
�

�

�

�

�

�

�

�

1

Linear-Time Approximation for Maximum Weight Matching

RAN DUAN, Max-Planck-Institut für Informatik
SETH PETTIE, University of Michigan

The maximum cardinality and maximum weight matching problems can be solved in Õ(m
√

n) time, a bound
that has resisted improvement despite decades of research. (Here m and n are the number of edges and
vertices.) In this article, we demonstrate that this “m

√
n barrier” can be bypassed by approximation. For

any ε > 0, we give an algorithm that computes a (1 − ε)-approximate maximum weight matching in
O(mε−1 log ε−1) time, that is, optimal linear time for any fixed ε. Our algorithm is dramatically simpler
than the best exact maximum weight matching algorithms on general graphs and should be appealing in all
applications that can tolerate a negligible relative error.

Categories and Subject Descriptors: G.2.2 [Discrete Mathematics]: Graph Theory—Graph algorithms

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Matching, assignment, approximation

ACM Reference Format:
Duan, R. and Pettie, S. 2014. Linear-time approximation for maximum weight matching. J. ACM 61, 1,
Article 1 (January 2014), 23 pages.
DOI:http://dx.doi.org/10.1145/2529989

1. INTRODUCTION

Graph matching is one of the most well-studied problems in combinatorial opti-
mization. The original motivations of the problem were to minimize transportation
costs [Hitchcock 1941; Kantorovitch 1942] and optimally assign personnel to job po-
sitions [Easterfield 1946; Thorndike 1950]. Over the years, matching algorithms have
found applications in scheduling, approximation algorithms, network switching, and
as key subroutines in other optimization algorithms, for example, undirected shortest
paths [Lawler 1976], planar max cut [Hadlock 1975; Orlova and Dorfman 1972], Chi-
nese postman tours [Edmonds and Johnson 1973; Kwan 1962], and metric traveling
salesman [Christofides 1976]. In some applications it is not critical that the algorithm
produce an exactly optimum solution. In this article, we explore the extent to which
this freedom—not demanding exact solutions—allows us to design simpler and more
efficient algorithms.1

1Many of the articles cited in this article can be found on the second author’s homepage:
web.eecs.umich.edu/∼pettie/matching/.

This work was supported by NSF Career grant no. CCF-0746673, NSF grant no. CCF-1217338, and a grant
from the US-Israel Binational Science Foundation. R. Duan was supported by an Alexander von Humboldt
Postdoctoral Fellowship.
Authors’ addresses: R. Duan, Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123
Saarbrücken, Germany; email: duanr02@gmail.com; S. Pettie, Department of Electrical Engineering
and Computer Science, University of Michigan, 2260 Hayward Street, Ann Arbor, MI 48109; email:
pettie@umich.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 0004-5411/2014/01-ART1 $15.00
DOI:http://dx.doi.org/10.1145/2529989

Journal of the ACM, Vol. 61, No. 1, Article 1, Publication date: January 2014.



�

�

�

�

�

�

�

�

1:2 R. Duan and S. Pettie

In order to discuss prior work with precision we must introduce some notation and
terminology. The input is a weighted graph G = (V, E, w) where n = |V| and m = |E|
are the number of vertices and edges and w is the edge weight function. If w assigns
integer (rather than real) weights, let N be the largest magnitude of a weight. An
unweighted graph is one for which w(e) = 1 for all e ∈ E. A matching is a set of
vertex-disjoint edges and a perfect matching is one in which all vertices are matched.
The weight of a matching is the sum of its edge weights. We use MWM (and MWPM)
to denote the problem of finding a maximum weight (perfect) matching, as well as the
matching itself. We use MCM for the cardinality (unweighted) version of the problem.
The MWPM problem on bipartite graphs is often called the assignment problem.

The MWPM and MWM problems are reducible to each other. Given an instance G of
MWM, let G′ consist of two copies of G with zero-weight edges connecting copies of the
same vertex. Clearly a MWPM in G′ corresponds to a pair of MWMs in G. In the reverse
direction, if G is an instance of MWPM with weight function w, one can find the MWM
of G using the weight function w′(e) = w(e) + nN. Maximum weight matchings with
respect to w′ necessarily have maximum cardinality. Call a matching δ-approximate,
where δ ∈ [0, 1], if its weight is at least a factor δ of the optimum matching. Let δ-MWM
(and δ-MCM) be the problem of finding δ-approximate maximum weight (cardinality)
matching, as well as the matching itself. It is important to note that the reductions
between MWPM to MWM do not work for the approximate versions of these problems
since the approximation may compromise perfection. In this article, we only consider
approximations of the MWM problem. Consequently, our algorithms cannot be used in
applications that call for perfect matchings such as Lawler [1976], Orlova and Dorfman
[1972], Hadlock [1975], Edmonds and Johnson [1973], Kwan [1962], and Christofides
[1976].

