are necessary to solve SSSP on the complete

graph. Karger et al. [128] proved that all-pairs shortest paths requires 
(mn) com-

parisons if all summations correspond to paths in the graph. However, this assumption

is restrictive: the Fredman and Takaoka algorithms [69, 188] are not path-based, and

neither are ours. Kerr [132] showed that any straight-line (oblivious) APSP algorithm

performs 
(n3) operations, and Kolliopoulos and Stein [140] proved that any �xed se-

quence of edge relaxations solving SSSP must have length 
(mn). By \�xed sequence"

they mean one which depends on m and n but not the graph topology. Graham et al.

[95] did not give a lower bound but showed that the standard information-theoretic ar-

gument cannot yield a non-trivial, !(n2) lower bound in the APSP problem. Similarly,

no information-theoretic argument can provide an interesting lower bound on SSSP.

2.5 Dijkstra's Algorithm

It is sometimes useful to think about the SSSP problem as that of simulating a physical

process. Suppose that the graph represents a network of water pipes, and that at time

zero we begin injecting water into the network at a speci�c place: the source. The

SSSP problem is to compute when the water reaches each place in the network. Other

network optimization problems correspond to certain physical processes (network ow

and minimum spanning trees come to mind). Dijkstra's algorithm is one of the few

that actually simulates the physical process directly. That is, the states of Dijkstra's

algorithm correspond to states in the physical system.
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Recall that the source vertex is represented by s. Dijkstra's algorithm maintains

a set of visited vertices S, which, from the point of view of the simulation, corresponds

exactly to the places in the pipe network already reaches by the water. Therefore, at

any point in Dijkstra's algorithm we are implicitly at time maxv2S d(s; v). Dijkstra's

algorithm maintains a tentative distance D(v) for each v 2 V , satisfying the following

invariant.

Invariant 1 (Dijkstra's Invariant) For v 2 S, D(v) = d(s; v) and for v 62 S, D(v) is

the distance from s to v in the subgraph induced by S [ fvg.

In the simulation D(v) represents the estimated time when water will reach v,

based on when water reached vertices in S. D(v) is an upper bound on d(s; v) and is

not equal to d(s; v) precisely when the shortest path to v passes through some vertex

in V � S. Dijkstra's algorithm adds vertices to the set S one by one, which implies,

since it is a physical simulation, that the next vertex added is always the v 2 (V � S)

minimizing d(s; v). This is the same v 2 (V � S) minimizing D(v) since edge lengths

are assumed to be non-negative. Once we set S := S [ fvg, the D-values may not

satisfy Dijkstra's Invariant. To restore Invariant 1 we relax each outgoing edge (v; w)

of v, setting D(w) := minfD(w);D(v) + `(v; w)g. Eventually S = V , implying that

D(v) = d(s; v) for all v 2 V .

The only complicated part of Dijkstra's algorithm is deciding which vertex to visit

next. Dijkstra [52], more concerned with space than time, proposed examining D(v)

for all v 2 (V � S). This gives an SSSP algorithm with overall running time O(n2).

Using Fibonacci heaps [73], Dijkstra's algorithm can be made to run much faster | in

O(m+ n logn) time | with only a small constant factor increase in space usage.

It is important to notice that Dijkstra's algorithm represents only one method for

maintaining Invariant 1 and that, in principle, there are many \Dijkstra-like" algorithms

that grow the set S while preserving Invariant 1. When such an algorithm adds a vertex

to S, say v, it must have a certi�cate that D(v) = d(s; v), in particular that for all

u 62 S, D(u) + d(u; v) � D(v). Dijkstra's certi�cate is simply that D(u) � D(v) by

choice of v, and that d(u; v) � 0 by the assumption that edge-lengths are non-negative.

To depart from Dijkstra's algorithm one must be able to �nd a better lower bound on

d(u; v) than the trivial d(u; v) � 0.

Our shortest path algorithms are all Dijkstra-like, according to the de�nition

above. Therefore, the meaning of D, S, and s will be preserved in later chapters, as will

the meaning of the terms \visit" and \relax." We may refer to Invariant 1 as simply

Dijkstra's Invariant.
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2.6 The Hierarchy Approach

The main limitation of Dijkstra's algorithm is that it visits vertices in order of increasing

distance from the source. If we view the set S as the state, Dijkstra's algorithm passes

through n distinct states corresponding to n physical states. Dinic [56] observed that

in general, not every state of the SSSP algorithm must correspond to a physical state.

Let t > 0 be the minimum edge length in the graph. In Dinic's variation on Dijkstra's

algorithm, rather than visiting v 2 (V � S) minimizing D(v), we visit any v 2 (V � S)

minimizing bD(v)=tc, or indeed, every such v minimizing bD(v)=tc simultaneously. In
other words, we are setting up checkpoints at \time" 0; t; 2t; 3t; : : : where the physical

and algorithmic states are in alignment. Between these checkpoints the algorithm passes

through states that have no physical equivalent.

Generally speaking Dinic's algorithm provides no improvement over Dijkstra's

algorithm. However, it is the kernel of the hierarchy-based approach, which was invented

by Thorup [196] for the special case of integer-weighted undirected graphs. Thorup's

insight was that Dinic's algorithm can be generalized to arbitrary (and even multiple)

values of t; it need not �x t at the minimum edge length. Consider a simpli�ed, but

illustrative example.

Suppose that t > 0 is arbitrary and the vertex set V is partitioned into disjoint

sets V1; V2; : : : ; Vk where any edge from Vi to Vj , i 6= j, has length at least t. Let

Gc be derived from the input graph G by contracting V1; : : : ; Vk to single vertices,

denoted v1; : : : ; vk. On such a graph one can think of a hierarchy-type SSSP algorithm

as being composed of (at least) k + 1 processes, one that operates on Gc, and k that

operate on the graphs induced by V1; : : : ; Vk. The process operating on Gc basically

runs Dinic's SSSP algorithm. It needs a slight modi�cation because a vertex vi 2 V (Gc)

is really a subgraph on Vi, not an actual vertex. Therefore, rather than vi being either

visited or not, it can be partially visited if Vi is only partially contained in S. The

process operating on Gc proceeds as follows. It visits, by delegating responsibility to

the other processes, all vertices whose distances lie in the interval [0; t), followed by

those that lie in [t; 2t), [2t; 3t), etc. Suppose that the process governing Vi is told to

visit all vertices in Vi whose distances lie in [jt; (j + 1)t). This process is given what

in later sections is called an independent subproblem, meaning that it can be solved

by looking only at Vi and the current tentative distances, i.e. D-values. (Proving

independence is not diÆcult; the argument is essentially the same as that found in the

proof of correctness of Dinic's algorithm.) The process governing Vi could solve its

subproblems using Dijkstra's algorithm, where the heap would contain the D-values of

just those vertices in Vi. However, there is no reason why we cannot apply the same

scheme recursively. We would simply choose a new threshold ti and partition Vi into

Vi;1; Vi;2; : : : ; Vi;ki such that all edges crossing the partition have length at least ti. We
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refer to this recursive partitioning of the vertices as a hierarchy.

It is certainly not obvious how to implement this algorithm eÆciently. There

is the question of whether a good hierarchy can be computed eÆciently, and | this

is a separate issue | whether the algorithm admits a fast implementation, given a

suÆciently good hierarchy. One of our primary concerns is whether there is an inherent

sorting bottleneck in the approach. If there is such a bottleneck, then all hierarchy-based

algorithms are doomed to have running times of 
(m+n logn), the same as Dijkstra's.

Of course, the absence of any kind of information-theoretic bottleneck does not imply

a faster hierarchy-based shortest path algorithm, but it would suggest the existence of

one.

In subsequent chapters we give a nearly-complete answer to the sorting bottleneck

question, though it is more complicated than simply yes or no. Several factors inuence

the complexity of the hierarchy-type shortest path algorithms, including:

� Whether the graph is directed or undirected.

� Whether the ratio of the maximum-to-minimum edge length is large, as a function

of the number of vertices.

� Whether a good hierarchy is given or needs to be computed from scratch. (Com-

puting it from scratch can involve a sorting bottleneck.)

� Whether SSSP is to be computed once, or repeatedly on the same graph.

� Whether the topology and edge-length distribution of the input graph is typical.

Typical graphs are very di�erent than our worst-case examples.
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Chapter 3

Hierarchies & Shortest Paths

The central idea in hierarchy-type algorithms is that of dividing the SSSP problem into

a series of independent subproblems. In this chapter we de�ne precisely this notion of in-

dependence, and show how independent subproblems can be created and manipulated.1

3.1 Independent Subproblems

Recall that s denotes the source of the SSSP problem. Let X � V denote a set of

vertices. We de�ne dX(s; v) to be the distance from s to v in the subgraph induced by

X (or 1 if X does not contain both s and v.) If I is a real interval, we de�ne XI to

be the set fv 2 X : d(s; v) 2 Ig, that is, those vertices in X whose distances from the

source lie in I.

De�nition 1 Let X and S be sets of vertices and I be a real interval. We will call X

(S; I)-independent if for all v 2 XI , d(s; v) = dS[XI (s; v)

To paraphrase De�nition 1, if X is (S; I)-independent then one can determine

the set XI by examining only the subgraph induced by S [ XI . Suppose that we

discover that X is (S; I)-independent in the context of a Dijkstra-like algorithm, i.e.

one satisfying Invariant 1. Now we can say something stronger: because the D-values

for vertices in XI � S encode all the relevant information about the subgraph induced

on S, one can determine XI by examining only the subgraph induced by XI � S and

the D-values of those vertices.

1This chapter's notation and exposition are taken largely from two papers: (1) S. Pettie, A faster
all-pairs shortest path algorithm for real-weighted sparse graphs, Proc. 29th Int'l Colloq. on Automata,
Languages, and Programming (ICALP), pp. 85{97, 2002, full version to appear in Theoretical Computer

Science, and (2) S. Pettie and V. Ramachandran, Computing shortest paths with comparisons and
additions, Proc. 13th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 267{276, 2002. The
results of Section 3.6.3 will appear in the journal version of (2).
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A t-partition, de�ned below, is a key tool for creating new, smaller independent

subproblems given a larger one.

De�nition 2 Let X be a set of vertices. The sequence (X1;X2; : : : ;Xk) is a t-partition

of X if fXigi is a partition of X and for every edge (u; v) where u 2 Xi; v 2 Xj, and

j < i, we have `(u; v) � t.

Note the asymmetry in De�nition 2. In a t-partition only \backward" edges

crossing the partition have length at least t; \forward" edges can have any length.

Lemma 1 shows the relationship between t-partitions and independent subproblems. It

generalizes some of the Lemmas given by Thorup [196].

Lemma 1 Suppose that X is (S; [a; b))-independent. Let (X1; : : : ;Xk) be a t-partition

of X, let I be the interval [a;minfa+ t; bg), and let Si = S [XI
1 [XI

2 [ � � � [XI
i . Then

1. Xi+1 is (Si; I)-independent

2. X is (Sk; [a+ t; b))-independent

Proof: First consider Part (2). The assumption is that X is (S; [a; b))-independent,

meaning that for v 2 X [a;b), dS[X[a;b)(s; v) = d(s; v). Since Sk = S [ XI , we have

S[X [a;b) = Sk[X [a+t;b), which immediately implies that X is (Sk; [a+t; b))-independent

as well. Note that the interval [a+ t; b) may be empty if b � a+ t.

Now consider Part (1). The set Xi+1 is (Si; I) independent if for any v 2 XI
i+1,

d(s; v) = dSi[XI
i+1

(s; v). Suppose that this is not the case, that is, that every shortest s{

to{v path is not contained in Si[XI
i+1 = Si+1. Let w be the last vertex on such a shortest

path which is not in Si+1. The independence of X w.r.t. (S; [a; b)) implies w 2 X, and

the inequalities d(s; w) � d(s; v) < minfa+ t; bg further imply w 2 (Sk � Si+1). By the

de�nition of a t-partition we have that d(w; v) � t. Together with the inequality d(s; v) =

d(s; w) + d(w; v) < minfa+ t; bg we also have that d(s; w) < a. We now have enough to

obtain a contradiction. For any shortest s{to{v path we proved the existence of a w on

this path that is neither in S nor in X [a;b), implying that d(s; v) < dS[X[a;b)(s; v). This

directly contradicts our initial assumption that X is (S; [a; b))-independent.

2

Lemma 1 is essentially describing a divide and conquer scheme for SSSP. The idea

is to �nd an independent subproblem on the vertex setX, divide it into a series of smaller

independent subproblems, with the aid of a t-partition, then solve the smaller problems

recursively. There are several major obstacles to implementing this general algorithm

eÆciently, which we will address in subsequent chapters. The �rst order of business is

computing and representing t-partitions. All of our shortest path algorithms have the

property that the choice of t-partitions does not depend on the source vertex. Therefore,

for any input graph we shall compute, once and for all, a single set of t-partitions, which

we represent using a rooted tree, or hierarchy.
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3.2 A Strati�ed Hierarchy

A hierarchy is a rooted tree where there is a one-to-one correspondence between its leaves

and the graph's vertices. There is a natural correspondence between hierarchy nodes

and graph objects. We will frequently use the same notation to refer to leaf-nodes and

graph vertices, and will treat internal nodes as representing either sets of vertices or the

induced subgraphs of those vertices. If x is an internal node we let V (x) be the vertices

represented by x, i.e. the set of leaf-nodes descending from x. We denote the parent of

x in the hierarchy by p(x), and let child(x) = (x1; x2; : : : ; xdeg(x)) denote the children

of x, from left to right, where deg(x) = jchild(x)j. The jV (x)j and deg(x) statistics

provide two ways to measure how \big" a node x is. Two others will come in handy.

We let diam(x) represent an upper bound on the diameter of V (x), where diameter is

de�ned as maxu;v2V (x) fd(u; v)g. We associate with x a real number norm(x), and refer

to the ratio diam(x)=norm(x) as the normalized diameter of x. We assign norm-values

to hierarchy nodes with several objectives in mind, namely the correctness, speed, and

simplicity of our shortest path algorithms. Since the main concerns of this chapter are

only correctness and simplicity, we can say that norm-values are assigned to satisfy two

conditions.

1. Either norm(p(x)) is an integer multiple of norm(x) or norm(p(x)) > diam(x).

2. Let child(x) = (x1; : : : ; xdeg(x)). Then (V (x1); : : : V (xdeg(x))) is a norm(x)-

partition of V (x).

Item (1) allows us to avoid great complications in our shortest path algorithms,

but is otherwise of no interest. Item (2), in conjunction with Lemma 1, will clearly be

useful in the creation of independent shortest path subproblems.

Our system for assigning norm-values is best explained by demonstrating why the

simple schemes used by Thorup and Hagerup [196, 98] do not work in the comparison-

addition model. Thorup and Hagerup always choose their norm-values from the set

f2igi�0; a node with norm-value 2i then corresponds to a connected component [196]

(or strongly connected component [98]) in the graph restricted to edges with length

less than 2i+1. In the comparison-addition model, however, the set f2igi�0 cannot be

generated because there is no sequence of operations (that is, additions) that generates

the constant 1. This, of course, is no great obstacle. We can simply choose our norm-

values from the set f`1 � 2igi�0, where `1 denotes the minimum non-zero edge length

in the graph. In other words, we are just using the old system, under the irrefutable

assumption that `1 = 1. Although this system should work well in practice, there is a

theoretical objection to it that must be addressed. In the comparison-addition model the

time required to generate `1 �2i is exactly i, so if the ratio of the maximum-to-minimum
edge length is r, generating the largest norm-value could take log r time, which is
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unbounded2 in terms of m and n. Our solution is to build a strati�ed hierarchy SH,
where each stratum corresponds to a di�erent normalizing edge length. For example,

the scheme with norm-values from f`1 � 2igi�0 would have one stratum, with `1 as its

normalizing edge length. We ensure that the ratio of two norm-values within a stratum

is bounded as a function of n, and that the strata are well-separated in a certain sense.

We now de�ne the structure of our strati�ed hierarchy SH. First, let `1; : : : ; `m
be the non-zero edge lengths of the graph in sorted order. We choose, as our set of

normalizing lengths,

f`1g [ f`j : `j > 2n � `j�1g [ f1g
That is, every normalizing length is much larger than any shorter edge lengths. Let `rk
be the kth smallest normalizing length. The nodes of SH are indexed by their stratum

and level within the stratum. For stratum k the levels run from 0 to the maximum i

such that `rk �2i < `rk+1
. The stratum k, level i nodes of SH correspond to the strongly

connected components 3 (SCCs) in the graph restricted to edges with length less than

`rk � 2i. If x is such an SH-node then norm(x) is de�ned as:

norm(x)
def
= `rk � 2i�1; where x is at stratum k, level i (3.1)

A node x is an ancestor of y if V (x) � V (y) and x is higher in SH than y (higher

stratum of same stratum and higher level). If V (x) = V (y), where y is a descendant of x,

then we will call x irrelevant. In the tree representation of SH we shall ignore irrelevant

nodes, that is, nodes with one child. Henceforth, \x 2 SH" means x is a relevant node

in SH. The notation p(x) and child(x) should be interpreted with respect to the tree

of relevant SH nodes. That is, p(x) is the nearest relevant ancestor, and child(x) is a

sequence of nodes (xi)i for which p(xi) = x. Figure 3.1 gives an example input graph

and its associated SH.
If fxig1�i�deg(x) is the set of x's children, we set child(x) = (x1; x2; : : : ; xdeg(x))

so that (V (x1); V (x2); : : : ; V (xdeg(x))) is a norm(x)-partition of V (x). Lemma 2 guar-

antees that such a left-to-right ordering of x's children always exists.

Lemma 2 Let x 2 SH and fxigi be the children of x. Then for at least one permutation

�, (V (x�(1)); V (x�(2)); : : : ; V (x�(deg(x)))) is a norm(x)-partition of V (x). Moreover,

if the graph is undirected then then all such permutations give norm(x)-partitions of

V (x).

2In the algorithms of Thorup and Hagerup [196, 98] log r is also unbounded in terms of m and n,
but, by assumption, not in terms of the machine's word size. Therefore the [196, 98] algorithms get
around this issue by assuming that the power of the machine scales with the largest edge-length, not
with m or n.

3A strongly connected component is a maximal subgraph such that any vertex in the subgraph is
reachable from any other.
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Figure 3.1: Above: the input graph. Circled edge lengths represent \normalizing"
lengths. Below: the associated SH. It has two strata, based on the normalizing lengths
`r1 = 1:5 and `r2 = 100. A stratum k, level i node x has norm(x) = `rk � 2i�1, and
represents a strongly connected component of the graph, when restricted to edges with
length less than 2 � norm(x). Irrelevant SH-nodes (those having one child) are not
shown in the �gure.

Proof: Let G(x) be the subgraph of G induced by V (x). By de�nition G(x) is strongly

connected, even when restricted to edges with length less than 2 � norm(x). Let Gc(x)

be the graph derived from G(x) by contracting G(x1); G(x2); : : : ; G(xdeg(x)) and re-

taining only edges with length less than norm(x). There is a natural correspondence

between vertices in Gc(x) and the children of x. We claim that (a) Gc(x) is acyclic

and (b) If we let �(i) be the index of the ith vertex in a topological sort of Gc(x), then

(V (x�(1)); : : : ; V (x�(deg(x)))) is a norm(x)-partition of V (x).

Consider claim (a). By de�nition V (xi) is a maximal strongly connected set, in

the graph restricted to edges with length less than norm(x). If xi were contained in a

cycle in Gc(x), then the maximality of V (xi) would be violated, since all edges in Gc(x)

have length less than norm(x).

We turn to claim (b). Assume w.l.o.g. that �(i) = i. If the claim were not true

then by the de�nition of t-partition (De�nition 2) there must be an edge e = (xj ; xi)

where i < j and `(e) < norm(x). However, `(e) < norm(x) implies e was included in
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Gc(x), which implies that j < i { a contradiction { since xj must precede xi in every

topological sort.

Now suppose that G were undirected, or rather, G is a directed graph where the

existence of an edge (u; v) implies an edge (v; u) with equal length. Claim (a) above

states that Gc(x) is acyclic. This implies that Gc(x) has no edges, since the existence

of one edge immediately implies the existence of a cycle of length 2. Therefore, any

permutation � corresponds to a topological sort of Gc(x).

2

Recall that diam(x) represented an upper bound on the diameter of V (x). For

any leaf-node z, setting diam(z) = 0 is clearly satisfactory. We compute diam(x) for

all internal SH-nodes with the following recursive de�nition.

diam(x) = 2norm(x) � (deg(x)� 1) +
X

y 2child(x)

diam(y) (3.2)

Lemma 3, given below, summarizes all the relevant properties of SH used in our

algorithm's analysis and proof of correctness. Parts 2 and 4 are implicit in [196, 98];

weaker versions of Part 6 were also used in [196, 98].

Lemma 3 SH has the following properties:

1. SH has a single root, denoted root(SH).
2. Let child(x) = (x1; x2; : : : ; xdeg(x)). Then (V (x1); : : : ; V (xdeg(x))) is a norm(x)-

partition of V (x).

3. Either norm(p(x)) is an integer multiple of norm(x) or diam(x) < norm(p(x)).

4. X
x2SH

deg(x) < 2n� 1

5.

For any x 2 SH,
diam(x)

norm(x)
< 2n

6. X
x2SH

diam(x)

norm(x)
< 4n

7. ����
�
x 2 SH :

diam(x)

norm(x)
� k

����� < 4n

k
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8. SH is constructible in O(m log n) time.

Proof:

(1) The input graph may or may not be strongly connected. However, we will interpret

the graph as being complete: any edges not appearing in the input implicitly have length

1. Since we included 1 as one of the normalizing lengths, there is some (possibly

irrelevant) node x such that norm(x) =1 and V (x) = V .

(2) See Lemma 2.

(3) If p(x) and x are in the same stratum, then clearly norm(p(x)) is a multiple of

norm(x). If norm(p(x)) = `rk � 2i, where i � �1, and x is not in stratum k, then

diam(x) < (jV (x)j � 1) � 2norm(x) < n � `rk=2n � norm(p(x)).

(4) Every relevant SH-node has at least two children. The sum counts every relevant

SH-node (except the root) exactly once.

(5) V (x) is a strongly connected set, even when restricted to edges with length less than

2norm(x). Therefore, diam(x) < jV (x)� 1j � 2norm(x) < 2n � norm(x).
(6) Let zj denote the jth ancestor of z 2 SH. Since the norm-value of a node is no more
than half that of its parent (see Equation 3.1), we have norm(z)=norm(zj) � 2�j. We

write z desc. x to mean z is a (not necessarily proper) descendant of x in SH. Using

the de�nition of diam from Equation 3.2 we can bound the sum as follows.

X
x2SH

diam(x)

norm(x)
=

X
x2SH

2norm(x) � (deg(x)� 1) +
P

y2child(x) diam(y)

norm(x)

=
X
x2SH

X
z desc. x

2norm(z) � (deg(z)� 1)

norm(x)

=
X
z2SH

X
j�0

2norm(z) � (deg(z)� 1)

norm(zj)

<
X
z2SH

1X
j=0

deg(z) � 1

2j�1

=
X
z2SH

4 � (deg(z)� 1) < 4n

(7) Follows from Part 6.

(8) We construct SH using essentially the same algorithm found in [98]. The idea is

to determine those nodes in the \middle" level of SH, then �nd those nodes above the

middle and below the middle recursively. As in [98] we use Tarjan's linear-time algorithm

for �nding SCCs. We �rst sort the edge-lengths and determine the O(m log n) possible

norm-values in O(m log n) time. Let norm1 < norm2 < � � � < normk be the possible

norm-values and G0 be the input graph G restricted to edges with length less than
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2normbk=2c. We �nd the SCCs of G0 in O(m + n) time; let fCigi be the set of SCCs
and Gc be derived from G by contracting the fCigi into single vertices. The fCigi
correspond to SH-nodes with norm-values equal to normbk=2c. We proceed recursively

on the fCigi (�nding SH-nodes with norm-values in the range norm1::normbk=2c�1)

and on the graph Gc (for norm-values in the range normbk=2c+1::normk). There are

log(m log n) = O(logn) levels of recursion and for each level the number of edges and

vertices for subgraphs at that level is no more than m and 2n, respectively. Therefore,

the total time required is O(m log n).

2

3.3 A Generalized Hierarchy-Type Algorithm

The hierarchy-type algorithms are Dijkstra-like in the sense that they �x the distance of,

or visit, vertices one by one, while maintaining Invariant 1. We generalize, somewhat,

the notions of visit and tentative distance used in Dijkstra's algorithm. Recall that the

D-value of a vertex is its tentative distance from the source. We de�ne the D-value of

an SH-node as the minimum over its constituent vertices:

D(x)
def
= min

v2V (x)
fD(v)g; where x 2 SH

Note that the D-value of a leaf node is the same as its corresponding vertex.

We compute SSSP with a recursive algorithm called Generalized-Visit, given

in Figure 3.2. Applied to a leaf-node of SH, Generalized-Visit works just like the

usual visit routine: it visits the leaf's associated vertex, and updates tentative distances

to accord with Dijkstra's Invariant 1. However, Generalized-Visit can be used to

solve any independent subproblem of SSSP. It takes two arguments: an SH-node x and

an interval I with the guarantee that V (x) is (S; I)-independent, where S is the current

set of visited vertices. Its only task is to visit the vertices in V (x)I and update the

tentative distances, restoring Invariant 1. Using the Generalized-Visit procedure, we

can compute SSSP from source s as follows. We set S := ;, D(s) := 0, and D(v) :=1
for all v 6= s, then call Generalized-Visit(root; [0;1)), where root = root(SH).
Invariant 1 is clearly satis�ed w.r.t. S = ;, and V (root) = V is clearly (;; [0;1))-

independent, so the input guarantees for the initial call to Generalized-Visit are

met. After the call to Generalized-Visit(root; [0;1)), Invariant 1 will hold w.r.t.

S � V (root)[0;1) = V , implying D(v) = d(s; v) for all v 2 S = V .

In each call to Visit there are two cases, depending on whether x is a leaf node

or an internal node of SH. Suppose x is a leaf and V (x) = fvg. Because we maintain
Invariant 1, deciding whether v 2 V (x)I is equivalent to deciding if D(v) 2 I, which is

simple to do. In the general case x is an internal node. We determine V (x)I by making

a series of recursive calls to children of x, using subintervals of I of width norm(x).
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Generalized-Visit(x; [a; b))

Speci�cations: It is assumed that V (x) is (S; [a; b))-independent, where S
is the set of visited vertices at the time of the call, and that Dijkstra's
Invariant 1 is satis�ed. Upon completion all vertices in V (x)[a;b) will have
been visited.

1. If x is a leaf and D(x) 2 [a; b), then set S := S [ fxg and relax all of x's
outgoing edges.

2. If Visit(x; �) is being called for the �rst time, assign intervals to x's buck-
ets. Bucket i is labeled

[tx + i � norm(x); tx + (i+ 1)norm(x))

where tx is set to

tx =

(
D(x) if D(x) + diam(x) < b

b� norm(x)
l
b�D(x)
norm(x)

m
otherwise

3. Set ax =

�
tx if this is the �rst call to Visit(x; �)
a otherwise

While ax < b and V (x) 6� S
While bucket [ax; ax + norm(x)) is not empty

Let y be the leftmost child of x in bucket [ax; ax + norm(x))
Visit(y; [ax; ax + norm(x)))
Remove y from its bucket
If V (y) 6� S, put y in bucket [ax + norm(x); ax + 2norm(x))

ax := ax + norm(x)

Figure 3.2: A general divide-and-conquer algorithm for single-source shortest paths.
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The crucial property of SH that we use is that the ordered set child(x) represents a

norm(x)-partition of V (x) | see Lemma 3(2). Together with Lemma 1 we are able to

guarantee that each recursive call represents an independent subproblem.

To bound the number of recursive calls, it is important not to make too many

trivial ones, that is, calls which cause no vertex to be visited. To that end we associate

with x an array of buckets that will contain the children of x. The buckets represent

consecutive real intervals of width norm(x) and the bucket array represents an interval

spanning [d(s; x); d(s; x) + diam(x)] where d(s; x) = d(s; V (x)) is the distance to any

node in V (x). When Generalized-Visit(x; �) is called for the �rst time we choose

a suitable starting point tx and label each bucket with its associated interval: the ith

bucket is assigned the interval [tx + inorm(x); tx + (i+ 1)norm(x)). We will choose tx

such that tx � d(s; x) < tx + norm(x). Therefore, at most
l
diam(x)
norm(x)

m
+ 1 buckets are

required. For notational convenience we may refer to a bucket by its associated interval.

We will say x is inactive until Generalized-Visit(x; �) is called, and active af-

terward. We will assume, for the time being, that Invariant 2 is maintained.

Invariant 2 (Bucket Invariant) Let x be an active SH-node. A child y of x appears

in one of x's buckets, unless D(y) = 1 or V (y) � S, in which case y appears in no

bucket. Every node y appearing in bucket [q; q + norm(x)) is either an inactive child

such that D(y) 2 [q; q + norm(x)), or an active child such that V (y)[0;q) � S, but

V (y)[q;q+norm(x)) 6� S.

Suppose that in the call to Generalized-Visit(x; I), I spans the intervals of

k of x's buckets, say, buckets bj+1; bj+2; : : : ; bj+k. Generalized-Visit performs up

to k iterations. In the ith iteration it repeatedly locates the leftmost4 child y of x in

bucket bj+i, performs a recursive call on y, whose interval argument is the same interval

associated with bj+i, then restores the Bucket Invariant 2. This involves either moving

y to the next bucket if V (y) is not yet contained in S, or removing y from the bucket

array altogether if V (y) � S. If, after processing some bucket, V (x) � S, the current

call to Generalized-Visit(x; �) halts. In the next section we prove the correctness of

this algorithm. Many of the �ner points in the analysis revolve around our choice of tx
in Step 2 of Generalized-Visit.

3.4 Correctness of Generalized-Visit

In this section we prove that Generalized-Visit works correctly. Speci�cally, we show

that Generalized-Visit(x; I) visits (adds to the set S) all vertices in V (x)I . We as-

sume that Dijkstra's Invariant and the Bucket Invariant (1 and 2) are magically updated

4Recall that the set child(x) has some left-to-right ordering.
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behind the scenes. That is, adding a vertex to S causes the D-values of all vertices and

SH-nodes to be updated, restoring Dijkstra's Invariant, and causes some number of

SH-nodes to be moved to di�erent buckets in accordance with the Bucket Invariant.

In Section 3.5 we discuss the problem of eÆciently implementing Generalized-Visit;

o�-the-shelf data structures and techniques seem inadequate. In Chapters 4 and 5 we

develop shortest path algorithms for directed and undirected graphs, respectively, based

on more sophisticated implementations of Generalized-Visit.

The following lemmas look at Generalized-Visit from the perspective of some

SH-node x. They assume implicitly that at the call Generalized-Visit(x; I), V (x) is
(S; I)-independent. They also assume that the initial call wasGeneralized-Visit(root; [0;1)).

Lemma 4 In any two calls Generalized-Visit(x; I1) and Generalized-Visit(x; I2),

jI1j = jI2j = norm(p(x)).

Proof: All recursive calls on x are made from calls on p(x). Moreover, all recursive

calls from p(x) have interval arguments of width norm(p(x)).

2

Lemma 5 If Generalized-Visit(x; I) is the �rst call to an SH-node x, then we have

D(x) = d(s; x) 2 I.

Proof: The lemma clearly holds for the initial call Generalized-Visit(root; [0;1)),

so consider the case when x 6= root. Before the recursive callGeneralized-Visit(x; I),

x must have been in p(x)'s bucket spanning the interval I. Since x was inactive before

the call, the Bucket Invariant 2 guarantees that D(x) 2 I. Together with the assumption

that V (x) is (S; I)-independent we have the equality D(x) = d(s; x).

2

Lemma 6 Consider the variables ax and b in any call to Generalized-Visit(x; [a; b)).

Either norm(x) divides b� ax or V (x)[0;b) = V (x).

Proof: In the �rst call to Generalized-Visit(x; [a; b)), ax is set to tx. Suppose that

tx = D(x), because D(x) + diam(x) < b. By Lemma 5, D(x) = d(s; x), implying

that V (x)[0;b) = V (x). If, on the other hand, tx is set to b � norm(x)
l
b�D(x)
norm(x)

m
, then

norm(x) divides b�tx and, at least initially, b�ax as well. Since ax is only incremented
in units of norm(x), b� ax remains divisible by norm(x). We have proved the lemma

for the �rst recursive call on x.

Now suppose that Generalized-Visit(x; [a; b)) is not the �rst recursive call on

x, hence we set ax := a initially. According to Lemma 3(3) either norm(x) divides

norm(p(x)) or diam(x) < norm(p(x)). Suppose norm(x) divides norm(p(x)). By

Lemma 4, norm(p(x)) = b � a and therefore norm(x) divides b � ax initially, and,
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with the observation that ax is incremented in units of norm(x), ever after. Now

suppose diam(x) < norm(p(x)). Since this is not the �rst recursive call on x, we

know, by Lemma 5, that d(s; x) < a and therefore that d(s; x) +diam(x) < b, implying

V (x)[0;b) = V (x).

2

Lemma 6 is a little technical. We use it to show that the intervals generated by

a node and its parent are properly aligned. Consider I1, the set of intervals passed in

recursive calls from p(x) to x, and I2, the set of intervals passed from x to its children.

We require that intervals in I1 and I2 have widths norm(p(x)) and norm(x) respec-

tively, and that they each cover the interval [d(s; x); d(s; x) + diam(x)]. Furthermore,

each interval in I2 must be wholly contained in one interval from I1. Because we use

a strati�ed hierarchy, norm(p(x)) is not necessarily a multiple of norm(x). Therefore,

these requirements can only be satis�ed if diam(x) < norm(p(x)), i.e., if norm(x) does

not divide norm(p(x)) then it is impossible for I1 to contain more than two intervals.

Our choice of tx in Step 2 of Generalized-Visit is certainly not profound, but it does

greatly simplify the algorithm's analysis and proof of correctness.

The following Lemma proves that Generalized-Visit works as advertised. We

point out, since it may not be obvious on the �rst reading, that the proof of Lemma 7

is composed of three induction arguments. There is an induction over time, where we

assume previous recursive calls behaved properly. There is an induction over problem

size, where we assume certain future recursive calls behave properly, and �nally, a

double-induction over the two while-loops in Step 3 of Generalized-Visit, addressing

the current recursive call.

Lemma 7 After the call to Generalized-Visit(x; [a; b)), V (x)[a;b) � S.

Proof: We assume inductively that V (x) is (S; [a; b))-independent whenGeneralized-

Visit(x; [a; b)) is called. This clearly holds for the �rst recursive call, when x = root,

[a; b) = [0;1), and S = ;.
Consider the case when x is a leaf in SH, that is, a vertex. Generalized-Visit

includes x in S precisely whenD(x) 2 [a; b). According to the de�nition of independence

D(x) 2 [a; b) implies D(x) = d(s; x), so in this case the lemma is satis�ed.

Suppose, now, that x is an internal node in SH. We will assume, inductively, that

each time through the outer while loop in Step 3 of Generalized-Visit, V (x)[0;ax) � S

and V (x) is (S; [ax; b))-independent w.r.t. the current values for ax and S. Let us

examine the base cases, concerning the �rst entry into the outer while loop. If ax
is set to tx initially, then ax � D(x) = d(s; x), implying that V (x)[0;ax) = ; � S.

Furthermore, since V (x) is (S; [a; b))-independent, it is (S; [ax; b))-independent as well.

The other case is when ax is set to a on entry into the outer while loop. In this case

V (x)[0;ax) � S follows from our inductive assumption (w.r.t. the parent of x in SH) and
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the (S; [a; b))-independence of V (x) has already been assumed. Since ax is incremented

by precisely norm(x) after each iteration of the outer while loop, to complete the

induction we will show that the recursive calls in the inner while loop cause all vertices

in V (x)[ax;ax+norm(x)) to be visited.

Consider the entry into the inner while loop in Generalized-Visit, and let

I = [ax; ax + norm(x)), that is, the current bucket is labeled I. Imagine that we

consider each node in child(x) = (xj)j in left-to-right order. We will show two things:

�rst, that when xj is considered V (xj) is (S; I)-independent for the current value of

S. Therefore, if the recursive call Generalized-Visit(xj; I) is made, we can assume

inductively that it visits all vertices in V (xj)
I . Second, if no recursive call is made on

xj (meaning xj never appears in the bucket labeled I) then V (xj)
I � S = ;. This will

establish the correctness of the inner while loop.

We claim that when xj is considered V (xj) is (S; I)-independent. Let S
0 be the set

S just before this iteration of the outer while loop, and assume inductively that when

xj is considered S = S0 [ V (x1)
I [ � � � [ V (xj�1)

I . Lemma 3(2) states that (V (xi))i is

a norm(x)-partition of V (x). Together with the assumption that V (x) is (S0; [ax; b))-

independent and Lemma 1(1), we have that V (xj) is (S; [ax;minfax + norm(x); bg))-
independent. However, we need to show that it is (S; I)-independent, since it is the

interval I = [ax; ax + norm(x)) that would be passed to the recursive call. By Lemma

6, either norm(x) divides b � ax or V (x)[0;b) = V (x). If norm(x) divides b � ax then

I = [ax;minfax + norm(x); bg) since we only entered the outer while loop if ax < b,

implying ax � b � norm(x). On the other hand, if V (x)[0;b) = V (x), then V (xj)

being (S; [ax;minfax + norm(x); bg))-independent implies that it is (S; I)-independent
as well. To complete the induction we must show that after xj is considered, S =

S0 [ V (x1)
I [ � � � [ V (xj)

I . If we perform the recursive call Generalized-Visit(xj; I)

then we can assume inductively that vertices in V (xj)
I are visited. Therefore, we must

only prove that if no such recursive call is made, then V (xj)
I � S = ;. We perform

recursive calls on all children that end up in bucket I. By Invariant 2, if xj is not in

bucket I when it is considered, then either D(xj) � ax+norm(x) (implying V (xj)
I = ;)

or V (xj) � S; in either case V (Cxj )
I � S = ;. This completes the induction for the

inner and outer while loops.

The outer while loop in Step 3 terminates either because ax � b or V (x) � S, both

of which imply V (x)[0;b) � S. Therefore, after the call to Generalized-Visit(x; [a; b)),

all vertices in V (x)[a;b) are visited. This establishes the lemma.

2
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3.5 Implementation Details

An eÆcient implementation of the Generalized-Visit routine must solve two data

structural problems, corresponding to Dijkstra's Invariant 1 and the Bucket Invariant 2.

Whereas Dijkstra's algorithm only has to maintain the D-values (tentative distances) of

vertices, which is trivial, we must maintain theD-values of hierarchy nodes as well, which

is no longer trivial. The problem of maintaining the Bucket Invariant is not diÆcult,

but maintaining (or simulating) it eÆciently is quite tricky. Each of our shortest path

algorithms uses a di�erent technique for simulating the Bucket Invariant.

We �rst show that the costs of implementing Generalized-Visit are linear in

the number of vertices, assuming Invariants 1 and 2 are maintained behind the scenes.

We must account for two costs: that of performing some number of recursive calls, and

that of computing tx in Step 2, for all x 2 SH.

Lemma 8 For each SSSP computation, the total number of recursive calls to Generalized-

Visit is less than 5n.

Proof: By Lemma 5, if Generalized-Visit(x; I) is the �rst recursive call on x, then

D(x) = d(s; x) 2 I. Together with Invariant 2 and Lemma 4, this implies that each

node x 2 SH is passed to at most
l

diam(x)
norm(p(x))

m
+ 1 recursive calls, where p(x) is the

parent of x in SH. The total number of recursive calls is then

X
x

�
diam(x)

norm(p(x))

�
+ 1 � jSHj+

X
x

�
diam(x)

2norm(x)

�
(3.3)

< jSHj+ n� 1 + 1
2 �
X
x

diam(x)

norm(x)
(3.4)

< 5n (3.5)

Line 3.3 follows from the inequality norm(p(x)) � 2norm(x). Line 3.4 follows

since
l
diam(x)
norm(x)

m
is only strictly greater than diam(x)

norm(x) if x is an internal node of SH, of
which there are no more than n � 1. (If x were a leaf, then diam(x) = 0.) Line 3.5

follows from the bounds jSHj < 2n and, by Lemma 3(6),
P

x
diam(x)
norm(x) < 4n.

2

Lemma 9 The total time required to �nd ftxgx2SH is O(n).

Proof: In Step 2 of Generalized-Visit, tx is set to D(x) if D(x) + diam(x) < b and

b � norm(x)
l
b�D(x)
norm(x)

m
otherwise. Checking whether D(x) + diam(x) < b takes O(1)

time, and computing b� norm(x)
l
b�D(x)
norm(x)

m
takes O( b�D(x)

norm(x) ) time: one simply counts
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back from b in units of norm(x) in order to �nd minfj : b � j � norm(x) � D(x)g.
Given that b �D(x) � diam(x), the total time to �nd all ftxgx2SH is

P
xO(

diam(x)
norm(x)),

which is O(n) by Lemma 3(6).

2

We support an implementation of Generalized-Visit with two abstract data

structures, denoted D and B. D updates the D-values of SH-nodes as dictated by

Invariant 1, and B maintains the bucket arrays of active SH-nodes in accordance with

Invariant 2. Although it is typical to assume that data structures do not talk to each

other, it is conceptually simpler here to think of D and B making queries to each other.

We describe their interactions below, then bound their complexity.

When an edge (u; v) is relaxed in Step 1 of Generalized-Visit, we tell D to

set D(v) := minfD(v);D(u) + `(u; v)g. If this decreases D(v) then it may decrease the

D-values of many ancestors of v in SH as well. Let y be the unique ancestor of v which

is an inactive child of an active node. If D(y) is also decreased then to restore Invariant

2 y may have to be moved to a di�erent bucket. If this is the case then D noti�es B that

D(y) has changed. D also accepts queries to D-values. In particular, when an SH-node
x becomes active B �les each child y of x in its bucket array based on the value of D(y).

The bucketing structure B must also ful�ll the needs of Generalized-Visit. Specif-

ically, in a call to Generalized-Visit(x; �), Generalized-Visit repeatedly requests

the leftmost child of x in the current bucket labeled [ax; ax + norm(x)), and possibly

moves that node to the next bucket, labeled [ax+ norm(x); ax+2norm(x)). Lemmas

10 and 11 bound the complexities of D and B, respectively.

Lemma 10 D can be implemented to run in time �(split-findmin(m;n)) = O(m log�(m;n)),

where split-findmin(m;n) is the decision-tree complexity of the split-�ndmin problem

on m operations on an n-element sequence.

We show below how the split-�ndmin data structure can be used to implement D.
The complexity bounds on split-�ndmin claimed in Lemma 10 are proved in Appendix

A.

The split-�ndmin data structure operates on a collection of disjoint sequences of

elements. Initially, there is one sequence containing all n elements, and each element

has key 1. The following operations are supported.

split(u) Splits the sequence containing u into two sequences, one consisting of those

elements up to and including u, the other sequence taking the rest.

�ndmin(u) Returns the element in u's sequence with minimum key.

decrease-key(u; �) sets key(u) := minfkey(u); �g.
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The elements in the split-�ndmin structure correspond to the leaves of SH and

the keys correspond to D-values. Thus, edge relaxations can be implemented with

decrease-key operations: if (u; v) is to be relaxed, we tell the split-�ndmin structure to

decrease-key(v; D(u)+`(u; v)). The sequences in the split-�ndmin structure correspond

to inactive SH-nodes that are the children of active parents. One can readily verify that

Generalized-Visit only queries the D-values of such nodes; thus, requesting D(x)

translates into the operation �ndmin(u), where u is any leaf in V (x). Whenever a node

x becomes active, we perform splits on the sequence representing x so that the resulting

sub-sequences correspond to x's children. There are clearly no more than m decrease-

keys and O(m + n) splits and �ndmins. In Appendix A we show that the complexity

of split-�ndmin on a RAM is asymptotically equivalent to its decision-tree complexity,

which is O(m log�(m;n)).

Lemma 11 Suppose B is assigned to maintain the bucket arrays of just those nodes in

X � SH. Then B can be implemented in time

O

 
m + n log logn +

X
x2X

deg(x) � log diam(Cx)
norm(x)

!

Proof: Fix some SH-node x 2 X. The Bucket Invariant 2 says that all inactive

children of x are bucketed by their D-values. However, in Generalized-Visit we

only extract x's children from the \current" bucket, hence any structure that places

the correct contents in the current bucket can be said to simulate Invariant 2. We

use the hierarchical bucketing structure from Section 5.1.3 to simulate Invariant 2. The

amortized cost of a decrease-key and an insert are, respectively, O(1) and O(log diam(x)
norm(x)),

where diam(x)
norm(x) represents the maximum number of buckets associated with x. This

structure accounts for the �rst and third term in the claimed running time. The second

term arises out of our need to enumerate the contents of the current bucket in left-

to-right order. We use a van Emde Boas heap [203] to prioritize nodes in the current

bucket. For any child of x the amortized cost of all van Emde Boas operations is

O(log logdeg(x)), which is O(n log logn) over all x 2 X and all children of x.

2

Let us make a few observations. First, the O(n log log n) term in the running

time of Lemma 11 reects the cost of sorting siblings in left-to-right order. However,

by Lemma 2 all such orderings are equally good on undirected graphs. Therefore,

no van Emde Boas heaps are used in the undirected version of Generalized-Visit.

Moreover, the cost of van Emde Boas heaps can be ignored when analyzing the non-

uniform complexity of shortest paths, since they are used to sort discrete data, not real

data.
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The third term in Lemma 11's running time is certainly the most interesting: The

sum
P

x2X deg(x) log diam(x)
norm(x) can be thought of as a measure of the entropy of a speci�c

hierarchy, under two strong assumptions: �rst, that each y 2 child(x) can appear in

each of x's diam(x)=norm(x) buckets with (more or less) equal probability, and second,

that which bucket y appears in is independent of which buckets other nodes appear in.

For X = SH it is fairly easy to force the time bound of Lemma 11 to be 
(m+n log n).

To improve upon it, we must either derive a hierarchy with lower entropy (see Chapter

5) or circumvent the entropy lower bound by exploiting the dependencies among shortest

paths.

Lemma 11 is more useful than it may �rst appear. For instance, if we let X be the

set of hierarchy nodes with small normalized diameter, say all x with diam(x)=norm(x) <

(log n)O(1), then the bound from Lemma 11 is O(m + n log logn). Thus, with low-

diameter nodes being handled by Lemma 11, we are free to deal with high-diameter

nodes by other means. This is exactly the strategy taken by the directed shortest path

algorithm of Section 4.1.

3.6 Lower Bounds

In a comparison-based model of computation, the easiest way to lower bound the com-

plexity of a problem is by a simple information-theoretic argument. In particular, the

logarithm of the number of distinct solutions to the problem gives an immediate lower

bound on the number of comparison operations required to solve it. Unfortunately,

counting distinct solutions does not lead to any non-trivial lower bounds on the SSSP

problem. Indeed, it seems quite plausible that there are no non-trivial lower bounds

for SSSP. Nonetheless, it is still useful to lower bound the complexities of speci�c algo-

rithms or approaches to SSSP. Such lower bounds can tell us why a certain algorithm

or approach is doomed to be suboptimal, and, perhaps, how the bottleneck in such an

approach could be overcome.

We lower bound the complexity of an algorithm in two steps. First, we characterize

the extra information derived by running the algorithm. Second, we lower bound the

complexity of computing that extra information from scratch. The robustness of this

approach depends, of course, on how crucial the extra information is to the algorithm

in question. Consider Dijkstra's algorithm. It computes, besides shortest paths, a

permutation �s of the vertices satisfying Property 1.

Property 1 �s satis�es:

For all u; v 2 V , �s(u) < �s(v) =) d(s; u) � d(s; v)

Any lower bound on the time to compute a �s from scratch that satis�es Property 1

e�ectively lower bounds the complexity of Dijkstra's algorithm. The star graph in Figure
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3.3, for instance, provides a very simple worst-case scenario for Dijkstra's algorithm.

Visiting the vertices in order of distance necessarily involves sorting the edge lengths |

that is, sorting n� 1 arbitrary numbers.

s

Figure 3.3: The star graph. If edge-lengths are permuted at random, �nding a �s
satisfying Property 1 takes log((n� 1)!) = 
(n logn) comparisons.

One is tempted to say that this is a weak lower bound, because it can be cir-

cumvented by an algorithm that does not satisfy Property 1 but is, but any reasonable

person's estimate, an implementation of Dijkstra's algorithm. The algorithm is, namely,

to contract edges not on any cycle and run Dijkstra's algorithm on whatever is left.

The refutation to this argument is that the star graph is not claimed to be a hard

instance of SSSP but the kernel of hard instances for Dijkstra's algorithm. Therefore,

the lower bound applies not to one graph but any graph that has, embedded in it in some

way, a small set of large star graphs. It is often the case that simple worst-case graphs

translate into strong lower bounds and complicated ones into weaker lower bounds.

In this Section we give a characterization of all hierarchy-type algorithms that par-

allels Property 1's characterization of Dijkstra's algorithm. Using slightly more compli-

cated hard kernel graphs than the star graph of Figure 3.3, we show that such algorithms

cannot compute SSSP in o(n log n) time. This lower bound also holds for undirected

graphs, though it can only be attained on unusually weighted graphs, where the ratio

of the maximum to minimum edge-length is large.

3.6.1 Characterization of Hierarchy-Type Algorithms

The permutation �s from Property 1 simply corresponds to the order in which vertices

are visited in Dijkstra's algorithm. All Dijkstra-like algorithms (those maintaining Di-

jkstra's Invariant 1) can therefore be characterized by the restrictions placed on their

allowable permutations. Property 2, given below, de�nes one such restriction that is

intrinsic to all existing hierarchy-based algorithms. Before stating it we need some

additional notation.
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Let cycles(u; v) be the set of all cycles, not necessarily simple, containing vertices

u and v. For instance, on an undirected graph the cycle could follow a path from u to

v then retrace its steps from v to u. We de�ne sep(u; v) as:

sep(u; v) = min
C 2 cycles(u;v)

max
e 2 C

`(e)

To see the connection between the sep-values and SH, notice that Rt(u; v) � (sep(u; v) �
t) is an equivalence relation, and that the equivalence classes of Rt correspond to the

strongly connected components of the graph restricted to edges with length at most t.

Moreover, as t varies Rt de�nes a set of laminar relations. That is, Rt(u; v)) Rt0(u; v)

if t0 > t. Therefore, any set of relations fRtigi, can be represented by a rooted tree, or

hierarchy.

Observation 1 gives us a cleaner interpretation of sep-values when the graph is

undirected. Thorup [196] makes a similar observation, although he never uses the idea

of a sep function.

Observation 1 If the graph is undirected, sep(u; v) equals the length of the longest edge

on the minimum spanning tree path connecting u and v.

Regardless of whether the graph is undirected or directed, all hierarchy-based

algorithms generate a permutation �s satisfying Property 2, given below. We prove

that Generalized-Visit satis�es Property 2 in Lemma 12.

Property 2 If sep(u; v) > 0 then �s satis�es:

d(s; v) � d(s; u) + sep(u; v) ) �s(u) < �s(v)

Is there a sorting bottleneck inherent in Property 2? The short answer is yes.

However, the nature of the sorting bottleneck depends, to a large extent, on the little

details. For instance, suppose we consider, besides m and n, a new parameter r repre-

senting a bound on the ratio of any two edge lengths. In Sections 3.6.2 and 3.6.3 we

show that our lower bounds for directed and undirected graphs become, respectively,


(minfn logn; n log rg) and 
(minfn log n; n log log rg). In other words, to induce an


(n logn) lower bound r must be exponential in n for undirected graphs, but only poly-

nomial for directed ones. As we show in Chapter 5, both of these bounds are, somewhat

surprisingly, tight.5

5Actually, the undirected bound is tight only if r is not in the vicinity of �(m;n), which is excep-
tionally small.
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We show that undirected graphs are qualitatively easier in another respect. In

Property 2, notice that the sep(u; v) term is independent of the source s. From the per-

spective of an algorithm computing many shortest paths on the same graph,6 computa-

tion relating to sep-values may be considered a one-time cost, whereas computing SSSP

given the sep-values represents the marginal cost of computing SSSP.7. For directed

graphs, we show that our lower bound holds even if all sep-values (and any functions

thereof) are known a priori. This is in contrast to undirected graphs, where the only

obstacle to computing SSSP in near-linear time is computing (or approximating) the

sep function.

sep known sep unknown

Undirected SSSP 
( m ) 
( m + minf n log log r; n log n g )

Directed SSSP 
( m + min f n log r; n logn g )

Figure 3.4: Lower bounds on SSSP algorithms satisfying Property 2 in the comparison-addition
model. The parameter r bounds the ratio of any two non-zero edge lengths.

Lemma 12 Generalized-Visit generates a permutation of the vertices satisfying Prop-

erty 2.

Proof: The permutation named in the lemma is, of course, the order in which vertices

are visited by Generalized-Visit. Let u; v be leaves of SH (i.e. graph vertices),

let x = LCA(u; v), and let u0; v0 be the children of x that are ancestors of u and v,

respectively. By the de�nition of SH, norm(x) � sep(u; v). Now consider the recursive

calls on u0 and v0 that caused u and v to be visited, say Generalized-Visit(u0; Iu)

and Generalized-Visit(v0; Iv), where jIuj = jIvj = norm(x). If d(s; v) � d(s; u) +

sep(u; v) � d(s; u) + norm(x) then Iu 6= Iv, implying Generalized-Visit visits u

before v.

2

We present our directed and undirected lower bounds in Sections 3.6.2 and 3.6.3,

respectively. Figure 3.4 summarizes these results.

6As a concrete example, the website MapQuest claims to serve 10 million requests a day (many
shortest path queries) on a graph (the US road network) that rarely changes.

7One may read \compute sep-values" as \compute SH" or \compute a good hierarchy" since SH
is just a very compact structure for representing (approximate) sep-values. In particular, if u; v are
leaf-nodes in SH and x = LCA(u; v) then sep(u; v) 2 [norm(x); 2norm(x)).
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3.6.2 Lower Bound: Directed Graphs

We will say that an SSSP algorithm satis�es Property 2 if, in addition to computing

SSSP, it computes a permutation �s satisfying Property 2. In this section we will also

assume a slightly more powerful computation model. Besides comparisons, we will

assume that any operation mapping tuples of reals to tuples of reals can be performed

at unit cost.

Theorem 1 Suppose sep(u; v) is already known, for all vertices u; v. Any directed

SSSP algorithm satisfying Property 2 performs 
(m+minfn log r; n log ng) operations,
where the source can be any of n � o(n) vertices and r bounds the ratio of any two

non-zero edge-lengths.

Proof: Clearly every edge length must participate in at least one operation. This

gives us the 
(m) lower bound. The rest of the proof is devoted to showing that

minfn log r; n log ng comparisons are required. In particular, we give a �xed graph

(depending on n and r) and a set of possible edge-length functions L. We show that

any SSSP algorithm satisfying Property 2 must decide which length function was chosen,

implying a lower bound of log jLj.
A permutation of the vertices is said to be compatible with a certain edge-length

function if it satis�es Property 2.

s

s

n − k  edges, connected to the  n − k  "bush" vertices.
Edge lengths are of the form  j * UNIT,  −1 < j < k.

Solid edges have UNIT length

n
 −

 k  ve
rtice

s

k  vertices

. . .

. . .

Figure 3.5: The \broom" graph.

Our �xed graph, depicted in Figure 3.5, is organized a little like a broom. It has

a \broom stick" of k � 2 vertices, whose head is the source s and whose tail connects to

the remaining n � k vertices (the \bush"), each of which is connected back to s by an

edge (s appears twice to simplify the �gure). All these edges have equal length UNIT,

which is an arbitrary positive real. Additionally, there are n� k edges directed from s
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to each of the vertices in the bush, having lengths of the form j �UNIT, where j, chosen
below, is a non-negative integer. One may easily con�rm that sep(u; v) = UNIT for all

distinct u; v. (Our lower bound holds even if the SSSP algorithm is assumed to know

this.) Assuming without loss of generality that k divides n, we de�ne L to be the set

of length functions that assign the edge length j �UNIT to exactly (n� k)=k = n=k� 1

edges from s to the \bush", for 0 � j < k. Consider the following claims:

1. For v in the \bush", d(s; v) = `(s; v) < k � UNIT. (Recall that d and ` are the

distance and length functions.)

2. jLj = (n� k)!=(nk � 1)!k and log jLj = 
(n log k)

3. For `1; `2 2 L, there always exists u; v in the \bush" such that d1(s; u) < d1(s; v)

but d2(s; v) < d2(s; u), where di is distance w.r.t. `i.

4. No permutation of the vertices can be compatible with two distinct length func-

tions in L.

(1) follows because the path from s to v along the \broomstick" has length k �UNIT. (2)
is simple counting. (3) follows from the pidgeonhole principle: because `1; `2 2 L assign

each length to an equal number of edges, d1(s; u) < d2(s; u) implies the existance of a

v such that fd1(s; u); d2(s; v)g < fd1(s; v); d2(s; u)g. (4) follows from (3). To see this,

notice that for any two vertices u; v, d(s; u) < d(s; v) implies d(s; u) � d(s; v)+UNIT =

d(s; v) + sep(u; v), which implies that if �s is a compatible permutation, �s(u) < �s(v).

Along with (3) we can conclude that no two length functions in L are compatible with

the same permutation. Therefore, at least log jLj = 
(n log k) comparisons are required

to decide which ` 2 L is the actual length function.

The above argument can be repeated with little modi�cation if the source vertex

lies in the broom's bush. Together with the observation that r = k � 1, the Theorem

follows.

2

3.6.3 Lower Bound: Undirected Graphs

Theorem 2 Any undirected single-source shortest path algorithm for real-weighted graphs

satisfying Property 2 makes 
(m+minfn log log r; n logng) operations in the worst case,

where r bounds the ratio of any two non-zero edge lengths.

Proof: The minimum spanning tree of the input graph is as depicted in Figure 3.6.

It consists of the source vertex s which is connected to p = (n � 1)=2 vertices in the

top row, each of which is paired with one vertex in the bottom row. We divide the

pairs into q � 2 disjoint groups and assign edge lengths based on group. Group i,
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s

group qgroup 1 group 2

.     .     .

Figure 3.6: The minimum spanning tree of the graph

where 1 � i � q, consists of exactly p=q pairs of vertices. Edges in group i have length

2i �UNIT, where UNIT is an arbitrary positive real. This includes edges connecting s to

a top-row vertex and edges connecting the two rows. All non-MST edges are assigned

any lengths less than 2O(q) �UNIT such that the shortest path tree from s coincides with

the MST. Assuming, without loss of generality, that q divides p, the number of group

arrangements is p!=(p=q)!q = q
(p). We will show that any SSSP algorithm satisfying

Property 2 must sort the vertices by group number. Because the groups are of equal

size, by the pidgeonhole principle no permutation of the vertices can be compatible with

two distinct group arrangements. This implies a lower bound of 
(p log q) on such an

SSSP algorithm. Since log r = �(q), this also implies a bound of 
(n log log r).

Let vi denote some vertex in the bottom row of group i. Then d(s; vi) = 2�2i �UNIT
and sep(vi; vj) = 2maxfi;jg � UNIT. By Property 2, �s(vi) must be less than �s(vj) if

d(s; vi) + sep(vi; vj) � d(s; vj). This is equivalent to (2 � 2i + 2j) �UNIT � 2 � 2j �UNIT,
which holds precisely when i < j. Therefore, any SSSP algorithm satisfying Property 2

must sort the vertices by group number.

2

Remark. Note that in the proof of Theorem 2, we are essentially bounding the time to

compute the sep function (equivalently, the group arrangement), whereas in Theorem

1 we assume the sep function is common knowledge.
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Chapter 4

Shortest Paths on

Directed Graphs

In Section 3.5 we showed that in order to implement Generalized-Visit, it suÆces

to solve certain abstract data structuring problems, all of which, save for B, admit
relatively simple near-linear time solutions. The primary focus of each of our shortest

path algorithms is an eÆcient implementation of B, the bucketing structure.1
The structure B is really just a restricted form of priority queue. Indeed, one obvi-

ous way to implement B is with an o�-the-shelf data structure, such as a Fibonacci heap

[73]. Unfortunately, any general data structure implementing B will invariably incur a

sorting bottleneck. In order to implement B more eÆciently it is crucial that we take

into account the underlying graph. In particular, we must exploit the highly redundant

nature of the distance function. After all, the distances, if represented explicitly, occupy

�(n2) space, whereas they are represented implicitly by the graph itself, which occupies

just �(m) space.

The most straightforward correlations in the distance function are the pair-wise

sibling correlations: for any y; z 2 child(x), and any source vertex s, we have:

jd(s; y) � d(s; z)j � diam(x)

which is just a rephrasing of the parent-child correlation: d(s; y) � d(s; x) � diam(x)

for any y 2 child(x). These correlations are trivial. One interpretation of Theorem 1

is that, in the worst case, there are essentially no non-trivial correlations, assuming a

directed graph with �xed source vertex. As we will see in Chapter 5, undirected graphs

1The algorithms presented in this chapter were originally published as: S. Pettie, A faster all-pairs
shortest path algorithm for real-weighted sparse graphs, Proc. 29th Int'l Colloq. on Automata, Lan-
guages, and Programming (ICALP), pp. 85{97, 2002, and S. Pettie, On the comparison-addition com-
plexity of all-pairs shortest paths, Proc. 13th Int'l Symp. on Algorithms and Computation (ISAAC),
pp. 32{43, 2002.
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are an entirely di�erent story, even when the source is �xed. In this Chapter we will

study the correlations between elements of the set

f d(s; y) gs2V; y2 child(x)

In other words, we �x an SH-node x and look at the sibling correlations among nodes in
child(x), ranging over all source vertices. Although the technical language we introduce

in Sections 4.1 and 4.2 does not refer to sibling correlations and other intuitive ideas,

correlation between distances is the principle that underlies our algorithms, and should

always be kept in mind.

In Section 4.1 we give an APSP algorithm whose running time isO(mn+n2 log logn).

The running time measure takes into account both real-number operations and data

structural issues as well. In Section 4.2 we look at how far our techniques can be pushed

if the only measure of eÆciency is real-number operations. The result is a non-uniform

APSP algorithm making O(mn log�(m;n)) comparison and addition operations.

4.1 A Faster APSP Algorithm

We have shown in Section 3.5 that an implementation of the Generalized-Visit al-

gorithm amounts, essentially, to an implementation of B, the bucketing structure. One
might just as easily say that we have reduced Generalized-Visit to B, and that the

APSP problem is reducible to n runs of Generalized-Visit. We will show, in this

section, that the problem of implementing B is itself reducible to a set of O(n) SSSP

problems. Each such problem is on a graph whose topology is basically the same as

the original graph, but whose length function is source-dependent. This sequence of

reductions does not seem pro�table at �rst since APSP is trivially reducible to n SSSP

computations on the original graph. However, not all SSSP problems are equal. Of our

O(n) derived SSSP problems, only O(n= log n) are on real-weighted graphs. The rest

are on graphs whose lengths are relatively small integers. Because integer variables are

not bound by the limitations of the comparison-addition model, we are able to solve

these SSSP problems in amortized linear time.

In Section 4.1.1 we introduce the notions of relative distance and approximate

relative distance. (These distances are the solutions to the derived SSSP problems

mentioned above.) In Section 4.1.2 we show how approximate relative distances are

useful in the implementation of Generalized-Visit, and in Section 4.1.3 we show how

they can be computed cheaply.

4.1.1 Relative Distances and Their Approximations

Let x be an arbitrary internal SH-node, and recall that child(x) represents the children
of x in SH. For y 2 child(x) we let �x(u; y) denote the relative distance from u to y,
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de�ned as:

�x(u; y)
def
= d(u; y)� d(u; x)

Since V (y) � V (x), it follows that �x is always non-negative. Our algorithm does

not deal with �x directly but rather with a discrete approximation to it. We de�ne �̂x

as:

�̂x(u; y)
def
=

�
�x(u; y)

�x

�
or

�
�x(u; y)

�x

�
where

�x
def
= norm(x)

2

It is crucial that �̂x be represented as an integer, not as a real. Lemma 13 and

14 capture the salient features of the �̂ function: that it is relatively cheap to compute,

and that despite its approximate nature, it is useful in implementing the Generalized-

Visit routine.

Lemma 13 The �̂x function can be computed for every SH node x for which diam(x)
norm(x) �

log n, in O(mn) time total.

Lemma 14 If �̂x is known for all x 2 SH for which diam(x)
norm(x) � logn, then we can

compute SSSP in O(m+ n log log n) time using Generalized-Visit.

Together with Lemma 3(8), stating that SH can be constructed in O(m log n)

time, Lemmas 13 and 14 directly imply Theorem 3.

Theorem 3 The all-pairs shortest path problem on real-weighted directed graphs can

be solved in O(mn + n2 log logn) time, where the only operations allowed on reals are

comparisons and additions.

We prove Lemma 14 in Section 4.1.2. Lemma 13 is addressed in Section 4.1.3.

4.1.2 Generalized-Visit and Relative Distances

In this section we show how to implement the bucketing structure B, assuming that �̂x

is already computed for all x 2 SH for which diam(x)=norm(x) � logn. The remainder

of this section will constitute a proof of Lemma 14. As it was observed in Section 3.5,

managing the bucket arrays for all SH-nodes x with diam(x) � log n�norm(x) requires,
by Lemma 11, only O(m+ n log logn) time. Therefore, we concentrate on an arbitrary

SH-node x for the case when �̂x is known.

We remarked earlier that maintaining the Bucket Invariant 2 is expensive. Con-

sider the following weakened form of Invariant 2.
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Invariant 3 Suppose that y is a child of an active SH-node x. Then y is either bucketed

in accordance with Invariant 2, or it is known that D(y) will decrease in the future, in

which case y appears in no bucket.

By Lemma 5, we only extract a node y from its bucket when D(y) is �nalized,

that is, when D(y) = d(s; y). Therefore, the correctness of Generalized-Visit w.r.t

Invariant 2 implies its correctness w.r.t. Invariant 3. The only question is whether

Invariant 3 is any easier to maintain, speci�cally, whether it is possible to tell if a node's

D-value will decrease in the future. This is where the �̂ function comes into play.

Suppose that we are attempting to bucket an inactive node y by its D-value,

either because its parent, x, just became active, or because we just relaxed an edge

(u; v), where v 2 V (y). We know d(s; x) lies in the interval of x's �rst bucket, that is,

tx � d(s; x) < tx + norm(x). According to Invariant 2, y belongs in bucket number�
D(y)� tx
norm(x)

�
=

�
D(y)� d(s; x)

norm(x)

�
or

�
D(y)� d(s; x)

norm(x)

�
+ 1

Therefore, if D(y) does not decrease in the future, then D(y) = d(s; y) and

�x(s; y) = D(y) � d(s; x). This implies that y must be bucketed in either bucket

number
j
�x(s;y)
norm(x)

k
or the following bucket. On the other hand, if D(y) decreases in the

future, we have, according to Invariant 3, the freedom not to bucket y at all.

The situation is made only slightly more complicated by the fact that we are not

dealing with �x but a discrete approximation to it. Recall that �̂x(s; y) is an integer

and j�x � �̂x(s; y) � �x(s; y)j < �x = norm(x)
2 . Using the same argument as above,

it follows that if D(y) = d(s; y), that is, D(y) will not decrease in the future, then y

belongs in some bucket numbered in the interval

"$
�x � �̂x(s; y)� �x

norm(x)

%
;

$
�x � �̂x(s; y) + �x + norm(x)

norm(x)

%#

=

"$
(�̂x(s; y)� 1)

2

%
;

$
(�̂x(s; y) + 3)

2

%#

Thus, the number of eligible buckets is at most three. Since �̂x(s; y) is represented

as an integer, we can identify the three eligible buckets in constant time, and, by checking

D(y) against the buckets' labels, we can determine which, if any, should contain y. To

sum up, all insert and decrease-key operations on y take constant time, provided �̂x is

known.

The other costs of implementing Generalized-Visit were discussed in Section

3.5. The D structure is implemented in O(m log�(m;n)) = O(m + n log logn) time,

and the cost of prioritizing nodes within the same bucket is O(n log logn) using a van

Emde Boas heap [203]. This concludes the proof of Lemma 14.
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4.1.3 The Computation of �̂

We show in this section that for any SH node x, all �̂x(�; �)-values can be computed in

time O(m log n+m �deg(x)+n � diam(x)
norm(x)). It turns out that this cost is a�ordable if the

m log n term is not signi�cantly larger than the others. It is for this reason that Lemma

13 only considers SH nodes x such that diam(x)=norm(x) � logn.

Consider the two edge-labeling functions Æx : E ! R and Æ̂x : E ! N, given

below.

Æx(u; v)
def
= `(u; v) + d(v; x) � d(u; x)

Æ̂x(u; v)
def
=

�
Æx(u; v)

�0x

�
or 1 if Æx(u; v) > diam(x)

where �0x
def
=

�x
n

=
norm(x)

2n

We let GÆ = (V (G); E(G); Æ) denote the graph G under a new length function Æ,

and let dÆ be the distance function for GÆ. We show that �x(u; y) is equal to d
Æx(u; y)

and that dÆ̂x provides a suÆciently good approximation to �x to satisfy the constraints

put on �̂x. Our method for computing �̂x is given in Figure 4.1. We spend the

remainder of this section analyzing its complexity and proving its correctness.

Compute-�̂x:

(1) Generate the graph GÆ̂x

(2) For all u 2 V and y 2 child(x); compute dÆ̂x(u; y)

(3) Set �̂x(u; y) :=

&
dÆ̂x(u; y)

n

'

Figure 4.1: A three-step method for computing �̂x.

The following Lemma establishes the properties of �x; Æx; and Æ̂x used in the

analysis of Compute-�̂x.

Lemma 15 Suppose x 2 SH, y 2 child(x) and u 2 V . Then

1. �x(u; y) = dÆx(u; y)

2. dÆx(u; y) � diam(x)

3. dÆx(u; y) � �0x � dÆ̂x(u; y) 2 [0; �x)

4. dÆ̂x(u; y) < 2n diam(x)
norm(x)
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Proof: (1) Denote by hu1; u2; : : : ; uji a path from u1 to uj. Then

dÆx(u; y) = min
j; hu=u1;:::;uj 2V (y)i

(
j�1X
i=1

Æx(ui; ui+1)

)
(4.1)

= min
j; hu=u1;:::;uj 2V (y)i

n
`(hu1; : : : ; uji) + d(uj ; x)� d(u1; x)

o
(4.2)

= d(u; y)� d(u; x) = �x(u; y) (4.3)

Line 4.1 is simply the de�nition of dÆx . Line 4.2 is derived by cancelling terms in the

telescoping sum. Note that d(uj ; x) = 0 since uj 2 V (y) � V (x), and that d(u1; x) =

d(u; x). Line 4.3 then follows from the de�nition of d and �x.

(2) From part (1) we have dÆx(u; y) = �x(u; y) = d(u; y)�d(u; x). The inequality

d(u; y) � d(u; x) � diam(x) follows trivially from the fact that V (y) � V (x).

(3) Let e be an arbitrary edge. By de�nition of Æx and Æ̂x, we have that either

Æx(e) > diam(x) (i.e., Æ̂x(e) = 1) or �0x � Æ̂x(e) � Æx(e) < �0x � (Æ̂x(e) + 1). Let Puy
be the shortest path from u to y in GÆx , and denote by jPuyj the number of its edges.
According to part (2), dÆx(u; y) � diam(x), implying that for e 2 Puy, Æ̂x(e) 6=1, and

�0x � dÆ̂x(u; y) � dÆx(u; y) < �0x �
�
dÆ̂x(u; y) + jPuyj

�
< �0x � dÆ̂x(u; y) + �x

The last inequality follows from the bound jPuyj < n and the de�nition of �x =

n � �0x. This proves part (3).
(4) From parts (2) and (3) we have

dÆ̂x(u; y) � dÆx(u; y)

�0x
� diam(x)

�0x
� 2n � diam(x)

norm(x)

which proves part (4).

2

Lemma 16 bounds the time to compute the Æ̂x function in Step 1.

Lemma 16 GÆ̂x is computable in O(m log n) time.

Proof: Let (u; v) be an arbitrary edge. Recall that Æ̂x(u; v) is either 1 or:�
`(u; v) + d(v; x) � d(u; x)

�0x

�

The original length function ` is, of course, already known. We compute the other terms

in the numerator with one Dijkstra computation. Let G1 be derived from G by reversing

the direction of all edges and contracting V (x) into a single vertex. Computing SSSP

from the source V (x) in G1 produces the d(�; x) distances. This takes O(m + n logn)
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time with Fibonacci heaps. However, we can a�ord to spend O(m log n) time using a

simpler binary heap.

If Æx(u; v) � diam(x), which can be checked in constant time, then Æ̂x(u; v) can

be expressed as:

Æ̂x(u; v) = maxfj : 2n � d(u; x) + j � norm(x) � 2n � (`(u; v) + d(v; x))g

which follows from the de�nition of Æ̂x and �0x = norm(x)=2n. The terms 2n � d(u; x)
and 2n � (`(u; v)+d(v; x)) are easily computable in O(log n) time | see Section 2.4. We

compute Æ̂x(u; v) in O(log diam(x)
�0x

) = O(logn) time by �rst generating the values

n
norm(x); 2norm(x); 4norm(x); : : : ; 2

l
log

diam(x)

�0x

m
norm(x)

o
using simple doubling, then using these values to perform a binary search to �nd the

maximal j satisfying the inequality above. This binary search is performed once for

each edge, taking O(m log n) time in total.

2

In Step 2 of Compute-�̂x we compute certain distances in the graph GÆ̂x , using

a variation on Dial's implementation of Dijkstra's algorithm. We are free to use Dial's

algorithm here because GÆ̂x is an integer-weighted graph, whose shortest paths have

bounded length.

Lemma 17 Step 2 requires O(m � deg(x) + n � diam(x)
norm(x) ) time.

Proof: Let y 2 child(x) be a child of x and let N denote an upper bound on dÆ̂x(u; y).

Let G1 be the graph derived fromGÆ̂x by reversing the direction of all edges inG. Clearly

dÆ̂x(u; y) is equal to the distance from V (y) to u in G1. Therefore, we can perform

Step 2 of Compute-�̂x by computing SSSP in G1 from the source V (y) (viewing it as

a single vertex), for each y 2 child(x). To save time we solve each of these deg(x)

SSSP problems simultaneously, using Dial's implementation of Dijkstra's algorithm. The

priority queue is implemented as a bucket array of length N . If the pair hy; ui appears
in bucket b this indicates that in the SSSP computation with source V (y), the tentative

distance to u is b. Since Æ̂x is an integer-valued function, edge relaxations take constant

time. The overall running time is then O(#(edge relaxations)+#(buckets scanned)) =

O(m � deg(x) + N) = O
�
m � deg(x) + n � diam(x)

norm(x)

�
. The bound on N follows from

Lemma 15(4).

2

Lemmas 16 and 17 prove that Steps 1 and 2 take O(m log n+mdeg(x)+n diam(x)
norm(x) )

time. Step 3 just involves dividing dÆ̂x(u; y) by n and rounding up. We did not assume

a general integer division operation. However, Step 3 can easily be incorporated into
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Step 2 by keeping track of the number
�
b
n

�
where b is the current bucket number. In

Lemma 18 we prove the correctness of Compute-�̂x.

Lemma 18 Step 3 sets �̂x correctly, i.e.

�̂x(u; y) is an integer and
����x � �̂x(u; y) � �x(u; y)

��� < �x

Proof: It is clear from Step 3 that �̂x(u; y) is assigned an integer value. We turn to the

second requirement, that
����x � �̂x(u; y) � �x(u; y)

��� < �x. Notice that �0x
�x

= 1
n . From

the de�nition of the ceiling function we have:

�0x � dÆ̂x(u; y) � �x �
&
dÆ̂x(u; y)

n

'
< �0x � dÆ̂x(u; y) + �x (4.4)

From Lemma 15 parts (1) and (3) we have that:

�0x � dÆ̂x(u; y) � �x(u; y) = dÆx(u; y) < �0x � dÆ̂x(u; y) + �x (4.5)

Notice that in lines 4.4 and 4.5 the upper and lower bounds are identical, and that

they are separated from each other by �x. Therefore,������x �
&
dÆ̂x(u; y)

n

'
� �x(u; y)

����� =
����x � �̂x(u; y) � �x(u; y)

��� < �x

which proves the lemma.

2

Now that the correctness of this scheme is established, we are ready to prove the

overall time bound of Lemma 13.

Proof: (Lemma 13) Let T (m;n; k) be the time to compute �̂x for all SH nodes x for

which diam(x)
norm(x) � k. From Lemmas 16 and 17 we can bound T as follows.

T (m;n; k) =
X

x : diam(x)
norm(x)

�k

O(m logn+mdeg(x) + n diam(x)
norm(x) )

= O(4mn log n
k + 2mn+ 4n2) fLemma 3(4), (6) & (7)g

= O(mn

�
logn

k

�
)

hence T (m;n; logn) = O(mn)

2
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4.2 A Non-Uniform APSP Algorithm

The APSP algorithm from Section 4.1 has two distinct parts: a �rst pass for computing

discrete, approximate distances and a subsequent pass for computing the exact distances.

In this Section we show how to compute APSP with asymptotically fewer comparison

and addition operations by basically running the two passes concurrently.

Our method for implementing the bucketing structure B is a hybrid of previous

techniques. For every internal node x 2 SH, we will simulate Invariant 2 with an actual

bucket array and a heap, denoted Hx. The idea is to properly bucket nodes when we

have enough information to do so (for instance, if we know the �̂x-values) and to keep

all unbucketed children of x in the heap Hx. When new information becomes available

we may decide to migrate nodes from Hx to the bucket array. Consider the following

bucketing invariant, which is weaker than both Invariants 2 and 3.

Invariant 4 Let x be an active SH-node. Active children of x appear in a bucket

consistent with Invariant 2. An inactive node y 2 child(x) either appears in a bucket

numbered between
j
d(s;y)�tx
norm(x)

k
� 2 and

j
D(y)�tx
norm(x)

k
inclusive, or in the heap Hx.

We need to make a couple modi�cations to Generalized-Visit so that Invariant

4 can be said to simulate Invariant 2. Since Generalized-Visit only extracts nodes

from the active bucket (the one labeled [ax; ax + norm(x)) in Step 3 of Generalized-

Visit), we will migrate the appropriate nodes from Hx to the active bucket, whenever

the active bucket changes. Because of the conspicuous \�2" in Invariant 4 the active

bucket may contain nodes that logically belong in later buckets. Whenever such a node

is discovered (which can happen at most twice per node) we simply move it to the

next bucket. One can easily see that under these modi�cations to Generalized-Visit,

Invariant 4 simulates Invariant 2.

The simple method for maintaining Invariant 4 is to keep all inactive children of

x in Hx. However, this sort of dependence on heaps leads inextricably to some kind of

sorting bottleneck. The eÆciency of our APSP algorithm depends on minimal use of

the heaps.

In Section 4.2.2 we de�ne functions �x, �̂x, x, and ̂x that closely parallel the

functions �x, �̂x, Æx, Æ̂x from Sections 4.1.1 and 4.1.3. In Section 4.2.3 we show how

the �̂x and x functions can be used to maintain Invariant 4 inexpensively.

4.2.1 Preliminaries

In our algorithm we use the phrase is known in a technical sense. The statement

\it is known that a < b" means that the inequality a < b could be inferred from

the known set of linear inequalities, as revealed by previous comparison and addition
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operations. Similarly, \
�
a
b

�
is known" means the integer

�
a
b

�
could be inferred from

previous operations, and \a is known", where a is a real, means a is actually stored in a

speci�c real variable. As comparison-addition complexity is the only measure of interest

in this section, we need not provide any method for deciding when something is known

or not.

The sequence of operations performed by our algorithm is rather unpredictable. It

depends, to a great extent, on what is known at a given time. We describe parts of our

algorithm using triggers, which are of the form \Whenever some (Precondition) holds,

perform some (Action)," where the (Precondition) typically depends on whether some-

thing is known. We assume that triggers are invoked at the earliest possible moment,

and that for any two applicable triggers, the lower numbered one takes precedence. As a

consequence of this policy, our high-level algorithm,Generalized-Visit, only proceeds

if every trigger's precondition is unsatis�ed.

4.2.2 Lengths, Distances, and Their Approximations

De�ne the edge-length function x : E ! R as:

x(u; v)
def
= `(u; v) + wx(v)� wx(u)

where wx(v) and wx(u) are initially unspeci�ed. Trigger 1 shows how wx(v) is assigned.

Trigger 1 When the variable wx(u) is unspeci�ed but d(u; v) is known, for some v 2
V (x), set wx(u) := d(u; v).

It follows from Trigger 1 that if u 2 V (x), wx(u) = 0 holds initially since d(u; u) =

0 is known a priori. Note that if we set wx(�) = d(�; x) then x would be identical to the

Æx function de�ned in Section 4.1.3.

We de�ne the discrete approximation ̂x : E ! N as:

̂x(u; v)
def
=

�
x(u; v)

�x

�
or 1 if x(u; v) > 2 � diam(x)

where

�x
def
=

norm(x)

4 � deg(x)
Trigger 2, given below, updates the ̂x function whenever possible:

Trigger 2 When x(u; v) is known but ̂x(u; v) is unknown, compute ̂x(u; v).

Lemma 19 gives a couple properties of the x and ̂x functions, and lets us bound

the cost of Trigger 2.
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Lemma 19 Properties of ̂x:

1. �x � ̂x(u; v) 2 (�diam(x)� �x; 2diam(x)] [ f1g. Moreover, if ̂x(u; v) =1 then

(u; v) is not on any shortest path from u to any vertex in V (x).

2. The cost of computing ̂x(u; v) for all x 2 SH and (u; v) 2 E, is O(mn).

Proof: (1) By Trigger 1 we have wx(u) 2 [d(u; x); d(u; x) + diam(x)]. We also have

that `(u; v) + d(v; x) � d(u; x) 2 [0; 1), and furthermore, if (u; v) is on a shortest path

to some vertex in V (x), then `(u; v) + d(v; x) � d(u; x) 2 [0; diam(x)]. Thus:

x(u; v) = `(u; v) + wx(v)� wx(u)

= `(u; v) + d(v; x) � d(u; x) + [�diam(x);diam(x)]
= [�diam(x); 1) fin generalg
= [�diam(x); 2 � diam(x)] fif (u; v) is relevantg

Therefore ̂x(u; v) = 1 only if (u; v) is not on any shortest path to a vertex in

V (x). Furthermore, if ̂x(u; v) 6=1 then �x�̂x(u; v) = x(u; v)+(��x; 0] = (�diam(x)�
�x; 2diam(x)].

(2) Given x(u; v), we compute ̂x(u; v) using essentially the same algorithm from

Lemma 16 in Section 4.1.3. It takes time logarithmic in the range, i.e.

log

�
3 � diam(x)

�x

�
= log

�
12 � deg(x) � diam(x)

norm(x)

�
� deg(x) +

diam(x)

norm(x)
+O(1)

By Lemma 3 parts (4) and (6), the cost of computing ̂x(e), for all x 2 SH and e 2 E,

is O(mn).

2

The x and ̂x functions are clearly analogues of Æx and Æ̂x from Section 4.1.3. Be-

low we de�ne the functions �x; �̂x, and ~�x, where �x is a real-valued function analogous

to �x and �̂x and ~�x are certain integer-valued approximations of �x.

�x(u; y) = d(u; y)� wx(u)

~�x(u; y)
def
=

�
�x(u; y)

�x

�

�x � �̂x(u; y) def
= �x(u; y)� [0; �x � deg(x))

�̂x is actually not completely de�ned. We use it to denote any integer-valued

function satisfying the inequalities above.

The �̂x function is the one we wish to compute. It is, however, a little too expensive

to compute directly. Lemma 20, given below, shows how we might infer the �̂x function

by computing a few well-chosen ~�x-values and the ̂x function.
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Lemma 20 Suppose hv1; : : : ; vi; : : : ; vj 2 V (y)i is known to be the shortest path from v1
to y 2 child(x), and suppose that ~�x(vi; y) is known. If i � deg(x) then �̂x(vi0 ; y) is

known as well, for 1 � i0 � i.

Proof: Because hv1; : : : ; vji is known to be a shortest path to V (y) � V (x), it follows

from Triggers 1 and 2 that the ̂x-values are known for all edges in hv1; : : : ; vji. We claim

that for i0 � i, ̂x(hvi0 ; : : : ; vii)+~�x(vi; y) is a good enough approximation to �x(vi0 ; y) to

satisfy the constraints put on �̂x(vi0 ; y). Note that in general, �x � ̂x(e) = x(e)� [0; �x)

and �x � ~�x(ui; y) = �x(ui; y)� [0; �x). Therefore,

�x

�
̂x(hvi0 ; : : : ; vii) + ~�x(vi; y)

�
= x(hvi0 ; : : : ; vii) + �x(vi; y)� [0; �x � (i� i0 + 1))

= d(vi0 ; vi) + wx(vi)� wx(vi0) + d(vi; y)� wx(vi)� [0; �x � deg(x))
= �x(vi0 ; y)� [0; �x � deg(x)) = �̂x(vi0 ; y)

2

Lemma 20 shows that we can infer a �̂x-value if a \nearby" ~�x-value is already

known. We will show that Trigger 3 computes a relatively small set of ~�x-values at an

a�ordable cost. Before giving Trigger 3 we have to introduce a little more notation. Let

in(u) be the tree rooted at u of known shortest paths to u. Similarly, de�ne out(u) to

be the known shortest paths out of u. (If u is an SH-node then in(u) is actually an

in-forest, whose roots are the vertices of V (u).)

Trigger 3 When the following hold: y 2 child(x), u 2 in(y), v is the nearest an-

cestor of u in in(y) for which ~�x(v; y) is known, and v is at (unweighted) distance at

least deg(x) from u, we compute the value ~�x(w; y), where w is the ancestor of u at

(unweighted) distance
j
deg(x)

2

k
.

Lemma 21 Properties of �̂x:

1. If u 2 in(y), where y 2 child(x), then �̂x(u; y) is known.

2. The cost of computing all �̂-values with Trigger 3 is O(n2).

Proof: Trigger 3 ensures that every vertex in in(y) has an ancestor at distance at

most deg(x)� 1 (unweighted distance, that is) whose ~�x(�; y)-value is known. Part (1)
then follows directly from Lemma 20. To prove Part (2) we �rst show that at most

3n=deg(x) di�erent ~�x(�; y) values are ever computed by Trigger 3; we then bound the

overall comparison-addition cost. When Trigger 3 is invoked we say u claims the edges

between u and w. For the purpose of obtaining a contradiction, suppose an edge was

claimed twice, say by u (with w) and subsequently by u0 (with w0). Whether w0 is an
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ancestor or descendant of w, the fact that u{w overlaps with u0{w0 at one edge implies

the (unweighted) length of u0{w is at most 2 �
j
deg(x)

2

k
� 1 < deg(x). Therefore,

Trigger 3 could not have been invoked at u0, a contradiction, and consequently, at most

(n� 1)= bdeg(x)=2c < 3n=deg(x) ~�x(�; y)-values were computed. The time required to

compute a ~�x(�; y)-value is the same as a ̂x-value: O(deg(x) +
diam(x)
norm(x) ) according to

Lemma 19(2). Summing over all x 2 SH; y 2 child(x), and u 2 V , the total cost of

Trigger 3 is:

X
x

deg(x) � 3n

deg(x)
�
�
deg(x) +

diam(x)

norm(x)

�
= O(n2)

The O(n2) bound follows directly from Lemma 3 (4) and (6).

2

4.2.3 Buckets, Heaps, and Invariant 4

Recall that Hx is a heap associated with x 2 SH that holds any unbucketed children

of x. The main focus of this Section is how to keep nodes out of Hx while maintaining

Invariant 4. We will analyze, in particular, Triggers 4, 5, and 6, given below.

Trigger 4 Upon activation of x, for each y 2 child(x), if possible, bucket y according

to Invariant 4; otherwise put y in Hx.

Trigger 5 Whenever new ̂x-values become known (Triggers 1 and 2) and x is active,

for each y 2 child(x), if possible, bucket y according to Invariant 4; otherwise keep y

in Hx.

Trigger 6 Whenever D(y) is decreased, where y is a bucketed child of x, if possible,

keep y bucketed according to Invariant 4; otherwise, move y to Hx.

We will clarify in due time what is meant by \if possible" in Triggers 4, 5, and 6.

For the moment, let it suÆce to say that successfully (or unsuccessfully) bucketing a node

takes constant time. Therefore, each invocation of Triggers 4 and 5 takes O(deg(x))

time and each invocation of Trigger 6 takes constant time. These times reect some

assumptions about the heap Hx. We assume, in particular, that heap inserts, decrease-

keys, and �nd-mins take constant amortized time, and that deleting any subset of the

heap takes O(jHxj) = O(deg(x)) time.2

The problem of bucketing y in constant time is that of �nding a discrete approx-

imation to the quantity d(s; y) � d(s; x). Of course, since we do not know the shortest

2These are weak assumptions. For instance, Hx could be implemented as a singly linked list with a
pointer pointing to the minimum element.
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path from s{to{y, we have little certain information about d(s; y). Our solution is to

consider many hypothetically shortest s{y paths, and for each such path Q, estimate the

quantity `(Q)�d(s; x). In particular, we will examine all paths of the form hPh; Pb; Pti,
where Ph, the head, is a pre�x of the known shortest path from s to x, Pt, the tail, is itself

a known shortest path into y (and therefore part of in(y)), and Pb, the bridge, connects

Ph to Pt | see Figure 4.2. If, in the actual shortest s{to{y path P � = hP �
h ; P

�
b ; P

�
t i,

the bridge P �
b satis�es certain conditions, we show that y can always be bucketed in

constant time.

v0 vi

vjf
z

x
y

s

the bridge

the head

the tailpart of OUT(s)

part of IN(y)

Figure 4.2: The path hs; : : : ; vji, broken into a head hs; : : : ; v0i, a bridge hv0; : : : ; vii,
and a tail hvi; : : : ; vji.

When attempting to bucket y, we consider the paths in Qy | see De�nition 3.

Paths in Qy have no heads; they consist of a bridge and tail of a hypothetically shortest

s{to{y path.