Tables I, II, and III give an at-a-glance history of exact matching algorithms. Algo-
rithms are dated according to their initial publication, and are included either because
they establish a new time bound, or employ a noteworthy technique, or are of historical
interest. Table IV gives a history of approximate MCM and MWM algorithms.

1.1. Algorithms for Bipartite Graphs

The MWM problem is expressible as the following integer linear program, where x rep-
resents the incidence vector of the matching.

maximize
∑
e∈E

w(e)x(e)

subject to 0 ≤ x(e) ≤ 1 ∀e ∈ E (1)∑
e=(u,u′)∈E

x(e) ≤ 1 ∀u ∈ V

x(e) is an integer ∀e ∈ E (2)

It is well known that in bipartite graphs the integrality requirement (2) is redundant,
that is, the basic feasible solutions of the LP (1) are nonetheless integral. See Birkhoff
[1946] and Dantzig [1951]. The dual of (1) is

minimize
∑
u∈V

y(u)

subject to y(e) ≥ w(e) ∀e ∈ E (3)
y(u) ≥ 0 ∀u ∈ V

where, by definition, y(u, v)
def= y(u) + y(v).

Journal of the ACM, Vol. 61, No. 1, Article 1, Publication date: January 2014.



�

�

�

�

�

�

�

�

Linear-Time Approximation for Maximum Weight Matching 1:3

Table I. Cardinality Matching

Year Authors Time Bound & Notes

folklore/trivial mn BIPARTITE

1965 Edmonds

1965 Witzgall & Zahn
mn2

1969 Balinski

1976 Gabow

1976 Lawler
mn or n3

1976 Karzanov

1971 Hopcroft & Karp

1973 Dinic & Karzanov
m

√
n BIPARTITE

1980 Micali & Vazirani

1991 Gabow & Tarjan
m

√
n

1981 Ibarra & Moran nω CARDINALITY ONLY,RANDOMIZED,BIPARTITE

nω CARDINALITY ONLY,RANDOMIZED
1989 Rabin & Vazirani

nω+1 RANDOMIZED

1991 Alt, Blum, Mehlhorn & Paul n
√

nm/ log n BIPARTITE

1991 Feder & Motwani

1997 Goldberg & Kennedy
m

√
n/κ BIPARTITE, κ = log n

log(n2/m)

1996 Cheriyan & Mehlhorn n2 + n5/2/w BIPARTITE, w = machine word size

2004 Goldberg & Karzanov m
√

n/κ

2004 Mucha & Sankowski

2006 Harvey
nω RANDOMIZED

Note: Here ω < 2.373 is the exponent of n×n matrix multiplication [Williams 2012]. The mn
running time on general graphs depends on a special union-find data structure [Gabow and
Tarjan 1985] developed later. Without it, the running time would be mnα(m, n), where α is
the inverse-Ackermann function.

In the MWPM problem
∑

e=(u,u′) x(e) = 1 holds with equality in the primal and y(u) is
unconstrained in the dual. Kuhn’s [1955a, 1956] publication of the Hungarian method
stimulated research on this problem from an algorithmic perspective, but it was not
without precedent. Kuhn noted that the algorithm was latent in the work of Hungarian
mathematicians König and Egerváry.2 However, the history goes back even further. A
recently rediscovered article of Jacobi from 1865 describes a variant of the Hungarian
algorithm; see Ollivier [2009]. Although Kuhn’s algorithm self-evidently runs in poly-
nomial time, this mark of efficiency was noted later: Munkres [1957] showed that O(n4)
time is sufficient. Independent of Kuhn’s work, Gleyzal [1955] discovered a polynomial-
time cycle-canceling algorithm for the assignment problem and von Neumann
[1953] gave a reduction from the assignment problem to finding the optimum strat-
egy in a zero-sum bimatrix game, which can be solved in polynomial time [Brown and
von Neumann 1950].