De�nition 3 Let z 2 child(x) and f 2 V (z) � V (x) be the vertex satisfying d(s; f) =

d(s; x). Let Psf be the shortest path from s to f (and from s to x). We de�ne Qy, where

y 2 child(x), to be the set of paths of the form hv0; : : : ; vi; : : : ; vji that satisfy:

1. v0 2 Psf � out(s)

2. ̂x(hv0; : : : ; vii) is known
3. i � deg(x)

4. vj 2 V (y) and hvi; : : : ; vji � in(y)

We de�ne the integer diff(Qy) below. Under the assumption that Qy contains a

suÆx of the shortest s{to{y path, we can place some interesting bounds on diff(Qy)

in terms of d(s; y); however, in general diff(Qy) might not approximate any useful

quantity.
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For Q 2 Qy, where Q = hv0; : : : ; vi; : : : ; vji as in De�nition 3, we de�ne diff(Q)

and diff(Qy) as:

diff(Qy)
def
= min

Q 2 Qy

diff(Q)

diff(Q)
def
= �̂x(vi; y) + ̂x(hv0; : : : ; vii) � �̂x(v0; z)

Lemma 22 diff has the following properties:

1. diff(Qy) is an integer and its current value is known implicitly

2. At all times, �x � diff(Qy) > d(s; y)� d(s; x)� norm(x)
2

3. If some Q� 2 Qy is a suÆx of the shortest s{to{y path, then it holds that �x �
diff(Qy) < d(s; y)� d(s; x) + norm(x)

4

Proof: diff(Qy) is an expression over integers, each of which is implicitly known

according to Lemma 21(1) and De�nition 3(2). This implies part (1). We turn to parts

(2) and (3). Recall that by de�nition of �̂x and ̂x we have the inequalities �x ��̂x(u; y) =
�x(u; y)� [0; �x �deg(x)) and �x � ̂x(u; v) = x(u; v)� [0; �x). Let Q 2 Qy be arbitrary,

and, following the terms of De�nition 3, we write Q as hv0; : : : ; vi; : : : ; vji and let z 2
child(x) be such that d(s; z) = d(s; x). Let � be the interval

�
�norm(x)

2 ; norm(x)
4

�
.

�x � diff(Q) = �x � [�̂x(vi; y) + ̂x(hv0; : : : ; vii) � �̂x(v0; z)] (4.6)

= �x(vi; y) + x(hv0; : : : ; vii) � �x(v0; z) + � (4.7)

= d(vi; y) + `(hv0; : : : ; vii) � wx(v0) � �x(v0; z) + � (4.8)

= `(Q) � d(v0; x) + � (4.9)

Line 4.6 is the de�nition of diff; Line 4.7 follows from the de�nitions of ̂x; �̂x,

and �x =
norm(x)
4�deg(x) , and De�nition 3(3) stating that i � deg(x). Line 4.8 is derived by

expanding �x(vi; y) and x(hv0; : : : ; vii) and cancelling terms. Line 4.9 follows from the

de�nition of �x and the identity d(s; z) = d(s; x).

Consider Line 4.9. Clearly `(Q)�d(v0; x) = (d(s; v0);+`(Q))�(d(s; v0)+d(v0; x)) �
d(s; y) � d(s; x), and that `(Q) � d(v0; x) = d(s; y) � d(s; x) only if Q is a suÆx

of a shortest s{to{y path. By taking into account the upper and lower bounds of

� =
�
�norm(x)

2 ; norm(x)
4

�
, parts (2) and (3) immediately follow.

2

We use the diff-values to quickly decide if it is possible to bucket nodes in accor-

dance with Invariant 4. Suppose that we are attempting to bucket a node y 2 child(x)

due to either Trigger 4, 5, or 6. Our procedure is as follows:

55



1. Recall that x's �rst bucket spans the interval [tx; tx + norm(x)). Let [�; � +

norm(x)) be the bucket in x's bucket array such that tx+ �x �diff(Qy) 2 [�; �+

norm(x)).

2. If D(y) � �, put y in bucket [�; � + norm(x)) and stop.

3. If D(y) � � � norm(x); put y in bucket [� � norm(x); �) and stop.

4. Otherwise, put or keep y in Hx.

Lemma 23 The bucketing procedure does not violate Invariant 4 and if Qy contains a

suÆx of a shortest s{to{y path, then y is successfully bucketed.

Proof: Recall from Lemma 5 in Section 3.4 that tx was chosen so that d(s; x) 2 [tx; tx+

norm(x)). Lines 2 and 3 of the bucketing procedure guarantee that y is never bucketed

in a higher bucket than
j
D(y)�tx
norm(x)

k
. To show that Invariant 4 is preserved, we need

only prove that in Line 2, y is not bucketed before bucket
j
d(s;y)�tx
norm(x)

k
� 2. Lemma

22(2) states that �x � diff(Qy) > d(s; y) � d(s; x) � 1
2norm(x), which implies that

�x �diff(Qy) > d(s; y)� tx� 3
2norm(x). So bucketing y according to �x �diff(Qy) can

put it at most
�
3
2

�
= 2 buckets before bucket

j
d(s;y)�tx
norm(x)

k
, which is the slack tolerated

by Invariant 4. For the second part of the Lemma, assume that some Q 2 Qy is a

suÆx of the shortest s{to{y path. It follows from Lemma 22(3) that �x � diff(Qy) <

d(s; y)� tx+
1
4norm(x). By choice of �, we have � � tx � �x � diff(Qy), which implies

that � � 1
4norm(x) < d(s; y) � D(y) Therefore, y must have been bucketed in Step 2

or 3 or the bucketing procedure.

2

Lemma 24 Suppose that we perform n SSSP computations with Generalized-Visit.

Then the cost of all heap operations, including the cost of Triggers 4, 5, and 6, is O(mn).

Proof: Recall that attempting to bucket a node takes constant time, and that each

invocation of Triggers 4, 5 take O(deg(x)) time, and that Trigger 6 takes constant

time.

Trigger 4 is called once per SH-node per SSSP computation. Thus the total cost

for Trigger 4 is
P

x2SHO(deg(x)) � n, which is O(n2) by Lemma 3(4). Trigger 5 is

invoked whenever new ̂x-values become known (for any x 2 SH), which, by Triggers 1

and 2, means that for some vertex u, wx(u) was just �xed in Trigger 1. This can only

happen n times (for x), for a total cost of
P

xO(deg(x)) � n = O(n2). Finally, Trigger

6 is called once per edge relaxation, of which there are no more than O(mn).

We now account for the cost of extracting items from Hx Let y 2 child(x),

and let Psy and Psx be the shortest paths from s{to{y and s{to{x, respectively. Now
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suppose that y is inserted into Hx. We can write Psy as hP1; P2; P3i, where P1 and P3
are maximal such that P1 � Psx � out(s) and P3 � in(y). By Lemma 23, y would have

been bucketed (rather than inserted into Hx) if hP2; P3i 2 Qy. By De�nition 3 hP2; P3i
is not inQy either because (a) jP2j > deg(x) or (b) wx(u) is not known, for some u 2 P2.

Case (a) can only happen n=deg(x) times for y, because after the SSSP computation

from source s, in(y) will have absorbed P2 (and P1 for that matter). Thus the total

cost for (a) is
P

xO(deg(x))
2 � n=deg(x) = O(n2). The cost of (b) has actually been

accounted for, since once wx(u) is �xed, for all u 2 P2, y will be immediately bucketed

by Trigger 5.

2

The only costs not covered by Lemma 24 are constructing the strati�ed hierarchy,

which is O(m log n) by Lemma 3(8), computing the �̂ and ̂ functions, which is O(mn)

by Lemmas 19(2) and 21(2) and implementing the D data structure, which, by Lemma

10, is O(m log�(m;n)) for each SSSP computation. Theorem 4 follows.

Theorem 4 The all-pairs shortest path problem on arbitrarily-weighted, directed graphs

can be solved with O(mn log�(m;n)) comparisons and additions, where m and n are the

number of edges and vertices, respectively, and � is the inverse-Ackermann function.
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Chapter 5

Shortest Paths on

Undirected Graphs

In this Chapter we give an implementation ofGeneralized-Visit for undirected graphs

that is quantitatively and qualitatively superior to those algorithms for directed graphs

presented in Chapter 4. Why are undirected graphs so much easier? The short answer is

that undirected graphs can be e�ectively clustered, whereas directed graphs, in general,

cannot. Consider a single edge (u; v). In an undirected graph we can claim that jd(s; u)�
d(s; v)j � `(u; v), regardless of the rest of the graph, whereas in a directed graph only

the inequality d(s; v) � d(s; u)+`(u; v) holds. Thus, the distance function for undirected

graphs exhibits much stronger correlations.1

The particulars of our clustering scheme are a bit involved, though the overall

idea is quite simple. Suppose that x is an SH-node. Unless we know something about

the input graph, the set fd(s; y)�d(s; x)gy2child(x) consists of more or less independent
variables, each somewhere is the range [0;diam(x)). Therefore, barring any extra in-

formation about the graph, the set fb[d(s; y) � d(s; x)]=norm(x)cgy2child(x) has about
deg(x) log(diam(x)=norm(x)) bits of information in it. In other words, we are imag-

ining that the graph is chosen at random | though still consistent with the hierarchy

SH | and asking about the entropy of certain variables. It is not diÆcult to show that

the entropy of SH can be as much as 
(n log n). We show that by carefully introducing

new layers of nodes into SH, the overall entropy can be reduced to O(n). Furthermore,

we give a bucketing scheme (an implementation of the B structure) whose running time

matches the entropy of the given hierarchy.

The running time of our algorithm is signi�cantly more impressive than the al-

gorithms from Chapter 4. The time required to compute a low-entropy hierarchy is

1The results of this chapter appeared in: S. Pettie and V. Ramachandran, Computing shortest paths
with comparisons and additions, Proc. 13th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA),
pp. 267{276, 2002. The full version is under review.
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only O(m�(m;n)+minfn log n; n log log rg), where r bounds the ratio of any two edge-
lengths. Once this hierarchy is given, we are able to compute SSSP from any source in

O(split-findmin(m;n)) = O(m log�(m;n)) time, which is nearly linear-time | per-

haps even linear-time | and essentially unimprovable. As we will see in Chapter 6

the algorithm is streamlined and fares well in head-to-head comparisons with Dijkstra's

algorithm. A stubborn bottleneck, both theoretically and practically, is the cost of com-

puting a low-entropy hierarchy. Thus, for the problem of computing SSSP exactly once,

our algorithm is only a theoretical improvement for reasonably-sized r. For instance,

the asymptotic running time for r = poly(n) is O(m+ n log log n).

5.1 An Undirected Shortest Path Algorithm

5.1.1 Re�ned Hierarchies

Let H1 and H2 be two hierarchies. We will say that H2 is a re�nement of H1 if for every

x1 2 H1, there exists an x2 2 H2 such that V (x1) = V (x2) and norm(x1) = norm(x2).

Our undirected shortest path algorithm operates on a hierarchy called RH, which is a

re�nement of SH having certain properties. We construct RH in Section 5.2.

We will exploit the correspondence between SH-nodes and their counterparts in

RH. For instance, if x is known to be anRH-node, the assertion that x 2 SH is short for

9x0 2 SH : V (x) = V (x0). The nodes in RH�SH will be called auxiliary. Let x 2 SH
and let � be the children of x in SH. We de�ne Hx to be the subtree of RH induced by

x, �, and all the auxiliary nodes between x and �. For the moment we will only make

two assumptions about Hx (and by extension RH): that any auxiliary node y 2 Hx

has at least two children (implying jRHj = O(n)), and that norm(y) = norm(x). It is

easily shown that if SH satis�es Lemma 3 Parts (2) and (3) (the properties crucial for

computing SSSP correctly) then RH satis�es these properties as well.

5.1.2 The Undirected-Visit Algorithm

Our shortest path algorithm for undirected graphs is given in Figure 5.1. It is nearly

identical to the Generalized-Visit algorithm from Chapter 3, save for two small

modi�cations. Since there is no distinction between connected and strongly connected

components in undirected graphs, we can treat any t-partition as an unordered (rather

than ordered) partition | see Lemma 2. In terms of the e�ect on our algorithm, rather

than extracting the leftmost node from the current bucket, as we do in Generalized-

Visit, we are free to extract any node in the current bucket.2

2Incidentally, this eliminates the need for the van Emde Boas heap [203] used in our implementation
of Generalized-Visit.
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Undirected-Visit(x; [a; b))

Input: x 2 SH and V (x) is (S; [a; b))-independent
Output: All vertices in V (x)[a;b) are visited

1. If x is a leaf and D(x) 2 [a; b), then let S := S [ fxg, relax all edges incident on
x, restoring Invariant 1, and return.

2. If Undirected-Visit(x; �) is being called for the �rst time, create a bucket array
of ddiam(x)=norm(x)e + 1 buckets. Bucket i represents the interval

[tx + i � norm(x); tx + (i+ 1) � norm(x))

where tx is set to:

tx =

(
D(x) if D(x) + diam(x) < b

b�
l

b�D(x)
norm(x)

m
norm(x) otherwise

Bucket the nodes in child(x) by their D-values

3. Set ax =

�
tx if this is the �rst call to Visit(x; �)
a otherwise

While ax < b and V (x) 6� S
While bucket [ax; ax + norm(x)) contains an auxiliary node y

Remove y from the bucket array
Bucket the nodes in child(y)

While bucket [ax; ax + norm(x)) contains any node y
Undirected-Visit(y; [ax; ax + norm(x)))
Remove y from its bucket
If V (y) 6� S, put y in bucket [ax + norm(x); ax + 2norm(x))

ax := ax + norm(x)

Figure 5.1: The Undirected-Visit procedure.
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The Undirected-Visit procedure is only called on SH-nodes, never auxiliary
nodes. Indeed, the pattern of recursive calls with Undirected-Visit is identical to

that of Generalized-Visit. We simply use the auxiliary nodes as representatives for

multiple SH-nodes in the bucket arrays. Speci�cally, we maintain that for any active

SH-node x, every leaf y 2 Hx that belongs in x's bucket array (according to Invariant

2) is represented in x's bucket array by some ancestor of y in Hx. Furthermore, if y is

itself active, or if it belongs in the current bucket, then y is represented by itself. One

can clearly see that Undirected-Visit maintains this invariant. When x �rst becomes

active, in Step 2, we bucket only x's children, a set that clearly represents the leaves of

Hx. When a new bucket becomes the current bucket, in Step 3, we repeatedly replace an

auxiliary node in the current bucket by its children, and proceed only after no auxiliary

nodes remain. This bucketing regimen clearly simulates Invariant 2.

5.1.3 A Lazy Bucketing Structure

In this section we describe a simple abstract bucketing structure which is specially

suited for use in Undirected-Visit. However, it is still general enough to be used in

other situations. The structure operates on an array of buckets and a set of elements

with associated real-valued keys. The ith bucket represents a real interval Ii, which

is adjacent to Ii+1, and an element with key � belongs in the unique bucket i such

that � 2 Ii. As a simplifying assumption, we assume that given i, Ii is computable in

constant time. Buckets are either open or closed; only the contents of open buckets may

change.

The Bucket-Heap:

create(f) Create a new Bucket-Heap, where f(i) = Ii is constant time computable.

All buckets are initially open.

insert(y; �) Insert a new item y with key(y) := �.

decrease-key(y; �) Set key(y) := minfkey(y); �g. It is guaranteed that y is not moved

to a closed bucket.

close Close the �rst open bucket, and remove and enumerate its contents.

Lemma 25 The Bucket-Heap can be implemented to run in time O(N +
P

y log�(y)),

where N is the total number of operations and �(y) is the number of close operations

between y's insertion and its removal.

Proof: Our bucketing structure simulates the logical speci�cation given above; it actu-

ally consists of levels of bucket arrays. The level zero buckets are the ones referred to

in the Bucket-Heap's speci�cation, and the level i buckets preside over disjoint pairs of
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Level 3

Closed buckets marked with an X,

The effect of closing the first open bucket

Active buckets are shaded

2
1

0

Figure 5.2: Active buckets are shaded.

level i � 1 buckets, and hence 2i level zero buckets. The real interval associated with

a higher-level bucket is the union of the intervals of its level zero buckets. Thus, it is

computable is constant time with two calls to f .

Only one bucket at each level is active: it is the �rst one which presides over no

closed level zero buckets. See Figure 5.2. Suppose that an item y should logically be

in the level zero bucket B. We maintain the invariant that y is either descending and

in the lowest active bucket presiding over B, or ascending and in some active bucket

presiding over level zero buckets before B.

To insert a node we put it in the �rst open level zero bucket and label it ascending.

This clearly satis�es the invariant. The result of a decrease-key depends on whether the

node y is ascending or descending. Suppose y is ascending and in a bucket (at some

level) spanning the interval [a; b). If key(y) < b we relabel it descending, otherwise

we do nothing. If y is descending (or was just relabeled descending) we move it to

the lowest-level active bucket consistent with the invariant. If y drops j � 0 levels we

assume this is accomplished in O(j+1) time, i.e., we search from its current level down,

not from the bottom-up.

Suppose we close the �rst open level zero bucket B. According to the invariant

all items that are logically in B are descending and actually in B, so enumerating them

is no problem; there will, in general, be ascending items in B which do not logically

belong there. In order to maintain the invariant we must deactivate all active buckets

which preside over B (including B). Consider one such bucket at level i. If i > 0 we

move each descending node in it to the new level i�1 active bucket. For each ascending

node (at level i � 0), depending on its key we either move it to the new level i+1 active

bucket and keep it ascending, or relabel it descending and move it to the proper active

bucket at level � i+ 1.

It follows from the procedure above that no node y appears in a bucket at level
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greater than log�(y) + 1. Furthermore, every time a node is moved to a new bucket

it either remains ascending and ascends in level, remains descending and descends, or

makes the transition from ascending to descending. Therefore, the total cost of moving

nodes between buckets (insert, decrease-key, and close operations) is O(
P

y log�(y)).

The other costs are clearly linear in the number of operations.

2

Remark: Any implementation of the Bucket-Heap need not actually label the items.

Whether an item is ascending or descending can be inferred from context.

5.1.4 Analysis of Undirected-Visit

In this section we bound the time required to compute SSSP with Undirected-Visit

as a function of m, n, and the given hierarchy RH. We will see later that the dominant

term in this running time corresponds to the split-�ndmin structure.

Theorem 5 Let H be any given re�nement of SH. Using H, the SSSP problem can be

solved in O(split-findmin(m;n) + �(H)) time, where:

�(H) def
=

X
z2H

deg(z) � log diam(z)

norm(z)

Proof: We compute SSSP with the Undirected-Visit procedure, using the same

setup as the SSSP algorithm based on Generalized-Visit | see Chapter 3. The

split-findmin(m;n) term represents the time to implement the D data structure (see

Section 3.5), which maintains Dijkstra's Invariant 1. We argue below that �(H) repre-
sents the cost of implementing the abstract bucketing structure B with the Bucket-Heap

from Section 5.1.3. As in our directed SSSP algorithm, the other costs (excluding D
and B) are O(n). Refer to Lemmas 8 and 9.

Let x 2 SH, z 2 Hx, and let y be a child of z. When y is inserted into x's bucket

array, the current bucket must span an interval containing d(s; z). (Either y was inserted

immediately after z's removal { in Step 3 of Undirected-Visit { or z = x and y was

inserted in Step 2, just after the �rst call to Undirected-Visit(x; �).) Because V (y) �
V (z), we have the inequality d(s; y) � d(s; z) + diam(z), which implies that y must be

extracted from one of the next diam(z)
norm(x) = diam(z)

norm(z) buckets. By Lemma 25 the amortized

cost of inserting y is O(log diam(z)
norm(z) ), and over all H-nodes the cost is O(Pz2H deg(z) �

log diam(z)
norm(z) ). By Lemma 25 the other costs of the Bucket-Heap are linear in the number

of inserts, decrease-keys, and buckets, or O(n+m+
P

x2SH
diam(x)
norm(x) ), which is O(n+m)

by Lemma 3(6). Since O(n +m) is known to be dominated by split-findmin(m;n),

we conclude that SSSP are computed in time O(split-findmin(m;n) + �(H)). This

assumes, of course, that H is already available.
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2

Our implementation of Undirected-Visit is clearly not very complicated, cer-

tainly relative to the directed shortest path algorithms from Chapter 4. However, our

overall SSSP algorithm is rather tricky because before the computation of shortest paths

commences, a high-quality re�nement of SH must �rst be found. In Section 5.2 we give

a simple, but involved, method for computing a hierarchyRH such that �(RH) = O(n).

It is unfortunate { but simply unavoidable { that the construction of RH requires su-

perlinear time. Indeed, the lower bound in Theorem 2 is e�ectively a lower bound on

computing SH, and hence any re�nement thereof.

5.2 An Algorithm for a Re�ned Hierarchy

Our algorithm for constructing RH has three distinct phases. In Phase 1 we compute

the graph's minimum spanning tree (MST) and determine SH(MST (G)), the strati�ed

hierarchy for the MST. (Lemma 26, given shortly, justi�es Phase 1 by showing that

SH(MST (G)) is basically the same as SH(G).) In Phase 2 we compute some compact

structures that approximate certain subtrees of the MST. The results of Phase 2 are used

to facilitate Phase 3, in which we compute a hierarchical clustering of the graph. This

clustering leads directly to a re�nement of SH, denoted RH, such that �(RH) = O(n).

The speci�c goal of Phase 3 is to compute a clustering that is balanced in a certain

sense. Ideally, we would like to guarantee that the mass of any cluster (a measure to be

de�ned later) is never much smaller than the diameter of its parent cluster.

5.2.1 Phase 1: Computing the MST and SH

Recall that the result of Phase 1 is the hierarchy SH(MST (G)). In Lemmas 26 and

27 we establish the relevance of SH(MST (G)) | it is just as useful as SH | and the

time required to compute it.

Lemma 26 SH(MST (G)) satis�es the properties of Lemma 3.

Remark. Recall that in our proof of correctness ofGeneralized-Visit andUndirected-

Visit, we assumed only that SHsatis�ed Lemma 3.

Remark. Note that if SH(MST (G)) were identical to SH(G) then we would have

nothing to prove. Indeed, in [196] Thorup noted that his hierarchy on G was the same

as that on MST (G). However, in our case we cannot claim an identity because of the

peculiar way norm-values are chosen.

We now prove Lemma 26:

Proof: Lemma 3 Parts (1),(4), and (8) hold by construction, and Parts (3), (5), (6),

and (7) hold because the diameter of a subgraph w.r.t. G is a lower bound on its
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diameter w.r.t. MST (G), or indeed any subgraph of G. To prove Part (2), we must

show that for any x 2 SH(MST (G)) with child(x) = (x1; : : : ; xdeg(x)), the fact that

(V (x1); : : : ; Vxdeg(x)) is a norm(x)-partition of V (x) w.r.t. MST (G) implies that it is

also a norm(x)-partition w.r.t. G. By construction norm(p(x)) � norm(x); therefore,

any edge inMST (G) crossing the cut (V (xi); V �V (xi)), for xi 2 child(x), has length

at least norm(x). By the cut property of MSTs (see Chapter 7), some minimum-length

edge crossing any cut is in the MST. Hence child(x) represents a norm(x)-partition of

V (x) w.r.t. G as well.

2

Lemma 27 For an undirected graph G, a hierarchy SH satisfying Lemma 3 is com-

putable in time O(mst�(m;n)+minfn log log r; n log ng), where m and n are the number

of edges and vertices, respectively, mst� is the decision-tree complexity of the minimum

spanning tree problem, and r bounds the ratio of any two non-zero edge lengths.

Proof: We �rst compute MST (G), in mst�(m;n) time (see Chapter 8), then proceed

to determine SH(MST (G)). By Lemma 26 SH(MST (G)) will satisfy Lemma 3. The

algorithm for computing strati�ed hierarchies, given in the proof of Lemma 3(8), takes

O(m log n) time, which is O(n logn) in our case since jMST (G)j � n � 1. When

r < 2n, which can be con�rmed in O(n) time, the algorithm from Lemma 3(8) is easily

modi�ed to run in time O(m log log r), or in our case, O(n log log r). We select the

faster of the two algorithms for computing SH, which leads to an overall running time

of O(mst�(m;n) + minfn log log r; n logng).
2

In Section 5.2.2 we introduce some new notation and concepts used in the con-

struction of RH. Phases 2 and 3 of the construction are given in Sections 5.2.3 and

5.2.4, respectively.

5.2.2 De�nitions and Properties

Minimum Spanning Tree Notation

Let M denote the minimum spanning tree of G, which is w.l.o.g. assumed to be con-

nected. If X � V is a set of vertices, we de�ne M(X) to be the minimal subtree of M

connecting X. In Phases 2 and 3 we will perform depth-�rst-search traversals of M and

other trees. Therefore, it is convenient to think of M as being rooted at an arbitrary

vertex. In any oriented tree or subtree T we let root(T ) be the root vertex of T . For

instance, root(M(X)) would be the least common ancestor in M of all vertices in X.

If v is a vertex in any oriented tree, p(v) denotes the parent of v.
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De�nition of mass

Let X � V be an arbitrary set of vertices. We de�ne mass(X) as the total length of

M(X), i.e.,

mass(X)
def
=

X
e2M(X)

`(e)

We generally argue about the mass of hierarchy nodes, or sets of such nodes. To

simplify things a bit, let mass(x) be short for mass(V (x)), and mass(fx; y; : : : ; zg) be
short for mass(V (x)[ V (y)[ � � � [ V (z)), where x; y; : : : ; z are nodes in some hierarchy.

Similarly, let M(x) be short for M(V (x)).

We summarize, in Observation 2, what little can be said of about mass in the

absence of any speci�cs about the underlying graph.

Observation 2 The mass function has the following properties:

1. If X1 \X2 = ; then mass(X1 [X2) � mass(X1) +mass(X2).

2. If X1 \X2 6= ; then mass(X1 [X2) � mass(X1) +mass(X2).

3. mass(X) is an upper bound on the diameter of X

The point of parts (1) and (2) is to show that before manipulating mass(X1) and

mass(X2) algebraically, something should be known about X1 and X2.

Lambda Values

In Section 5.2.2 we will enumerate the properties satis�ed by RH. Those properties

refer to the following sequence of �-values:

�0 = 0

�1 = 12

�j+1 = 2(�j=2
j)

Lemma 28 gives a lower bound on the growth of the �-values.

Lemma 28 minfj : �j � ng � 2log�n

Proof: Let Sj be a stack of j twos; for example, S3 = 22
2
= 16. We will prove that

�j � Sbj=2c, giving the lemma. One can verify that this statement holds for j � 9.

Assume that it holds for all j0 � j.
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�j+1 = 22
�j�1 �2

�(j�1)
2�j fDe�nition of �j+1g

� 22
Sb(j�1)=2c�2

�(j�1)�j fInductive Assumptiong
� 22

Sb(j�1)=2c�1
= Sb(j+1)=2c fHolds for j � 9g

The third line follows from the inequality Sb(j�1)=2c � 2�(j�1) � j � Sb(j�1)=2c�1,
which holds for j � 9.

2

Properties of RH
Recall that we derive the hierarchyRH by composing SH with the set of trees fHxgx2SH
where Hx is some tree rooted at x, whose leaves are the children of x in SH. This is

just a verbose way of saying RH is a re�nement of SH. In this section we state some

properties satis�ed by RH.
Our discussion focusses mainly on some arbitrary Hx tree, where x 2 SH. We

give all nodes in Hx a non-negative integer rank. In the ideal situation, every rank j

node y 2 Hx would satisfy mass(y)=norm(x) = �j. Unfortunately, we are unable to

place any non-trivial upper or lower bounds on mass(y). We assign ranks to satisfy

Property 3, given below, which ensures us a suÆciently good approximation to the ideal

situation.

We should point out that the assignment of ranks is entirely for the purpose of

analysis. Rank information is never stored explicitly in the hierarchy nodes, nor is rank

information used, implicitly or explicitly, in the computation of shortest paths. We only

refer to ranks in the construction of of RH and in the analysis of �(RH).

Property 3 Let x 2 SH and y; z 2 Hx.

1. If y is an internal node of Hx then norm(y) = norm(x) and deg(y) > 1.

2. If y is a leaf of Hx (i.e., a child of x in SH) then y has rank j, where j is maximal

s.t. mass(y)=norm(x) � �j.

3. Let y be a child of a rank j node. We call y stunted if mass(y)=norm(x) <

�j�1=2. Each node has at most one stunted child.

4. Let y be of rank j. The children of y can be divided into three sets: Y1, Y2, and a

singleton fzg such that (mass(Y1) +mass(Y2))=norm(x) < (2 + o(1)) � �j.
5. Let Hj

x be the nodes of Hx of rank j. Then
P

y2Hj
x
mass(y) � 2 �mass(x).
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Before moving on let us examine some features of Property 3. Part (1) is restating

the properties of RH assumed earlier. Part (2) shows how we set the rank of leaves of

Hx. Part (3) says that at most one child of any node is less than half its ideal mass. Part

(4) is a little technical but basically says that for a rank j node y, although mass(y) may

be very large relative to �jnorm(x) (the ideal mass), the children of y can be divided

into sets Y1; Y2; fzg such that Y1 and Y2 have mass at least close to the ideal. However,

no bound is placed on the mass contributed by z. Part (5) says that if we restrict our

attention to the nodes of a particular rank in Hx, their total mass is roughly bounded

by the total mass of Hx.

The purpose of Properties 3(1){(5) is to let us bound the running time of our SSSP

algorithm, under the hierarchy RH. Lemma 29 claims that �(RH) is linear. Recall that
according to Theorem 5 � corresponds to the cost of bucketing nodes.

Lemma 29 �(RH) = O(n)

Proof: By Observation 2(3) mass(x) is an upper bound on the diameter of V (x). We

will freely substitute references to diam(x) with mass(x); for instance, � could now be

written as:

�(RH) =
X
y2RH

deg(y) � log mass(y)

norm(y)

Suppose y were a non-leaf rank j node in Hx � RH. Using the terms from

Property 3(4), let � = (mass(Y1)+mass(Y2))=norm(x) and � = mass(y)=norm(x)�
�. Property 3(4) states that � < (2 + o(1)) � �j and Property 3(3,4) implies that

deg(y) � 2�=�j�1 + 2, where the +2 represents the stunted child and the child z

exempted from Property 3(4). We now bound the term of �(RH) associated with y:

deg(y) log
mass(y)

norm(y)
�

�
2�

�j�1
+ 2

�
log(�+ �) fSee explanations belowg

= O

�
maxf� log(2�j); �g

�j�1

�

= O

�
�+ �

2j�1

�
= O

�
mass(y)

norm(y) � 2j�1
�

The �rst line follows from our bound on deg(y) and the de�nition of � and �.

The second line follows since � < (2 + o(1))�j , and � log(�+ �) = O(maxf� log�; �g).
The last line follows since log �j = �j�1=2

j�1 > 1. By the above bound and Property

3(5),
P

y2Hx
deg(y) log(mass(y)=norm(y)) = O(mass(x)=norm(x)). Thus �(RH) =P

x2SHO(mass(x)=norm(x)), which is O(n) by Lemma 3(6). (Note that for undirected

graphs, if x 2 SH then mass(x) = �(diam(x)), where diam(x) is calculated using

Equation 3.2 from Section 3.2.)
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M(X)Black vertices are in X T(X)

2
3

2

Figure 5.3: On the left is a subtree of M , the MST, where X is the set of blackened
vertices. In the center is M(X), the minimal subtree of M connecting X, and on the
right is Tx, derived from M(X) by splicing out unblackened degree 2 nodes in M(X)
and adjusting edge lengths appropriately. Unless otherwise marked, all edges are of
length 1.

2

Theorem 5 and Lemma 29 imply that our SSSP algorithm based on Undirected-

Visit runs inO(split-findmin(m;n)) time, given the re�ned hierarchyRH. In Sections
5.2.3 and 5.2.4 we address the problem of computing RH.

5.2.3 Phase 2: Computing Shortcut Trees

It is entirely possible to compute an Hx satisfying Property 3, given only the subtree

M(x). However, the overall running time of such an algorithm would be unacceptable,

since, in general, jM(x)j can be much larger than jHxj. Recall that the leaves of Hx are

the children of x in SH, thus, jHxj = �(deg(x)). In Phase 2 we compute a tree called

Tx that has roughly deg(x) vertices and preserves much of the character of the original,

larger tree M(x). In Phase 3 we cluster the Tx tree, rather than M(x), and show that

little is lost in the substitution.

De�nitions

Let X be a set of vertices. We de�ne the shortcut tree on X to be the tree derived from

M(X) by splicing out all one-child nodes in M(X) � X | see Figure 5.3. Therefore,

the shortcut tree consists of degree-1 vertices (leaves or root), which must be in X,

degree-2 vertices (internal vertices or root), which also must be in X, and vertices of

degree at least 3, which are not necessarily in X. We de�ne Tx to be the shortcut tree

on the set root(M(child(x))), i.e., the roots of the MST-subgraphs corresponding to

the children of x in SH. Notice that edges in Tx correspond to paths in M . We de�ne

the length of a Tx-edge to be the length of the associated path.
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Because every vertex in Tx is either in the set root(M(child(x))) or has degree

at least 3, we have:

jTxj = [deg(x); 2deg(x))

Since Tx is thought of as a succinct representation of M(x), it will be convenient

to talk about the mass of a subtree in Tx, and have that mass roughly match up with

the corresponding subtree in M(x). To that end we attribute certain amounts of mass

to the vertices of Tx. Let v be a Tx vertex. If v = root(M(y)), for a y 2 child(x),

then mass(v) = mass(y); otherwise, mass(v) = 0. We de�ne the mass of a subtree T

of Tx as:

mass(T ) =
X

e2E(T )

`(e) +
X

v2V (T )

mass(v)

We will think of a subtree of Tx as corresponding to a subtree of M(x). Each

edge in Tx corresponds naturally to a path inM(x) and each vertex in Tx with non-zero

mass corresponds to a subtree of M(x).

Lemma 30 If T1 is a subtree of Tx and M1 the corresponding subtree of M , Then

mass(T1) = [mass(M1); 2mass(M1)].

Proof: Every edge in M1 contributes, at the very least, to the mass of one edge or

vertex in T1, and at the most, to one edge and vertex in T1.

2

Construction of Tx

Our algorithm for constructing the trees fTxgx2SH can be understood in isolation. Its

particulars have no bearing on the construction algorithm for RH, nor on our overall

SSSP algorithm.

Consider the vertex set of Tx. We could just as easily de�ned it as the least common

ancestor closure of root(M(child(x))). In general, the least common ancestor closure

of X, or lca(X), is the minimal set satisfying:

X � lca(X)

u; v 2 lca(X) =) lca(u; v) 2 lca(X)

where lca(u; v) is the least common ancestor in some rooted tree known by context,

which in our case is M .

Let U = fu1; u2; : : : ; udeg(x)g be the vertices of root(M(child(x))) in order of

their depth-�rst search numbers (DFS numbers), and Ui = fu1; : : : ; uig. It is trivial to
show that

lca(Ui+1) = lca(Ui) [ fui+1; lca(ui; ui+1)g

70



where we note that lca(ui; ui+1) may or may not already be in lca(Ui). Our algorithm
for computing the set fTxgx2SH is as follows.

1. Find a DFS numbering of the vertices w.r.t. M

2. For each x 2 SH, let Let ux1 ; : : : ; uxdeg(x) be root(M(child(x))) in DFS-order

3. The vertex set of Tx corresponds to

fux1 ; : : : ; uxdeg(x); lca(ux1 ; ux2); : : : ; lca(uxdeg(x)�1; uxdeg(x))g

4. Construct Tx from the DFS-order of its vertices. For an edge (u; p(u)) in Tx,

`(u; p(u)) can be computed as the distance from u to root(M) (in M) less the

distance from p(u) to root(M) | see Section 2.4 for a simulation of subtraction

in the comparison-addition model.

Tarjan's least common ancestor algorithm (see [47]) is said to be an o�-line al-

gorithm though this is not entirely accurate. In the context of a depth-�rst search,

Tarjan's algorithm can handle on-line LCA queries of the form lca(u; v) if (a) v is the

last vertex scanned by DFS and (b) u precedes v in this DFS. Using Tarjan's algorithm,

one can compute fTxgx2SH with one DFS traversal of M ; however, the overall running

time is O(n�(n)) since there are
P

x2SH(deg(x) � 1) < n LCA queries and each one

takes O(�(n)) amortized time. Using the more complicated o�-line LCA algorithms of

Harel and Tarjan [103] (for a RAM) or Buchsbaum et al. [24] (for a pointer machine)

we can compute fTxgx2SH in O(n) time.

Lemma 31 Given SH, the set fTxgx2SH can be computed in O(n) time.

5.2.4 Phase 3: Computing a Re�ned Hierarchy

In this section we show how to construct an Hx from Tx that is consistent with Property

3. The running time of our method is linear in the size of Tx. Together with Lemma

31, this implies that RH can be computed in O(n) time, given SH and M .

The Refine-Hierarchy procedure, given as pseudocode in Figure 5.4, constructs

Hx in a bottom-up fashion by traversing the tree Tx. Although necessity may force it

to do otherwise, Refine-Hierarchy seeks to create an ideal solution: rank j nodes in

Hx should be the children of rank j + 1 nodes and have mass �j � norm(x).
A call to Refine-Hierarchy(v), where v 2 Tx will produce an array of sets v[�]

whose elements are nodes in Hx that represent (collectively) the subtree of Tx rooted at

v, which in turn represents the subtree of M(x) rooted at v. The set v[j] holds rank j

nodes, which, taken together, are not yet massive enough to become a rank j + 1 node.
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We use the notation mass(v[j]) as short for mass(v[0] [ � � � [ v[j]), in other words, the

mass of the subgraph of Tx induced by elements in the sets v[0] [ � � � [ v[j].

The structure of a call to Refine-Hierarchy(v) is fairly simple. To begin with,

we initialize v[�] be an array of empty sets. If v itself has non-zero mass in Tx, i.e. if

v = root(M(y)), where y 2 child(x), then we place a node called y somewhere in v[�].
(Recall from the de�nition of Hx that its leaves correspond to the children of x in SH.)
We determine the j satisfying:

�j � mass(y)

norm(x)
< �j+1

and place y in v[j].

Next we process the children of v in Tx, one by one. Each pass through the loop we

pick an as yet unprocessed child w of v, recurse on w, producing sets w[�] representing
the subtree rooted at w, then merge the sets w[�] into their counterparts in v[�]. At

this point, the mass of some sets may be beyond a critical threshold; the threshold for

v[j] is �j+1 � norm(x). In order to restore a quiescent state in the sets v[�] we perform
promotions until no set's mass is above threshold.

De�nition 4 Promoting the set v[j] involves removing the nodes from v[j], making

them the children of a new rank j + 1 node, then placing this node in v[j +1]. There is

one exception: if jv[j]j = 1 then we simply move the node from v[j] to v[j + 1], without

changing its rank. Promoting the sets v[0]; v[1]; : : : ; v[j] means promoting v[0], then v[1],

up to v[j], in that order.

Suppose that after merging w[�] into v[�], j is maximal such that mass(v[j]) is

beyond its threshold of �j+1 � norm(x) (there need not be such a j.) We promote the

sets v[0]; : : : ; v[j], which has the e�ect of emptying the sets v[0]; : : : ; v[j] and adding a

new node to v[j + 1] representing the nodes formerly in v[0]; : : : ; v[j]. We compute Hx

by calling Refine-Hierarchy(root(Tx)); the resulting node is the root of Hx and is

therefore identi�ed with x 2 SH.
Lemma 32, given below, shows that we can compute fHxgx2SH in linear time,

provided that fTxgx2SH is given.

Lemma 32 Given the trees fTxgx2SH, a set of trees fHxgx2SH satisfying Property 3

can be constructed in O(n) time.

Proof: We �rst argue that Refine-Hierarchy(root(Tx)) produces an Hx satisfying

Property 3. We then look at how to implement Refine-Hierarchy in linear time.

Property 3(1) states that internal nodes in Hx must have norm-values equal to

that of x, which we satisfy by simply assigning them the proper norm-values, and that
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Refine-Hierarchy(v) where v is a vertex in Tx.

1. Initialize v[j] := ; for all j.
2. If v = root(M(y)), where y is a child of x in SH
3. Let j be maximal s.t. mass(y)=norm(x) � �j.

4. v[j] := fyg; (i.e., y is implicitly designated a rank j node)

5. For each child w of v in Tx:

6. Refine-Hierarchy(w)

7. For all i; v[i] := v[i] [ w[i]

8. Let j be maximal such that mass(v[j])=norm(x) � �j+1

9. Promote v[0]; : : : ; v[j] (see De�nition 4)

10. If v is the root of Tx, promote v[0]; v[1]; : : : until one node remains.

(This �nal node is the root of Hx, which is returned.)

Figure 5.4: An algorithm for constructing Hx, given Tx.

no node of Hx have one child. By our treatment of one-element sets in the promo-

tion procedure of De�nition 4, it is simply impossible to create a one-child node in Hx.

Property 3(5) follows from Lemma 30 and the observation that the mass (in Tx) rep-

resented by nodes of the same rank is disjoint. Now consider Property 3(3), regarding

stunted nodes. We show that whenever a set v[j] accepts a new node z, either v[j] is

immediately promoted, or z is not stunted, or the promotion of z into v[j] represents

the last promotion in the construction of Hx (Refine-Hierarchy, line 10). Consider

the pattern of promotions in Line 9. We promote the sets v[0]; : : : ; v[j] in a cascading

fashion: v[0] to v[1], v[1] to v[2] and so on. The only set accepting a new node which

is not immediately promoted is v[j + 1], so in order to prove Property 3(3) we must

show that the node derived from promoting v[0]; : : : ; v[j] is not stunted. By choice of j,

mass(v[j]) � �j+1 �norm(x), where mass is w.r.t. the tree Tx. By Lemma 30 the mass of
the equivalent tree in M(x) is at least �j+1 � norm(x)=2, which is exactly the threshold

for this node being stunted. Finally, consider Property 3(4). Before the merging step

in Line 7 none of the sets in v[�] or w[�] is massive enough to be promoted. Let v[�] and
w[�] denote the sets associated with v and w before the merging in step 7, and let v0[�]
denote the set associated with v after the step 7. By the de�nition of mass we have:

mass(v0[j]) = mass(v[j]) +mass(w[j]) + `(v; w) < 2 � �j+1 � norm(x) + `(v; w)

Since (v; w) is an edge in Tx it can be arbitrarily large compared to norm(x),

meaning we cannot place any reasonable bound on mass(v0[j]) after the merging step.

73



Let us consider how Property 3(4) is maintained. Suppose that v0[j] is promoted in

Lines 9 or 10 and let y be the resulting rank j + 1 node. Using the terminology from

Property 3(4), let Y1 = v[j]; Y2 = w[j] and let z be the node derived by promoting

v0[0]; : : : ; v0[j � 1]. Since neither v[j] nor w[j] were suÆciently massive to be promoted

before they were merged, we have (mass(Y1) + mass(Y2))=norm(x) < 2�j+1. (Note

that by Lemma 30 this inequality holds if mass is taken w.r.t. to either Tx or M(x).)

This is slightly stronger than what Property 3(4) calls for, which is the inequality <

(2 + o(1))�j+1. We'll see why the (2 + o(1)) is needed below.

Suppose that we implemented Refine-Hierarchy in a straightforward manner.

Let L be the maximum possible index of any non-empty set v[�] during the course of

Refine-Hierarchy. One can easily see that the initialization in Lines 1{4 take O(L+1)

time and that exclusive of recursive calls, each time through the for loop in Line 5 takes

O(L + 1) amortized time. (The bound on Line 5 is amortized since promoting a set

v[j] takes worst case O(jv[j]j + 1) time but only constant amortized time. The cost of

examining a node in v[j] can be charged to the promotion that created it.) The only

hidden costs in this procedure are dynamically updating the mass of v[0]; : : : ; v[L], as

the contents of these sets change. After the merging step in Line 7 we could simply set

mass(v[j]) := mass(v[j])+ `(v; w)+mass(w[j]) for each j � L. Therefore the total cost

of computing Hx from Tx is O((L + 1) � jTxj). We can prove L � 2log�(4n) as follows.

The �rst node placed in any previously empty set is unstunted; therefore, by Lemma 28,

the maximum non-empty set has rank at most 2log�(mass(Tx)=norm(x)). By Lemma

30 and Lemma 3(5) mass(Tx) � 2 �mass(M(x)) < 4(n� 1) � norm(x).
In order to reduce the cost to linear we make a couple adjustments to the Refine-

Hierarchy procedure. First, v[�] is represented as a linked-list of non-empty sets.

Second, we update the mass variables in a lazy fashion. The time for Steps 1{4 is

dominated by the time to �nd the appropriate j in Step 3, which takes time t1 { see

below. The time for merging the v[�] and w[�] sets in Step 7 is only proportional to the

shorter list; this time bound is given by expression t2 below.

t1 = O

�
1 + log�

mass(v)

norm(x)

�

t2 = O

�
1 + log�

minfmass(v[�]);mass(w[�])g
norm(x)

�
where mass(v[�]) = mass(v[0] [ v[1] [ � � �). After Steps 1{4 we update the mass of

the sets v[0::�(t1)], and after Step 7 we update the mass of v[0::�(t2)]. Furthermore,

as a rule we update v[j + 1] no less than half as often as v[j]. It is routine to show

that Refine-Hierarchy will have a lower bound on the mass of v[j] which is o� by a

1+o(1) factor, where the o(1) is a function of j.3 This leads to the conspicuous 2+ o(1)

3The proof of this is somewhat tedious. Basically one shows that for i < j, the mass of v[i] can
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in Property 3(4). To bound the cost of Refine-Hierarchy we model its computation

as a binary tree, the leaves of which are identi�ed with the Hx-nodes created in Lines

1{4. Its internal nodes represent the merging events in Line 7. The cost of a leaf f

is log�(mass(f)=norm(x)), and the cost of an internal node f with children f1 and f2
is 1 + log�(minfmass(f1)=norm(x);mass(f2)=norm(x)g), where the mass of a node is
the sum of the mass of its descendant leaves. We can think of charging the cost of f

collectively to the mass of the leaves of the subtree of f1 or f2, whichever is smaller.

Therefore, no unit of mass can be charged for two nodes f and g if the mass of f is

within twice the mass of g. The total cost is then:

X
f

cost(f) = O(jTxj+ mass(Tx)

norm(x)
�
1X
i=0

log�(2i)

2i
) = O

�
mass(x)

norm(x)

�

The last equality follows since both jTxj and mass(Tx)
norm(x) are O(

mass(M(x))
norm(x) ) = O( mass(x)

norm(x)).

Summing over all x 2 SH, the total cost of constructing fHxgx2SH is O(n) by Lemma

3(6).

2

Theorem 6 The time required to compute a re�nement of SH satisfying Property 3 is

O(mst�(m;n) +minfn log log r; n log ng)

Proof: Follows from Lemmas 27, 31, 32.

2

Remark. The running time of Theorem 6 will be unaltered even if we use the simpler

implementation of the algorithm in Lemma 32, provided that either log�n = O(m=n)

or log�n = O(log log r).

5.3 Variations on the Algorithm

5.3.1 Simpler and Slower

One objection to our algorithm is that it uses a non-standard data structure, namely our

specialized Bucket-Heap. Is it possible to use only o�-the-shelf data structures without

increasing the overall running time? In this section we observe that if Generalized-

Visit is run on RH, rather than SH, and if Fibonacci heaps [73] are used in lieu of a

bucket array, then SSSP can be computed in O(m + nlog�n) time, which is not much

worse than the O(split-findmin(m;n)) = O(m log�(m;n)) bound of Theorem 5.

be updated at most 2j�i � 1 times before the mass of v[j] is updated. Since 2j�i � 1 � �i << �j , our
neglecting to update the mass of v[j] causes only a negligible error.

75



Claim 1 Undirected SSSP can be computed in O(m+nlog�n) time with an implementa-

tion of Generalized-Visit that operates on RH. The only non-trivial data structures

used are split-�ndmin and Fibonacci heaps.

Proof: For x 2 RH, we simulate the bucket array of x using a linked-list and a

Fibonacci heap. The linked list holds the active children of x that belong in the current

bucket. When a new bucket becomes active, any inactive nodes in x's Fibonacci heap

that belong in the current bucket are moved to x's linked list. The upshot is that every

node in RH is removed from a Fibonacci heap just once. Thus, the heap-cost of this

implementation is:

O(m) +
X
x2RH

deg(x) log deg(x)

where the O(m) term represents the cost of decrease-keys. It is simple to show thatP
x deg(x) logdeg(x) = O(n) using a proof similar to that of Lemma 29. The cost per

recursive call to Generalized-Visitis constant, but unlike before, the total number of

recursive calls may be super-linear. It is bounded by:

X
x2RH

diam(x)

norm(x)
+ 1 =

X
j

X
x 2 RH

rank(x) = j

diam(x)

norm(x)
+ 1

< 2n+ 2log�n �
X
x2SH

diam(x)

norm(x)
fLemma 28g

= O(nlog�n) fLemma 3(6)g

The other costs of Generalized-Visit are covered by the split-�ndmin struc-

ture, whose complexity is O(m log�(m;n)) = O(m + nlog�n). Thus the total cost of

computing undirected SSSP with Generalized-Visit is O(m+nlog�n), provided RH
is given.

2

Remark. Claim 1 is probably a little pessimistic. We would not expect the nlog�n term

to manifest itself, unless the input graph had a very carefully chosen structure.

5.3.2 Sort-of-Undirected Graphs

Consider the graph corresponding to the road map of your favorite city. In all likelihood

this graph is almost planar and nearly undirected. Does this mean that the wealth of

algorithms for planar and/or undirected graphs simply cannot be applied? Probably

not. Such algorithms (or their analyses) can frequently be modi�ed to tolerate minor

deviations from an ideal graph type. For instance, the crossing number is a good measure

of how nonplanar a graph is. We would expect the asymptotic performance of certain
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planar shortest path algorithms [66, 105] to be una�ected, provided that the crossing

number is suÆciently low.

One generalization of weighted undirected graphs is disparity-bounded graphs. Let

G[k] be the set of directed graphs of the form G = (V;E; `) where if (u; v) 2 E then

`(v; u)=`(u; v) � k, where (v; u) 62 E implies `(v; u) = 1. Then G[1] is the set of all

weighted directed graphs, and G[1] is the set of weighted undirected graphs.

It is not diÆcult to show that our undirected SSSP algorithm also works well

with disparity-bounded graphs; we do, however, need to make a few modi�cations to

the algorithm. In the construction of our hierarchies we let the length of the (imagined)

undirected edge fu; vg be minf`(u; v); `(v; u)g. If the input graph appears in G[k] then
all our calculations of diam and mass are o� by at most a factor of k. One can then

prove updated versions of Lemma 3(5) and (6), and Theorems 5 and 6. The result is

summarized in Theorem 7.

Theorem 7 Suppose G is a graph drawn from G[k]. Then the RH hierarchy for G can

be computed in time O(mst�(m;n) + minfn log log r; n logng), where m and n are the

number of edges and vertices, r a bound on the ratio of any two non-zero edge-lengths,

and mst� the decision-tree complexity of the minimum spanning tree problem. Further-

more, if given the RH hierarchy, SSSP can be computed in time O(split-findmin(m;n)+

kn), where split-findmin is the decision-tree complexity of the split-�ndmin problem.

Thus, if k = O(m=n), computing SSSP on a graph from G[k] is just as easy as

from G[1].
The class G[k] does not really capture road networks, where any edge (street)

is either purely directed (one-way) or purely undirected (two-way). One can extend

Theorem 7 to the case when all edges have bounded disparity, except for, say, n= logn of

them, which can be purely directed (disparity1). However, our SSSP algorithm would

require some non-trivial modi�cations to deal e�ectively with this class of graphs.

5.4 Discussion

The running time of our SSSP algorithm has an unsightly dependence on r, the ratio

of the maximum-to-minimum edge length. Although our algorithm is asymptotically

faster than Dijkstra's for common values of m, n, and r (say, m = O(n) and r =

poly(n)), it provides no improvement in general. Theorem 2 gives an explanation for

this dependence on r. Basically, the minfn log log r; n logng term is unavoidable under

some weak assumptions about how a hierarchy-type algorithm computes SSSP. Thus,

any faster undirected SSSP algorithm must do something fundamentally di�erent than

our algorithm. No tweaks or data structural improvements will suÆce.
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It is a little counterintuitive that increasing r should make the SSSP problem

conceptually more diÆcult. Generally speaking, the single-source shortest path tree

of a graph whose edge-lengths vary widely in magnitude should resemble the graph's

minimum spanning tree, regardless of the source vertex. Since the MST problem is

manifestly simpler than SSSP | see Chapter 7 | one would think that large values of

r should make the SSSP problem easier. We suspect that the key to a faster undirected

SSSP algorithm is some simple, but as-of-yet unobserved property of minimum spanning

trees.
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Chapter 6

Experimental Evaluation of a

Shortest Path Algorithm

6.1 Introduction

Whenever one develops a theoretically faster algorithm, one immediately wonders how

well it actually performs, running on a physical computer. In this chapter we attempt to

gauge how well a simpli�ed version of our undirected shortest path algorithm [Chapter 5]

performs in practice. We are interested in its speed, both relative to Dijkstra's algorithm

(the previous best for real-weighted graphs), and relative to a hypothetical practically

optimal shortest path algorithm.1

Our experimental �ndings indicate that our algorithm outperforms Dijkstra's on

a variety of sparse graphs, ranging in size from a few thousand to a few million vertices.

More surprisingly, the ratio of our running time to that of breadth �rst search (BFS) is

always less than 2.77, and usually less than 2.15. This shows that our algorithm is very

nearly optimal, under the plausible assumption that BFS is a practical lower bound on

the shortest path problem.

The timings mentioned above refer to the marginal cost of our algorithm, that

is, the cost of computing SSSP after a suitable hierarchy has been constructed. A key

question is: how many SSSP computations make this initial, one-time cost worthwhile?

On the classes of graphs we tested, this critical threshold was always between 3 and 12,

well within the range of acceptability for many practical applications.

We chose not to experiment with our directed shortest path algorithm [Chapter

4] for a number of reasons. First and foremost, it only dominates Dijkstra's algorithm

when computing APSP, or more accurately, SSSP from at least !(m= log n) di�erent

1The results of this chapter were published in: S. Pettie, V. Ramachandran, and S. Sridhar, An ex-
perimental evaluation of a new shortest path algorithm, Proc. 4th Workshop on Algorithm Engineering
and Experiments (ALENEX), pp. 126{142, 2002.
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sources. Therefore, we would not have time to test it on any really large graphs, where

its asymptotic advantage would supposedly emerge. Second, on small graphs its run-

ning time would likely be dominated by some ungainly constant factors, which were

conveniently masked by the asymptotic analysis. In contrast, our undirected shortest

path algorithm [Chapter 5] does not su�er from these problems. After constructing a

suitable hierarchy in O(m + n logn) time, it can begin computing SSSP in near-linear

time; moreover, the algorithm is streamlined and relatively simple to code.

6.1.1 Previous Work

The performance of Dijkstra's algorithm is largely determined by the choice of priority

queue or heap. We are unaware of any thorough study of the best heap for use in

Dijkstra's shortest path algorithm. However, Moret and Shapiro [166] did an extensive

study of the Dijkstra-Jarn��k-Prim2 minimum spanning tree algorithm, which is nearly

identical to Dijkstra's shortest path algorithm. They found that the pairing heap of

Fredman et al. [72] was usually the best, and the only heap to consistently perform well

over a variety of inputs.

Goldberg & Co. [90, 33, 92, 34, 88] experimented with several directed SSSP

algorithms, both for positive and arbitrary edge lengths. In these experiments the edge-

lengths were chosen to be relatively small, uniformly distributed integers. Moreover,

most of their algorithms assumed, and were tailored to, integer edge-lengths. (For

instance, [88] tests a number of algorithms based on multi-level bucketing structures,

which are not appropriate in the context of real-weighted graphs.) The best algorithm

in Goldberg's recent study [88] never performed worse than 2.5 times the speed of BFS,

and usually no more than 2 times BFS.

6.1.2 Scope of the Experiment

In our experiments we focus on undirected SSSP algorithms for the comparison-addition

model with provably good worst-case running times. Because the comparison-addition

model abstracts away details of numerical representation and implementation, it can be

viewed as a programming interface. Therefore, any comparison-addition based algorithm

works { without modi�cation { with any conceivable numerical data type.

We have a number of candidate algorithms to choose from. However, many of

them have quadratic or cubic worst-case running times; for instance, Bellman-Ford,

Floyd-Warshall, and min-plus matrix multiplication (refer to [47]) are all inappropriate

as undirected SSSP algorithms. The real contenders are Dijkstra's algorithm [52] and the

algorithm presented in Chapter 5. (We remark that Meyer [160] has an SSSP algorithm

2Sometimes called Prim's algorithm; see Chapter 8 for more on this.
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running in expected linear time if the edge-lengths are uniform in [0; 1]. However, it is

fairly complicated and has a quadratic worst-case running time.)

Since the undirected SSSP problem has essentially been solved for graph-density

m=n � log n (Dijkstra's algorithm runs in linear time), we focus on sparse graphs.

In real-world situations sparse graphs are the norm; for instance, planar graphs, d-

dimensional grid graphs, and the web-graph are all sparse.

Single-Source vs. Multi-Source Shortest Paths

Our undirected shortest path algorithm [Chapter 5] has a one-time cost of O(m+n logn)

to construct a suitable hierarchy, whereas Dijkstra's algorithm has no startup cost, aside

from the negligible cost of allocating memory. In our timings we consider both the

startup cost of our algorithm and the marginal cost of one SSSP computation. In other

words, we are studying the more general multi-source shortest path problem (MSSP),

which subsumes both SSSP and APSP.

In many practical situations it is MSSP that needs to be solved, not SSSP. For

instance, in a recent algorithm for graphic facility location and k-median, Thorup [198]

begins by performing a polylogarithmic number of of SSSP computations. In this sit-

uation one would be happy to trade a large startup cost in exchange for reducing the

marginal cost of SSSP.

6.2 Design Choices

6.2.1 Dijkstra's Algorithm

Based on the experimental study of Moret and Shapiro [166], we chose to implement

the priority queue in Dijkstra's algorithm with a pairing heap [72]. Among heaps sup-

porting the decrease-key operation pairing heaps seem to be the fastest in practice; the

theoretically optimal Fibonacci heap [73] is typically slower. It was proved recently [70]

that the pairing heap is technically suboptimal: decrease-key operations can { in the

worst case { take 
(log log n) time.3

There has been a lot of work recently on data structures with good cache usage.

However, none of the cache-sensitive heaps [177, 11, 23] supports the decrease-key op-

eration. Indeed, it seems that even allowing decrease-keys destroys the possibility of

optimal cache usage.

3However, based on [70] a plausible scenario is that pairing heaps support n insert/delete operations
and m decrease-keys in O(m log log n + n log n) time, meaning they would still be optimal for density
m=n < log n= log log n. Thus, for applications on sparse classes of graphs, there may not even be a
theoretical objection to pairing heaps.

81



The experimental studies by Goldberg et al. [33, 92, 88] have used multi-level

bucket structures to implement the heap in Dijkstra's algorithm. Constant-time buck-

eting, however, is only available with integer edge-lengths. The bucketing strategies of

[5, 160, 89] can, in principle, be applied to real edge-lengths, though the resulting data

structure is much clumsier than a pairing heap.

6.2.2 Pettie-Ramachandran Algorithm

We call the algorithm presented in Chapter 5 the Pettie-Ramachandran or PR algorithm.

In Chapter 5 our main concern was asymptotic running time, not eÆcient code. In this

chapter we test a version of the PR algorithm simpli�ed in many respects; we do not

guarantee the same worst-case asymptotic running time.

Finding the MST: The PR algorithm constructs a hierarchy based on a categoriza-

tion of the minimum spanning tree edges by length; in the worst case the MST

edges are sorted. We choose Kruskal's MST algorithm because it is reasonable

fast { O(m log n) time { and produces the MST edges in sorted order. Some of

our data on larger and denser graphs suggests that it may be better to use the

Dijkstra-Jarn��k-Prim MST algorithm, which is empirically faster than Kruskal's

[166], followed by a step to sort only the MST edges.

Updating D-values: In Chapter 5 we recommend using a split-�ndmin data structure

to handle the tentative distances (D-values) of hierarchy nodes. In our implemen-

tation of the PR algorithm we update D-values using the na��ve method: whenever

the D-value of a leaf is reduced we propagate the new D-value up the hierarchy,

until a node is reaches with lesser D-value. The worst-case time of this method is

proportional to the height of the hierarchy. However, if the na��ve method is used

in conjunction with Dijkstra nodes (see below) we found that updating a D-value

generally requires examining only two hierarchy nodes.

Switching to Dijkstra: The streamlined nature of Dijkstra's algorithm makes it the

preferred algorithm on small graphs. For this reason we revert to Dijkstra's al-

gorithm whenever the problem size (encountered in a recursive call of PR) drops

below a certain threshold, say � vertices. In other words, if x is a hierarchy-node

and jV (x)j � �, we designate x a Dijkstra node and eliminate all the internal

hierarchy-nodes below x, making V (x) the children of x. This guarantees that

every leaf's grandparent has at least � leaf-descendants. In all our experiments

we set � = 50.

Heaps vs. Bucket-Heaps: In Chapter 5 we recommended implementing the PR al-

gorithm with a Bucket-Heap which is a non-standard and not necessarily practical
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data structure. In our experiments we use the same pairing heap used in Dijkstra's

algorithm.

Re�ned Hierarchies In Chapter 5 our shortest path algorithm operated on a hier-

archy called RH, which was a re�nement of an earlier hierarchy SH. In our

experiments we use a hierarchy more akin to SH than RH. Introducing Dijk-

stra nodes (see above) seems to provide the same kind of bene�t as re�ning the

hierarchy, but is both simpler and faster.

6.2.3 Breadth First Search

We compare the PR algorithm with breadth �rst search (BFS) as well as Dijkstra's

algorithm. We found the PR/BFS ratio (running time of PR vs. running time of

BFS) to be a very interesting statistic. It gives us a rough estimate of the potential for

improvement, and lets us compare our results against a previous study [88], which dealt

with di�erent shortest path algorithms and di�erent hardware.

6.3 Experimental Set-up

Our main experimental platform was a SunBlade with a 400 MHz clock and 2GB DRAM

and a small cache (.5 MB). The large main memory allowed us to test graphs with

millions of vertices. For comparison purposes we also ran our code on selected inputs

on the following machines.

1. PC running Debian Linux with a 731 MHz Pentium III processor and 255 MB

DRAM.

2. SUN Ultra 60 with a 400 MHz clock, 256 MB DRAM, and a 4 MB cache.

3. HP/UX J282 with 180 MHz clock, 128 MB ECC memory.

6.3.1 Graph Classes

We ran the algorithms on the following classes of graphs:

Gn;m The distribution Gn;m assigns equal probability to all graphs with m edges on n

labeled vertices (see [59, 20] for structural properties of Gn;m). We assign edge-

lengths identically and independently, using either the uniform distribution over

[0; 1), or the log-uniform distribution, where edge lengths are given the value 2q,

q being uniformly distributed over [0; C) for some constant C. We use C = 100.
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Geometric graphs Here we generate n random points (the vertices) in the unit square

and connect with edges those pairs within some speci�ed distance. Edge-lengths

correspond to the distance between points. We present results for distance 1:5=
p
n,

implying an average degree � 9�=4 which is about 7.

Very sparse graphs These graphs are generated in two stages: we �rst generate a

random spanning tree, to ensure connectedness, then generate an additional n=10

random edges. All edges-lengths are uniformly distributed.

Grid graphs The graph is a
p
n�p

n grid with uniformly distributed edge lengths.

Random graphs can have properties that might actually be improbable in real-

world situations. For example, Gn;m almost surely produces graphs with low diameter,

nice expansion properties, and very few small, dense subgraphs [20]. On the other

hand, it may be that graph structure is less crucial to the performance of shortest path

algorithms than edge length distribution. In the PR algorithm for instance, the random

graph classes described above give rise to very similar-looking hierarchies. A typical

hierarchy would be short, have very high-degree nodes near the root and low-degree

nodes near the leaf-level.

We introduce two classes of random graphs that are engineered to produce hier-

archies with some peculiar structure. The purpose of these graphs is to understand how

the PR algorithm's performance is a�ected by the underlying hierarchy; they may or

may not be of independent interest.

Hierarchical graphs A graph in this class almost surely produces a hierarchy that is

a full b-ary tree, where b � 2. The number of edges is roughly 1
2n logb n. We give

timings for b = 6 and b = 10.

Bullseye graphs A bullseye graph is parameterized by o and d. It has dn=2 edges,

and it produces a hierarchy that consists of a chain of o nodes, each of which is

the parent of n=o leaves. We give timings for d = 3, o = 25 and o = 100.

In the hierarchical and bullseye classes the edge-lengths are chosen randomly, but

with di�erent constraints on each edge (because the hierarchy is predetermined). There

are an equal number of edges with length in [2i; 2i+1), for i < logb n (hierarchical graphs)

and i < o (bullseye graphs). Thus, their distributions are somewhat log-uniform.

6.4 Results

The plots in Figures (a)-(i) give the running times of the two algorithms and BFS on

the SunBlade for each of the graph classes we considered. Each point in the plots
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represents the time to compute SSSP/BFS, averaged over thirty trials from randomly

chosen sources, on three randomly chosen graphs from the class. The y-axis is a measure

of `microseconds per edge', that is, the time to perform one SSSP/BFS computation

divided by the number of edges.

In the plots, DIJ represents Dijkstra's algorithm and PR-marg represents the

marginal cost of computing SSSP with the Pettie-Ramachandran algorithm (excludes

cost of computing the hierarchy).

It is unclear how close a comparison-addition based SSSP algorithm can get to

the speed of BFS. Our results show that on a variety of graph types the marginal cost

of the PR algorithm is very competitive with BFS, running between a factor of 1.87 and

2.77 times the BFS speed and usually less than 2.15 times BFS | see Table 1, third

row. The PR algorithm clearly leaves little room for improvement.

The e�ect of precomputing a hierarchy is described in Figure (j) and Table 6.1.

Table 6.1 (�rst row) lists, for each class of graphs, the critical threshold s0 such that PR

outperforms Dijkstra's algorithm, when computing SSSP at least s0 times on a graph

with 220 vertices. Figure (j) shows the amortized time per SSSP computation, including

the cost of precomputing the hierarchy, for varying numbers of sources in the Gn;m

graph class. Table 6.1 indicates that PR overtakes DIJ for a modest number of sources

and Figure (j) indicates that the precomputation time quickly becomes negligible as the

number of sources increases. In Figure (j), the line PR-i represents the amortized cost

per SSSP computation (including precomputation), over i SSSP computations.

Figures (a) and (b) show the marginal performance of the PR algorithm to be

stable over the uniform and log-uniform distributions. What is somewhat surprising

is that Dijkstra's algorithm is signi�cantly faster under the log-uniform distribution.

(We hypothesize that this e�ect is due to the pairing heap. Under the log-uniform

distribution, the next vertex visited, that is, the next extracted from the pairing heap,

is typically one recently inserted into the heap. Iacono [112] has shown that the pairing

heap naturally exploits these correlations.)

Figure (d), on geometric graphs, still shows the marginal cost of PR to be faster

than Dijkstra on all graphs tested, though the separation in running times is not as

dramatic as in Gn;m. We believe this is largely due to the density of the geometric

graphs, which is about 7=2. Every edge is relaxed exactly once (in both PR and DIJ)

but Dijkstra's algorithm is slightly faster in this regard. Also, the pairing heap in

Dijkstra's algorithm usually contains O(
p
n) vertices, which should theoretically boost

its speed.

Figures (e),(f),(g), and (h) suggest that the PR algorithm's performance is less

a�ected by the shape of the hierarchy than Dijkstra's algorithm. Notice that Dijkstra's

algorithm runs about 40 per cent faster on bullseye graphs with 221 vertices and o = 100,

as compared to bullseye with o = 25 or either of the hierarchical classes. We have no
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Gn;m Gn;m Sparse Geometric
(uniform) (log-uni.)

s0 3 21 3 17

Hier/PR 5.05 11.75 4.38 8.48

PR/BFS 2.14 2.11 1.99 2.77

Hier. Hier. Bull. Bull. Square
b = 6 b = 10 o = 25 o = 100 Grid

s0 4 4 4 7 10

Hier/PR 10.1 9.6 5.33 6.11 7.85

PR/BFS 1.87 1.92 2.15 2.01 2.77

Table 6.1: First line: number of SSSP computations (s0) beyond which PR (including
cost of computing a hierarchy) outperforms Dijkstra. Second line: ratio of time to
construct the hierarchy to the marginal-cost of computing SSSP with PR algorithm.
Third line: ratio of the marginal cost of computing SSSP with PR to time for one BFS
computation. These statistics reect graphs of 220 vertices.

explanation for this.

The timings for square grids are given in Figure (i). Dijkstra's algorithm performs

slightly better than average (likely due to the small average heap size) and the PR

algorithm performed about as expected.

The results on the SUN Ultra 60, the Linux PC and the HP/UX machines are

similar (see Figure (k) for a comparison of runs on Gn;m with uniform distribution of

edge lengths), except that the runs are proportionally faster on the Linux PC and slower

on the HP machine. The Linux PC was also more sensitive to the representation of edge-

lengths, whether integers, or double or quadruple precision oating points | see Figure

(l). In contrast the results on the SUN machines were virtually the same for integers

and double precision oating points. (Of course, because DIJ and PR were written for

the comparison-addition model they needed no alterations; changing the numerical type

of edge-lengths a�ected just one line of code.)

Figure (m) charts the performance of the PR and DIJ algorithms on graphs with

a �xed number of vertices, 100; 000, as the graph density is increased from 1.5 to 19.

The graph class here is Gn;m. As expected, Dijkstra's algorithm converges to a linear

running time as the density increases. Still, the marginal cost of PR is superior for even

relatively dense graphs.

Finally, in Figure (n) we plot the number of comparison/addition operations made

by the algorithms, on Gn;m under uniform and log-uniform edge-length distributions.
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6.5 Discussion

The most surprising result of this chapter is that | in the undirected shortest path

problem at least | very little speed needs to be sacri�ced in order to adopt a general

model of computation, namely the comparison-addition model. In our experiments the

Pettie-Ramachandran algorithm always performed less than 2.77 times BFS speed, and

usually less than 2.15 times BFS. Contrast this with a heuristic shortest path algorithm

of Goldberg [88] (which we note was the result of much tinkering [90, 33, 92, 34, 89, 88])

that performed less than 2.5 times BFS and usually less than 2 times BFS. In this case,

it seems the price of generality is roughly 7{10 per cent of the running time. We could

not ask for much more.
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Part II

Minimum Spanning Trees
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Chapter 7

Introduction to Minimum

Spanning Trees

7.1 History

The minimum spanning tree problem (MST) is rare among computer science problems

in that it was studied long before the �eld of computer science itself. Chazelle [28]

speculated that \it may be the oldest open problem in computer science" and Ne�set�ril

[167] has called it \a cornerstone problem of combinatorial optimization and in a sense

its cradle." The problem, as it is typically stated, is to �nd a minimum-weight tree

spanning the vertices of a given weighted undirected graph.

Otakar Bor�uvka [21, 22] is widely regarded as the originator of the abstract MST

problem and the inventor of the �rst MST algorithm, published in 1926. However,

even this attribution is up for debate. As we will see, attribution is a tricky issue for

the MST historian since most of the fundamental algorithms have been discovered and

rediscovered, in a few cases within mere months of each other. For instance, Bor�uvka's

algorithm was rediscovered by Choquet [38] in 1938 and Florek et al. [63] in 1951, and

even as late as 1965 | long after Bor�uvka's paper was well known | the textbook of

Berge and Ghouila-Houri [18] attributes the algorithm to Sollin [183]. Florek et al. [63]

traced their algorithm back to a greedy clustering heuristic of Czekanowski [49] published

in 1909. Czekanowski's method can be used to group related objects (humanoid skulls

in his case), given a matrix of their pairwise similarities. Czekanowski apparently did

not think of his heuristic as exactly solving the minimum spanning tree problem, but of

approximately solving a phylogeny problem; see [49, 94].

In response to Bor�uvka's admittedly clumsy exposition [21, 22],1 Jarn��k [115]

1One must bear in mind that the MST problem predates modern graph theory. Bor�uvka [21] managed
to de�ne and solve the problem using only notation for matrices, sets, and sequences; no mention is
made of graphs, trees, paths, vertices, edges, or any other useful concepts.
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proposed a simpli�ed MST algorithm that was inexplicably ignored for years. Jarn��k's

algorithm was rediscovered independently by Prim [173], in 1957 then Dijkstra [52] two

years later.2 Both Prim and Dijkstra published their algorithms as practical, space-

eÆcient alternatives to Kruskal's MST algorithm [145], published in 1956.

Kruskal's algorithm was, itself, independently discovered a few months later by

Loberman and Weinberger [153], and generalizations of Kruskal's algorithm were stud-

ied by Kalaba [123], Kotzig [143], Rosenstiehl [176], Dijkstra [53], and Guan [159].

The Kruskal-like algorithms are distinguished from all other minimum spanning tree

algorithms in that they solve the more general matroid optimization problem | see

[58, 149, 47].

Running Time

Early research on the MST problem focused on deriving simple and space-eÆcient al-

gorithms. Rarely, if ever, is running time even mentioned as a statistic of interest. If

the algorithms of Bor�uvka [22], Kruskal [145], Prim [173], and Dijkstra [52] were to be

implemented as stated, Kruskal's algorithm would run in O(n3) time and the others in

O(n2) time, where n is the number of vertices. One should bear in mind that Kruskal's

algorithm (which identi�es MST edges in sorted order) predated Hoare's quicksort [108]

by 5 years, and that Williams's [205] binary heap was invented several years after the

publications of Prim and Dijkstra.

In the 1970s there was a de�nite shift in the goals of minimum spanning tree

research, from designing simple, provably correct algorithms to designing asymptoti-

cally fast ones, which were also correct and hopefully simple. Using straightforward

techniques, such as sorting and binary heaps, the classical MST algorithms could all be

implemented in O(m log n) time, wherem is the number of graph edges. Many observed

that Kruskal's algorithm could be made to run in near-linear time if the edge-weights

were presented in sorted order | or sortable in linear time, say, with radix-sort. From

a practical perspective this may sound like good news, since edge-weights can, indeed,

frequently be sorted in linear time. However it is a thorn in the side of the designer of

minimum spanning tree algorithms. Any result claiming a faster MST algorithm must

be predicated explicitly on a model of computation incapable of sorting in linear time (or

at least one for which linear-time sorting is non-trivial [75].) Since the 1970s a mainstay

in the MST problem has been the assumption that edge-weights may be compared in

constant time, but are otherwise uninspectable.3

2However, Dijkstra [55] claims to have coded his algorithm as early as 1956.
3This model is justi�ed on several grounds: as aesthetically pleasing, abstract, minimal, conceptually

simple, and widely applicable. It also makes the MST problem harder and keeps the algorithm designers
in business.
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In 1975 Yao [206] published the �rst improvement4 over the classical algorithms.

Yao showed how to implement Bor�uvka's algorithm in O(m log log n) time using the

recently developed linear-time selection algorithm of Blum et al. [19]. In the same year

Johnson [118] gave an O(m logd n) time implementation of the Jarn��k/Prim/Dijkstra

algorithm, where d = maxfmn ; 2g is the density of the graph. Johnson's algorithm

was based on the d-heap, a generalization of Williams's binary heap [205] that gave

a tradeo� between insert/delete operations and decrease-keys. Cheriton and Tarjan

[32] gave a more sophisticated implementation of Bor�uvka's algorithm running in time

O(m log logd n) time. Their algorithm was based on the mergeable leftist heaps of Crane

[48] (see also Knuth [139]). In 1984 Fredman and Tarjan [73] invented the Fibonacci

heap, which was the key component in their O(mlog�(m;n))-time MST algorithm.5

By making thriftier use of the Fibonacci heap, Gabow et al. [78] produced an MST

algorithm running in time O(m log log�(m;n)).

In retrospect the algorithm of Gabow et al. [78] was the last result of an era of

research on the MST problem. It, like every MST algorithm that preceded it, could be

viewed as merely instantiating a certain generalized greedy method. Unlike the greedy

algorithms, which single-mindedly construct the MST one edge at a time, all recent

MST algorithms take a non-greedy tack. Basically, the idea is to quickly construct an

approximately minimum spanning tree, whose function is to rule out non-MST edges

and thereby make the search for MST edges less costly.

In 1994 Karger, Klein, and Tarjan [138, 127] presented a randomized expected lin-

ear time MST algorithm, settling the randomized complexity of the problem. In short,

their algorithm recursively �nds the minimum spanning tree of a sampled graph (thus,

an approximate MST), then uses Koml�os's [141] linear-time MST veri�cation routine

to �lter out certi�ably non-MST edges. In 1997 Chazelle [27] developed a determin-

istic O(m� log�)-time MST algorithm using new techniques that were fundamentally

di�erent than those of Karger et al. [127]. Here, � = �(m;n) is the inverse-Ackermann

function. Chazelle's algorithm had, as its basis, the Soft Heap [29], a data structure

that circumvented the information-theoretic barriers of traditional heaps by allowing

certain well-behaved errors. Chazelle [28] later reduced the complexity of his algorithm

to O(m�(m;n)); this improvement was also noted by Pettie [169] the same year.

Remark. Our historical account of the MST problem is based on a number of sources.

Graham and Hell [94] survey the history of the problem up until the invention of Fi-

bonacci heaps [73] in 1984, and take great care in considering the contributions of

Czekenowski to the MST problem. A complementary paper by Ne�set�ril [167] surveys

all developments on the problem through 1996. Ne�set�ril, Milkov�a, and Ne�set�rilov�a [168]

4Yao cites an earlier, unpublished algorithm of Tarjan running in O(m
p
log n) time.

5Here, log�(m;n) = 1 + log�n� log�m
n
.
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have done a great service in providing English translation of Bor�uvka's 1926 papers

[21, 22]. Korte and Ne�set�ril [142] survey Jarn��k's contribution to graph theory and

give partial translation of two papers, one on the MST problem [115] and another on

what would be called today the generalized Steiner tree problem [116].6 Our account

of the MST problem also incorporates various anecdotes of Johnson [118], Tarjan [195],

Kruskal [146], and Dijkstra [55].

Our Contributions

In Chapter 8 we present the �rst deterministic provably optimal minimum spanning

tree algorithm, whose complexity happens to be unknown at this time. In particular we

show that our algorithm's running time is asymptotically equivalent to the decision-tree

complexity of the minimum spanning tree problem itself, which is enough to establish

optimality. Our algorithm, like Chazelle's [28], is based on the Soft Heap [29].

The problem of producing an explicit, deterministic, and linear-time MST al-

gorithm is still open. Chazelle [28] speculated that what is needed is a more exible

version of Koml�os's MST veri�cation algorithm (which is the key subroutine of Karger et

al.'s randomized linear-time MST algorithm [127].) In Chapter 9 we prove an inverse-

Ackermann type lower bound on any data structure for the online MST veri�cation

problem. Thus, such a data structure cannot be at the heart of a faster MST algorithm.

In Chapter 10 we present a parallel randomized MST algorithm that runs in

logarithmic time and linear work7 on the EREW PRAM [130]. It is provably time-work

optimal and is the �rst such optimal parallel MST algorithm for any parallel model.

One major disadvantage of the randomized MST algorithms, both sequential [127]

and parallel [40, 41, 172, 175] [Chapter 10], is that they use a linear number of random

bits. In Section 8.6 we show that it is possible to compute an MST in expected linear

time with only o(log�n) random bits. The algorithm is a combination of our optimal

MST algorithm [Chapter 8] and Karger et al.'s randomized MST algorithm [127]. Unlike

Karger et al.'s algorithm, ours does not seem to be readily parallelizable. In Chapter

11 we develop a simple, parallelizable, randomness-eÆcient, expected linear-time MST

algorithm. It is based on a di�erent sampling strategy than the Karger et al. algorithm

[127], and is designed to work well with a pair-wise independent sampler. It consumes

a polylogarithmic number of random bits.

The remainder of this chapter is a primer on the minimum spanning tree problem.

Before skipping it, we recommend that the reader get acquainted with our terminology

and notation.

6As well known mathematicians go, Jarn��k is remarkably well ignored. He was apparently the �rst
to formulate and analyze the generalized Steiner tree problem [115, 142].

7Work is de�ned as the time-processor product, i.e., the total number of operations.
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7.2 Preliminaries

The input is a weighted graph G = (V;E;w) where, as is usual, jV j = n, jEj = m, and

w : E �! R assigns a weight to each edge. We assume that the graph is connected,

implying that m � n � 1, and that edge-weights are unique. Uniqueness can always

be forced by ordering the vertices, then ordering identically weighted edges by their

endpoints. Connectedness is also not a restrictive assumption.

A minimum spanning tree of G, denoted MST (G), is a tree spanning the vertices

of G whose total weight is minimum. (Total weight is a bit of a red herring since edge-

weights need never be added to determine the MST.) The cut and cycle properties,

given in Section 7.2.2, imply that the MST is unique if the edge-weights are unique.

7.2.1 The Model

Our core assumption is that edge-weights may be compared in constant time, and that no

other operations are allowed on edge-weights. This assumption seems to dwarf all others

in importance. For the sake of speci�city, we assume that computation unrelated to edge-

weights is handled by a pointer machine8 [193]. We �nd the pointer machine appealing

because it models the way actual computers work, without making any questionable

assumptions. Thus as a model for proving upper bounds it is essentially beyond reproach.

(However one cannot claim with conviction that a lower bound in the pointer machine

model holds for all realistic machines.)

7.2.2 Cut and Cycle Properties

The cut and cycle properties of minimum spanning trees form the basis of every MST

algorithm's proof of correctness. They are simple to state and to prove.

The Cut Property

The cut property states that for any set of vertices X, the lightest edge crossing the

cut (X;V �X) is in the MST. Suppose e = (u; v) was this edge, but it was not in the

spanning tree T . We prove the cut property by demonstrating that T 6=MST . Consider

8For the reader unfamiliar with a pointer machine, it works as follows. The memory consists of
a collection of records, each containing a constant number of data words and a constant number of
references to other records, or pointers. Records may only be modi�ed when they reside in one of
the machine's registers, of which there are a constant number. Data words are subject to the usual
array of operations, numerical and logical. Pointers are subject to only three operations: assignment,
dereference, and tests for equality. In particular a pointer (in a register) can be assigned the value
of another pointer or to the null pointer. Given two pointers the program may branch depending on
their (in)equality. Lastly, given a pointer (in a register), the record it references can be moved into any
register in constant time. What is speci�cally disallowed is what is sometimes called pointer arithmetic

(adding an integer to a pointer to yield another pointer).
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the path P in T connecting u and v. An odd number of edges from P cross the cut

(X;V � X); let e0 be any one of them. Since edge-weights are distinct, w(e0) > w(e).

Thus T � fe0g [ feg is a tree strictly lighter than T .

The Cycle Property

The cycle property states that any edge that is the heaviest on some cycle is not in the

MST. To see this, consider any edge e that is the heaviest edge on the cycle feg [P . If
e appears in an arbitrary spanning tree T , we show that T 6= MST . T � feg has two

connected components, de�ning a cut (X;V �X) where X is some set of vertices. The

path P has an odd number of edges crossing (X;V �X); let e0 be one of them. Since

w(e0) < w(e), the tree T � feg [ fe0g is strictly lighter than T .

It is not diÆcult to show that the cut and cycle properties are complete; that is,

the only way to prove an edge is (or is not) in the MST is to show that it is the lightest

crossing some cut, or the heaviest on some cycle.

Contraction and Contractibility

The cut and cycle properties can be used to prove more complicated properties of

minimum spanning trees. A good example, and one we will use in Chapter 8, is the

property of contractibility | see De�nition 5. Let C be a set of edges. The notation

GnC represents the graph derived from G by contracting C, i.e., replacing the connected

components of C by single vertices and reassigning edge endpoints appropriately. We

assume that self-loops (edges of the form (v; v)) introduced by contraction are removed,

but that parallel edges (multiple edges with the same endpoints) are not.9

De�nition 5 A set of induced subgraphs C is contractible if every subgraph in C is

contractible. An induced subgraph C is contractible if for any two edges (u; u0) and

(v; v0), with u; v 2 V (C) and u0; v0 62 V (C), there exists a path P from u to v in C such

that

maxfw(u; u0); w(v; v0)g > max
e2P

w(e)

Lemma 33 If C is contractible with respect to G, then:

MST (G) = MST (C) [MST (GnC)
9At times it seems as though the chief operation performed by MST algorithms is contraction. We

advise the reader to think of edges as simply being distinct objects with original edge-weights and
original endpoints in the input graph. Thus, if a graph G0 is derived by contraction, it does not contain
new edges associated with those of G, but the original edges themselves, possibly under the guise of new
endpoints and new edge-weights. This deliberate muddling of notation will cause no confusion. Trust
us! We're algorithmicists!
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Proof: One can easily see that if the Lemma holds when C is a single induced subgraph,

it follows that the Lemma holds for multiple induced subgraphs. Therefore we assume

C to be a single subgraph.

Clearly MST (C) [ MST (GnC) is a spanning tree of G. Therefore, we must

only prove two things: (a) edges in E(C) � MST (C) are not in MST (G), and (b)

edges in E(GnC) �MST (GnC) are also not in MST (G). Since, by the de�nition of

contractibility, C is an induced subgraph, (a) and (b) account for all non-MST edges.

Consider Part (a). By the cycle property every edge in E(C)�MST (C) was the heaviest

on some cycle in C. Since those cycles exist in G as well, edges not in MST (C) are

also not in MST (G). Turning to Part (b), let e 2 (E(GnC) �MST (GnC)) and let

Q be the cycle in GnC certifying this fact. If Q is also a cycle in G then by the cycle

property e 62MST (G). The interesting case occurs when Q contains the vertex derived

by contracting C. In this case Q corresponds to a path in G with end-edges (u; u0)

and (v; v0) with u; v 2 V (C). By the contractibility of C there exists a path P in C

connecting u to v such that all edges in P are lighter than either (u; u0) or (v; v0) |

see Figure 7.1. Furthermore, e is the heaviest edge in Q, which includes (u; u0) and

(v; v0). Thus e is the heaviest edge on the path P [ Q and, by the cycle property, not

in MST (G).

Q

P

u

u’

v

v’

e

C

Figure 7.1: C is a contractible subgraph, Q is a cycle in GnC (that includes the vertex
derived from C), e is the heaviest edge in Q, and P is the path in C guaranteed by its
contractibility.

2

In Chapter 8 we will consider graphs that are weighted di�erently but are otherwise

structurally identical. Thus a subgraph C may be contractible w.r.t. G = (V;E;w)

though not w.r.t. G0 = (V;E;w0) if the weight functions w and w0 di�er.
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7.2.3 Basic Algorithms

The classic MST algorithms proceed in simple and discrete steps, making, in each step,

tangible progress towards the minimum spanning tree. For this reason they are called

greedy algorithms.

Bor�uvka's Algorithm

Bor�uvka's algorithm [21] consists of a sequence of Bor�uvka steps. In each step, the

lightest edge incident on each vertex is identi�ed. Because edge weights are unique,

these edges form a set of at most bn=2c trees. Let T be one such tree. It follows from

the cut property that T � MST (G) since the edges incident on any vertex form a

cut set. Furthermore one can easily show the subgraph induced by T is contractible.

Bor�uvka's algorithm is then straightforward. First, identify the lightest edge incident on

each vertex in G. Call the set of such edges F . Recursively apply Bor�uvka's algorithm

to GnF and return F [MST (GnF ), which is, by Lemma 33, equal to MST (G).

The important properties of Bor�uvka's algorithm are (1) each Bor�uvka step can

be implemented in linear time, and (2) after i Bor�uvka steps the resulting graph has at

most n=2i vertices. Thus Bor�uvka's algorithm can take as much as 
(m log n) time to

run, but executing a few Bor�uvka steps is inexpensive and potentially useful.

The Dijkstra-Jarn��k-Prim Algorithm

We will refer to the algorithm discovered by Jarn��k[115], Prim [173], and Dijkstra [52]

as the DJP algorithm. Our initial aim with the term DJP was to somehow straddle

the borders between orthodoxy, inclusiveness, and fairness, but such a compromise is

clearly impossible. `DJP' is not orthodox (it is universally known as Prim's algorithm),

nor is it particularly fair to Jarn��k, who had the algorithm decades before the others.

However, it is inclusive!

The state of the DJP algorithm is represented by a cut (X;V � X), which is

initially (fvg; V � fvg) for some arbitrary vertex v. In each step DJP identi�es the

lightest edge (u; u0) crossing the cut (X;V �X), where u 2 X, then sets X := X [fu0g.
By the cut property (u; u0) 2 MST (G). Thus, after exactly n � 1 steps of DJP the

entire MST has been found. Using a Fibonacci heap [73] the DJP algorithm can be

implemented to run in O(m+ n logn) time.

Lemma 34 is easily proved by induction. We leave the proof to the reader.

Lemma 34 Let (X;V � X) be the current cut after any number of steps of the DJP

algorithm. Then the subgraph induced by X is contractible.
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Chapter 8

An Optimal Minimum

Spanning Tree Algorithm

Disclaimer

The title of this chapter has promised you, the reader, a minimum spanning tree algo-

rithm with provably optimal performance, and with it, a certain amount of understand-

ing about a fundamental mathematical problem. However, you will likely have no feeling

of serene resolution as this brand of optimality can cause restlessness and frustration.1

8.1 Introduction

We give, as promised, a deterministic MST algorithm that is provably optimal. The

catch is that its running time is unknown, and moreover, the algorithm itself betrays

nothing interesting about its running time except that it is optimal. To state our result

more formally, let mst(m;n) be the complexity (worst case running time) of the optimal

MST algorithm on m-edge, n-node graphs.2 and let mst�(m;n) be the decision-tree

complexity (number of edge-weight comparisons) of the MST problem. Because edge-

weight comparisons are but one of many types of operations counted by the mstmeasure,

we have:

mst�(m;n) � mst(m;n)

In this chapter we give a constructive proof that:

1The results of this chapter are taken largely from: S. Pettie and V. Ramachandran, An optimal
minimum spanning tree algorithm, J. ACM 49, pp. 16{34, 2002. The algorithm from Section 8.6 is
from: S. Pettie and V. Ramachandran, Minimizing randomness in minimum spanning tree, parallel
connectivity, and set maxima algorithms, Proc. 13th Ann. ACM-SIAM Symp. on Discrete Algorithms
(SODA), pp. 713{722, 2002.

2For the sake of speci�city, assume mst is w.r.t. the pointer machine model of computation [193].
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mst(m;n) = O(mst�(m;n))

Moreover, our optimal MST algorithm is quite simple and does not sweep any large

constants under big-Oh's carpet.

At the moment nothing is known about the non-uniform complexity of MST

(mst�(m;n)) that is not also true of its uniform complexity (mst(m;n)). Chazelle's

algorithm [28] demonstrates that mst�(m;n) = O(m�(m;n)) and mst
�(m;n) is triv-

ially at least linear in m.

To anyone not immersed in certain areas of computer science, a statement like

mst(m;n) = �(mst�(m;n)) is uninformative. Is uniform complexity not expected to

be equal to non-uniform complexity? Are there historical precedents of natural problems

with a uniform/non-uniform gap? And concerning the MST problem, is there reason

to believe mst�(m;n) is linear or superlinear? If it is superlinear, is �(m�(m;n)) the

only natural bound, or are there other plausible candidates that lie in o(m�(m;n))?

These questions are mostly a matter of opinion; therefore they can only be discussed,

not answered.

8.1.1 Uniform vs. Non-Uniform Complexity

For now, let us just consider those problems whose input consists of real numbers. The

non-uniform (or algebraic) complexity of such a problem is the number of real-number

operations3 required to deduce a solution, i.e., the cost of deciding which operations

to perform is not counted. The uniform complexity is the running time of the fastest

program solving the problem, where the program must be the same for all input sizes.

We are unaware of any really natural problems with interesting uniform/non-

uniform complexity gaps, though there are both unnatural and uninteresting ones. An

example of an unnatural one is the weighted Hamiltonian cycle problem: report the

weight of a Hamiltonian cycle if one exists, and 1 otherwise. The problem is NP -

complete yet the solution can be found with O(n) real-number operations. A natural

problem with an uninteresting complexity gap is set maxima, because in general, the

decision-tree complexity of set maxima [86] is sub-linear in the input size, which is a

lower bound on any uniform algorithm.

We can name two fundamental problems for which complexity gaps are unproven

but very plausible: Erd}os-Szekeres partitioning and all-pairs shortest paths.

3Which real-number operations are available depends on the problem; it could be comparisons,
comparisons and additions, or some other set.
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Erd}os-Szekeres Partitioning

A well known theorem of Erd}os and Szekeres [60] implies that in any sequence of N

weighted elements, there is a monotonically increasing or decreasing sub-sequence ofp
N elements. The algorithmic problem here is to partition any sequence into O(

p
N)

disjoint monotonic sub-sequences. Fredman [68] and Dijkstra [54] gave simple algorithms

for �nding the longest monotonic sub-sequence in O(N logN) time, which gives an

O(N1:5 logN)-time partitioning algorithm. Bar-Yehuda and Fogel [15] recently gave an

O(N1:5)-time partitioning algorithm, which is the best to date. Note that the decision-

tree complexity of partitioning is trivially O(N logN): after sorting the elements by

weight, no more real-number operations are necessary. Therefore, the current gap stands

at
p
N= logN .

All-Pairs Shortest Paths

It is well known that when the weighted input graph is represented as matrix (and

thus has size �(n2)) APSP has the same complexity, asymptotically, as min-plus ma-

trix multiplication [4]. In 1976 Fredman [69] gave a min-plus multiplication algorithm

performing O(n2:5) real-number operations. However, the best implementations of his

algorithm are better than O(n3) by only sub-logarithmic factors. Thus, the current gap

for APSP is !(
p
n= log(n)).

The lesson to be learned from these examples is that there are techniques suited

for eÆcient non-uniform algorithms which do not seem to have any eÆcient realization.

Unless there is a proof to the contrary, we would never assume that a problem's algebraic

complexity is equal to | or even close to | its algorithmic complexity. Unfortunately,

it does not seem possible to prove a signi�cant algorithmic/algebraic complexity gap

with the existing machinery.

8.1.2 Speculation about mst�

There are three possible scenarios:

(a) mst�(m;n) = �(m)

(b) mst�(m;n) = !(m) and o(m�(m;n))

(c) mst�(m;n) = �(m�(m;n))

All the smart money seems to favor (a), for reasons that are historical and aes-

thetic. Karger, Klein, and Tarjan's expected linear-time MST algorithm [127] suggests

that mst�(m;n) = O(m), if only for the non-existence of probabilistic/deterministic

complexity gaps in similar problems. One could support scenario (c) because the �(m;n)
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function appears naturally in other problems. However, inverse-Ackermann type lower

bounds are typically only found in online problems such as Union-Find [193, 71] (see

also Chapter 9), geometry-related problems [104, 204, 135] or certain restrictive algebraic

problems [31, 191]. Thus, scenario (c) would set a new precedent, as would scenario (b)

since, to our knowledge, there is no known problem with superlinear complexity that

is o(m�(m;n)). (Our split-�ndmin data structure is an interesting candidate; it has

complexity O(m log�(m;n)) but this is not known to be tight.)

8.2 The Soft Heap

The primary data structure of our algorithm is Chazelle's Soft Heap [29]. The Soft Heap

is a kind of priority queue that gives us an optimal tradeo� between accuracy and speed.

It is parameterized by an error tolerance �, and supports the standard priority queue

operations:

MakeHeap(): returns an empty soft heap.

Insert(H;x; �): insert item x with key � into H.

Findmin(H): returns item with minimum key in heap H.

Delete(H;x): delete x from heap H.

Meld(H1;H2): create new heap containing the union of items stored in H1 and H2,

destroying H1 and H2 in the process.

Although this description is identical to a normal priority queue, we no longer

assume the immutability of keys. An item whose key has been increased is said to

be corrupted, and once corrupted, a key never decreases in value. Thus, a Findmin

operation only returns an item whose current key value is minimum, or, in other words,

an item whose original key is less than the keys of all uncorrupted items. The proof of

Lemma 35 is due to Chazelle [29].

Lemma 35 Fix a parameter 0 < � < 1=2, and consider a mixed sequence of operations

that includes N inserts. On a Soft Heap, the amortized complexity of each operation is

constant, except for insert, which takes amortized time O(log ��1). At most �N items

are corrupted at any time.

Note that Lemma 35 does not imply that �N items are corrupted in total. By its

de�nition, the Soft Heap is free to corrupt any one item upon the deletion of a corrupted

item. Indeed, we would expect nearly all items to become corrupted eventually.
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8.3 Corruption and Contractibility

8.3.1 A Robust Contraction Lemma

In our algorithm we will compute portions of the minimum spanning tree of a corrupted

graph, where some of the edge weights have been increased due to the use of a Soft

Heap. Although a corrupted MST is of little value by itself (it may share no edges with

the actual MST), we show, in Lemma 36, that it may still be possible to obtain useful

information from a corrupted graph.

Let G * M be a graph derived from G by corrupting (increasing) the weights of

all edges in M � E(G). We use the term H-weight to refer to an edge's weight in H. If

H is omitted, it is assumed we are talking about the original, uncorrupted graph G.

Lemma 36 Let C be a subgraph of G, M � E(G), and MC �M be those edges of M

with one endpoint in C. If C is contractible w.r.t. G *M , then:

MST (G) �MST (C) [MST (GnC �MC) [MC

Proof: The only edges claimed not to be inMST (G) are those in E(C)�MST (C) and

those in E(GnC)�MST (GnC�MC). By the cycle property, any edge e not inMST (C)

or MST (GnC �MC) is the heaviest on some cycle Q (in either C or GnC �MC). If Q

corresponds to a cycle in G then e 62 MST (G). Therefore, the only interesting case is

when Q does not correspond to a cycle in G, i.e., when it contains the vertex derived by

contracting C in GnC �MC . In this case Q corresponds to a path in G with end-edges

(u; u0) and (v; v0) where u; v 2 V (C). By the contractibility of C, there exists a path P

in C connecting u to v such that the (G *M)-weights of all edges in P are lighter than

the (G * M)-weight of either (u; u0) or (v; v0). Notice that both (u; u0) and (v; v0) are

uncorrupted | if they were in M they'd be in MC as well.

Let us summarize the facts. In terms of G-weight, e is the heaviest edge in Q.

The G-weight of either (u; u0) or (v; v0) is larger than the (G * M)-weight of all edges

in P . Furthermore, (G * M)-weight is an upper bound on G-weight. Thus, in terms

of G-weight, e is the heaviest edge on the cycle P [ Q, and therefore cannot be in

MST (G).

2

A more complicated version of Lemma 36 is used (implicitly) in the other Soft

Heap-based MST algorithms. For technical reasons, the [27, 28, 169] algorithms must

arti�cially retain certain corrupted edges in their corrupted state, rather than discarding

them altogether.
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8.3.2 The Partition Procedure

Lemma 34 claims that if the DJP algorithm is run for any number of steps, the resulting

subgraph is contractible. If, instead of a normal priority queue, we implement the DJP

algorithm with a Soft Heap, it will produce a subgraph contractible with respect to a

certain corrupted graph. Lemma 36 then allows us to claim certain things about the

real minimum spanning tree of the original, uncorrupted graph.

Our Partition procedure �nds a sequence of contractible subgraphs C1; : : : ; Ck in a

graph whose edges are being corrupted by the Soft Heap. Let M be the set of corrupted

edges, and MCi � M be just those incident on Ci. Partition guarantees that Ci is

contractible w.r.t.

(G *M)n(
i�1[
j=1

Cj) �
i�1[
j=1

MCj

By repeated application of Lemma 36, it follows that when Ci is complete:

MST (G) �
i[

j=1

MST (Cj) [MST

0
@Gn i[

j=1

Cj �
i[

j=1

MCj

1
A [

i[
j=1

MCj

The Partition procedure is given in Figure 8.1. The arguments appearing before

the semicolon are inputs; the others are outputs. C=fC1; : : : ; Ckg is a set of subgraphs
of G, and MC is a set of corrupted edges with endpoints in di�erent Ci's. No edge will

appear in more than one of MC ; C1; : : : ; Ck.

Initially, Partition sets every vertex to be live. The objective is to convert each

vertex to dead, signifying that it is part of a component Ci with � � vertices and part

of a conglomerate of � � vertices, where a conglomerate is a connected component of

the graph
S
E(Ci). Intuitively a conglomerate is a collection of Ci's linked by common

vertices. This scheme for growing components is very similar to that of Fredman and

Tarjan [73] who used a Fibonacci heap rather than a Soft Heap.

We grow the Ci's one at a time using the DJP algorithm, where the weight of an

edge may be increased at the whim of the Soft Heap. A component is done growing if it

spans � vertices or if it attaches itself to an existing component. Clearly, if a component

does not reach � vertices it must be part of a conglomerate of at least � vertices. Hence,

all its vertices may be designated dead. Upon completion of a component Ci, we discard

MCi , the set of corrupted edges incident to Ci.

The running time of Partition is dominated by the heap operations, and hence

depends on �. Each edge is inserted into a Soft Heap no more than twice (once for each

endpoint), and extracted no more than once. We can charge the cost of dismantling the

heap to the insert operations that created it, hence the total running time isO(m log(1� )).

By Lemma 35, the number of discarded edges is bounded by the number of insertions
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Partition(G; �; � ; MC ; C)
All vertices are initially live

MC := ;
i := 0
While there is a live vertex

Increment i

Let Vi := fvg, where v is any live vertex

Create a Soft Heap consisting of v's edges (uses �)

While all vertices in Vi are live and jVij < �

Repeat

Find and delete min-weight edge (x; y) from Soft Heap

W.l.o.g., assume x 2 Vi
Until y 62 Vi
Vi := Vi [ fyg
If y is live then insert each of y's edges into the Soft Heap

Set all vertices in Vi to be dead

Let MVi
be the corrupted edges with one endpoint in Vi

MC := MC [MVi

G := G�MVi

Dismantle the Soft Heap

Let C := fC1; : : : ; Cig where Cz is the subgraph of G induced by Vz
Return MC and C.

Figure 8.1: The Partition Procedure.

scaled by �, thus jMC j � 2�m. The relevant properties of Partition are summarized in

Lemma 37.

Lemma 37 Given a graph G, and parameters 0 < � < 1
2 , and � � 1, Partition �nds

edge-disjoint subgraphs MC ; C1; : : : ; Ck in time O(jE(G)j � log(1� )) while satisfying several
conditions:

a) For all v 2 V (G) there is some i s.t. v 2 V (Ci).

b) For all i, jV (Ci)j � � .

c) Each connected component (conglomerate) of
S
iE(Ci) spans at least � vertices.

d) jE(MC)j � 2� � jE(G)j.
e) MST (G) � SiMSF (Ci) [MSF (Gn(Si Ci)�MC) [MC.

We observe that Partition never melds two Soft Heaps, and in fact, only operates

on one Soft Heap at any given time (in contrast to [28]). It is possible to implement

Partition with a simpli�ed, space-eÆcient version of the Soft Heap where the links

between heap-nodes are represented implicitly, as in a binary heap.
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8.4 The Algorithm

8.4.1 Overview

Here is a brief overview of our minimum spanning tree algorithm.

� In the �rst stage we �nd subgraphs C1; C2; : : : ; Ck contractible w.r.t. a corrupted

graph G *M . Let MC be those corrupted edges connecting distinct Ci's.

� In the second stage we �nd the MSTs of each Ci and the graph derived by

contracting the Ci's. By Lemma 36, MST (G) is contained in
S
iMST (Ci) [

MST (Gn(SiCi) �MC) [MC . Note that at this point, no MST edges have been

found.

� In the third stage we �nd some MST edges, using a constant number of Bor�uvka

steps, and recurse on the graph derived by contracting these edges.

The �rst stage is implemented using the Partition procedure from Section 8.3.2.

We implement the second stage using a combination of techniques. We �nd
S
iMST (Ci)

using a set of precomputed, optimal decision trees. These are hardwired algorithms

designed to compute the MST of a speci�c graph topology using an optimal number

of edge-weight comparisons. In general, decision trees are much larger than the size of

the problem that they solve and �nding optimal ones is very time consuming. We can

a�ord the cost of precomputing decision trees by guaranteeing that each one is extremely

small. At the same time, we guarantee that conglomerates (connected components ofS
iE(Ci)) are relatively large. This allows us to determine the MST of Gn(SiCi)�MC

in linear time.

The e�ect of the �rst two stages is to reduce the number of edges by a constant

factor. The Bor�uvka steps in stage three give a similar reduction in the number of

vertices. Thus, the sequence of recursive calls to our algorithm operate on graphs of

geometrically decreasing size.

8.4.2 MST Decision Trees

Any deterministic MST algorithm ultimately makes decisions based solely on the struc-

ture of the input graph and what is known about the permutation of edge-weights.

If the graph structure is �xed then its decisions are based only on knowledge of the

edge-weights. One can easily see that for a �xed graph H, any algorithm computing

MST (H) can be modeled as a decision tree.

For our purposes, a decision tree is a rooted tree where each node has zero or two

children. Each internal node x is associated with an inequality of the form w(e) < w(f),

where e and f are edges of H. The left child of x represents that x's inequality is true,

111



and the right that it is false. Each leaf is associated with a spanning tree of H. A

decision tree for H is correct if the edge-weight inequalities encountered on any path

from the root to a leaf uniquely identify the spanning tree at that leaf as the MST. A

decision tree for H is optimal if it is correct and there exists no correct decision tree for

H with lesser depth.

Let us bound the time needed to �nd optimal decision trees for all graphs on �

vertices by brute force search. There are 2(
�
2) such graphs and for each graph we must

check all possible decision trees bounded by a suÆcient depth. Since the DJP algorithm

uses no more than �(� � 1) comparisons on any graph on � vertices, a depth of �2 is

suÆcient. Hence the tree has fewer than 2�
2
internal nodes. There are no more than

�4 possibilities for each internal node (its inequality names two edges, each naming

two vertices) and therefore there are at most �2
�2+2

distinct decision trees to check. To

determine if a decision tree is correct we simply test it against an MST algorithm known

to be correct, on each of the jE(H)j! possible edge-weight permutations. This process
takes no longer than �2! per decision tree. Therefore, the total time required to �nd an

optimal decision tree for all graphs on at most � vertices is bounded by 2�
2 � �2�2+2 � �2!,

which is less than 22
�2+o(�)

. Setting � = log(3) n allows us to precompute all optimal

decision trees in o(n) time.

In our optimal algorithm we will use a procedure DecisionTree(G;F), which takes
as input a set of graphs G, each with at most � vertices, and returns their minimum

spanning trees in F using the precomputed decision trees.

8.4.3 The Dense Case Algorithm

With the exception of Kruskal's algorithm [145], all existing MST algorithms run in

linear time for suÆciently dense graphs. We will assume an algorithm called DenseCase

that runs in O(m+n log(3) n) time, that is, linear time for edge density m=n � log(3) n.

A call to DenseCase(G; F ) returns the MST of G in F . Any of the algorithms presented

in [73, 78, 27, 29, 169] are suitable for DenseCase; the simplest is easily that of Fredman

and Tarjan [73].

We use DenseCase on graphs of m0 � m edges and n0 � n= log(3) n vertices. Hence

it runs in time O(m+ n): linear in the size of the original graph but not necessarily its

input graph.

8.4.4 An Optimal Algorithm

Our minimum spanning tree algorithm is given in Figure 8.2. Before the algorithm

proper begins we compute optimal MST decision trees for all graphs on at most log(3) n

vertices. We then call the recursive procedure OptimalMST(G). Using the Partition

procedure, OptimalMST �nds a set of subgraphs C = C1; : : : ; Ck and an edge-set MC
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such that every MST edge is contained in one of
S
iMST (Ci), MC , orMST (GnSiCi�

MC). The
S
iMST (Ci) are determined using the precomputed optimal decision trees,

and MST (GnSi Ci �MC) is determined using the DenseCase algorithm. Finally, we

apply two Bor�uvka steps and recurse on the resulting contracted graph. OptimalMST

makes calls to a procedure Boruvka2(G; F;G0). It performs two Bor�uvka steps on G,

returns the MST edges found in F , as well as the contracted graph G0 = GnF .

Constants: � = 1=8 and � = log(3) n.

OptimalMST(G)
If E(G) = ; then Return(;)
Partition(G; �; �; MC ; C)
DecisionTree(C; F)
Let k := jCj and let C = fC1; : : : ; Ckg, F = fF1; : : : ; Fkg
Ga := Gn(F1 [ : : : [ Fk)�MC

DenseCase(Ga; F0)
Gb := F0 [ F1 [ : : : [ Fk [MC

Boruvka2(Gb; F
0; Gc)

F := OptimalMST(Gc)
Return(F [ F 0)

Figure 8.2: An optimal minimum spanning tree algorithm.

Apart from recursive calls and using the decision trees, the computation performed

by OptimalMST is clearly linear. Computing decision trees takes o(n) time, Partition

takes O(m log ��1) time, which is O(m), and each Bor�uvka step takes O(m) time. The

number of edges passed to the recursive call is fewer than 2�m + n=2b, where � = 1=8

and b = 2 is the number of Bor�uvka steps performed. Thus, the graph passed to the

recursive call has at most m=2 edges and n=4 vertices. Since no MST algorithm can

do better than linear time, the bottleneck, if any, must lie in the use of decision trees,

which are optimal by construction.

We will now establish a formal recurrence relation for the running time of Opti-

malMST. Let T (m;n) be the worst case running time of OptimalMST on any m-edge,

n-vertex graph. Let mst�(H) be the decision-tree complexity of MST, on the speci�c

graph H. Thus mst�(m;n) can be de�ned as:

mst�(m;n) = maxfmst�(H) : jE(H)j = m; jV (H)j = ng
The recurrence relation for T is given below. Recall from Chapter 7 that we

assumed the graph G is connected. Furthermore, if the input to OptimalMST is con-

nected, so is the graph passed to the recursive call. Therefore, T (0; 1) = O(1) is the

only base case we need to consider.
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T (m;n) �
X
i

c1 � mst�(Ci) + T (m=2; n=4) + c2 �m (8.1)

It is straightforward to see that if mst�(m;n) = O(m) then the above recurrence

gives T (m;n) = O(m). One can also show that T (m;n) = O(mst�(m;n)) if mst� is

any number of natural functions, including O(m�(m;n)). However, Line 8.1 does not

imply T (m;n) = O(mst�(m;n)) if mst�(m;n) is only assumed to be non-decreasing.

In Section 8.4.5 we prove some simple properties of MST decision trees, then

analyze the asymptotic behavior of T (m;n).

8.4.5 Analysis

The results of this section will lead to a proof that T (m;n) = O(mst�(m;n)). We begin

by noting some simple facts about mst�.

Fact 1 Let m > m0 > 2 and n > n0 > 2.

1. mst�(m;n) � m=2.

2. mst�(m;n) � mst�(m0; n)

3. mst�(m;n) � mst�(m;n0)

Fact 1(1) holds since for m;n > 2 every edge can be placed on some cycle, and

must therefore participate in at least one comparison. Facts 1(2,3) clearly hold since

adding edges or isolated vertices cannot make the problem easier.

Lemma 38 Suppose that H is a graph satisfying the identityMST (H) =
S
i MST (Ci),

where the fCigi are subgraphs and the identity holds regardless of the permutation of H's

edge-weights. Then mst
�(H) =

P
i mst

�(Ci).

Proof: Notice that E(H) =
S
iE(Ci) since any edge in E(H) can be in MST (H),

for some permutation of the edge-weights. It follows from the identity MST (H) =S
iMST (Ci) that mst

�(H) � Pimst
�(Ci). We show that any MST algorithm on H

can be forced to make at least
P

imst
�(Ci) comparisons, which gives the lemma.

Consider a worst-case adversary for Ci. It decides the outcomes of edge-weight

comparisons (based on known inequalities between edge-weights in Ci) so that any MST

algorithm on Ci makes at least mst
�(Ci) comparisons. Our worst-case adversary for H

decides the outcomes of comparisons as follows. Suppose w(e) is compared against w(f).

(1) If e 2 Ci, f 2 Cj , and i < j, it proclaims that w(e) < w(f). (2) If, on the other

hand, e; f 2 Ci, it lets the worst-case adversary for Ci decide the outcome. Comparisons

of type (1) shed no light on the relative weight of two edges in the same component,
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and comparisons of type (2) clearly do not betray information about edge-weights in

Cj, j 6= i. Therefore, the total number of comparisons of type (2) is, by de�nition of

worst-case adversary, at least
P

imst
�(Ci).

2

Notice that if fCigi is the set of components returned by the Partition procedure,

then H =
S
iCi satis�es the equality MST (H) =

S
iMST (Ci). This follows from the

observation that Cj shares at most one vertex with
Sj�1
i=1 , implying that any simple

cycle in H is contained in precisely one subgraph Cj. A simple corollary of Lemma 38

is that mst� possesses a certain super-additive property:

Corollary 1 For any m and n, mst�(2m; 2n) � 2 �mst�(m;n)

We can now solve the recurrence relation for the running time of OptimalMST

given in the previous section.

T (m;n) �
X
i

c1 �mst�(Ci) + T (m=2; n=4) + c2 �m

= c1 � mst�(
[
i

Ci) + T (m=2; n=4) + c2 �m fLemma 38g

� c1 � mst�(m;n) + T (m=2; n=4) + c2 �m fFact 1(2)g
� c1 � mst�(m;n) + c � mst�(m=2; n=4) + c2 �m fassume inductivelyg
� mst�(m;n)(c1 + c=2 + 2c2) fFacts 1(1,3), Corollary 1g
� c �mst�(m;n) ffor c = 2c1 + 4c2; this completes the inductiong

Theorem 8 follows:

Theorem 8 The algorithm OptimalMST solves the minimum spanning tree problem de-

terministically in time O(mst�(m;n)), where m and n are the number of edges and

vertices, respectively, and mst� is the worst-case decision-tree complexity of the problem

on any m-edge, n-vertex graph.

8.5 Avoiding Pointer Arithmetic

Consider the procedure DecisionTree used in our OptimalMST algorithm. It is given a

set of graphs, each on at most � = log(3) n vertices, and must match the input graphs

with their associated optimal MST decision trees. The most obvious way to implement

DecisionTree is with a table. Each of the possible graph topologies is assigned a distinct

identi�cation number less than 2�
2
= o(log n). We could then use the id numbers to
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�nd the associated decision trees in constant time using a table lookup. In the pointer

machine model, however, there is no way to implement constant-time array access.

We use the pointer machine-based radix-sort of Buchsbaum et al. [24] to imple-

ment DecisionTree. The input graphs fC1; : : : ; Ckg are assumed to be represented as

adjacency lists. We �rst rewrite each Ci in canonical form. We create buckets associated

with the numbers 1::� , then associate the ith vertex of Ci with the ith bucket. An edge

is then written as a pair of \numbers" (pointers to two numbered buckets), and a graph

Ci on mi edges is then a list of 4mi \numbers" between 1 and � . Using this canonical

numbering, we radix-sort4 the graphs in time O(�3 +
P

imi): each of the 4
P

imi el-

ements is examined once, and each of the at most �2 passes takes at least O(�) time.

Note that �3 = o(log log n) is not the dominant term.

Once C1; : : : ; Ck are in sorted order, it is easy to divide them into at most 2�
2
=

o(log n) sub-lists of topologically identical graphs. For each sub-list (graph topology)

we �nd the MST decision tree appropriate to that topology. Apart from the cost of

actually using the decision trees, which is unknown, the overhead of DecisionTree is

clearly linear in the size of the graphs C1; : : : ; Ck.

8.6 Introducing A Little Randomness

In this section we show that with some minor modi�cations to our algorithm, we can

compute minimum spanning trees in expected linear time using hardly any random bits.

Theorem 9 Let r be any function such that �(n � r(n); n) = O(1). Using r(n) ran-

dom bits, the minimum spanning tree of a graph can be computed in linear time with

probability 1� e�
(r(n)).

Proof: (Sketch) The theorem is proved using a minor modi�cation to our OptimalMST

algorithm. We use the same Partition procedure, but this time with threshold � =p
r(n). Partition returns a set of components fCigi. We may further group these

components, giving fC 0
igi, so that every C 0

i has �(r(n)) edges. Rather than computeS
iMST (C 0

i) with a set of optimal decision trees, we use Karger et al.'s [127] randomized

MST algorithm, reusing the same r(n) random bits on each C 0
i. For our DenseCase

algorithm we use Chazelle's O(m�(m;n))-time algorithm. Since � =
p
r(n), DenseCase

runs in linear O(m+n) time on graphs with m0 < m edges and n0 < n=� vertices. (The

constant in O(m+ n) depends on our choice of r).

In [127] Karger et al. show that with probability 1� e�
(m), their algorithm runs

in O(m) time on a graph with m edges. Thus, for any particular C 0
i, the probability

4Note that radix-sort is generally not implementable on a pointer machine because there is no way
to map the natural number i to the ith bucket in constant time. We are, as in [24], circumventing this
issue by representing the natural i as a pointer to the ith bucket.
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that Karger et al.'s algorithm runs out of random bits is e�
(r(n)). If this unlikely event

occurs we switch to a textbook algorithm and compute MST (C 0
i) in O(r(n) log(r(n)))

time. Let a choice of the r(n) random bits be bad if it causes Karger et al.'s algorithm to

run out of random bits, on more than a 1= log(r(n)) fraction of the fC 0
ig. The fraction of

random-bit sequences that are bad is at most log(r(n)) �e�
(r(n)) = e�
(r(n)). Clearly, if

the random-bit sequence is not bad then this recursive call of the algorithm takes linear

time. This analysis can be extended to the full algorithm just by letting fC 0
ig be the

components found in all recursive calls.

2

To pick a concrete example, if r(n) = log�n then we can compute the MST of any

n-node graph in expected linear time using log�n random bits. The function log�n is

not special; in general, r can be any function such that r(n) = 
(r0(n)) and r0 has the

following form:

r0(n) = log

O(1) starsz }| {� � � � � � � n

where g�(n) = minfi : g(i)(n) � 1g, and g(i)n is the i-fold application of g on n. Here,

g is assumed to be decreasing.

The algorithm sketched above is, like OptimalMST, not easily parallelizable. In

Chapter 11 we design a parallel, expected linear-work MST algorithm that uses a poly-

logarithmic number of random bits.

8.7 Performance on Random Graphs

Even if we assume that mst�(m;n) is superlinear in m, we show, in this section, that

mst
�(G) = O(jE(G)j) for nearly all graphs G. Recall that mst�(G) is the worst case

decision tree complexity for the graph topology G. In other words, we are still assuming

a nasty adversary that can choose the edge-weight permutation.

Our result is to be contrasted with the weaker result of Karp and Tarjan [131], who

showed that the expected complexity of MST is linear, if both the graph topology and

edge-weight permutation were selected at random. Our result may also be compared

with the randomized algorithm of Karger et al. [127], which is shown to run in O(m)

time with high probability. However, for any graph and any edge-weight permutation,

the Karger at al. algorithm can be just as slow as Bor�uvka's | O(m log n) time.

None of the earlier published MST algorithms appear to have this property of run-

ning in linear time w.h.p. on random graphs for all edge-weight permutations. However,

one can prove a similar result using suitably souped-up versions of any of the algorithms

in [73, 78, 29].
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Our analysis hinges on the observation that for sparse random graphs, w.h.p. any

subgraph constructed by the Partition routine has only a miniscule number in edges in

excess of the number of spanning tree edges in that subgraph. The MST of such graphs

can be computed in linear time, and hence the computation on optimal decision trees

takes linear time on these graphs.

Throughout this section � will denote �(m;n).

The random graph model Gn;m (see [59]) assigns all
�(n2)
m

�
graphs with m edges

equal probability. In Gn;p any graph on m edges is assigned probability pm(1�p)(
n
2)�m.

In other words, each possible edge is included independently with probability p.

Theorem 10 Let mst�(G) be the worst case decision tree complexity of the MST prob-

lem on graph G, over all permutations of G's edge-weights.

1. Let G be selected from Gn;m. Then mst
�(G) = O(m) with probability 1�e�
(m=�2).

2. Let G be selected from Gn;p. Then mst�(G) = O(pn2) with probability 1 �
e�
(pn

2=�2).

In the next section we describe the edge-addition martingale for the Gn;m model.

In Section 8.7.2 we use this martingale and Azuma's inequality to prove Part (1) of

Theorem 10. Part (2) is shown to follow from part (1).

8.7.1 The Edge-Addition Martingale

It was observed by Erd}os and R�enyi [59] that a random graph from the Gn;m model can

be generated in an incremental fashion as follows. We begin with n labeled vertices,

adding one random edge at a time which was not previously selected. Let Xi be a

random edge s.t. Xi 6= Xj for j < i, and Gi = fX1; : : : ;Xig be the graph made up of

the �rst i edges, with G0 being the graph on n vertices having no edges.

A martingale is a sequence of random variables Y0; : : : ; Ym s.t. E[Yi jYi�1] = Yi�1
for 0 < i � m. We now prove that if g is any graph-theoretic function and ĝ(Gi) =

E[g(Gm) jGi], then ĝ(Gi), for 0 � i �m is a martingale.

Lemma 39 The sequence ĝ(Gi) = E[g(Gm) jGi], for 0 � i � m, is a martingale, where

g is any graph theoretic function, G0 is the edge-free graph on n vertices, and Gi is

derived from Gi�1 by including a random edge not already in Gi�1.

Proof: Let Xj
i = fXi; : : : ;Xjg. Given that Gi�1 has been �xed,

E[ĝ(Gi)] =
X
Xi=xi

Pr[Xi = xi jGi�1]
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�
X

Xm
i+1=x

m
i+1

Pr[Xm
i+1 = xmi+1 jGi�1;Xi = xi] � g(Gi�1 [ xmi )

=
X

Xm
i =xmi

Pr[Xm
i = xmi jGi�1] � g(Gi�1 [ xmi )

= E[g(Gm) jGi�1] = ĝ(Gi�1)

2

We now recall the well known inequality of Azuma (see, e.g., [8]).

Theorem 11 (Azuma'a Inequality.) Let Y0; � � � ; Ym be a martingale with jYi�Yi�1j � 1

for 0 < i � m. Let � > 0 be arbitrary. Then Pr[jYm � Y0j > �
p
m] < e��

2=2.

To facilitate the application of Azuma's inequality to our edge-addition martingale

we establish the following lemma.

Lemma 40 Consider the sequence proved to be a martingale in Lemma 39. Let g be

any graph-theoretic function such that jg(G)� g(G0)j � 1 for any pair of graphs G and

G0 of the form G = H [ feg and G0 = H [ fe0g, for some graph H and edges e; e0 not

in H. Then jĝ(Gi)� ĝ(Gi�1)j � 1, for 0 < i � m.

Proof: Let ymi and zmi+1 denote possible outcomes of Xm
i and Xm

i+1 consistent with

Gi�1 and Gi, respectively. Thus, ĝ(Gi) is the average of the g(Gi [ zmi+1), taken over

all possibilities of zmi+1. We associate each zmi+1 with a set S(zmi+1) of outcomes of X
m
i

as follows. Suppose that Gi = Gi�1 [ fag, i.e. Xi = a in Gi. Then ymi 2 S(zmi+1) i�

ymi+1 = zmi+1 (i.e., only Xi may di�er) OR ymi �fag = zmi+1 (i.e., y
m
i is identical to a � zmi+1

except that a may appear in a di�erent position). Observe that a�zmi+1 and ymi 2 S(zmi+1)

di�er in at most one edge, implying jg(Gi[zmi+1)�g(Gi�1[ymi )j � 1, and that jS(zmi+1)j
is the same for all zmi+1. This implies that jĝ(Gi)� ĝ(Gi�1)j � 1.

2

8.7.2 Analysis

We de�ne the excess of a subgraph H to be jE(H)j � jV (H)j + cc(H), where cc(H) is

the number of connected components in H. In other words, the excess is the maximum

number of edges that can be removed without introducing more connected components.

Let fCig be the subgraphs returned by the Partition procedure. We de�ne f(G) to

be the maximum excess of H =
S
i Ci, over all possible choices of H. (Recall that

jV (Ci)j � � = log(3) n.)

The key observation is that each pass of our optimal algorithm de�nitely runs in

linear time if f(G) � m=�(m;n). To see this, note that if this bound on f(G) holds,

we can reduce the total number of intra-component edges to � 2m=� in time O(n +
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m log�=�) = O(m) using log� Bor�uvkasteps. The existence of Chazelle's algorithm

shows that we can then �nd the MST of the resulting graph in timeO(m�(m=�; n)=�(m;n)) =

O(m). We show below that if a graph is randomly chosen from Gn;m, f(G) � m=�(m;n)

with high probability.

We now show that Lemma 40 applies to the graph-theoretic function f , and then

apply Azuma's inequality to obtain our desired result.

Lemma 41 Let G = H [ feg and G0 = H [ fe0g be two graphs on a set of labeled

vertices which di�er by no more than one edge. Then jf(G)� f(G0)j � 1.

Proof: Suppose that f(G)� f(G0) > 1, then we could apply the optimal set of compo-

nents of G to G0. Every intra-component edge of G remains an intra-component edge,

except possibly e. This can reduce the excess by no more than one, a contradiction. The

possibility that e0 may become an intra-component edge can only help the argument.

2

Lemma 42 f̂(G0) = o(m=�).

Proof: Notice that if m
n � �� , it is simply impossible to have m=� intra-component

edges, so we assume m
n < �� .

An upper bound on f̂(G0) is the expected number of indices i such that edge

Xi completes a cycle of length � � in Gi�1, since all edges which caused f to increase

must have satis�ed this criterion. Let pi be the probability that Xi completed a cycle

of length � � . By bounding the number of such cycles, and the probability they exist

in the graph, we have

pi <
�X

j=3

nj�2

 
j�1Y
`=1

i� `�n
2

�� (`� 1)

!

<
1

n

�X
j=3

 
nm�n
2

�!j�1

(recall that i � m)

= O

�
(2m)��1

n�

�

Thus, f̂(G0) �
P

i pi = O(2m=n)� = O(2��)� = o(log n)

2

Lemma 43 Let G be chosen from Gn;m. Then Pr[f(G) > m=�] < e�
(m=�2).
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Proof: By applying Azuma's inequality, we have that Pr[jf̂(Gm) � f̂(G0)j > �
p
m] <

e��
2=2. Setting � =

p
m=� � f̂(G0)=

p
m gives the Lemma. Note that by Lemma 42

f̂(G0) is quite insigni�cant.

2

We are now ready to prove Theorem 10.

Proof: We examine only the �rst log � passes of our optimal algorithm, since all re-

maining passes certainly take o(m) time. Lemma 43 assures us that the �rst pass runs

in linear time w.h.p. However, the topology of the graph examined in later passes does

depend on the edge weights. Assuming the Bor�uvka steps contract all parts of the graph

at a constant rate, which can easily be enforced, a partition of the graph in one pass of

the algorithm corresponds to a partition of the original graph into components of size

less than � c, for some �xed c. Using � c in place of � does not a�ect Lemma 42, which

gives the Theorem for Gn;m, that is, part (1). For Gn;p note that the probability that

there are not �(pn2) edges is exponential in �
(pn2), hence the probability that the

algorithm fails to run in linear time is dominated by the bound in part (1).

2

For the sparse case where m < n=�, Theorem 10 part (1) holds with probability

1, and for p < 1=n�, by a Cherno� bound, part (2) holds with probability 1� e�
(n=�).

8.8 Discussion

We have established a minimum spanning tree algorithm that is provably optimal, but

whose running time is, at present, unknown. Results of this nature have been proved

for other problems, such as searching monotone matrices [148] and performing sen-

sitivity analysis of minimum spanning trees [57]. In [57] it was also noted that the

technique could be used to obtain an alternate linear-time algorithm for polygon tri-

angulation. However, the application of optimal decision trees to these problems is

relatively straightforward, compared to our algorithm.

Our result should be contrasted against a more general complexity theory result of

Levin [122], who showed how to construct an optimal algorithm for any problem, given

an optimal veri�cation routine. The idea is to enumerate all possible programs P1; P2; : : :

and execute them in parallel, Pi+1 at half the rate of Pi. Whenever a program stops, its

answer is veri�ed for correctness, so if PC happens to be the �rst optimal program in the

enumeration, the overall algorithm runs in at most 2C+O(1) �Opt steps. Levin's result is
weak for several reasons. First, the mere existence of an optimal algorithm is never in

question. Second, the algorithm constructed is optimal only w.r.t. a particular model of

computation (e.g., Turing machine, RAM, pointer machine) and says nothing about the

relationship between algorithmic complexity and decision-tree/algebraic/non-uniform

complexity. There are also two unknowns in Levin's construction: the optimal running
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time Opt and the constant of proportionality 2C+O(1), which is doubly exponential in

the length of the optimal program, assuming programs are enumerated in the usual way.

Thus, an optimal minimum spanning tree algorithm could have been constructed using

Levin's technique and Koml�os's MST veri�cation algorithm [141]. However, this would

not prove nor suggest our main result, that the algorithmic complexity of MST is equal

to its decision-tree complexity.5

So, what is the decision-tree complexity of MST? Here we will venture a modest

conjecture.

Conjecture 1 mst�(m;n) = O(m)

This conjecture does not refer to our algorithm, and clearly could have been stated

earlier. The real question, in our opinion, is whether the technique of precomputation

(as in precomputing optimal decision trees) is absolutely necessary. Why might precom-

putation be so crucial? One plausible scenario is that the optimal MST decision tree is

extremely sensitive to the structure of the input graph, in ways that cannot easily be

described with simple rules. Furthermore, to achieve optimality it may be necessary to

perform comparisons in a chaotic fashion, in contrast to the ordered procession of com-

parisons made by existing MST algorithms. To make discussion of this point less vague,

consider the following properties shared by nearly all MST algorithms: obliviousness

and justi�ability.

justi�ability Whenever edges e and f are compared, there must be a certi�cate path

P connecting e to f such that every edge on P is known to be lighter than e or f .

(For the greedy MST algorithms, P is always known to be one of the MST paths

between e and f .)

obliviousness Comparisons made inside data structures/subroutines are oblivious of

the graph structure. Other comparisons form a small minority.

Kruskal's algorithm [145] does not make justi�able comparisons, simply because it

ignores graph structure altogether. With the possible exception of our optimal MST al-

gorithm, Karger et al.'s randomized algorithm [127] is the only non-oblivious algorithm.

(Its MST veri�cation subroutine [141] makes heavy use of the graph's structure.) One

can easily check that every other MST algorithm is both oblivious and justi�able, even

5To complicate matters, one could derive two optimal MST algorithms with Levin's technique: one
optimal MST algorithm for the RAM and one optimal MST algorithm for the pointer machine. There
would then be no reason to believe the two optimal algorithms had the same complexity, asymptotically.
Here complexity refers to the total number of operations in the appropriate machine model, either RAM
or pointer machine.
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the very sophisticated algorithm of Chazelle [28]. If there is an explicitly linear-time, de-

terministic MST algorithm, we are virtually certain that it is non-oblivious and suspect

that it might need to be un-justi�able as well.

The results in Chapter 9 bolster our belief that any linear-time MST algorithm

must be non-oblivious. There we show that a subtle generalization of MST veri�cation

(in which the graph is revealed one edge at a time) cannot be solved in linear time.

Thus, it seems as if the pursuit of an explicit linear-time MST algorithm should go

hand-in-hand with the development of non-oblivious techniques, for the MST problem

and in general. Here we would like to highlight a few problems that might be worthy of

study in conjunction with the MST problem.

Graphic Union-Find

Consider the following union-�nd type problem. There are initially n elements in sin-

gleton sets. The operation Union(u; v) indicates whether u and v are in the same set,

and if not, it merges the (disjoint) sets containing u and v into one. The existing lower

bounds on the Union-Find problem [193, 71] show that answering m Union operations

on-line takes 
(m�(m;n)) time. Now suppose that all m Union operations were given

ahead of time in the form of an undirected graph G, where (u; v) 2 E(G) if the opera-

tion Union(u; v) will be issued at some time. This is a generalization of several related

problems proposed in [32, 79, 97]. One can easily show, using essentially the same proof

from Section 8.7, that the standard Union-Find algorithm takes linear time for nearly

all graph topologies. Even on \hard" topologies, the inverse-Ackermann-type behavior

of Union-Find [190] will usually not arise, if the order of the edges (i.e., Unions) is

permuted randomly. So the problem here is to develop techniques for the very few hard

topologies under the very few hard edge-permutations.

Minimum Spanning Tree Sensitivity

The MST sensitivity problem [192, 194, 57] is equivalent to the following: Given a

weighted graph G and spanning tree T , decide for each edge e 2 T , the best replacement

edge e0 2 G�T , that is, the one minimizing the weight of the spanning tree T�feg[fe0g.
Treated as a partial-sums problem (see Chapter 9) MST sensitivity analysis is easily

shown to be the dual of MST veri�cation. In fact, MST veri�cation6 is linear-time

reducible to MST sensitivity analysis, which is, in turn, linear-time reducible to the

MST problem itself | these are easy exercises left to the reader. Tarjan's algorithm

[192, 194] solves the problem in O(m�(m;n)) time, and the [57] algorithm solves it in

randomized linear time. Our split-�ndmin data structure yields an O(m log�(m;n))-

time MST sensitivity algorithm, which is asymptotically better but obviously does not

6Here we mean a stricter form of MST veri�cation: the algorithm need only answer yes or no.
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exorcize the spirit of (inverse-)Ackermann. Whether MST is reducible to split-�ndmin

or MST sensitivity is unknown.

We think the value of MST sensitivity is as a testing ground. It is simpler than the

MST problem, and is a wonderful setting to toy around with new algorithmic techniques.

Set Maxima

Given a set system (�;Q), where � is a set of weighted elements, and Q a collection

of subsets of �, the set maxima problem is to determine maxQ for each Q 2 Q. It

subsumes MST veri�cation, MST sensitivity analysis, and a number of other problems

[95, 57, 86, 150], and it can be rephrased as the general matroid veri�cation problem

[150]. Goddard et al. [86] showed that the randomized complexity of the problem is

�(n log m+2n
n ), where n = j�j and m = jQj.

We speculate that the minimum spanning tree problem is reducible to set maxima.

That is, given an optimal black-box set maxima solver, it should be possible to construct

from it a linear-time MST algorithm.
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Chapter 9

A Lower Bound on MST

Veri�cation

9.1 Introduction

Anyone wishing to solve the minimum spanning tree problem now has at his disposal a

toolbox full of interesting data structures and algorithmic techniques, including approx-

imate priority queues [29], Fibonacci heaps [73], Bor�uvka steps, sampled graphs [127],

and MST veri�cation [141]. Is it possible to assemble an explicit, linear-time MST al-

gorithm from this bag of tricks, or is it the case that our toolbox is missing an essential

tool? In [28, p. 1029] Chazelle speculates on the subject of the missing tool:1

Given a spanning tree T , to verify that it is minimum can be done in lin-

ear time [Dixon et al. 1992; King 1997; Koml�os 1985]. The problem is

to check that any edge outside T is the most expensive along the cycle it

forms with T . With real costs this can be viewed as a problem of computing

over the semigroup (R;max) along paths of a tree. Interestingly, this prob-

lem requires 
(m�(m;n)) time over an arbitrary semigroup [Chazelle and

Rosenberg 1991; Tarjan 1978]. This lower bound suggests that in order to

improve upon our algorithm speci�c properties of (R;max) will have to be

exploited. This is done statically in [Dixon et al. 1992; King 1997; Koml�os

1985]. We speculate that an answer might come from a dynamic equivalent.

In this chapter we consider one such \dynamic equivalent", namely the online MST

veri�cation problem. We contrast the online problem with the o�ine MST veri�cation

1The results of this chapter appeared in: S. Pettie, An inverse-Ackermann style lower bound for the
online minimum spanning tree veri�cation problem, Proc. 43rd IEEE Symp. on Found. of Computer
Science, (FOCS), pp. 155{163, 2002.
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problem considered in [192, 141, 57, 133, 16, 24]. Given G;T , where G is a graph

and T a spanning tree of G, the o�ine problem is to decide, for each edge e, whether

e 2MST (T [feg). It follows from the cycle property that T =MST (G) precisely when

e 62MST (T [ feg) for all e 2 G� T . Koml�os [141] demonstrated that the decision-tree

complexity of MST veri�cation is linear. The problem of developing a linear-time MST

veri�er was solved in [57], and in [133, 16, 24] other solutions are presented that are

supposedly simpler or in a simpler model of computation.

In the online version of the problem T is given in its entirety but G�T is presented

one edge at a time. For each query edge e we must decide whether e 2 MST (T [ feg)
before receiving the next query edge. Our main result is that there is no linear-time

online MST veri�er, ruling out this sort of data structure as the basis of a faster explicit

MST algorithm. In particular:

Theorem 12 Any online minimum spanning tree veri�cation algorithm performs 
(m�(m;n)+

n) edge-weight comparisons, where m is the number of queries, n is the size of the �xed

tree, and � is the inverse-Ackermann function.

Perhaps restricting the MST veri�er to answer one query at a time is too unre-

alistic. A simple corollary of Theorem 12 is that giving the MST veri�er large batches

of queries does not signi�cantly a�ect the complexity of the problem. For instance, if

queries are grouped into batches of sizem=log�n, Corollary 2 implies that the complexity

of the problem remains 
(m�(m;n) + n).

Corollary 2 Consider the problem of answering m MST veri�cation queries, presented

in k batches, where each batch of queries must be answered before receiving the next.

Any algorithm for this problem performs 
(m�(mk ;
n
k ) + n) edge-weight comparisons.

We note that the MST problem is just one in a larger class of matroid optimization

problems. Thus, given a basis B of an arbitrary weighted matroid, the problem of

answering m online veri�cation queries requires 
(m�(m; jBj) + jBj) comparisons. Of

course, for any speci�c matroid this lower bound may not hold.

9.1.1 Related Work

The minimum spanning tree veri�cation problem is ostensibly about minimum spanning

trees; however, as Chazelle noted, it can also be viewed as a partial sums (or range

searching) problem over the semigroup (R;max). The range searching problem has

been the subject of intense study for quite some time (see, e.g., the survey of Agarwal

& Erikson [3]). In a typical formulation of the problem we must preprocess a set system

(or range space) (X;Q), where X is a set of weighted elements and Q is a collection of

subsets of X, so that given any query set Q 2 Q we can quickly determine the sum of
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the weights of the elements in Q. In a commonly studied scenario X corresponds to

points in Rd and Q corresponds to the set of all regions with some nice structure, such

as d-rectangles or simplices.

The weights of elements in X may be real numbers and sum may be the usual

notion of sum. However, the standard assumption [3] is that weights are drawn from

some (possibly commutative) semigroup (S; Æ), where the only operation allowed on

semigroup variables is Æ.2 As a consequence, any algorithm in the semigroup model can

be written as a straight-line program.3 However, for the speci�c semigroups (R;max)

and (R;min), it is most natural to assume the decision-tree model, where the program

can branch based on the outcome of previous comparisons.

If we view the MST veri�cation problem as a range searching problem, the set

of weighted elements X corresponds to the weighted tree edges, Q corresponds to the

set of tree paths, and edge weights are drawn from (R;max). This is not a geometric

problem in general, although it subsumes one as a special case. If the input tree is a

single path, MST veri�cation becomes isomorphic to a 1-dimensional range searching

problem where the query sets correspond to intervals. We will call this problem interval

maximum if the semigroup is (R;max) and interval sum under arbitrary semigroups.

Similarly, tree sum refers to the MST veri�cation problem when generalized to arbitrary

semigroups.

Tarjan [192] gave an algorithm for the o�ine tree sum problem and other algo-

rithms for certain online variants of tree sum. All the algorithms in [192] are based on

the same path-compression technique used in the standard union-�nd algorithm [190]

and therefore run in time �(m�(m;n)) where n is the size of the tree and m � n is

the number of queries. Yao [207] proved that the query time of any online interval sum

algorithm is �(�(m;n)) if it uses m � n units of storage. See also [191, 7] for related

results. Chazelle [26] showed that algorithms on intervals (such as one solving interval

sum) can be systematically translated into algorithms on trees. This yielded an online

tree sum algorithm which answers queries in �(�(m;n)) time usingm � n units of stor-

age. Chazelle and Rosenberg [31] strengthened the results of Yao [207] and Alon and

Schieber [7] by showing that o�ine interval sum is just as hard as online interval sum.

In other words, there exist m queries that can only be answered using �(m�(m;n))

operations. Tarjan [194] showed that the complexity of any o�ine subset sum problem

over an arbitrary semigroup is precisely the same as its dual.4 Tarjan's result was used

2The main advantage of the semigroup model is generality. It is still largely an open question how
much group complexity can di�er from semigroup complexity | in short, how useful is subtraction? See
[30] for more discussion of this issue.

3Here a straight-line program would be a sequence of commands of the form x := y Æ z, where x; y; z
are variables of type S.

4A subset sum problem can be represented as a zero-one matrix M where M [i; j] = 1 indicates
element i is in set j. The dual of this subset sum problem is MT , i.e. elements become sets and sets
become weighted elements.
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to prove an O(m�(m;n)) upper bound on the MST sensitivity analysis problem (see

Section 8.8), which is the dual to MST veri�cation. Together with [31] it also proves an


(m�(m;n)) lower bound on any straight-line MST sensitivity analysis algorithm.

The complexity of all these problems seems to change when we substitute the spe-

ci�c semigroup (R;max) in place of an arbitrary semigroup. Koml�os [141] gave a simple

reduction from the (online) interval-maximum problem to the (online) least common an-

cestors problem, which, together with Harel and Tarjan's online LCA algorithm [103],

implies that interval-maximum queries can be answered in O(1) time after an O(n)-time

preprocessing phase. Compare this with the inverse-Ackermann type lower bounds of

[207, 7, 31]. Koml�os [141], making use of his interval-maximum algorithm, showed that

o�ineMST veri�cation can be solved with 2m+O(n log m+n
n ) = O(m+n) comparisons,

where n and m are the number of tree and non-tree edges, respectively. The MST sensi-

tivity analysis problem was investigated in [57]; they gave two algorithms: a randomized,

expected linear-time algorithm and a provably optimal algorithm with unknown run-

ning time. One application of our split-�ndmin data structure | see Chapter A | is a

deterministic MST sensitivity analysis algorithm running in time O(m log�(m;n)).

Given this history one might be tempted to conjecture that all partial sums/range

searching problems are signi�cantly easier under (R;max), as opposed to an arbitrary

semigroup.5 Our lower bound disproves this conjecture | decision-tree complexity

doesn't buy you anything in the online MST veri�cation problem | and sets another

precedent. It is the �rst inverse-Ackermann type lower bound on a purely comparison-

based problem.

Because the elementary operation in our model is the comparison, as opposed to,

e.g., the cell probe [71], the matrix query [135], or the pointer manipulation [193], our

proof techniques are information-theoretic in nature. This is in contrast to traditional

inverse-Ackermann style lower bounds [193, 207, 7, 31, 135, 104, 71], which are based

on mostly structural properties of the problem or problem instance. We suspect that

our techniques will be useful in lower-bounding other problems in a comparison-based

model of computation.

9.1.2 Organization

Section 9.2 de�nes our notation and a class of \hard" problem instances. The lower

bound proper appears in Section 9.3. In Section 9.4 we provide almost matching upper

bounds for online MST veri�cation, and show that the problem becomes signi�cantly

easier when the input edge-weights are permuted randomly.

5This conjecture basically holds for random o�ine partial sums problems: nearly all such problems
on n elements and m sets require �(mn= logm) semigroup operations to solve (see [191]), whereas they
require an expected �(n log minfn; m+n

n
g) comparisons to solve [86] when the semigroup is (R;max).
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9.2 Preliminaries

The problem is to answer, in an online fashion, a sequence of m minimum spanning

tree veri�cation queries. Each is of the form: given an edge e, decide whether e 2
MST (T [feg), where T is a �xed, edge-weighted tree. By the cycle property of minimum

spanning trees this is equivalent to asking whether e is not the heaviest edge on the

unique cycle in T [ feg. For the sake of simpler notation we consider input trees that

are vertex-weighted rather than edge-weighted. (Hence we decide if e is heavier than

all vertices in the unique cycle of T [ feg.) To further simplify matters we restrict the

types of inputs and queries, as described below.

� The �xed tree T is a full, rooted binary tree.

� Every query edge will connect a leaf to one of its ancestors.

It is clear that the query edge must participate in at least one comparison. The

parameter t � 1 used throughout the paper represents the desired number of compar-

isons per query. We will prove that for each t there is an input distribution Distr(t)

such that for some query, either (a) Answering the query requires at least t + 1 com-

parisons (worst case or amortized) or (b) The veri�cation algorithm already performed

cn log �t(n) comparisons preceding the query, where c is an absolute constant and �t is

the tth-row inverse of a function similar to Ackermann's function. By judiciously setting

t(m;n) = maxft : cn log �t(n) � tmg, this implies that answering m veri�cation queries

requires m � t(m;n) comparisons. It is then straightforward to show that t(m;n) is al-

ways within an absolute constant of the traditional inverse-Ackermann function de�ned

by Tarjan [190].

9.2.1 A Variation on Ackermann's Function

In the �eld of algorithms & complexity, Ackermann's function [1] is rarely de�ned the

same way twice (see e.g., [1, 193, 71, 31, 46, 28, 47]). We would not presume to buck

such a well-established precedent. Here is a slight variant:

A(1; j) = 2j

A(i+ 1; 0) = A(i; 1)

A(i+ 1; j + 1) = A(i; 22
A(i+1;j)

)

Let �i(n) be the inverse of the i
th row of A, de�ned as:

�i(n) = minfj : A(i; j) � ng
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9.2.2 The Input Distribution Distr(t)

We denote nodes of the �xed tree T with lower case letters. If q is a tree node we let

w(q) be the weight of q and size(q) be the number of leaf-descendants of q. Since T is

a full binary tree, size(q) is always a power of two. Note also that A(i; j) is always a

power of two. The input distribution Distr(t) is fully characterized by De�nitions 6 and

7 and Property 4.

De�nition 6 In Distr(t), a non-leaf node p is an i-node if size(p) = A(i; j) for 1 � i � t

and some j, and an i-node if it is an i-node but not an (i + 1)-node. In Distr(t), leaf-

nodes are (t+ 1)-nodes by de�nition.

De�nition 7 Let p be an arbitrary (i+ 1)-node and let q be the nearest (i + 1)-node

ancestor of p. We de�ne the set Cp to be those i-nodes that lie on the path between p

and q.

Property 4 Let p be a tree node. If p is a 1-node then w(p), the weight of p, equals the

height of p in T , i.e. log size(p). If p is an i-node, for i > 1, then w(p) = w(Xp), where

Xp is a tree node selected uniformly at random from Cp, and independent of fXqgq 6=p
| see Figure 9.1.

In our analysis we will assume that the online MST veri�cation algorithm knows

that the permutation of tree weights was drawn from Distr(t). Therefore, a statement of

the form \it is known that w(p) < w(q)" means the inequality w(p) < w(q) follows from

the inequalities discovered by the algorithm and the inequalities implicit in Property 4.

For instance, Property 4 implies the following Lemma.

Lemma 44 Suppose p1 is an i1-node, p2 is an i2-node, i1 � i2, and p1 appears at a

lower level of T than p2. Then w(p1) < w(p2).

Proof: Notice that all 1-nodes at the same level are assigned the same weight. We

de�ne span(q) to be the set of 1-nodes r for which the equality w(q) = w(r) could

possibly hold, given Property 4. So, if q is a 1-node then span(q) consists of all nodes

on q's level in T . We prove the following claim: that if q is an i node, span(q) lies

strictly below6 any i-nodes above q. This will imply the Lemma since, by Property 4,

any 1-node is lighter than any 1-node ancestor. The claim clearly holds for 1-nodes;

assume inductively that it holds for all j-nodes, where j < i. Let q be an arbitrary

i-node and q0 be the next i-node above q. By Property 4, span(q) =
S
r2Cq

span(r)

and by De�nition 7 Cq lies strictly below q0. Therefore, by our inductive assumption,

6We think of the root being at the \top" of the tree. Therefore statements like \x lies (strictly) below
y" should be interpreted as \y is (strictly) closer to the root than x".
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Cpw(p) = w(X   )p

pX      selected from Cp

heavier node
arrow points to

i−node

(i−1)−node

size = A(i−1, h−1)

size = A(i−1, h−2)

size = A(i−1, h−3)

size = A(i−1, g+3)

size = A(i−1, g+2)

size = A(i−1, g+1)

size = A(i−1, g−1)

.    .    .

size = A(i−1, h+1)

size(q) = A(i, j+1) = A(i−1, h)

size(p) = A(i, j) = A(i−1, g)p

q

Figure 9.1: An i-node p, where i > 1, and its associated set Cp. Cp consists of the

(i� 1)-nodes between p and q, its nearest i-node ancestor. The weight of p is equal to
that of some node in Cp selected uniformly at random.

S
r2Cq

span(r) lies strictly below q0, since Cq consists of (i�1)-nodes and q0 is, by virtue

of being an i-node, an (i� 1)-node as well. This proves the claim and the lemma.

2

A consequence of Lemma 44 is that, on any leaf-to-root path, the weights of the

i-nodes are monotonically increasing, for any i. This implies that any query can be

answered in at most t + 1 comparisons. If a query edge e connects a leaf to one of its

ancestors there are at most t+ 2 candidate maxima on the cycle in T [ feg: the most
ancestral i-node, for 1 � i � t+ 1, plus the edge e itself.

9.2.3 A Measure of Information

Before the veri�cation algorithm performs any comparisons it knows, by Property 4,

that w(q) = w(Xq), where q is any i-node, i > 1, and Xq is uniformly distributed over

Cq. We de�ne, with respect to the current moment, the set Dq � Cq as:
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Dq = fp 2 Cq : w(q) = w(p) is consistentg

That is, Cq�Dq consists of those p 2 Cq for which the equality w(q) = w(p) is impossible,

given Property 4 and all the inequalities discovered by the veri�cation algorithm up until

the current moment. It follows from Property 4 that Dq is non-empty. We will use the

sizes of the Cq and Dq sets to roughly measure how much information is known about

Xq. De�ne � as:

�(q) =

8><
>:

log jCqj+ 2(t+ 1)2 if jDqj = 1 and log jCqj � 2(t+ 1)2

log
jCqj
jDq j

otherwise

De�ne � as:

� =
X
q2T

�(q):

It would be preferable to de�ne �(q) as simply log(jCqj=jDqj). However, we need
to di�erentiate between the case when Xq is completely known and when there is a little

uncertainty left in Xq (corresponding to jDqj = 1 and jDqj > 1, respectively.) Therefore,

we add to �(q) a little \bonus" of 2(t+1)2 whenever jDqj reaches 1. Lemma 45 relates the
� measure to the number of bits of information learned about the veri�cation algorithm.

Lemma 45 �=2 is a lower bound on the information learned about the tree-weights, as

drawn from Distr(t).

Proof: The number log(jCqj=jDq j) measures the bits of information learned about

the variable Xq, in the special case when Xq is uniformly distributed over Dq and

independent of fXpgp6=q. This is certainly a lower bound on the actual number of bits

of information learned about Xq. By de�nition, �(q) � 2 log(jCqj=jDqj). Therefore

� =
P

q �(q) is at most twice the number of bits of information learned about the

tree-weights.

2

Our lower bound proof uses the � and � values to argue about the existence of

\hard" queries and to quantify their exact hardness. We show that if � is suÆciently

small, where small is a function of n and t, then there exists a query that requires t+1

comparisons to be answered in the worst case. However, there is a danger in continually

forcing worst-case behavior. In so doing we may inadvertently expose signi�cantly more

than one bit of information per comparison. Therefore, we might no longer be able to

claim that, on the average, the number of bits of information learned about the input
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distribution is at most the number of comparisons performed by the algorithm. We

prove amortized bounds by showing that either (a) the veri�cation algorithm answers

the query in at least t+1 comparisons or (b) after the query is answered, �=2 increases

by some amount much larger than t + 1. Theorem 13 shows that if such a dichotomy

exists then with high probability the amortized cost of the query is lower bounded by

t+ 1 minus some small quantity.

Theorem 13 Let � be an unknown permutation drawn from some known probability

distribution. An algorithm performs a sequence of m operations by comparing elements

of �. Let 	i � 	i�1 be a lower bound on the amount of information learned about � just

before the ith operation. Suppose that it is known that the ith operation either performs

at least � comparisons or 	i+1 �	i � �. Let amort(�; �; �) = �(1 + (1 + �)�=�)�1. Let

C be the total number of comparisons made in m operations and M = m �amort(�; �; �).
Then:

Pr[C � M ] � 1� 2��M

Proof: Let I denote the number of bits of information learned about � after C compar-

isons. We have 	m+1 � I. It is simple to prove by induction that Pr[I > (1 + Æ)C] <

2�ÆC . Therefore, if C < M then Pr[I > (1 + �)M ] < 2��M . Let m� be the number

of operations that perform � comparisons, and let m� = m � m� be the number of

operations that increase 	 by at �. We have the following inequalities:

m = m� +m�

� C=� + I=�

< M(1=� + (1 + �)=�) (with prob. greater than 1� 2��M )

= M(amort(�; �; �))�1 = m

Therefore, M > C only with probability less than 2��M .

2

In our lower bound proof �=2 will take the role of 	 in Theorem 13 and if we

select the input from Distr(t) then � will be t + 1. We are basically free to set the

other parameters. For � = 1=t and � = (t + 1)2, Theorem 13 says that the actual

amortized cost (C=m) is at least amort(t+1; (t+1)2; 1=t) = t with probability 1�2�m.

By increasing � or decreasing � the lower bound on the amortized cost can be driven

arbitrarily close to t+1, with probability at least 1�2�
(m). For the sake of speci�city,

let the term amortized cost be w.r.t. � = 1=t.
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9.3 The Lower Bound

Theorem 12 will follow very easily from Lemma 46, given below. The remainder of this

section will constitute a proof of Lemma 46.

Lemma 46 Suppose that � < 1
8n log �t(n), where it is assumed that �t(n) > 23(t+1)

2
.

Then there exists a veri�cation query whose amortized cost is at least t.

The proof of Lemma 46 is structured as follows. We de�ne a measure cost(q) over

the leaves q of the input tree and show that if any leaf's cost is suÆciently small, then

there exists a \hard" query edge whose endpoints connect that leaf to an ancestor. In

particular, we generate a sequence of nodes qt+1; qt; : : : ; q1 where qt+1 is a low-cost leaf

(recall, leaves are (t + 1)-nodes), and qi is an i-node ancestor of qi+1. The query edge

is then e = (qt+1; q1). We show that qt+1; qt; : : : ; q1 are all candidate maxima on the

unique cycle in T[feg, which immediately implies that in the worst case, the veri�cation
algorithm must make t+ 1 comparisons to certify that e is heavier than qt+1; qt; : : : ; q1.

We then show that if, somehow, the veri�cation algorithm got by with fewer than t+ 1

comparisons, then it must have caused � to increase by at least 2(t+1)2. By appealing

to Theorem 13 we can then show that the amortized cost of the query is at least t.

De�ne cost(q), where q is a leaf, as

cost(q) =
X

p ancestral to q

(including q)

�(p)

size(p)

That is, we can think of q contributing �(q)=size(q) to the cost of each of the

size(q) leaf-descendants of q. Clearly
P

q cost(q) =
P

q �(q) = �. We choose a hard

query as follows:

1. Let qt+1 be a leaf such that cost(qt+1) <
1
8 log �t(n)

2. For i from t down to 1: let qi be the second most ancestral node in Dqi+1

3. The query edge is e = (qt+1; q1). We �x w(e) to be more than w(q1), but less than

any other weight more than w(q1).

In (1), such a qt+1 can always be found because the average leaf cost is bounded

by log �t(n)=8. For (2) we clearly require jDqi+1 j � 2. For our analysis to go through

we will actually require Dqi+1 to have at least 22(t+1)
2
elements. We �rst prove bounds

on jCqij ; jDqi j and size(qi). We then bound the cost of answering the query (qt+1; q1).

Lemma 47 If q is a leaf then jCqj = �t(n). If q is a non-leaf i node and there exists

some i node above q, then jCqj � 22
size(q)�1.
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Proof: When q is a leaf Cq consists of all t-node ancestors of q, of which there are

�t(n), by the de�nition of �t. In the general case q is an i-node, where i > 1. (If

i = 1 then there is no set Cq.) By the de�nition of Cq this means that for some

j, size(q) = A(i; j) = A(i � 1; j1). The �rst i-node ancestor of q, say p, satis�es

size(p) = A(i; j +1) = A(i� 1; j2). The set jCqj consists of the j2 � j1 � 1 (i� 1)-nodes

between q and p. If j = 0 then by the de�nition of A, jCqj = 22
A(i;0) � 2. If j > 0 then

jCqj = 22
A(i;j) � 22

A(i;j�1) � 1. In either case jCqj � 22
size(q)�1 since A(i; j � 1) < 1

2A(i; j)

when i > 1.

2

Lemma 48 Let p be an arbitrary leaf descendant of an i node q, where i > 1. Then

jDqj � jCqj
2cost(p) size(q)

Proof: By de�nition of �, jDqj � jCqj=2�(q). By the de�nition of cost(p) we have

cost(p) � �(q)=size(q). The lemma follows.

2

Lemma 49 For 1 � i � t, size(qi) � �t(n) � 23(t+1)
2
.

Proof: Since qi is an ancestor of qi+1, implying size(qi) > size(qi+1), we need only prove

the lemma for i = t. We selected qt+1 for satisfying �(qt+1) < log �t(n)=8. Therefore, it

follows from Lemmas 47 and 48 that jDqt+1 j � (�t(n))
7=8. We chose qt to be the second

most ancestral node in Dqt+1 . Therefore, size(qt) � A(t; (�t(n))
7=8�2), which is at least

�t(n) since A(t; j) � 2j and (�t(n))
7=8 � 2 � log �t(n) for all but small constant values

of �t(n). (Recall that we assumed �t(n) � 23(t+1)
2 � 212.

2

Lemma 50 For 1 < i � t+ 1, jDqi j � 22(t+1)
2
.

Proof: It was already shown in the proof of Lemma 49 that Dqt+1 � (�t(n))
7=8 �

22(t+1)
2
. Consider qi, for i � t. We have the inequalities:

jDqi j �
jCqi j

2size(qi) cost(qt+1)
� 2

�
2size(qi)�1�size(qi) log �t(n)

�
� size(qi) � 22(t+1)

2

The �rst inequality follows from Lemma 48. The second follows the inequality cost(qt+1) <

log �t(n)=8 and Lemma 47. The third and fourth follow from Lemma 49.

2

Lemma 51 Answering the query e = (qt+1; q1) requires t+1 comparisons to answer in

the worst case.
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Proof: Consider the unique cycle in T [ feg. We will show that among the weighted

elements on this cycle (weighted vertices and the edge e), the set of possible maxima is

precisely fe; qt+1; qt; : : : ; q1g. Therefore, con�rming that e is indeed the heaviest element
will require t+ 1 comparisons in the worst case since for any comparison made by the

veri�cation algorithm, at least one outcome eliminates at most one possible maximum.

Suppose that before the query algorithm began it was already known that w(qi) � w(qj),

ruling out qi as a potential maximum. We consider two cases, depending on the ordering

of i and j. Assume �rst that j < i, that is, qj is an ancestor of qi. Let p be the most

ancestral element in Dqi . By our selection of qi�1 from Dqi , qi�1 lies strictly below

p, which implies qi�1; qi�2; : : : ; qj; : : : ; q1 lie strictly below p | see Figure 9.2 for a

diagram. This leads to a contradiction since p 2 Dqi implies w(p) = w(qi) is consistent

qj

qi−1

qi

iw(q  )  <  w(p)

qi

qj

qi

qj−1

i jw(q  )  <  w(q  )

i jw(q  )  <  w(q  )

contradicting
j−1                       between  p  and  q

p  in  D

w(q  ) = w(r)  for some  i−node  r

i  <  j

p

implies

p

j  <  i

w(q  ) = w(p)j

implies

w(r)  <  w(q  )

contradicting

r

i

j

Figure 9.2: Before answering the query the veri�cation algorithm cannot know that
w(qi) � w(qj). The two situations, i < j and j < i, are diagrammed. Some of the nodes
depicted may actually represent the same node, as in the case when j = i� 1 (left) or
i = j � 1 (right).

with any known inequalities. However, we know that w(qi) � w(qj) < w(p), where the

�rst inequality is by assumption and the second by Lemma 44. The other case, when

i < j, is similar but not exactly symmetrical. Let p be the least ancestral element in

Dqj . By our choice of qj�1 and Lemma 50, we know that p lies strictly below qj�1.

If w(qj) = w(p), which is possible since p 2 Dqj , then by Property 4 w(qj) = w(r)

where r is some i-node between p and qj�1. By Lemma 44 w(r) < w(qi), giving us the

inequalities w(r) < w(qi) � w(qj) = w(r), a contradiction.

2

In Lemmas 52 and 53 we show that if the query (qt+1; q1) is answered in fewer

than t+ 1 comparisons, then � must increase by at least 2(t+ 1)2. Let �� denote the

change in �, measured before and after the query.
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Lemma 52 Either �� � 2(t+ 1)2 or w(qt+1) � w(qt) � � � � � w(q1) < w(e).

Proof: Let high(i) denote the event that w(qi) = w(p) where p is the most ancestral

node inDqi . Recall that qi�1 was chosen to be the second most ancestral node inDqi and

that w(e) > w(q1). Therefore, it must be the case that w(qt+1) � : : : � w(q1) < w(e) or

high(t+ 1) _ high(t) _ � � � _ high(2). The event high(j) occurs i� w(qj) > w(q1), which

implies w(qj) > w(e). Since, by Lemma 51 the only possible maxima on the cycle in

T [ feg are qt+1; qt; : : : ; q1; e, if e is not maximal then the veri�cation algorithm must

have discovered that w(qj) > w(e) for some j, i.e. it must have discovered that high(j)

holds. According to Lemma 50 jD(qj)j � 22(t+1)
2
before the query e is issued. However,

after the query high(j) holds, which implies jDqj j = 1. According to the de�nition of �,

�(qj) must increase by at least 2(t+ 1)2, implying �� is at least that much.

2

Lemma 53 Either �� � 2(t + 1)2 or each comparison made by the veri�cation algo-

rithm eliminates at most one candidate maximum from the set fqt+1; qt; : : : ; q1; eg.

Proof: Suppose that there exists a comparison that eliminates two or more candidate

maxima from the unique cycle in T [ feg. By Lemma 51 the set of candidate maxima

initially includes fqt+1; qt; : : : ; q1; eg. Suppose that the comparison reveals the inequality
w(qi) � w(x) and suppose that it is already known that w(x) � w(qj); w(qk), where qj
and qk are candidate maxima at the time of the query. Let x be an `-node. There are

several cases, depending on the ordering of i; j; k and `. Lemma 52 lets us restrict our

attention to the case when w(qt+1) � w(qt) � : : : � w(q1) < w(e), which immediately

implies i < j < k. The proof is structured as follows. Let p be the next (k � 1)-node

above qk�1, i.e. at the time the query e was issued, p was the most ancestral node in

Dqk . We will show that either p 62 Dqk just before the comparison, or the comparison

causes � to increase by at least 2(t+ 1)2, which implies �� is at least that much. The

case p 62 Dqk leads to a contradiction because it implies, by the de�nition of Dqk , that

w(qk) � w(qk�1), meaning qk was not a candidate maximum just before the comparison.

We will �rst show that ` � k and x is at the same level in T as q`. Suppose that

` < k. If the inequalities w(qk) � w(x) � w(qi) were a possibility before the comparison

was made then x must lie in the band of T between the levels of qk and p: any nodes

outside that band are, by Lemma 44, de�nitely lighter than qk or heavier than qi.

However, the inequality w(x) � w(qk) then implies, by Lemma 44, that w(p) > w(qk),

that is, p 62 Dqk , a contradiction. This shows that ` � k. We now consider the

height of x in T . We cannot have x lower in T than q`, for this would imply by

Lemma 44 that w(x) < w(q`) � w(qk). It also cannot lie above q`, as this implies

w(qi) < w(x), again by Lemma 44. We de�ne x`; x`�1; � � � ; x1 to be the ancestors

of x at the same levels as, respectively, q`; q`�1; : : : ; q1, where x = x` | see Figure
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qj

qk−1

ql

qk

qi

xj

xk−1

x   =  xl

xk

xi

p

implies

implies

w(p)  >  w(q  ),   i.e.,  p  not in D

w(x     )  =  w(x)  >  w(q  )

k

w(x )  =  w(x     )  =  .   .   .  =  w(x )

k jw(q  ), w(q )  <  w(x)  <  w(q )

l l−1

k−1

i

j

k

kq

Figure 9.3: It was discovered that w(qj); w(qk) � w(x) � w(qi), ruling out qj and qk as
potential maxima. The node x = x` is proved to be at the same level as q`, for some
` � k. The nodes x`�1; : : : ; x1, are by de�nition the ancestors or x at the same levels as
q`�1; : : : ; q1.

9.3. Notice that if w(qj); w(qk) � w(x) = w(x`) � w(qi), it must be the case that

w(x`) = w(x`�1) = � � � = w(xj), implying that jDx` j = jDx`�1
j = � � � = jDxj+1 j = 1.

If any one of these D-sets, say Dxr , had strictly more than 1 element before the query

e was issued then we argue that �� � 2(t + 1)2. Since xr is at the same level as qr,

it follows from Lemma 50 that jCxr j � 22(t+1)
2
. Given this lower bound on jCxr j, the

transition from jDxr j > 1 to jDxr j = 1 causes �(xr) to increase by at least 2(t + 1)2,

which causes � to increase by at least that much. Therefore, if jDxr j > 1 before

the query was issued then �� � 2(t + 1)2. The last situation to consider is when

jDx` j = jDx`�1
j = � � � = jDxj+1 j = 1 before the query e was issued. In this situation

the known inequality w(x) = w(x`) � w(qk) implies w(xk�1) � w(qk) since j � k � 1.

However, Lemma 44 implies that w(p) > w(xk�1), and consequently, that p 62 Dqk just

before the comparison was made. This contradicts the claim that qk was a candidate

maximum.

2

Lemma 53 implies that the query e is answered in t+1 comparisons or else increases

� by at least 2(t + 1)2. By invoking Theorem 13 with 	 = �=2, � = 1=t, � = t + 1,

� = (t+1)2, the amortized cost of the query e is at least t. In the next section we prove

that Lemma 46 implies Theorem 12.

9.3.1 Proof of Main Theorem

In this section we de�ne a function t(m;n) and prove a lower bound on the online MST

veri�cation problem in terms of m, n, and t(m;n). We then show that t(m;n) is within

an absolute constant of the inverse-Ackermann function � as de�ned by Tarjan [190].
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De�ne t(m;n) as:

t(m;n) = max
n
t : �t(n) � 216t

2dm=ne
o

It is true that t(m;n) is unde�ned when �1(n) � 216dm=ne. For the sake of

completeness, assume t(m;n) = 1 in this situation.

Lemma 54 Any algorithm answering m MST veri�cation queries on an n-node tree

makes, on a worst case input, maxfm � t(m;n); ng comparisons with probability at least

1� 2�
(m).

Proof: If t(m;n) = 1 or m �t(m;n) < n then the lemma is trivial. Any MST veri�cation

algorithm must perform 1 comparison per query and in the case where T[feg consists of
a single cycle, con�rming that e is the heaviest edge requires n comparisons. We assume

that t(m;n) > 1. Suppose that the lemma is false, that the veri�cation algorithm

makes fewer than m � t(m;n) comparisons with probability greater than 2�
(m). By

the de�nition of t(m;n) it follows that 1
16n log �t(n) � 2 � m � t(m;n). If the MST

veri�cation algorithm made fewer than m � t(m;n) comparisons it follows from Lemma

45 that � < 1
8n log �t(n) with probability at least 1 � 2�m�t(m;n). It also follows from

the de�nition of t(m;n) that �t(n) � 23(t+1)
2
. Therefore, the preconditions of Lemma

46 are met with high probability. By Lemma 46 the amortized cost of each query is at

least t, and by Theorem 13 the probability that the amortized costs exceed the actual

costs is no more than 2���m�t = 2�m.

2

In [190] Tarjan de�ned a variant of Ackermann's function and a certain inverse

which we denote by B and �, respectively. They are de�ned as:

B(0; j) = 2j for j � 0

B(i; 0) = 0 for i � 1

B(i; 1) = 2 for i � 1

B(i; j) = B(i� 1; B(i; j � 1)) for i � 1; j � 2

�(m;n) = minfi : B(i; 4dmn e) > log ng

Lemma 55 �(m;n)� 3 � t(m;n) � �(m;n) + 1.

Proof: We will use several properties of A and B, given in Lines (9.1) through (9.5).

They are all simple to prove by induction. The proofs, which are somewhat tedious, are

left to the reader.
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A(i; j) � B(i; j) for i � 1 and j � 0 (9.1)

B(i; 3j) � A(i; j) for i � 1; j � 1 (9.2)

B(i+ 1; j) � 2B(i;j) for i � 2; j � 3 (9.3)

B(i+ 1; 2j) � 2B(i;j) for i � 0; j � 1 (9.4)

B(i+ 1; j) � 2B(i;j)=2 for i � 1; j � 3 (9.5)

We had de�ned t(m;n) = maxft : �t(n) � 216t
2dm=neg. One can see that this is

equivalent to the de�nition:

t(m;n) = min
n
t � 1 : A

�
t+ 1; 216(t+1)

2dm=ne
�
> n

o
which is more in line with the de�nition of �. We will �rst show that �(m;n) �
t(m;n) + 3. Consider the inequalities below, where t = t(m;n).

A
�
t+ 1; 216(t+1)

2dm=ne
�

> n (9.6)

B
�
t+ 1; 217(t+1)

2dm=ne
�

> logn (9.7)

B
�
t+ 3; 4dm

n
e
�

> logn (9.8)

Line (9.6) follows from the de�nition of t(m;n). Line (9.7) follows from Line (9.2).

Line (9.8) follows from Line (9.3), though not directly. Let x " y denote an exponential

stack of x 2's with a y on top; e.g. 2 " 3 = 22
3
= 256. One can easily show that

B(1; j) = 2j = 1 " j. Lines (9.3) and (9.5) together imply that B(i; j) � i " (j � 1) for

all i � 1; j � 3. Therefore, B(t+3; 4dmn e) = B(t+2; B(t+3; 4dmn e�1)) � B(t+2; (t+3) "
(4dmn e�2)), which is greater than B(t+2; 217(t+1)

2dm=ne) since (t+2) " (4dmn e�2) always
dominates 17(t + 1)2dmn e. Therefore Line (9.8) follows from Line (9.7), and implies, by

the de�nition of �(m;n), that �(m;n) � t+ 3 = t(m;n) + 3.

The bound t(m;n) � �(m;n) + 1 is proved in a similar fashion. Consider the

following inequalities, where � is short for �(m;n).

B
�
�; 4dm

n
e
�

> log n (9.9)

B
�
�; 28dm=ne

�
> n (9.10)

A
�
�+ 1; 216�

2dm=ne
�

> n (9.11)

Line (9.9) follows from the de�nition of �(m;n). Line (9.10) follows from the

monotonicity of B and B(i; j) � 2j. Line (9.11) follows from Line (9.1) and the mono-

tonicity of A and B. Line (9.11) is not given as A(�; : : :) > n because � may be zero

while A(i; j) is only de�ned for i � 1. Therefore, t(m;n) � maxf�; 1g � �+ 1.
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2

9.4 Upper Bounds

In this section we show that the actual complexity of online minimum spanning tree

veri�cation is not too far from the lower bound presented in Section 9.3. We also provide

nearly tight bounds on the average case complexity of the problem, where the average

is over all permutations of the tree weights. We will think of the MST veri�cation

algorithm as divided into two parts: a preprocessing algorithm that, given T , produces

some �xed data structure, and a query algorithm that answers MST veri�cation queries

by referring only to the �xed structure. The complexities of interest are the number of

preprocessing comparisons and the worst case number of comparisons per query.

Theorem 14 Suppose the tree-weights are permuted randomly. With no more than 2n

preprocessing comparisons (expected), MST veri�cation queries can be answered with

no more than 2 comparisons. If queries must be answered with 1 comparison then the

expected preprocessing time is �(n logn).

Proof: First consider the 1-comparison case with randomly permuted weights. Let T

be a star with center vertex c. For every two leaves u and v such that w(u); w(v) > w(c)

the preprocessing algorithm must determine the heavier of u and v (otherwise the query

e = (u; v) would require 2 comparisons to answer.) Therefore, the query algorithm must

sort n0 elements, where n0 is the number of leaves heavier than c. This takes expected


(n logn) time since n0 is uniform over [0::n� 1]. O(n log n) preprocessing time is also

clearly suÆcient for any tree T . (Remark: If all tree nodes have degree bounded by a

constant, it seems likely that o(n log n) preprocessing would be required on average.)

For the 2-comparison case the preprocessing algorithm must reduce the number

of candidate maxima on any query to at most 2 (not counting the query edge). We

root the tree arbitrarily and divide any query (u; v) into two queries (u; LCA(u; v)) and

(v; LCA(u; v)), where LCA(u; v) is the least common ancestor of u and v. Therefore

it will be suÆcient to reduce the number of candidate maxima on a query (z; a) to

one, where a is an ancestor of z. For any node z 2 T let z = z0; z1; z2; z3; : : : be

the sequence of nodes from z up to the root. We must �nd the pre�x-maxima of the

sequences f(w(zi))gz2T;i�0, which is tantamount to �nding the subsequence L(z) =

(zi1 ; zi2 ; zi3 ; : : :) where zip has maximum weight among (z0; : : : ; zip+1�1). We compute

L(z) from L(z1) = (zj1 ; zj2 ; zj3 ; : : :). One can see that L(z) is derived from L(z1) by

substituting a (possibly empty) pre�x of L(z1) with z = z0. We �nd such a pre�x in the

obvious manner, by comparing w(z0) with w(zj1); w(zj2); : : : until jq is found such that

w(z0) < w(zjq ). (If there is no such zjq then for the sake of consistent notation we let it

be the non-existent parent of the root.) The cost of this procedure, which is performed
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for every node in the input tree, is no more than q.7 We analyze the behavior of q and

jq under the assumption that the tree edge-weights are randomly permuted. We have

Pr[jq = r] � 1=r(r + 1) (9.12)

E[q j jq = r] � 1 +

r�1X
i=1

Pr[w(zi) = max
1�k�i

fw(zk)g]

= 1 +Hr�1 (9.13)

E[q] =

1X
r=1

Pr[jq = r] � E[q j jq = r]

� 1 +
1X
r=2

Hr�1

r(r + 1)

= 1 +

1X
i=1

 
1

i
�

1X
r=i+1

1

r(r + 1)

!

= 1 +

1X
i=1

1

i(i+ 1)
= 2 (9.14)

Lines 9.12 and 9.13 are inequalities, rather than equalities, due to the �niteness

of the (zi)i sequence. Line 9.14 follows from Lines 9.12 and 9.13 and the identityPk
i=1 1=i(i + 1) = 1� 1=(k + 1), which is easily proved by induction on k.

2

Any (online) tree-sum algorithm for arbitrary semigroups can be used as an (on-

line) MST veri�cation algorithm. The constructions from [7, 26] show that a tree T

can be preprocessed in O(n�t(n)) time so that the sum of the weights on any path is

computable with 2t� 1 semigroup operations. We sketch below how the preprocessing

time can be reduced to O(n log �t(n)) for the online MST veri�cation problem, without

a�ecting the query time. The [7, 26] preprocessing algorithms implicitly generate a set

of forests of rooted trees F1; F2; : : : ; Ft with the property that the sum of the weights

of any path in T is equal to the sum of the weights of 2t paths: 2 paths in each of

T1 2 F1; T2 2 F2; : : : ; Tt 2 Ft, where T1; : : : ; Tt are trees in their respective forests.

The paths in T1; : : : ; Tt run from a leaf to one of its ancestors. Preprocessing the trees

in F1; : : : ; Ft to answer leaf-to-ancestor queries is done in the obvious fashion: for a

tree with size s and height h the preprocessing time is O(sh). F1; : : : ; Ft�1 are con-

structed so that their preprocessing time is O(n), and Ft is guaranteed to be a single

tree with size at most n and height at most �t(n); therefore the total preprocessing

time is O(n�t(n)). This algorithm can be improved, slightly, when the semigroup is

7It is usually equal to q, unless zjq happens to be the parent of the root, in which case the comparison
w(e0) < w(ejq ) never takes place.
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(R;max) and t > 1. Koml�os's MST veri�cation algorithm [141] can be thought of as

an O(s log h)-time preprocessing scheme for answering leaf-to-ancestor queries. Using it

to preprocess Ft instead of the [7, 26] algorithms yields an O(n log �t(n)) preprocessing

algorithm with query complexity 2t (not 2t � 1, as in [7, 26], because the query edge

must be compared against the tree-weights too!) We can reduce the query complexity to

2t�1 by preprocessing the the trees in F1 more e�ectively. Any tree T1 2 F1 with size s

and height h has the property that s log s = O(sh). Therefore, we shall preprocess the

F1 trees by sorting their weights rather than use the [7, 26] algorithm. The preprocess-

ing time is una�ected but the query algorithm may reduce the number of comparisons

by 1.

The above construction assumed t > 1, speci�cally that F1 6= Ft. What is the best

preprocessing time we can achieve for query complexity 1, 2 and 2t? For 1-comparison

queries the optimal preprocessing time is clearly �(n log n). For 2-comparison queries

there is a simple algorithm with O(n log log n) preprocessing time. King [133] showed

that any tree T could be easily transformed into a new tree T 0 with several nice proper-

ties. First, any MST veri�cation query on T can be mapped to an equivalent query in

T 0. Second, T 0 has size linear in jT j and height logarithmic in jT j. Applying Koml�os's
O(n log logn)-time preprocessing algorithm to T 0 lets us answer queries in 2 compar-

isons. It can be easily shown that this bound is optimal for 2-comparison queries, using

the input distribution Distr(1) and an argument similar to that of Lemma 46. If the

query complexity is �xed at 2t, where t � 2, we do not know of any faster preprocess-

ing algorithm than the one for query complexity 2t� 1. Our results on the worst case

complexity of online MST veri�cation are summarized in Theorem 15.

Theorem 15 For query complexity 1 the optimal online MST veri�cation algorithm

preprocesses the tree in �(n logn) time. For query complexity 2 the optimal preprocessing

time is �(n log logn). For query complexity 2t � 1 � 3 the optimal preprocessing time

is O(n log �t(n)) and 
(n log �2t�1(n)).

For query complexity 2t � 1 we suspect that the upper bound in Theorem 15 is

tight. However, for the special case of leaf-to-ancestor queries the lower bound from Sec-

tion 9.3 is tight. Therefore, to improve our lower bounds one must necessarily consider

more general types of queries.
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Chapter 10

A Time-Work Optimal

Parallel MST Algorithm

In this chapter we present a randomized parallel minimum spanning tree algorithm that

is simultaneously optimal with respect to both work and time, where work is de�ned

as the time-processor product. Our algorithm runs in O(log n) time using m= log n

processors (thus O(m) work) on the EREW PRAM, the weakest of the PRAM models

[130]. This is the �rst provably time-work optimal MST algorithm for any parallel

model. In Section 10.8 we give a simple processor allocation scheme for \tree-like"

computations, which may be of separate interest.1

10.1 The PRAM Model

The PRAM [130], or Parallel-RAM, is an abstract machine consisting of P processors

with random access to a shared array of memory cells. Computation proceeds in syn-

chronized, constant-time phases consisting of a read step, a computation step, and a

write step.2 The PRAM comes in several avors: EREW, CREW, ERCW, and CRCW,

corresponding to the general restrictions placed on memory access. The exclusive read

(ER) and exclusive write (EW) models disallow two or more processors reading from

and writing to the same memory cell in the same step, whereas the concurrent read and

write models (CR and CW, resp.) tolerate this type of memory access.3 Time is de�ned

1The results of this chapter are taken from: S. Pettie and V. Ramachandran, A randomized time-
work optimal parallel algorithm for �nding a minimum spanning forest, SIAM J. on Computing 31(6),
pp. 1879{1895, 2002.

2Reading and writing are separated simply to avoid the issue of what happens during simultaneous
reading and writing.

3There are actually several concurrent write models, depending on whether simultaneous memory
writes need to be consistent, and if not, how inconsistencies are resolved.
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as the number of phases in a computation and work is de�ned as the total number of

operations, which is linear in the time-processor product.

In this chapter we consider primarily the EREW model, which is the weakest of

the PRAMs. In Section 10.9 we discuss adaptations of our algorithm to other parallel

models such as the BSP [202], QSM [85], and QRQW [84].

10.2 History

In the parallel context, the MST problem is intimately related to several other problems,

such as computing an arbitrary spanning forest of an undirected graph, and transitive

closure. The earliest MST and connected components algorithms [106, 107, 178, 35]

run in O(log2 n) time on the exclusive write (EW) PRAMs, but were work-ineÆcient on

sparse graphs. Since computing anything non-trivial takes 
(log n) time on the EREW

or CREW PRAMs [130], these algorithms were not that far from optimal.

If a CRCW PRAM is assumed then the MST and connectivity problems become

signi�cantly simpler. Shiloach and Vishkin [181] showed how to compute connected

components in O(log n) time on the CRCW model. Awerbuch and Shiloach [12] then

gave an O(log n)-time, O(m logn)-work MST algorithm; however, they assumed a par-

ticularly strong form of the CRCW model. Using the same model, Cole and Vishkin

[43] developed O(log n)-time algorithms for connectivity and MST, the connectivity

algorithm using O(m�(m;n)) work and the MST algorithm using O(m log log log n)

work. Gazit [83] gave a randomized CRCW connectivity algorithm running in loga-

rithmic time and linear work. This is clearly work-optimal. However, on the CRCW

PRAM the best known lower bounds on the time-complexity of connectivity and MST

are 
(log n= log log n) [130]. Complementing Gazit's CRCW algorithm, Halperin and

Zwick [99, 100] developed an optimal randomized connectivity algorithm for the EREW

PRAM.

Johnson and Metaxes, working within the CREW model, established a number

of useful techniques for solving the connectivity [121] and MST [120] problems. Both

their algorithms run in O(log1:5 n) time, a
p
log n improvement over the straightfor-

ward methods of [106, 107, 178, 35]. Chong and Lam [37] elaborated on the Johnson-

Metaxes approach, obtaining an O(log n log log n)-time connectivity algorithm in the

EREW model. Just a couple years ago Chong, Han, and Lam [36] closed the book

on the deterministic time complexity of MST and connectivity in the EREW PRAM

model. They gave an elegant MST algorithm running in O(log n) time and O(m log n)

work.

After the randomized sequential complexity of MST was shown to be linear [138,

127], a number of parallel linear-work algorithms were developed based on the same

random sampling technique developed by Karger, Klein, and Tarjan [124, 126, 138, 127].
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Karger [125] gave a randomized O(log n)-time O(m+n1+�)-work MST algorithm in the

EREW model, where � > 0 is any constant. Thus, it is work-optimal only for suÆciently

dense graphs. Cole, Klein, and Tarjan [41], working within the CRCW model, gave

a randomized O(log n)-time, linear-work MST algorithm. This was an improvement

over their previous algorithm [40], which ran in linear-work but O(log n � 2log�n) time.
Poon and Ramachandran [172] adapted the algorithm from [40] to the EREW model,

obtaining a randomized O(log n log logn 2log
�n)-time linear-work MST algorithm. Poon

and Ramachandran [175] later observed that their algorithm could be made to run in

O(log n 2log
�n) time using the Chong-Han-Lam algorithm [36] as a subroutine.

In this chapter we improve on the Poon-Ramachandran algorithm [172, 175] by

reducing the time-complexity to O(log n), which is optimal, and improve on the Cole-

Klein-Tarjan algorithm [40, 41] by obtaining the same bounds | logarithmic-time and

linear-work | in the weaker EREW model. Our MST algorithm is the �rst such algo-

rithm provably optimal in both work and time. Our algorithm can also be used to �nd

an arbitrary spanning forest or compute the connected components of an undirected

graph. It is arguably much simpler than the EREW algorithms of Halperin and Zwick

for these problems [99, 100] and more desirable than Gazit's connectivity algorithm [83]

for the stronger CRCW model.

In Section 10.3 we review some basic techniques used in parallel MST and con-

nectivity algorithms. In Section 10.4 we give a high-level description of our algorithm;

its details are addressed in Sections 10.5 and 10.6. In Section 10.7 we prove that our

bounds | logarithmic time and linear work | hold with high probability, and in Sec-

tion 10.8 we describe a simple processor allocation scheme used by our algorithm. It is

general enough to capture many types of recursively de�ned programs. In Section 10.9

we discuss other parallel models. We conclude with some remarks in Section 10.10.

The algorithm of this chapter uses a linear number of random bits. In Chapter 11

we give a parallel, expected linear work MST algorithm using a polylogarithmic number

of random bits. However, its time is suboptimal.

10.3 Techniques

Bor�uvka Steps

The primary operation used in all parallel MST algorithms is the Bor�uvka step4 {

see Section 7.2.3. Parallel connectivity algorithms use a similar step, usually called

hook-and-contract or something equally pedestrian. The idea is very simple. In a con-

nectivity algorithm (resp., MST algorithm) every vertex simultaneously identi�es any

4However, Bor�uvka seems to have been discovered late in the parallel algorithms community. J�aJ�a's
1992 textbook [114] attributes the algorithm to Sollin [183, 18].
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incident edge (the lightest5 incident edge) and contracts it, yielding a graph with at

most half the number of non-isolated vertices. (Thus, after logn such steps all vertices

are isolated.) Clearly this operation preserves the connected components of the graph.

It also preserves the minimum spanning tree in a certain sense. By the cut property of

MSTs (Section 7.2.2) and the de�nition of contractibility (De�nition 5) the MST consists

of the contracted edges plus the MST of the contracted graph.

Growth Control Schedule

A lasting contribution of Johnson and Metaxes's algorithm [120] was the idea of a

growth control schedule. It is very simple to implement Bor�uvka steps in time that is

logarithmic in the length of the maximum degree of the resulting graph, provided this

degree is known a priori. To avoid overall running times of �(log2 n) it is necessary

to restrict the nominal degree of the graph, either by ignoring high-degree vertices or

throwing away edges, if only temporarily. The growth control schedule from [120] used

both these techniques in concert; variations on it were used in all subsequent parallel

MST/connectivity algorithms.

Random Sampling, MST Veri�cation

Karger, Klein, and Tarjan's randomized MST algorithm [127] is based on a simple

sampling lemma. Let an edge e be called H-light if e 2 MST (H [ feg), and H-heavy

otherwise.

Lemma 56 [127] Let G be a graph on n vertices, and H be derived from G by sampling

each edge independently with probability p. Then the expected number of H-light edges

in G is less than n=p.

By the cycle property of MSTs, if e is H-heavy and H is a subgraph of G, then

e 62 MST (G). Similarly, if e is T -light and T = MST (H) then e is H-light as well.

These simple observations are enough to establish the correctness of Karger et al.'s

algorithm [127]; Lemma 56 is only used to bound its expected running time. We give

below a parameterized version of Karger et al.'s algorithm.

KKT(G) : returns the MST of G

1. Perform c Bor�uvka steps; let F be the MST edges

identi�ed and let Gc be the resulting contracted graph.

2. Obtain Gs from Gc by sampling each edge with prob. p.

3. Ts := KKT(Gs)

4. Let Gf be the Ts-light edges of Gc

5Recall from Chapter 7 that edge-weights are assumed to be distinct.

147



5. T := KKT(Gf )

6. Return(F [ T )

Each Bor�uvka step can be easily implemented in linear time, as can the sampling

step in Line 2. Karger et al. �nd the Ts-light edges in Line 4 with a linear-time MST

veri�cation routine [141, 57, 133, 16, 24]. Thus, for �xed c and p, the running time of

KKT basically conforms to the following recurrence relation. (This is a sketch; the

unpredictableness of random sampling must be taken into account.)

R(m;n) = R(pm; n=2c) +R(n=(p2c); n=2c) +O(cm)

Both recursive calls have at most n=2c vertices due to the Bor�uvka steps in Line

1. The �rst recursive call has an expected pm edges, and by Lemma 56, the expected

number of edges in the second recursive call is n=(p2c). Karger et al. [127] show that

for c = p�1 = 2, the expected running time of their algorithm is O(m). However, c

and p need to be chosen very carefully in order to parallelize the KKT algorithm. For

instance, for c = 2 the depth of recursion is 1
2 log n (Line 1 reduces the number of vertices

by a factor of four); thus there are 2log n=2 =
p
n recursive calls, none of which can be

executed concurrently. This can be reduced to n� by setting c = 1=� but that is not

an interesting improvement. The Cole et al. [40] and Poon-Ramachandran [172, 175]

parallel MST algorithms choose c and p based on the depth of recursion, where c and p�1

both increase roughly exponentially as the depth increases. As the sampling probability

decreases with the depth, we expect to see fewer edges passed to Line 3 recursive calls,

which allows us to perform more Bor�uvka steps in Line 1. More Bor�uvka steps in Line

1 reduce the number of vertices in the graph, which, by Lemma 56 reduces the number

of edges in Line 5 recursive calls, letting us perform even more Bor�uvka steps, and so

on. There are 2log
�n recursive calls, each requiring O(log n)-time, which leads to the

unsightly O(logn � 2log�n) running times of [40, 172, 175]. The revised Cole et al. [41]

algorithm used the same method { 2log
�n recursive calls { but with the weaker objective

of contracting only part of the MST; they were then able to reduce the time of each

recursive call to o(log n=2log
�n). In a second phase, Cole et al. give an O(log n)-time

method to �nd the rest of the MST, provided the number of vertices is suÆciently small,

in their case n= log log log n.

10.4 The High-Level Algorithm

Our algorithm is divided into two phases along the lines of the CRCW PRAM algorithm

in [41]. The objective of Phase 1 is to reduce the number of vertices in the graph by a

factor of k0 = (log(2) n)2, by contracting a large set of MST edges, in particular a k0-min
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forest| see Section 10.5 for de�nitions. Phase 1 is structured much like Cole et al.'s [41]

parallelization of Karger et al.'s [127] randomized sequential MST algorithm. We use

the now familiar recursion-tree of 2log
�n recursive calls introduced in [40]. The primary

challenge in Phase 1 is reducing the expected time per recursive call to something

O(log n=2log
�n). In Phase 2 we use the same sampling approach of Karger et al. to �nd

the rest of the MST (any MST edges not contracted in Phase 1). With high probability,

Phase 2 runs in O(log n) time and linear work, provided that the number of vertices is

at most n=k0. The high-level algorithm is given in Figure 10.1.

High-Level(G)
(Phase 1) Gt := For all v 2 G, retain the lightest k0 edges in edge-list(v)

F := Find-k-min(Gt; log
� n)

Let Gc be G after contracting edges in F

(Phase 2) Gs:=Sample edges of Gc with prob. 1=
p
k0 = 1= log(2) n

Ts :=Find-MST(Gs)
Gf := Filter(Gs; Fs)
T :=Find-MST(Gf)
Return(F [ T )

Figure 10.1: A randomized time-work optimal parallel MST algorithm, at a high-level.

Theorem 16 Using m= log n EREW processors, High-Level(G) returns the MST of G

in O(logn) time, with probability 1� n�!(1).

In Section 10.5 we describe our Phase 1 algorithm, which produces a k-min forest.

In Section 10.6 we give the Phase 2 algorithm and a proof of Theorem 16. In analyzing

our algorithm we assume perfect processor allocation: that N jobs can be fairly divided

among P processors with zero overhead. In Section 10.8 we consider our processor

allocation problem in a more abstract setting. Out scheme is an improvement over

[100], which is terribly complicated, and [99], which uses superlinear space.

10.5 Phase 1

Phase 1 reduces the number of graph vertices by �nding and contracting a k-min forest,

for k = k0, de�ned below. Our Find-k-min algorithm is analagous to one of Cole et al.

[40] but is considerably simpler. It is based on two procedures, Bor�uvka-A and k-Min-

Filter. Bor�uvka-A executes batches of Bor�uvka steps very eÆciently, while guaranteeing

that the length of edge-lists remain relatively small. The k-Min-Filter procedure is a
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modi�ed MST veri�cation routine [134] designed to identify k-min-heavy edges (rather

than H-heavy edges as in Karger et al.'s algorithm [127]) which cannot be in any k-min

forest.

10.5.1 The k-Min Forest

We de�ne the k-min tree of a, or k-min(a), to be the �rst k edges selected by the

Dijkstra-Jarn��k-Prim (DJP) algorithm, when starting at vertex a. Refer to Section

7.2.3 for a description of the DJP algorithm. Although we assumed the original graph

is connected, graphs derived by sampling may not be. Therefore, if a is in a connected

component with k or fewer vertices, k-min(v) consists of the MST of a's component. We

call F a k-min forest of G if F �MST (G) and k-min(a) � F for all a. In a connected

graph, contracting a k-min forest clearly reduces the number of vertices by a factor of

at least k + 1.

Let F be an arbitrary forest. We de�ne PF (a; b) to be the path from a to b

in F (if it exists) and de�ne maxweightfAg to be the maximum edge-weight among

edges in A, and 1 if A = ;. Using this notation, an edge (a; b) would be F -light if if

w(a; b) � maxweight(PF (a; b)). We generalize the notion of F -lightness to k-min forests.

Call an edge e k-min-light w.r.t. F if F is not a k-min forest of F [ feg. We will use

an equivalent de�nition of k-min-lightness more suited to proofs. Below, the k-min tree

notation is with respect to some graph F known from context. De�ne wk
a(b) to be:

wk
a(b)

def
=

(
wM (a; b) if b 2M

def
= k-min(a)

maxweight(M) otherwise

An edge (a; b) is k-min-light if either of the following hold:

w(a; b) � maxfwk
a(b); w

k
b (a)g

k � minfjk-min(a)j; jk-min(b)jg
In either case, (a; b) would be picked by the DJP algorithm in the �rst k steps,

when starting from a or b. If an edge is not k-min-light then it is k-min-heavy.

Claim 2 If an edge (a; b) is k1-Min-heavy w.r.t. G1, it is also k2-Min-heavy w.r.t. G2

where k2 � k1, V (G1) = V (G2) and E(G1) � E(G2).

Proof: This follows from two observations: wk
a(b) is non-decreasing in k, and wk

a(b) is

non-increasing as new edges are added to the underlying graph.

2

In other words, whenever an edge is found to be k-Min-heavy for k � k0 and w.r.t.

some subset of the original graph, this is a certi�cate that the edge is k0-Min-heavy in

the original graph.
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Claim 3 Let `k-min tree' be de�ned w.r.t. H, and let T =MST (H). Then for any k,

wk
a(b) � maxweightfPT (a; b)g.

Proof: There are two cases, when b falls inside the k-Min tree of a, and when it

falls outside. If b lies inside k-Min(a), then wk
a(b) = maxweightfPT (a; b)g since k-

min(a) � MST (H). Now suppose, for the purpose of obtaining a contradiction, that

b falls outside k-Min(a) and wk
a(b) > maxweightfPT (a; b)g. In other words, there is a

path from a to b in T consisting of edges lighter than maxweight(k-Min(a)). However,

at each step in the DJP algorithm, at least one edge in PT (a; b) is eligible to be chosen

in that step. Since b 62 k-Min(a), the edge with weight maxweightfk-Min(a)g is never

chosen, a contradiction.

2

Lemma 57 Let H be a graph formed by sampling each edge in graph G with probability

p. The expected number of edges in G that are k-Min-light w.r.t. H, for any k, is less

than n=p.

Proof: We show that any edge in G that is k-Min-light w.r.t. H is also H-light. The

lemma then follows directly from Lemma 56, the sampling lemma of Karger et al.

If (a; b) is k-min-light because k � minfjk-min(a)j; jk-min(b)jg then it connects

two connected components of H and is therefore H-light as well. Now suppose (a; b) is k-

min-light because w(a; b) � maxfwk
a(b); w

k
b (a)g. By Claim 3, wk

a(b) � maxweight(PT (a; b)),

and therefore w(a; b) � maxweight(PT (a; b)), which is the de�nition of (a; b) being H-

light.

2

The procedure Find-k-min(G; d) takes as input a graph G and a suitable positive

integer d, and returns a k0-Min forest of G. The d argument relates to the depth of

recursion, and is used to adjust certain parameters based on this depth. If d = log�n

on the initial call to Find-k-min, it runs in logarithmic time and linear work with high

probability.

Since Phase 1 is concerned only with the k0-Min tree of each vertex, it suÆces

to retain only the lightest k0 edges incident on each vertex. Hence as stated in the

�rst step of Phase 1 in algorithm High-Level from Section 10.4, we will discard all but

the lightest k0 edges incident on each vertex. They will be reconsidered in Phase 2.

This step can be performed in logarithmic time and linear work by a simple randomized

selection algorithm.

10.5.2 Bor�uvka-A Steps

In a basic Bor�uvka step [21], each vertex chooses its minimum weight incident edge,

inducing a number of trees. We contract all such trees into single vertices and discard
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any self-loops.

Our algorithm for Phase 1 uses a modi�ed Bor�uvka step in order to reduce the

time bound to o(log n) per step. All vertices are classi�ed as being either live or dead.

Only live vertices participate in modi�ed Bor�uvka steps, and a vertex is designated dead

only when we are sure its k0-min tree has been found. After a modi�ed Bor�uvka step,

if (a; b) is the least weight edge incident on a then the parent pointer of a, p(a), is set

to b. This induces a number of rooted trees. (A Bor�uvka step actually induces trees

with two roots, each the other's parent. We assume that only one root is retained.) In

addition, each vertex has a threshold which keeps the weight of the lightest discarded

edge incident to a. The algorithm discards edges known not to be in the k0-Min tree

of any vertex. The threshold variable guards against vertices choosing edges which may

not be in the MST.

The following three claims refer to any tree resulting from a (modi�ed) Bor�uvka

step. Their proofs are straightforward and are omitted.

Claim 4 The sequence of edge weights encountered on a path from a to root(a) is

monotonically decreasing.

Claim 5 If depth(a) = d then d-Min(a) consists of the edges in the path from a to

root(a). Furthermore, the weight of (a; p(a)) is greater than any other edge in d-Min(v).

Claim 6 If the minimum-weight incident edge of a is (a; b), k-Min(a) � k-Min(b) [
f(a; b)g.

Claim 7 may not be as obvious. A similar claim was proved in [36].

Claim 7 Let T be a tree induced by a Bor�uvka step, and let T 0 be a subtree of T . If e

is the minimum weight incident edge on T , then the minimum weight incident edge on

T 0 is either e or an edge of T .

Proof: Suppose, on the contrary that the minimum weight incident edge on T 0 is e0 62 T ,

and let v and v0 be the end points of e and e0 which are inside T . Consider the paths

P (P 0) from v (v0) to the root of T . By Claim 4, the edge weights encountered on P

and P 0 are monotonically decreasing. There are two cases. If T 0 contains some, but not

all of P 0, then e0 must lie along P 0, a contradiction. If T 0 contains all of P 0, but only

some of P , then some edge e00 2 P is adjacent to T 0. Then w(e0) < w(e00) < w(e), also

a contradiction.

2

The procedure Bor�uvka-A(H; l; F ), given in Figure 10.2, returns a contracted

version of H with the number of live vertices reduced by a factor of l. All contracted

edges, which are guaranteed to be in MST (H), are returned in the set F .
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Bor�uvka-A(H; l; F )
F := ;
Repeat log l times: (log l modi�ed Bor�uvka steps)

F 0 := ;
For each live vertex a

Choose min. weight edge (a; b)
If w(a; b) > threshold(a)

(1) mark a as dead; else
Else

p(a) := b
F 0 := F 0 + (a;p(a))

Each tree T induced by parent pointers is one of two types:
If root of T is dead, then

(2) Mark all vertices in T as dead (Claim 6)
If T contains only live vertices,

(3) For each a 2 T at depth � k0, mark a dead (Claim 5)
Contract the subtree of T made up of live vertices.
The resulting vertex is live, has no parent pointer, and
keeps the smallest threshold of its constituent vertices.

F := F + F 0

Figure 10.2: The Bor�uvka-A procedure.

Lemma 58 If Bor�uvka-A designates a vertex as dead, its k0-Min tree has already been

found.

Proof: Vertices make the transition from live to dead only at the lines indicated by a

number. By our assumption that we only discard edges that cannot be in the k0-Min

tree of any vertex, if the lightest edge adjacent to any vertex has been discarded, we

know its k0-Min tree has already been found. This covers line (1). The correctness

of line (2) follows from Claim 6. Since (a; p(a)) is the lightest incident edge on a, k0-

Min(a) � k0-Min(p(a))[f(a; p(a))g. Thus, if the root of T is dead, all vertices at depth

one are dead, implying those at depth two are dead, and so on. The validity of line (3)

follows directly from Claim 5. If a vertex �nds itself at depth � k0, its k0-Min tree lies

along the path from the vertex to its root.

2

Lemma 59 After a call to Bor�uvka-A(H; k0 + 1; F ), the k0-Min tree of each vertex is

a subset of F .
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Proof: By Lemma 58, dead vertices already satisfy the lemma. After a single modi�ed

Bor�uvka step, the set of parent pointers associated with live vertices induce a number

of trees. Let T (a) be the tree containing a. We assume inductively that after dlog ie
modi�ed Bor�uvka steps, the (i�1)-Min tree of each vertex in the original graph has been

found (this is clearly true for i = 1). For any live vertex a let (x; y) be the minimum

weight edge s.t. x 2 T (a); y 62 T (a). By the inductive hypothesis, the (i�1)-Min trees of

a and y are subsets of T (a) and T (y) respectively. By Claim 7, (x; y) is the �rst external

edge of T (a) chosen by the DJP algorithm, starting at a. As every edge in (i�1)-Min(y)

is lighter than (x; y), (2(i � 1) + 1)-Min(a) is a subset of T (a) [ f(x; y)g [ T (y). Since

edge (x; y) is chosen in the (dlog ie + 1)th modi�ed Bor�uvka step, (2i � 1)-Min(a) is a

subset of T (a) after dlog ie+1 = dlog 2ie modi�ed Bor�uvkasteps. Thus after log(k0+1)

steps, the k0-Min tree of each vertex has been found.

2

Lemma 60 After b modi�ed Bor�uvka steps, the length of any edge-list is bounded by

k0
k0

b

.

Proof: This is true for b = 0. Assuming the lemma holds for b � 1 modi�ed Bor�uvka

steps, the length of any edge-list after that many steps is � k0
k0

b�1

. Since we only

contract trees of height < k0, the length of any edge-list after b steps is less than

(k0
k0

b�1

)k0 = k0
k0

b

.

2

It is shown in the next section that our algorithm only deals with graphs that are

the result of O(log k0) modi�ed Bor�uvka steps. Hence the maximum length edge-list is

k0
k0

O(log k0) .

The costliest step in Bor�uvka-A is calculating the depth of each vertex. After

parent pointers are chosen (min weight incident edges), the root of each induced tree

will broadcast its depth to all depth 1 vertices, which in turn broadcast to depth 2

vertices, etc. Once a vertex knows it is at depth k0 � 1, it may stop, letting all its

descendents infer that they are at depth � k0.

Lemma 61 Let G1 have m1 edges. Then a call to Bor�uvka-A(G1; l; F ) can be executed

in time O(k0
O(log k0) + log l � log n � (m1=m)) with m= log n processors.

Proof: Let G1 be the result of b modi�ed Bor�uvka steps. By Lemma 60, the maximum

degree of any vertex after the ith modi�ed Bor�uvka step in the current call to Bor�uvka-A

is k0
k0

b+i

. Let us now look at the required time of the ith modi�ed Bor�uvka step.

Selecting the minimum cost incident edge takes time O(log k0
k0

b+i

), while the time

to determine the depth of each vertex is O(k0 � log k0k0b+i). Summing over the log l
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modi�ed Bor�uvka steps, the total time is bounded by
Plog l

i k0
O(b+i) = k0

O(b+log l). As

noted above, the algorithm performs O(log k0) modi�ed Bor�uvka steps on any graph,

hence the time is k0
O(log k0).

The work performed in each modi�ed Bor�uvka step is linear in the number of

edges. Summing over log l such steps and dividing by the number of processors, we

arrive at the second term in the stated running time.

2

10.5.3 Filtering Edges via The Filter Forest

We will maintain, concurrent with the operation of Bor�uvka-A, a structure called the

Filter forest. This collection of rooted trees records which vertices merged together and

the edge weights involved. (This structure appeared �rst in [133].) If v is a vertex of

the original graph, or a new vertex resulting from contracting a set of edges, there is

a corresponding vertex �(v) in the Filter forest. During a Bor�uvka step, if a vertex

v becomes dead, a new vertex x is added to the Filter forest, as well as a directed

edge (�(v); x) having the same weight as (v; p(v)). If live vertices v1; v2; : : : ; vj are

contracted into a live vertex v, a vertex �(v) is added to the Filter forest in addition

to edges (�(v1); �(v)); (�(v2); �(v)); : : : ; (�(vj); �(v)), having the same edge-weights as

(v1;p(v1)); (v2;p(v2)); : : : ; (vj ;p(vj)), respectively. We make the simple observation that

the edge weights on the path from �(u) to root(�(u)) are exactly the weights of those

edges chosen by u (or its representative) in previous Bor�uvka steps.

It is shown in [133] that the heaviest weight in the path from u to v in the MST

is the same as the heaviest weight in the path from �(u) to �(v) in the Filter forest (if

there is such a path). We extend this scheme to handle k-Min-lightness.

Let P�(u; v) be the path from u to v in the Filter forest, if it exists. De�ne w�(u; v)

as:

w�(u; v)
def
=

8>>>>><
>>>>>:

maxweightfP�(�(u); �(v))g if �(u); �(v) in same �lter tree

maxf otherwise

maxweightfP�(�(u); root(�(u)))g
maxweightfP�(�(v); root(�(v)))g
g

The value w�(u; v) represents our best lower bound on maxweightfPMST (u; v)g,
given the information contained in the �lter forest. The w� values are used by the

procedure k-Min-Filter (called from Find-k-min, Section 10.5.1) to remove, or �lter

edges known not to be in the k-min tree of any vertex. In a call to k-Min-Filter(H;F ),

where F is a forest of H derived by some number of modi�ed Bor�uvka steps, each edge e

of H is examined and possibly �ltered. If either endpoint of e is in a tree in F with fewer

than k0 edges then e is trivially k0-min-light and is retained. Otherwise, e is �ltered
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precisely when w(e) < w�(e). We show below that all k0-min-light edges are retained

and that not too many edges are kept in total.

To implement the k-Min-Filter procedure we use a slight modi�cation to the

O(log n) time, O(m) work MST veri�cation algorithm of [134]. If e = (u; v) is the

edge being tested and �(u); �(v) are not in the same Filter tree, we test the pairs

(�(u); root(�(u)) and (�(v); root(�(v)) instead and delete e if both of these pairs are

identi�ed to be deleted. A �ner analysis of the [134] algorithm actually shows that it

runs in O(log r) time, where r is the size of the largest �lter tree.

Lemmas 62 and 63, proved below, establish the correctness of the �ltering proce-

dure.

Lemma 62 Suppose b modi�ed Bor�uvka steps were applied to a graph, then for any

vertex u and some k � minfk0; 2b � 1g,

maxweightfP�(�(u); root(�(u)))g = maxweightfk-Min(u)g

Before proving this we �rst prove a necessary technical lemma.

Lemma 63 Let T be a tree of MST edges after an arbitrary number of Bor�uvka steps

and let T 0 = T [ f(v; w)g, where (v; w), v 2 T , w 62 T is the edge chosen by T in the

next Bor�uvka step. For any u 2 T , the maximum weight edge in PT 0(u;w) was chosen

by the tree containing u in some Bor�uvka step.

Proof: Let T be formed after b Bor�uvka steps. Suppose, without loss of generality, that

the lemma is falsi�ed for the �rst time after the bth Bor�uvka step. That is, the heaviest

edge in PT 0(u;w), say f , was chosen in the bth step. Let g 6= f be the edge chosen by

u or u's representative tree in this step. If f lies between g and the root of T then by

Claim 4 it is lighter than g, and similarly, if it lies between vertex v and the root of T

then it is lighter than (v; w). Both cases are contradictions.

2

We are now ready to prove Lemma 62.

Proof: Let e(u; b) be the maximum weight edge chosen by u's tree in the �rst b Bor�uvka

steps. Assume inductively that w(e(u; b � 1)) = maxweightfk(u; b � 1)-Min(u)g where

k(u; b � 1) � 2b�1 � 1 if u is live, k(u; �) � k0 if u is dead, and k(u; b � 1)-Min(u) is

contained in a tree of MST edges after b�1 Bor�uvkasteps. If u is dead it already satis�es
the inductive claim for b Bor�uvka steps, so assume u is alive. Let (z1; z2) be the edge

chosen by the tree containing u in the bth Bor�uvka step and let P be the MST path

connecting k(u; b�1)-Min(u) to z1 | see Figure 10.3 for a schematic diagram. We have

that w(z1; z2) > w(e(z2; b�1)), because (z1; z2) was not already chosen by z2 in the �rst

b� 1 steps, and maxweightfe(u; b� 1)+P +(z1; z2)) = w(e(u; b)g. This is true because
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w(e(u; b)) = maxweightfe(u; b� 1); (z1; z2)g > maxweightfPg, where the equality is by
de�nition and the inequality by Lemma 63. Let D be the subgraph

D = k(u; b � 1)-Min(u) + P + (z1; z2) + k(z2; b� 1)-Min(z2)

and k(u; b) be the smallest number such that k(u; b)-Min(u) � D. It follows that e(u; b)

is the heaviest edge in k(u; b)-Min(u) because when the DJP algorithm is started from

u, until all edges from D are chosen there is some eligible edge from D weighing no more

than the edge e(u; b).

P

u z z1 2

k(u,b−1)−Min(u) k(z  , b−1)−Min(z  )22

Figure 10.3: The larger ovals represent the trees of MST edges after b�1 Bor�uvka steps
containing u and z2, resp. The smaller ovals are the k(u; b � 1)-Min(u) tree and the
k(z2; b� 1)-Min(z2) tree.

If u and z2 remain live then k(u; b) � 2 � (2b�1 � 1) + 1 � 2b � 1. On the other

hand, if u becomes dead after the bth Bor�uvka step then (z1; z2) is the heaviest edge at

the end of a chain C of length at least k0 and k(u; b) � 2b�1 � 1 + jCj � k0. In either

case our inductive claim is proved for b Bor�uvka steps.

2

Lemma 64 Suppose the k-Min-Filter procedure is only called on graphs after perform-

ing at least log(k0 + 1) Bor�uvka steps. Then no k0-Min-light edges are �ltered, and all

un�ltered edges are k-Min-light for some k � k0.

Proof: Consider an edge (u; v) examined by the k-Min-Filter procedure that is not

trivially k0-min-light. Note that if �(u) is in the same �lter tree as �(v), by King's ob-

servation [133], w�(u; v) = maxweightfPMST (u; v)g. Therefore, by Claim 2, if w(u; v) >

w�(u; v) then (u; v) is k0-Min-heavy and may be safely �ltered. On the other hand, if

w(u; v) is less than w�(u; v), then (u; v) is k-Min-light for k = n� 1. We therefore focus

on the case when �(u) and �(v) are in di�erent �lter trees. By Lemma 62, for some

k1; k2 we have that:

maxweightfP�(�(u); root(�(u)))g = maxweightfk1-Min(u)g
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maxweightfP�(�(v); root(�(v)))g = maxweightfk2-Min(v)g
Thus w�(u; v) = maxweightfk1-Min(u) [ k2-Min(v)g Since maxweightfk-Min(u)g

is a non-decreasing function of k, if (u; v) is not �ltered out then by Claim 2 it must be k3-

Min-light where k3 = maxfk1; k2g. On the other hand, if (u; v) is �ltered out then it must
be k4-Min-heavy where k4 = minfk1; k2g. Because the k-Min-Filter procedure is applied

only after performing at least log(k0 + 1) Bor�uvka steps, by Lemma 62 k3; k4 � k0.

2

Remark. k-Min-Filter is responsible for updating the threshold variables { see

Section 10.5.2. When an edge (u; v) is discarded, threshold(u) is updated to reect the

weight of the lightest discarded edge incident to u; threshold(v) is updated similarly.

10.5.4 Finding a k-Min Forest

We are now ready to present the main procedure of Phase 1, Find-k-min, which is

given in Figure 10.4. (Recall that the initial call { given in Section 10.4 { is Find-

k-min(Gt; log
� n), where Gt is the graph obtained from G by removing all but the k0

lightest edges on each adjacency list.)

Find-k-Min(H; i)
Hc := Bor�uvka-A(H; (log(i�1) n)4; F )
if i = 3, return(F )
Hs := sample edges of Hc with prob. 1=(log(i�1) n)2

Fs := Find-k-min(Hs; i� 1)
Hf := k-Min-Filter(Hc; Fs)
F 0 := Find-k-min(Hf ; i� 1)
Return(F + F 0)

Figure 10.4: The Find-k-min procedure.

H is a graph with some vertices possibly marked as dead; i is a parameter that

indicates the level of recursion (which determines the number of Bor�uvka steps to be

performed and the sampling probability). Lemmas 65 and 66 establish the correctness

of this procedure. The performance of Find-k-Min is analyzed in Section 10.5.5.

Lemma 65 Let H 0 be a graph formed by sampling each edge in H with probability p,

and F be a k0-Min forest of H 0 (derived from at least log(k0+1) Bor�uvka steps). The call

to k-Min-Filter(H;F ) returns a graph containing a k0-Min forest of H, whose expected

number of edges is no more than n=p.
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Proof: By Claim 2 any edge in the k0-Min forest of H is k0-Min-light w.r.t. H 0. By

Lemma 64, no edges k0-Min-light w.r.t. H 0 are �ltered; this establishes the �rst part

of the lemma. By the second part of Lemma 64, all edges not �ltered are k-Min-light

w.r.t. H 0, for some k. According to Lemma 57 the expected number of edges in H that

are k-Min-light w.r.t. H 0, for any k, is no more than n=p. This establishes the rest of

the lemma.

2

Lemma 66 The call Find-k-min(Gt; log
� n) returns a set of edges that includes the

k0-Min tree of each vertex in Gt.

Proof: The proof is by induction on i. For i = 3 (the base case) Find-k-min(H; 3)

returns F , which by Lemma 59 contains the k0-min tree of each vertex. Now assume

inductively that Find-k-min(H; i� 1) returns the k0-min tree of H. Consider the call

Find-k-min(H; i). By the induction assumption the call to Find-k-min(Hs; i�1) returns

the k0-min tree of each vertex in Hs. By Lemma 65 the call to k-Min-Filter(Hc; Fs)

returns in Hf a set of edges that contains the k0-Min trees of all vertices in Hc. Finally,

by the inductive assumption, the set of edges returned by the call to Find-k-min(Hf ; i�1)
contains the k0-Min trees of all vertices in Hf . Since F 0 contains the (log(i�1) n)-Min

tree of each vertex in H, and Find-k-min(H; i) returns F + F 0, it returns the edges in

the k0-Min tree of each vertex in H.

2

10.5.5 Performance of Find-k-min

In this section we bound the time and work required by the Find-k-min procedure.

Claim 8 The following invariants are maintained at each call to Find-k-min. The

number of live vertices in H � n=(log(i) n)4, and the expected number of edges in H �
m=(log(i) n)2, where m and n are the number of edges and vertices in the original graph.

Proof: These hold for the initial call, when i = log� n. By Lemma 59, the contracted

graph Hc has � n=(log(i�1) n)4 live vertices. Since Hs is derived by sampling edges with

probability 1=(log(i�1) n)2, the expected number of edges in Hs is � m=(log(i�1) n)2,

maintaining the invariants for the �rst recursive call.

By Lemma 57, the expected number of edges in Hf � n(log(i�1) n)2

(log(i�1) n)4
= n

(log(i�1) n)2
.

Since Hf has the same number of vertices as Hc, both invariants are maintained for the

second recursive call.

2

Lemma 67 Find-k-min(Gt; log
� n) runs in expected O(log n) time and O(m) work.

159



Proof: Since recursive calls to Find-k-min proceed in a sequential fashion, the total

running time is the sum of the local computation performed in each invocation. Aside

from randomly sampling the graph the local computation consists of calls to k-Min-Filter

and Bor�uvka-A.

In a given invocation of Find-k-min, the number of Bor�uvka steps performed on

graph H is the sum of all Bor�uvka steps performed in all ancestral invocations of Find-

k-min, i.e.
Plog�n

i=3 O(log(i) n), which is O(log(3) n). From our bound on the maximum

length of edge lists (Lemma 60), we can infer that the size of any tree in the �lter forest

is k0
k0

O(log(3) n)

. Thus the time needed for each modi�ed Bor�uvka step and each call to

k-Min-Filter is k0
O(log(3) n). Summing up, the total time required is o(log n).

The work required by the k-Min-Filter procedure and each Bor�uvka step is linear

in the number of edges. By Claim 8 the expected number of edges in an invocation

at level i is O(m=(log(i) n)2). Since there are O(log(i) n) Bor�uvka steps performed in

this invocation, the work required is O(m= log(i) n). There are 2log
� n�i invocations with

depth parameter i, therefore the total work is given by
Plog� n

i=3 2log
� n�iO(m= log(i) n),

which is O(m).

2

10.6 Phase 2

Recall the Phase 2 portion of our overall algorithm High-Level:

(the number of vertices in Gs is � n=k0)

Gs :=Sample edges of G
0 with prob. 1=

p
k0 = 1= log(2) n

Fs :=Find-MST(Gs)

Gf := Filter(G0; Fs)

F := Find-MST(Gf)

The procedure Filter(G;F ) returns the F -light edges of G; it runs in logarithmic

time and linear work [134]. The procedure Find-MST(G1), described below, �nds the

MST of G1 in O(m1
m logn log(2) n) time, where m1 is the number of edges in G1.

The graphs Gs and Gf each have expected m=
p
k0 = m= log(2) n edges since Gs is

derived by sampling each edge with probability 1=
p
k0, and by Lemma 56, the expected

number of edges in Gf is (m=k0)=(1=
p
k0) = m=

p
k0. Because we call Find-MST on

graphs having expected size O(m= log(2) n), each call takes O(logn) time.

10.6.1 The Find-MST Procedure

The procedure Find-MST(H), given in Figure 10.5, is similar to previous randomized

parallel algorithms except it uses no recursion. In place of recursive calls we use a special
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base case algorithm. We also use slightly di�erent Bor�uvka steps in order to reduce the

work.

As its Base-case, we use the simplest version of the algorithm of Chong et al.

[36], which takes time O(log n) using m log n processors. By guaranteeing that it is only

called on graphs of expected size O(m= log2 n), the running time remains O(log n) with

m= log n processors.

Find-MST(H)
Hc := Bor�uvka-B(H; log4 n; F )
Hs := Sample edges of Hc with prob. p = 1= log2 n
Fs := BaseCase(Hs)
Hf := Filter(Hc; Fs)
F 0 := BaseCase(Hf )
Return(F + F 0)

Figure 10.5: The Find-MST procedure.

After the call to Bor�uvka-B, the graph Hc has < m= log4 n vertices. Since Hs is

derived by sampling the edges of Hc with probability 1= log2 n, the expected number of

edges to the �rst BaseCase call is O(m= log2 n). By the sampling lemma of [127], the

expected number of edges to the second BaseCase call is < (m= log4 n)=(1= log2 n), thus

the total time spent in these subcalls is O(log n). Assuming the size of H conforms to

its expectation of O(m= log(2) n), the calls to Filter and Bor�uvka-B also take O(log n)

time, as described below.

The Bor�uvka-B(H; l; F ) procedure, Figure 10.6, returns a contracted version of H

with O(m=l) vertices. It uses a simple growth control schedule, designating vertices as

inactive if their degree exceeds l. We can determine if a vertex is inactive by performing

list ranking on its edge list for log l time steps. If the computation has not stopped after

this much time, then its edge list has length > l.

The last step takes O(log n) time; all other steps take O(log l) time, as they deal

with edge lists of length at most l. Consequently, the total running time is O(log n +

log2 l). For each iteration of the main loop, the work is linear in the number of edges.

Assuming the graph conforms to its expected size of O(m= log(2) n), the total work is

linear.

Remark. Bor�uvka-B is essentially one phase of the Johnson-Metaxas algorithm [120].

They introduced the edge-plugging technique, as well as the idea of a growth control

schedule.
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Bor�uvka-B(G; l; F )
Repeat log l times

For each vertex, let it be inactive if its edge list
has more than l edges, and active otherwise.
For each active vertex v

Choose min. weight incident edge e
F := F + e

Using the edge-plugging technique, build a
single edge list for each induced tree (O(1) time)

Contract all trees of inactive vertices

Figure 10.6: The Bor�uvka-B procedure.

10.7 Proof of Theorem 16

Correctness

Consider the set of edges F returned by Find-k-Min. F is a k-Min forest and by

de�nition a subset of the MST of G. By contracting the edges of F to produce Gc,

we have MST (G) = F [ MST (Gc). The call to Filter in Phase 2 returns a graph Gf

derived from Gc by removing edges known not to be in the MST of Gc, thusMST (Gc) =

MST (Gf ). Assuming the correctness of Find-MST, it returns the MST T of Gf ; thus,

T + F = MST (G). The correctness of Find-MST is established by a nearly identical

argument, and relies on the correctness of our BaseCase algorithm [36].

High Probability Bounds

We have already proved that each step of our algorithm runs in logarithmic time as-

suming (a) we have a constant-time perfect processor allocation procedure, and (b) that

the sizes of all graphs encountered by the algorithm are roughly as large as expected.

We address (b) below. In particular we give an upper bound on the size of every graph

examined by our algorithm, that holds with probability 1� exp(�
(m=log2n)). This is

signi�cantly better than the n�!(1) failure probability claimed in Theorem 16. It turns

out that the bottleneck, in terms of failure probability, is the randomized processor

allocation procedure we use, given in Section 10.8.

Phase 1: Consider a single invocation Find-k-min(H; i), whereH hasm0 edges and

n0 vertices. We bound the size of the two graphs passed to recursive calls of Find-k-min in

terms of m0 and i. For the �rst recursive call, the edges of H are sampled independently

with probability pi = 1=(log(i�1) n)2, which depends on the recursion depth log�n � i.
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Call the sampled graph H1. By applying a Cherno� bound [10], the probability that

the size of H1 is less than twice its expectation of pim
0 is 1� exp(�
(pim0)).

Turning to the second recursive call, let F = MST (H1). The sampling lemma

from [127] states that the number of F -light edges of H is dominated by the negative

binomial distribution with parameters n0 and pi. As we saw in the proof of Lemma 57,

every k-Min-light edge must also be F -light. Using this observation, we will analyze the

size of the second recursive call in terms of F -light edges, and conclude that any bounds

we attain apply equally to k-Min-light edges. The probability of at least r F -light edges

is at most the probability of fewer than n0 \heads" in a sequence of r coin ips, with

probability pi of heads (see [127]). By applying a Cherno� bound, this is exp(�
(r))
for r � 2n0=pi. In this particular instance of Find-k-min, n0 � p2im, so the probability

that fewer than 2pim edges are F -light is 1� exp(�
(pim)).

Given a single invocation of Find-k-min(H; i), we can bound the probability that

H has more than 2log
� n�i pi+1m edges by exp(�
(pi+1m). This follows from applying

the argument used above to each invocation of Find-k-min from the initial call to the

current call at depth log� n � i. Summing over all recursive calls to Find-k-min, the

total number of edges in all graphs (and thus the total work) is bounded by:

log� nX
i=3

22 log
� n�2i pi+1m = O(m)

with probability 1 � exp(�
(p4m) = 1 � exp(�
(m=(log log logn)2)). Using a

nearly identical argument, one can show the probability that Phase 2 uses O(m) work

is 1� exp(�
(m= log2 n)).

10.8 Processor Allocation

Halperin and Zwick [99] give a processor allocation algorithm well-suited to our algo-

rithm; however, one drawback is that it uses superlinear space. In [100] they claim

a linear-space allocation procedure; however, it is not given a clear description, and

more seriously, it makes heavy use of a non-trivial linked-list based sorting algorithm of

Goodrich and Kosaraju [93]. In this Section, we give a simple, self-contained processor

allocation scheme that occupies linear space and does not use any sorting procedure. It

works on a variety of \tree-structured" computations.

Let M be a set of m processes which perform some computation. So long as the

computation is tree structured, in the sense given below, its exact nature is unimportant.

At any point in the computation there is a set D � M of dead processes and a stack

S = (S0; S1; : : : ; Sd) where S0 =M and Sj+1 � Sj. In the i
th round of computation, the

stack is potentially changed (with a push or pop) and some set Ri �M of the processes

compute for ti time steps. Round i follows these steps:
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1. Either a) S is unchanged, Ri := Sd �D

or b) S := (S0; : : : ; Sd; Sd+1); Sd+1 � Sd; Ri := Sd+1 �D

or c) S := (S0; : : : ; Sd�1); Ri := Sd�1 �D

2. The Ri do something for ti � 1 steps

3. D := D + fsome subset of Rig

This is a rather technical characterization of a class of algorithms. Informally, any

recursive algorithm �ts into this scheme if the active processes in one recursive call are

a subset of those inherited from its parent call.

Let p � m be the number of EREW processors available. Ideally we would like

to simulate round i in O(dRi=pe) time (i.e. with zero overhead). Like [99] our overhead

is non-constant but usually negligible.

Theorem 17 For some tree computation, let r be the total number of rounds, T =
P

i ti
be the total time for all rounds, W =

P
i ti � jRij be the total work for all rounds, dmax

be the maximum depth of the stack, and q = 
(log(mr)) be a parameter. Then with

probability 1 � e�
(q) the computation of m processes can be simulated with p EREW

processors in O(T+W=p+r log q+log p) time. The space required is O(m+p�dmax). It is

assumed there is some (easily computable) bound ri such that ri � jRij and ri = O(jRij).

In our MST algorithm the number of rounds r = O(2log
�nk0 log k0) = O((log log n)3),

the time T = O(log n), work W = O(m), and dmax = O((log logn)3). Plugging these

values into Theorem 17, our MST algorithm can be simulated in O(m=p + log n +

log q(log log n)3) time with probability at least 1�e�
(q), using spaceO(m+p(log logn)3).

Since p < m= log n the space is linear in m. We could set q = �(log(mr)) = �(log n)

and achieve a polynomially small error probability, or set q as high as 2log n=(log log n)
3
for

an error probability of n�!(1), as promised in Theorem 16. Also, the \dead processes"

in Theorem 17 correspond to those edges known to be k0-Min-heavy (in Phase 1) or not

in the MST at all (in Phase 2).

As in [99] we organize the processes into blocks of size b = qm=p, (q processors per

block,) as follows. We imagine placing the processes deterministically into an m=b � b

array, then performing a random rotation on each column. The processes that end up

in the same row are in the same block. Computing this initial allocation is easily done

in O(m=p+ log p) time. Since processors from di�erent blocks do not communicate we

will isolate our discussion to a single arbitrary block. Let B denote the set of processes

in this block; initially jBj = b.

We maintain the invariant that the block is represented as a linked list L =

Ld; Ld�1; : : : ; L0 where Ld = Sd � D, and in general, Lj = Sj � Sj+1 � D. That is,

L = B �D: no dead processes appear in this list and Lj lists those processes that do

not appear higher up in the stack. We also maintain that for all j, Lj has been fairly
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allocated. What this means is that the `th processor (0 � ` < q) assigned to this block

\owns" a sublist L`;j of Lj extending from element `d jLj jq e to element (`+ 1)d jLj jq e � 1

(if they exist). We assume processor ` has a pointer to L`;j. (These pointers contribute

the pdmax term to the space in Theorem 17. The other space requirements are linear in

m.)

Suppose in round i, Step 1 is of type (a) | the stack is not altered. Then

Ri \ L = Ld and we already have a fair allocation of Ld. Provided jLdj is about the
same in this block as in any other, Step 2 can be simulated optimally, in O(ti � d jLdj=qe)
time. This will be discussed later. To restore our invariants after Step 3 we simply need

to splice out newly dead processes from Ld and compute a fair allocation for the new

list. Let Ld and L0d be the list before and after Step 3. Processor ` will �nd all L0w;d
which lie in L`;d, sending a pointer of L0w;d to processor w. For this task processor `

must know jL0dj and the number of elements from L0d which lie before L`;d, both of which

can be computed in O(jLdj=q + log q) time with a pre�x-sums computation. Finally we

compute L0d by splicing out all dead elements, also in O(jLdj=q+log q) time.6 The other

two cases for Step 1, (b) and (c), involve either splitting Ld into two lists or combining

Ld and Ld�1 into one list, followed by a step to compute a fair allocation for the new

list(s). We omit a discussion of these two cases; the techniques used are the same as in

Step 3.

In implementing Step 2 we use the assumption that there is a known upper bound

ri � jRij on the number of processes taking part in the ith round. (In our MST algorithm,

for instance, this upper bound would hold with high probability { see Section 10.7.) We

argue that with a certain probability (that depends on q), for every round i, every

processor is given no more than (1 + �)(1 + ri=p) active processes. Each of the ti
time steps in Step 2 is then easily simulated in (1 + �)(1 + ri=p) time. Consider the

m=b � b array used in the initial allocation, and an arbitrary block and round. Let

Xk be 1 if the process initially placed in the kth column is active in the round, and

0 otherwise. Because the rotations on di�erent columns were independent, so too are

the Xk's. Let X =
Pq

k=1Xk be the number of active processes appearing in the block;

clearly E(X) = jRijb=m � rib=m. Since each processor can be thought to have a

\dummy" process associated with it which is active in every round, assume, without

loss of generality, that E(X) � q. Noting that X is the sum of independent Bernoulli

trials, we can bound the probability that X deviates too far from its expectation using

a Cherno� bound [10]. For 0 < � < 1, Pr[X > (1 + �)E(X)] < e�
(�
2 E(X)), and for

constant �, the probability that any block in any round gets more than 1 + � times its

expectation is < mr
b e

�
(q) = e�
(q) since q = 
(log(mr)). The analysis of our scheme is

very similar to that of [99] but considerably more eÆcient in terms of time. In [99] � is

increased in order to reduce the probability of failure. In our scheme we would set � to

6The pre�x-sums and splicing can, of course, be performed in one pass.

165



be a small constant and increase q (number of processors per block) as necessary. It is

crucial to keep � small because in either scheme nearly all processors spend an �=(1+ �)

fraction of their time doing nothing! On the other hand, the q parameter can usually

be increased dramatically with negligible e�ects on the overall running time. Hence our

scheme achieves a low failure probability without excessive processor idling.

Remark. The space claimed in Theorem 17 can be easily reduced to O(m) at the

expense of simplicity. The idea is to compute fair allocations only when necessary. Very

frequently, a previously computed fair allocation is \fair enough". For instance, in Step

1(b) Ld is split into two lists, L0d and L0d+1. If L0d+1 contains more than half of the

elements from Ld, we might as well use the fair allocation of Ld instead of computing

new ones for L0d+1 and L0d.

10.9 Adaptations to Practical Parallel Models

Our results imply good MST algorithms for the QSM [85] and BSP [202] models, which

are more realistic models of parallel computation than the PRAM models. Theorem

18 given below follows directly from results mapping EREW and QRQW computations

on to QSM given in [85]. Theorem 19 follows from the QSM to BSP emulation given

in [85] in conjunction with the observation that the slowdown in that emulation due to

hashing does not occur for our algorithm since the assignment of edges to processors

made by our allocation scheme achieves the same e�ect.

Theorem 18 Using a p-processor QSM machine, the MST of an edge-weighted graph

on n nodes and m edges can be found in O(g log n+m=p) time with probability 1�n�!(1),
where g is the gap parameter of the QSM.

Theorem 19 Using a p-processor BSP machine, the MST of an edge-weighted graph

on n nodes and m edges can be found in O((L + g) log n +m=p) time with probability

1� n�!(1), where g and L are the gap and periodicity parameters of the BSP.

10.10 Discussion

Our algorithm settles the randomized time-work complexity of the MST problem. We

note that the deterministic parallel work-complexity of both MST and connectivity are

open. The best implementation of Bor�uvka's algorithm [42, 39] uses O(m log log log n)

work, and the best connectivity algorithm [43] uses O(m�(m;n)) work. It seems plau-

sible that any method based solely on hook-and-contract/Bor�uvka steps can never do

better than �(m�(m;n)): such algorithms seem to be forced into implementing a kind

of online Union-Find algorithm.
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We doubt that our optimal sequential MST algorithm [Chapter 8] can be paral-

lelized, and doubt that any of the randomized parallel algorithms can be fully deran-

domized. However, in Chapter 11 we give parallel expected linear-work algorithms for

MST and connectivity that use just a polylogarithmic number of random bits. This is

in contrast to the linear number of random bits used by previous parallel algorithms.
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Chapter 11

A Reduced Randomness

MST Algorithm

Randomized algorithms are frequently simpler and asymptotically faster than their de-

terministic counterparts. Take, for example, algorithms for primality testing [163, 174,

2], �nding medians [19, 64], and minimum spanning trees [127, 28] [Chapter 8]. For the

sake of simplicity, most randomized algorithms assume a great abundance of indepen-

dent perfectly random bits, a commodity that, in reality, is scarce or non-existent. The

problem of derandomization | reducing or eliminating the dependence on randomness

| is well studied; see [154] for a survey.1

Derandomization is both a big-picture, theoretical problem (e.g., does P = BPP ?)

as well as a practical one. A number of results have shown that the so-called pseu-

dorandom number generators used in many computers can cause certain randomized

algorithms to perform poorly. Karlo� and Raghavan [129] showed that quicksort can

perform worse than expected, and Bach [13] showed that the success probability of some

number-theoretic algorithms is less than expected. In [62, 111, 110] some peculiarities

of popular pseudorandom generators were noted, in the context of Monte Carlo physics

simulations [62] and parallel computation [111, 110]. Although debunking pseudoran-

dom generators is a worthy endeavor, we would prefer to design algorithms that use

little or no random bits at all.

In this chapter we present a parallelizable, expected linear-time MST algorithm

that uses only O(log2 n log�n) random bits. Our algorithm also solves the simpler paral-

lel connectivity problem, and provides an alternative to Karger et al.'s [127] sequential,

randomized expected linear-time algorithm. The previous best algorithms for parallel

connectivity [83, 100] and MST [Chapter 10] [127, 40, 41, 172] used a linear number

1This chapter's results appeared in: S. Pettie and V. Ramachandran, Minimizing randomness in
minimum spanning tree, parallel connectivity, and set maxima algorithms, Proc. 13th Ann. ACM-
SIAM Symp. on Discrete Algorithms (SODA), pp. 713{722, 2002.
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of perfect random bits; thus our algorithm represents an exponential reduction in the

usage of random bits. (Note that the low-randomness MST algorithm from Section 8.6

is not parallelizable.)

Our techniques may be of more interest in isolation. We introduce a novel sampling

strategy (di�erent from Karger et al.'s [127]) and give a surprisingly simple scheme for

random sampling and processor allocation on the EREW PRAM. (Random sampling

typically complicates the problem of processor allocation.)

Organization

In Section 11.1 we prove bounds on the behavior of k-wise independent samplers, when

sampling from a total order. In Section 11.2 we give a new, expected linear-work MST

algorithm for the EREW PRAM (see Chapter 10 for a discussion of the PRAM model.)

In Section 11.3 we discuss the relationship between our MST algorithm and the existing

non-greedy MST algorithms, including those of Karger et al. [127], Chazelle [28], and the

one presented in Chapter 8. We also discuss some other randomized algorithms whose

dependence on randomness can be reduced exponentially without a�ecting asymptotic

performance.

11.1 Limited Independence Sampling

In this section we establish a fairly general result on k-wise independent sampling which

suggests that O(1)-wise independence is nearly as good in situations common to many

randomized sorting-type algorithms. The situation is this: we have a set of elements

from a total order � and wish to �nd an element on the cheap whose rank is close

to some desired rank t. Assuming an abundance of randomness we simply select each

element of � independently with probability p and take the rank pt sampled element as

a decent approximation of the actual rank t element. A tradeo� between the eÆciency

and accuracy of this scheme can be had by manipulating the sampling probability p.

We show that by using just pairwise independence the expected rank (w.r.t. �) of

the rank bptc sampled element is O(t log n), and using 2k-wise independence, k > 1, its

expectation is O(t). There is then a natural tradeo� between k and the concentration

of the distribution around its mean.

The following Lemma is just an extension of Chebyshev's inequality for 0/1 ran-

dom variables. A more complex proof of this result appears in [179]; our proof is

elementary.

De�nition 8 Random variables X1; : : : ;Xn are k-wise independent if for any distinct

indices i1; : : : ; ik and values x1; : : : ; xk:

Pr[Xi1 = x1 ^ � � � ^Xik = xk] = Pr[Xi1 = x1]� � � � � Pr[Xik = xk]
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Lemma 68 Let X1; : : : ;Xn be 2k-wise independent 0=1 random variables, each with

mean �, and let �X = �n be the mean of X =
P

iXi.

Pr [jX � �Xj � t] <

�
4k�X

t2

�k
Proof: Along the lines of Chebyshev's inequality we have Pr[jX � �X j � t] = Pr[(X �
�X)

2k � t2k] which is � E(X��X )2k

t2k
by Markov's inequality. The numerator can be

expanded into an expression of the form E
PQ

(Xi � �) | the expectation of a sum

of products. By identifying duplicate factors in each product we can simplify them to

be of the form
Q

i(Xi � �)ai where ai � 0 and
P

i ai = 2k. Notice that because the

Xi's are 2k-wise independent the factors of each product are also independent. We

may then rewrite the numerator in the form
PQ

E(Xi � �)ai | a sum of products

of expectations. Observe that in any term, if some ai = 1 then E(Xi � �)ai = 0 and

the term disappears. We bound the numerator by �rst bounding a single term and

then bounding the number of non-zero terms. For the �rst, note that E(Xi � �)ai =

�(1� �)[(1� �)ai�1 � (��)ai�1] 2 (��; �), hence each term is bounded by �k.

Bounding the number of non-zero terms is equivalent to a balls-and-bins problem:

how many ways are there to put 2k balls in n bins (order counts!) such that all bins

have zero or � 2 balls? Let N be the number of non-zero terms, we have that:

N �
kX
i=1

�
n

i

��
2k � i� 1

i� 1

�
(2k)!

2k

Here i represents the number of non-empty bins and (2k)!=2k is an upper bound

on the number of distinct realizations for each balls-in-bins pattern.

N �
kX
i=1

�
n

i

��
2k � i� 1

i� 1

�
(2k)!

2k

�
X
i

ni

i!

(2k)i

i!

(2k)!

2k

� 4
3

nk

k!
� (2k)

k

k!
� (2k)!

2k
f(i+ 1)th term � 4 � ith termg

� 4
3

1 + 1
24k�1p
k�

�
�ne
k

�k
�
�
2ke

k

�k
�
�
2k2

e2

�k
fStirling's approx.g

< (4kn)k

We conclude that:

Pr[jX � �X j � t] � E(X � �x)
2k

t2k
� �k(4kn)k

t2k
=

(4k�x)
k

t2k
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2

The main lemma of this section is given below.

Lemma 69 Let � be a set of totally ordered elements and �p be a subset of � derived

by sampling each element with probability p using a 2k-wise independent sampler. Let

Z be the number of unsampled elements less than min�p. Then

E(Z) �

8><
>:

4p�1 lnn+ 1 for k = 1

16p�1 for k > 1

and

Pr[Z � `] � min
��k

��
4�

p`

���

Proof: Let Xi = 1 if the element of � with rank i is sampled, and 0 otherwise. So

E[Xi] = p and for any distinct indices i1; : : : ; i2k, Xi1 ; : : : ;Xi2k are independent. Let

S` =
P`

i=1Xi count the number of ones in X1; : : : ;X`. We have that E[S`] = p` and

Pr[Z � `] = Pr[S` = 0] � Pr[jS` � E(S`)j � p`]

Using Lemma 68 we can bound Pr[Z � `] as follows.

Pr[Z � `] � Pr[jS` � E(S`)j � p`]

�
�
4p`k

(p`)2

�k
f Lemma 68g

=

�
4k

p`

�k
The second part of the Lemma follows from the simple observation that any 2k-

wise independent distribution is also 2�-wise independent for � � k.

We now bound E[Z]:

E[Z] =
1X
i=1

Pr[Z � i]

� �+

nX
i=�+1

Pr[Z � i] ffor any integer � � 0g

� �+ (4kp�1)k
nX

i=�+1

i�k
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For k = 1 (pairwise independence) and � = 0 we have E[Z] � 4p�1 lnn+O(1) and

for k = 2, we have E[Z] � �+ (8p�1)2=�. Setting � = 8p�1 gives us E[Z] � 16p�1.

2

The proof of Lemma 70 follows the same lines as Lemma 69.

Lemma 70 Let � be a set of totally ordered elements and �p be a subset of � derived

by sampling each element with probability p using a 2k-wise independent sampler. Let

xt be the element of �s with rank t and let Zt be the number of elements in � less than

xt. Then

E(Zt) =

8><
>:

O(tp�1 log n) for k = 1

O(tp�1) for k > 1

11.1.1 Pairwise Independent Sampling on the EREW PRAM

In Section 11.2 we need a method for sampling a set that takes time linear in the size

of the sample. Furthermore, we would like to assign the sampled elements to EREW

PRAM processors without burdening one processor more than the others. We solve

both of these problems using Jo�e's [117] method for generating k-wise independent

variables, given below.

Lemma 71 (Jo�e [117]) Let q be prime, a0; a1; : : : ; ak�1 be chosen uniformly at random

from Zq, and X(i) =
Pk�1

j=0 aj � ij (mod q). Then X(0); : : : ;X(q � 1) are uniformly

distributed over Zq and k-wise independent.

That is, for generating pairwise independent variables we require only two random

coeÆcients, a0 and a1. We sample a set of size q as follows. Let p be the desired sampling

probability. If X(i) = a1i + a0 (mod q) 2 [0; dpqe � 1] then element i is sampled;

otherwise it is not. Evaluating the polynomial X on q points is too expensive because

the number of sampled elements could be sublinear in q. Under the assumption that

a1 6= 0 we can generate the sampled set by generating all solutions to i = (j � a0)a
�1
1

(mod q) for j 2 [0; dpqe � 1]. This leads to a simple scheme for assigning sampled

elements to processors | refer to Figure 11.1.

Lemma 72 Suppose a parallel algorithm requires s pairwise independent samples from a

set of size q (a prime), with perhaps di�erent sampling probability for each sample. After

O(s + logP + log q)-time preprocessing on a P processor EREW PRAM, the samples

can be generated in optimal time and work.

Proof: Our EREW sampling algorithm is given in Figure 11.1. For it to work, every

processor must know two random elements a0; a1 2 Zq and a�11 (if a1 6= 0) We assign
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s processors to generate one (a0; a1) pair each and compute a�11 . This takes O(log q)

time. In O(s+ logP ) time we distribute the (a0; a1; a
�1
1 ) tuples to all processors.

2

EREW-Pairwise-Sampler:

Specs: There are P EREW processors and q elements. Each element is
to be sampled with probability p (pairwise independently) and the sampled
elements distributed fairly among the processors.

We assume a0; a1 have been selected uniformly at random from Zq, and that
each processor knows p; q; a0; a1; a

�1
1 and its processor ID.

Case 1. If a1 = 0 and a0 � dpqe then X(i) = a0. No elements are sampled.

Case 2. If a1 = 0 and a0 < dpqe then all elements are sampled. Processor
k is assigned elements

� q
P

�
k through

� q
P

�
(k + 1)� 1.

Case 3. If a1 6= 0, then processor k is assigned elements of the form

(j � a0)a
�1
1 (mod q)

for all j from
�pq
P

�
k through

�pq
P

�
(k + 1)� 1.

Figure 11.1: A combination pairwise-independent sampler and allocation scheme.

In situations where pairwise independent sampling suÆces, our processor alloca-

tion scheme is signi�cantly more desirable than the alternatives (for instance, that of

Section 10.8). It is quick, uses minimal communication, and distributes the sampled set

perfectly: every processor's load is less than the average load plus 1.

One problem that remains is �nding a prime q in parallel for use with Jo�e's

construction. This is not so hard: we simply run the randomized Miller-Rabin [163, 174]

primality test on a sequence of integers known to contain a prime. Baker and Harman

[14, p. 225] showed that if pn is the nth prime, then pn � pn�1 � n:535+o(1).

Lemma 73 Let q be the smallest prime such that q � m. Then with probability

at least 1 � m�2c+1, q can be found on the EREW PRAM in O(logm) time, using

cm:535+o(1) logm processors and c log2m random bits.

Proof: We run the Miller-Rabin [163, 174] primality test c logm times on each integer

in the interval [m;m + b(m)], where b(m) = m:535+o(1), reusing the same random bits

for each number tested. The probability that Miller-Rabin reports the wrong answer
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for any of the numbers is � b(m)
�
1
4

�c logm � m�2c+1. Each test uses logm random bits

and takes time O(logm), hence �nding the �rst prime � m takes c log2m random bits

and O(logm) time using b(m) � c logm processors.

2

Remark. One can reduce the number of random bits assumed in Lemma 73 to O(logm)

using the random walk technique | see [6, 113].

11.2 A Low-Randomness MST Algorithm

Our algorithm is based on an approximate version of the standard Bor�uvka step. Rather

than having each vertex select its least-weight incident edge (a normal Bor�uvka step),

we �rst choose a random subset of the edges, denoted H. Each vertex then selects its

least-weight incident in H. Suppose that vertex u selected edge (u; v) in such a step. If

w(u; x) < w(u; v) then the edge (u; x) bears witness to the fact that u chose the wrong

edge; we call (u; x) a tainted edge and set it aside for later consideration. (For technical

reasons, we always designate (u; v) tainted.) If we continue to perform approximate (or

exact) Bor�uvka steps, eventually every edge will become tainted or a self-loop (due to

edge contractions). The usefulness of approximate Bor�uvka steps follows from a few

claims. We claim that any untainted self-loops are not in the MST, and that all such

edges can be found in linear time with an MST veri�cation algorithm. Second, if the

random subgraphs are chosen properly then all the approximate Bor�uvka steps take

linear time in total. Moreover, the tainted edges form a small minority. Therefore,

each phase of the algorithm (consisting of exact Bor�uvka steps, then approximate steps,

then MST veri�cation) takes linear time and reduces the number of edges by a constant

factor.

Using a linear number of random bits, our algorithm can be shown to run in

linear time with all but exponentially small probability | the same as the Karger et

al. [127] algorithm. However, since the focus of this chapter is reducing dependence on

randomness, we analyze our algorithm under the assumption that all sampled graphs

are generated using a pairwise independent sampler. We show our algorithm requires

expected linear-work and can be made to run in polylogarithmic time. In Section 11.2.1

we introduce a number of basic techniques; many of them are specialized towards a

parallel implementation of our algorithm and can be simpli�ed, slightly, in a sequential

model of computation.

11.2.1 Techniques

We shall assume, without any loss of generality, that the graph has maximum degree

3. (Any vertices with higher degree can be separated into a chain of degree-3 vertices.)
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We make this assumption for the sake of a simpler exposition.

Relocation Lemma of MSTs

MST algorithms are generally proved correct by appealing to the cut and cycle properties

(take for example, Lemmas 33 and 36). Those properties, in turn, can be shown to follow

from a general property we call the endpoint relocation property.

Lemma 74 (Endpoint relocation property) Suppose that w(u; v) > w(v; w), where

(u; v); (v; w) are edges in a weighted graph G. Let G0 be derived from G by reassigning

the endpoints of (u; v) to (u;w); call this edge e, whether it appears in G or G0. Then

e 2MST (G) if and only if e 2MST (G0).

Proof: Suppose that e is the heaviest edge on a cycle Q in G, that is, e 62 MST (G).

Then in G0, e is the heaviest edge on the unique cycle in Q [ f(v; w)g, since w(e) >
w(v; w). Note that the edge (v; w) may or may not be in the cycle in Q[ f(v; w)g. The
reverse direction is proved in an identical manner, switching the roles of G and G0.

2

Pairing Up

In this Chapter we force all of our Bor�uvka steps to contract vertices in pairs | binary

Bor�uvka steps for short. As usual, each vertex identi�es its least-weight incident edge,

forming a forest F of rooted trees. We then use the procedure Pair-Up(F ) to identify a

subset F 0 � F of independent edges. To obtain a sizable set F 0, Pair-Up may relocate

edges of F consistent with Lemma 74 { see Figure 11.2 for the details of the procedure.

Lemma 75 Pair-Up(F ) returns a set of independent edges F 0, such that E[jF 0j] �
jF j=4, even if the \coin ips" are only pairwise independent. Moreover, all edge reloca-

tions made by Pair-Up are minimum spanning tree preserving (see Lemma 74).

Proof: By Lemma 74 all edge relocations do not a�ect which edges are in the MST.

Each relocated edge in F 0 removes from consideration at most two other edges from F .

Because the coin ips are pairwise independent, all remaining edges in F are included

in F 0 with probability 1=4. By linearity of expectations, the E[jF 0j] � jF j=4.
2

Thus, if F is the set of edges chosen in a normal Bor�uvka step, Pair-Up(F ) returns

at least n=8 (expected) independent edges. This can be increased at the price of more

complication. Pair-Up can clearly be implemented in linear time sequentially. We

address a parallel implementation in Lemma 76.
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Pair-Up(F )
F 0 := ;
For each vertex v:

Let v1; v2; : : : ; vk be the children of v in F

For i := 1::
�
k
2

�
Assume, w.l.o.g., that w(v2i; v) > w(v2i�1; v)
Relocate (v2i; v) to (v2i�1; v2i)
F 0 := F 0 [ f(v2i�1; v2i)g

(F � F 0 now consists of a collection of paths)
Each vertex not incident to F 0 ips a fair coin
For each edge (u; v) 2 F � F 0

If u has heads and v has tails,
F 0 := F 0 [ f(u; v)g

Return(F 0)

Figure 11.2: Pair-Up(F ) returns a set of independent edges from F , after relocating
some endpoints.

Bor�uvka Steps, Bor�uvka Trees

A Bor�uvka tree is a rooted tree modeling the graph contractions encountered in Bor�uvka's

algorithm. The leaf-nodes correspond to graph vertices and the nodes at height i cor-

respond to the vertices after i Bor�uvka steps. This structure was introduced by King

[133] as part of her MST veri�cation algorithm, and is essentially the same as the �lter

forest de�ned in Chapter 10.

Suppose that our current graph was derived from the original by performing b

binary Bor�uvka steps; therefore, we assume there is a partially constructed Bor�uvka

tree with height b. We execute the next Bor�uvka step in O(b + 1) time, as follows.

Assign one (virtual) processor to each edge. The processor for edge (u; v) begins at

the leaves corresponding to u and v in the Bor�uvka tree and crawls to their respective

roots, in O(b + 1) time. If root(u) = root(v) then (u; v) is a self-loop and should not

participate in any more Bor�uvka steps. Otherwise, the processor begins again at leaves

u; v, moving towards the root. If it meets another processor at an internal node, only

the lighter edge proceeds upward. Thus, exactly one edge remains at each root: this

is the lightest edge incident to some vertex in the current contracted graph. We then

use the Pair-Up procedure to �nd a set of independent edges. Contracting them adds

a layer of new nodes to the Bor�uvka tree, each having one or two children from the

previous layer.

Lemma 76 The bth Bor�uvka step can be implemented to run in O(b � �mP �) time with

176



P EREW processors, where m is the number of edges participating in the Bor�uvka step.

(Perfect processor allocation is assumed.)

Proof: Let F consist of the lightest edge incident on each vertex. Finding F in the

stated time bounds is straightforward on the EREW PRAM. We show how to implement

Pair-Up(F ) in O(b) time, assuming one processor per edge. If (u; v) is the edge selected

by u, i.e. v is the parent of u in F , then the processor associated with (u; v) begins at

the leaf associated with v in the Bor�uvka tree and crawls upward. If it meets another

processor, say representing (x; v), where w(u; v) > w(x; v), then both processors stop

climbing, and the edge (u; v) is relocated to (u; x); both u and x are matched. Any edge

(i.e. processor) that reaches its root without encountering another edge checks to see if

either of its endpoints were matched, and if so, stops. All edges whose processors havn't

yet stopped form a set of disjoint paths. We then use the coin ipping technique to select

an independent subset of the edges. All edges in the independent set are contracted,

adding another layer to the Bor�uvka tree.

2

Remark. Since the graph has degree-3, at most three (virtual) processors simultaneously

attempt to start climbing from a leaf. In the EREW PRAM model it is very simple to

resolve such reading conicts, provided the number of competing processors is constant.

This is the reason behind contracting vertices in pairs (to bound the degree of the

Bor�uvka tree) and restricting the graph to have constant degree.

Lemma 77 After b binary Bor�uvka steps the expected number of vertices is at most

n(78)
b.

Proof: Let Xi be the number of vertices after the ith Bor�uvka step. By Lemma 75

E[Xb] � 7Xb�1=8, hence E[Xb] � X0(
7
8)

b = n(78)
b.

2

Approximate Bor�uvka Steps

An approximate Bor�uvka step is just a normal Bor�uvka step w.r.t. a sampled graph

H. Each vertex identi�es the least-weight eligible edge incident to it, inducing a forest,

where an edge is eligible if it is in H, it is not a self-loop, and it was not tainted in

a previous approximate Bor�uvka step. An edge (u; v) (not necessarily in H) becomes

tainted if its weight is at most that of the edges chosen by either u or v. (Notice

that by this de�nition, all edges selected in an approximate Bor�uvka step are tainted.)

The procedure Approx-Bor�uvka-Step(H) performs a Bor�uvka step w.r.t. H (inducing

a forest F � H), �nds an independent subset F 0 � F using the Pair-Up procedure,

then contracts F 0, adding one layer to the Bor�uvka tree. It is implemented just like a

normal Bor�uvka step, except that already tainted edges in H need to be identi�ed and
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discarded. We can identify tainted edges as follows. Label each edge (x; p(x)) in the

Bor�uvka tree by the weight of the edge selected by x in the appropriate (aproximate)

Bor�uvka step. Consider an edge (u; v). After it is certi�ed that u and v are distinct in

the current graph (that is, have distinct roots in the Bor�uvka tree), we check whether

(u; v) is strictly heavier than every edge on the path from u to root(u) and from v to

root(v). If it is, (u; v) is untainted and eligible.

Lemma 78 Let H be a subset of the edges in a graph obtained from b�1 (approximate)

Bor�uvka steps. Then the call to Approx-Bor�uvka-Step(H) takes time O(b �
l
jHj
P

m
) using

P EREW processors. (Perfect processor allocation is assumed.)

Lemma 79 Consider a sequence of (approximate) Bor�uvka steps that causes all edges

to become tainted and/or self-loops (due to edge contractions). Then any untainted edge

is not in the minimum spanning tree.

Proof: Let F be the forest of edges selected and contracted by the approximate Bor�uvka

steps, and let U be the set of untainted edges. We claim that F is the minimum spanning

forest of U [ F . To see this, just consider a re-execution of the (approximate) Bor�uvka

steps on U [ F . By de�nition, every edge contracted is the lightest edge incident to

some vertex (all other edges being untainted) and by the cut property must belong to

the MST of U [ F .

2

11.2.2 The Algorithm

Our Low-Randomness MST algorithm is given in Figure 11.3. It uses the constants

; �; pj; �i to determine how many exact Bor�uvka steps to perform, and the sampling

probability for the approximate Bor�uvka steps.

 = 7
8 ; � = 8

7 ; pj = j=2

�0 = 0 �1 = C �j+1 = ��j=3

Here C represents a constant large enough to make the sequence (�j)j�0 increas-

ing.2 The constant  = 7=8 reects the expected number of vertices contracted in an

(approx) Bor�uvka step. (Many of the constants in our algorithm could be improved if

 were set closer to 1=2; this would require a more sophisticated pairing-up procedure

than Pair-Up.)

The correctness of Low-Randomness-MST is immediate. Any edges discarded (in

Line 3) are by Lemma 79 not in the MST. Therefore any edges contracted in Line 1

2For instance, if C = 3 log� C then there is no growth. Setting C = 120 suÆces.
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Low-Randomness-MST(G)
G0 := G
Execute Phases 1; 2; : : : until the graph is trivial
The edges contracted in Line 1 (below) form MST (G).

Phase i:

1. Perform d�i � �i�1e exact Bor�uvka steps on Gi�1

2. For j = �i + 1; �i + 2; : : :
2.1 Let Hij be derived by sampling edges of Gi�1 with prob. pj
2.2 Approx-Bor�uvka-Step(Hij)
2.3 Break out of for-loop if all edges are tainted or self-loops
3. Identify all untainted edges; Gi := Gi�1 � funtainted edgesg
4. Retract the approximate Bor�uvka steps made in Step 2.

All edges tainted in those steps become untainted again.

Figure 11.3: An expected linear-time minimum spanning tree algorithm.

are de�nitely in the MST. We implement Line 3 (�nding tainted edges) with the MST

veri�cation algorithm of [134] for the EREW PRAM. It runs in logarithmic time and

linear work.

In Lemma 80 we establish various bounds on the expected size of the graphs

encountered in each phase of Low-Randomness-MST.

Lemma 80 Assume that a pairwise independent sampler is used to generate the graphs

Hij in Line 2.1, and to perform the random pairing implicit in Lines 1 and 2.2. Let ni
and mi be the expected number of vertices and edges, respectively, in Gi. Then ni � n�i

and mi � ni � (C1�i�1 + 2)

Proof: Gi is derived by applying
Pi

i0=1(�i0 � �i0�1) = �i Bor�uvka steps. Hence, by

Lemma 77, ni � n�i . Notice that mi is precisely the number of edges tainted in the ith

Phase. Before bounding mi, consider the number of edges tainted in some approximate

Bor�uvka step, with sampling probability p, on a graph with m0 edges and n0 vertices.

Let dk be the degree of the kth vertex. By Lemma 69 and the concavity of the log

function, the expected number of tainted edges is bounded by

n0X
k=1

c1 p
�1 log dk � c1n

0p�1 log
2m0

n0
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We will bound mi with an inductive argument using the above inequality. Since

we assumed the graph to have degree at most 3, m0 � 3n0=2 � n0(C1�0 + 2). Assume

inductively that mi0 � ni0 � (C1�i0 + 2) for i0 < i. (The +2 is needed because �0 = 0.)

We bound mi as follows:

mi �
1X

j=�i+1

c1n
j�1p�1j log

�
2mi�1

nj�1

�

� c1ni

1X
j=1

j=2�1 log

�
2ni�1[C1�i�1 + 2]

nij�1

�

� c1ni

1X
j=1

j=2�1 log
�
��i+j��i�1 � [2C1�i�1 + 4]

�

� c1ni

1X
j=1

j=2�1c2(�i + j) logC1

� c1c2c3ni�i logC1 � C1ni�i ffor C1 large enoughg

2

Theorem 20 Let G be a graph on m edges and n vertices. On an EREW PRAM, Low-

Randomness-MST(G) computes the minimum spanning tree of G with O(log2 n log�n)

random bits, in expected O(log2 n log�n) time and linear work.

Proof: Recall that if G is not initially of degree three, we force it to be by introducing

O(m) edges and vertices. Thus, we are seeking work bounds linear in the number of

vertices.

Let T and W be the expected time and work, respectively. By Lemma 77

the expected number of (approx) Bor�uvka steps needed to cause all edges to become

tainted or contracted is log� n = O(logn). The expected number of Phases is at

most minfj : n�j < 1g = O(log�n). Since each Bor�uvkastep takes O(log n) time,

T = O(log2 n log�n). We now bound the expected work W . By Lemmas 76, 78 and 80,

we have:

W � c4

1X
i=1

2
4mi�1�

2
i +

1X
j=�i+1

jmi�1pj

3
5

� c4

1X
i=1

2
4n�i�1(C1�i�1 + 2)�2i +

1X
j=�i+1

jn�i�1 [C1�i�1 + 2]j=2

3
5
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� O(n) + c5

1X
i=1

2
4n(�i�1=3)�i�1 + n[C1�i�1 + 2]

1X
j=�i+1

jj=2+�i�1

3
5

� O(n) +

1X
i=2

O(n�i�1
�i�1=2) = O(n)

The number of random bits we use to �nd prime numbers (for our pairwise inde-

pendent sampler) is O(log2 n) { see Lemma 73. Once they are found we use at most

4 log n random bits per Bor�uvka step: 2 log n to generate the sample (if it is approxi-

mate) and another 2 log n for the random pairing, for a total of O(log2 n log�n) random

bits.

2

Corollary 3 The connected components of a graph can be found with an EREW PRAM

using O(log2 n log�n) random bits, in expected O(log2 n log�n) time and linear work.

11.3 Discussion

The recent MST algorithms [127, 28], [Chapter 8] are all said to be non-greedy, but

they are not really alike. Karger et al.'s algorithm [127] uses random sampling and

MST veri�cation, and the deterministic MST algorithms [28], [Chapter 8] are based on

Chazelle's Soft Heap [29]. The reduced-randomness MST algorithm we presented in this

chapter can be seen as a happy medium between these two approaches. Like [127] it

uses random sampling and MST veri�cation. On the other hand, one can think of our

approximate Bor�uvka steps as implementing a certain kind of Soft Heap, in particular,

one where the tradeo� between running time and error rate can be changed at will.

There is also an obvious similarity between our \tainted" edges and the \corrupted"

edges of Chapter 8.

It is possible to obtain similar reduced-randomness algorithms for a number of

other problems, either with our sampling techniques, or, in some cases, more direct

methods. For instance, the local sorting and set maxima algorithms from [86] can be

reorganized to use a polylogarithmic number of random bits [171]. One can also obtain

reduced-randomness versions of Floyd and Rivest's selection algorithm [64], and Hoare's

Quicksort [108]; see [171].

181



Appendix A

Split-Findmin and Its

Applications

In this Chapter we propose some minor improvements to Gabow's split-�ndmin data

structure [76], then show how split-�ndmin can be used to establish new bounds on the

complexity of the minimum spanning tree (and shortest path tree) sensitivity analysis

problems.1

A.1 Background

The split-�ndmin problem was introduced by Gabow in [76] for use in his weighted

matching algorithm. His data structure handled m operations on a universe of size n in

O(m�(m;n)) time, which is nearly linear. Split-�ndmin data structures are used in all

the hierarchy based shortest path algorithms to date [196, 98] [Chapters 3{5], though

the versions assumed in [196, 98] are specialized to integer-weighted inputs, and the one

in [98] is much slower than Gabow's structure [76], though supposedly simpler.

Split-�ndmin is a weighted version of the simpler split-�nd problem, which is itself

a variation on union-�nd. The pointer-machine complexity of split-�nd and union-

split-�nd were studied in [109, 158, 25, 147]. Burago [25] proved a lower bound of


(n log�(n)) on the problem, and LaPoutr�e gave a tight lower bound of 
(m�(m;n)).

However, unlike the union-�nd problem [193, 71], split-�nd admits a relatively simple

linear-time implementation on the RAM | see [79] for the method.

1Our results on the split-�ndmin data structure will appear in the journal version of [170]. The new
sensitivity analysis algorithms have yet to be published.
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A.2 An Optimal Split-Findmin Structure

The split-�ndmin data structure operates on a collection of disjoint sequences of ele-

ments. Initially, there is one sequence containing all n elements, and each element has

key 1. The following operations are supported.

split(u) Splits the sequence containing u into two sequences, one consisting of those

elements up to and including u, the other sequence taking the rest.

�ndmin(u) Returns the element in u's sequence with minimum key.

decrease-key(u; �) sets key(u) := minfkey(u); �g.

Theorem 21 The split-�ndmin problem can be solved on a pointer machine in O(n+

m�) time while making only O(n+m log�) comparisons, where n is the number of ele-

ments, m the number of operations, and � = �(m;n) is the inverse-Ackermann function.

Alternatively, split-�ndmin can be solved on a RAM in time �(split-findmin(m;n)),

where split-findmin represents the decision-tree complexity of the problem, or, if ran-

dom bits are available, the expected randomized decision-tree complexity of the problem.

The remainder of this Section constitutes a proof of Theorem 21.

The O(n+m log�) bound is simply an observation about Gabow's structure. His

decrease-key(u; �) routine just updates a series x0; x1; : : : ; x� of real variables, setting

xi = minfxi; �g. However, it is already guaranteed that x0 � x1 � � � � � x�, so once

the variables are found, updating them can be accomplished in O(�) time with 1+log �

comparisons.

To get a potentially faster algorithm on the RAM model we construct all possible

split-�ndmin solvers on inputs with at most q = log log n elements and choose one that

is close to optimal for all problem sizes. We then show how to compose this optimal

split-�ndmin solver on q elements with Gabow's structure to get an optimal one on n

elements.

We consider only instances with m0 < q2 decrease-keys. If more decrease-keys are

actually encountered we can revert to Gabow's algorithm [76] or a trivial one that runs

in O(m0) time.

We represent the state of the solver with three components: a bit-vector with

length q � 1 representing where the splits are, a directed graph H on no more than

q + m0 < q(q + 1) vertices representing known inequalities between current keys and

older keys retired by decrease-key operations, and �nally, a mapping from elements to

vertices in H. One may easily con�rm that the state can be represented in no more

than 3q4 = o(log n) bits. One may also con�rm that a split or decrease-key can update
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the state in O(1) time. We now turn to the �ndmin operation. Consider the �ndmin-

action function, which determines the next step in the �ndmin procedure. It can be

represented as:

�ndmin-action : state � f1; : : : ; qg !
 
V (HX) � V (HX)

!
[ f1; : : : ; qg

where the �rst f1; : : : ; qg represents the argument to the �ndmin query. The �ndmin-

action function can either perform a comparison (represented by V (HX) � V (HX))

which, if performed, will alter the state, or return an answer to the �ndmin query, rep-

resented by the second f1; : : : ; qg. One simply applies the �ndmin-action function until

it produces an answer. We will represent the �ndmin-action function as a table. Since

the state is represented in o(log n) bits we can keep it in one machine word; therefore,

computing the �ndmin-action function (and updating the state) takes constant time on

a RAM.

One can see that any split-�ndmin solver can be converted into another with equal

amortized complexity but which performs comparisons only during calls to �ndmin.

Therefore, �nding the optimal �ndmin-action function is tantamount to �nding the

optimal split-�ndmin solver.

We have now reduced the split-�ndmin problem to a brute force search over the

�ndmin-action function. There are less than F = 23q
4 � q � (q4 + q) < 24q

4
distinct

�ndmin-action functions, most of which do not produce correct answers. There are less

than I = (2q+ q2(q+1))q
2+3q distinct instances of the problem, because the number of

decrease-keys is < q2, �ndmins < 2q and splits < q. Furthermore, each operation can

be a split or �ndmin, giving the 2q term, or a decrease-key, which requires us to chose

an element and where to �t its new key into the permutation, giving the q2(q+1) term.

Each �ndmin-action/problem instance pair can be tested for correctness in V = O(q2)

time, therefore all correct �ndmin-action functions can be chosen in time F �I �V = 2
(q
4).

For q = log log n this is o(n), meaning the time for this brute force search does not a�ect

the other constant factors involved.

How do we choose the optimal split-�ndmin solver? This is actually not a trivial

question because of the possibility of there not being one solver which dominates all

others on all input sizes. Consider charting the worst-case complexity of a solver S as

a function gS of the number of operations p in the input sequence. It is plausible that

certain solvers are optimal for only certain densities p=q. We need to show that for some

solver S�, gS� is within a constant factor of the lower envelope of fgSgS , where S ranges

over all correct solvers. Let Sk be the optimal solver for 2k operations. We let S� be

the solver which mimics Sk from operations 2k�1+1 to 2k. At operation 2k it resets its

state, reexecutes all 2k operations under Sk+1, and continues using Sk+1 until operation
2k+1. Since gSk+1

(2k+1) � 2 � gSk(2k) it follows that gS�(p) � 4 �minSfgS(p)g.
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Our overall algorithm is very simple. We divide the n elements into n0 = n=q

super-elements, each representing a contiguous block of q elements. Each unsplit se-

quence then consists of three parts: two subsequences in the leftmost and rightmost

super-elements and a third subsequence consisting of unsplit super-elements. We use

Gabow's algorithm on the unsplit super-elements, where the key of a super-element is

the minimum over constituent elements. For the super-elements already split, we use

the S� split-�ndmin solver constructed as above. The cost of Gabow's algorithm is

O((m+ n=q)�(m;n=q)) = O(m+ n) and the cost of using S� on each super-element is

�(split-findmin(m;n)) by construction; therefore the overall cost is �(split-findmin(m;n)).

One can easily extend the proof to randomized split-�ndmin solvers by de�ning

the �ndmin-action as selecting a distribution over actions.

Remark. The time-bounds in Theorem 21 are clearly tight, for both pointer machines

[147] and RAMs. The open question is whether split-findmin is �(m log�(m;n)) or

�(m) or something else.

A.3 MST and SSSP Sensitivity Analysis

Tarjan's sensitivity analysis algorithms [194] run in O(m�(m;n)) time. Dixon et al.

[57] gave two sensitivity algorithms, a randomized one running in expected linear-time,

and a provably optimal deterministic one with unknown running time. In Theorems 22

and 23 we give explicit deterministic algorithms running in O(split-findmin(m;n)) =

O(m log�(m;n)) time.

The MST sensitivity analysis problem is, given a graph G and T = MST (G), to

compute the largest amount that each edge-weight can be perturbed without a�ecting

the equality T = MST (G). Clearly, if e 62 T then increasing w(e) cannot invalidate

T = MST (G), and if e 2 T then decreasing w(e) cannot invalidate T = MST (G).

Therefore, there are two disjoint problems: one for the non-tree edges and the other

for the tree edges. Koml�os's [141] MST veri�cation algorithm solves the non-tree edge

problem in linear time. Given [141] and some straightforward properties of MSTs (see

Section 7.2.2), we will restate the MST sensitivity analysis problem as follows:

Given T =MST (G), compute, for each edge e 2 T , MST (G� feg) � T .

One can easily see that MST (G�feg)�T consists of a single edge, say e0, which

is the best replacement edge for e 2 T . So if w(e) is perturbed in isolation, the identity

T =MST (G) is falsi�ed precisely when w(e) becomes greater than w(e0).

Theorem 22 The MST sensitivity analysis problem can be solved deterministically in

split-findmin(m;n) = O(m log�(m;n)) time, where m and n are the number of edges

and vertices, respectively.
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Proof: Root T at an arbitrary vertex; let p(u) be the parent of u in T . We initialize a

split-�ndmin structure, where the initial n-element sequence consists of the vertices of T

in post-order. We maintain two invariants: (1) that every sequence in the split-�ndmin

structure corresponds to some rooted subtree in T , and (2) that key(u) corresponds to

the weight of the min-weight edge connecting u to a vertex outside u's sequence.

By invariants (1) and (2), if S is a sequence in the split-�ndmin structure and u

is the root of the subtree corresponding to S, then �ndmin(u) = w(e0) where e0 is the

edgeMST (G�f(u; p(u))g)�T . Once e0 is determined, we proceed to solve the problem
on the subtree beneath u. Because of the post-order arrangement of the vertices, u is

the right-most element in its sequence. We perform one split, severing u, and if u has k

children we perform k�1 more splits to reestablish invariant (1). For each new sequence

created, say corresponding to a child v of u, we restore invariant (2) by performing a

number of decrease-keys. For each edge (v0; z) such that LCA(v0; z) = u and v0 is a

descendant of v, we issue the operations decrease-key(v0 ; w(v0; z)).

In total there are 2m operations (n� 1 splits, n� 1 �ndmins, and 2[m� (n� 1)]

decrease-keys, 2 for each non-tree edge) thus the cost of the split-�ndmin structure is

split-findmin(2m;n) = O(m log�(m;n)). The rest of the costs, such as the post-

order traversal and �nding least common ancestors, are linear. Thus, the dominant

term is split-findmin(m;n).

2

The SSSP sensitivity analysis problem is easily reduced to MST sensitivity analysis

| see [194].

Theorem 23 The single-source shortest path tree sensitivity analysis problem can be

solved deterministically in split-findmin(m;n) = O(m log�(m;n)) time.
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Appendix B

Publications Arising from

this Dissertation

In reverse chronological order of original publication:

S. Pettie. On the comparison-addition complexity of all-pairs shortest paths. In Pro-

ceedings 13th Int'l Symp. on Algorithms and Computation (ISAAC), pp. 32{43, 2002.

S. Pettie. An inverse-Ackermann style lower bound for the online minimum spanning

tree veri�cation problem. In Proceedings 43rd Annual Symposium on Foundations of

Computer Science (FOCS), pp. 155{163, 2002.

S. Pettie. A new approach to all-pairs shortest paths on real-weighted graphs. The-

oretical Computer Science, to appear. Preliminary version: A faster all-pairs shortest

path algorithm for real-weighted sparse graphs. In Proceedings 29th Int'l Colloq. on

Automata, Languages, and Programming (ICALP), pp. 85{97, 2002. (Received ICALP

Best Student Paper award, 2002.)

S. Pettie, V. Ramachandran. Computing shortest paths with comparisons and addi-

tions. In Proceedings 13th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA),

pp. 267{276, 2002.

S. Pettie, V. Ramachandran. Minimizing randomness in minimum spanning tree, par-

allel connectivity and set maxima algorithms. In Proceedings 13th Ann. ACM-SIAM

Symp. on Discrete Algorithms (SODA), pp. 267{276, 2002.

S. Pettie, V. Ramachandran and S. Sridhar. Experimental evaluation of a new shortest
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path algorithm. Proceedings 4th Workshop on Algorithm Engineering and Experiments

(ALENEX), pp. 126{142, 2002.

S. Pettie, V. Ramachandran. An optimal minimum spanning tree algorithm. J. ACM

49(1):16{34. Preliminary version appeared in Proceedings 27th Int'l Colloq. on Au-

tomata, Languages, and Programming (ICALP), LNCS 1853, pp. 49{60, 2000. (Re-

ceived ICALP Best Paper award, 2000.)

S. Pettie, V. Ramachandran. A randomized time-work optimal parallel algorithm for

�nding a minimum spanning forest. SIAM J. on Computing 31(6):1879{1895, 2002.
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