The search for faster assignment algorithms began in earnest in the 1960s. Dinic
and Kronrod [1969] gave an O(n3)-time algorithm and Edmonds and Karp [1972] and
Tomizawa [1971] observed that assignment is reducible to n single-source shortest

2A translation of Egerváry’s work appears in Kuhn [1955b].

Journal of the ACM, Vol. 61, No. 1, Article 1, Publication date: January 2014.



�

�

�

�

�

�

�

�

1:4 R. Duan and S. Pettie

Table II. Weighted Matching: Bipartite Graphs

Year Authors Time Bound & Notes

1946 Easterfield 2npoly(n)

1953 von Neumann

1955 Kuhn

1955 Gleyzal poly(n)

1957 Munkres

1964 Balinski & Gomory

1969 Dinic & Kronrod n3

1970 Edmonds & Karp SP+ = time for one SSSP computation on

1971 Tomizawa
n · SP+

a non-negatively weighted graph

1975 Johnson mn logd n d = 2 + m/n

mn3/4 log N INTEGER WEIGHTS
1983 Gabow

Nm
√

n MWM ONLY, INTEGER WEIGHTS

1984 Fredman & Tarjan mn + n2 log n

1988 Gabow & Tarjan

1992 Orlin & Ahuja

1997 Goldberg & Kennedy
m

√
n log(nN) INTEGER WEIGHTS

2012 Duan & Su

1996 Cheriyan & Mehlhorn n5/2 log(nN)(
log log n

log n )1/4 INTEGER WEIGHTS

Nm
√

n/κ MWM ONLY, INTEGER WEIGHTS

1999 Kao, Lam, Sung & Ting N(n2 + n5/2/w) MWM ONLY, INTEGER WEIGHTS

Nnω MWM ONLY, RANDOMIZED, INTEGER WEIGHTS

2006 Sankowski Nnω RANDOMIZED, INTEGER WEIGHTS

2012 Duan & Su m
√

n log N MWM ONLY, INTEGER WEIGHTS

Note: N is the maximum integer edge weight, w is the machine word size, and κ =
log n/ log(n2/m). The time bounds of Johnson [1975] and Fredman and Tarjan [1987] reflect
faster priority queues. The time bounds of Kao et al. [2001] reflect a reduction from MWM to
N instances of MCM.

path computations on a nonnegatively weighted directed graph.3 Using Fibonacci
heaps, n executions of Dijkstra’s [1959] shortest path algorithm take O(mn + n2 log n)
time. On integer weighted graphs this algorithm can be implemented slightly faster,
in O(mn + n2 log log n) time [Han 2002; Thorup 2003] or O(mn) time (randomized)
[Andersson et al. 1998; Thorup 2007], independent of the maximum edge weight.
Gabow and Tarjan [1989], improving an earlier algorithm of Gabow [1985b], gave a
scaling algorithm for the assignment problem running in O(m

√
n log(nN)) time, which

is just a log(nN) factor slower than the fastest MCM algorithm [Hopcroft and Karp
1973; Karzanov 1973].4 For reasonably sparse graphs Gabow and Tarjan’s [1989] as-
signment algorithm remains unimproved. However, faster algorithms have been de-
veloped when N is small or the graph is dense [Cheriyan and Mehlhorn 1996; Kao

3It was known that the assignment problem is reducible to n shortest path computations on arbitrar-
ily weighted graphs. See Ford and Fulkerson [1962], Hoffman and Markowitz [1963], and Desler and
Hakimi [1969] for different reductions.
4Gabow and Tarjan’s algorithm takes a Hungarian-type approach. The same time bound has been achieved
by Orlin and Ahuja [1992] using the auction approach of Bertsekas [1981], by Goldberg and Kennedy [1997]
using a preflow-push approach, and by Duan and Su [2012] using a primal cycle-canceling approach.

Journal of the ACM, Vol. 61, No. 1, Article 1, Publication date: January 2014.



�

�

�

�

�

�

�

�

Linear-Time Approximation for Maximum Weight Matching 1:5

Table III. Weighted Matching: General Graphs

Year Authors Time Bound & Notes

1965 Edmonds mn2

1974 Gabow

1976 Lawler
n3

1976 Karzanov n3 + mn log n

1978 Cunningham & Marsh poly(n)

1982 Galil, Micali & Gabow mn log n

mn3/4 log N INTEGER WEIGHTS
1985 Gabow

Nm
√

n MWM ONLY, INTEGER WEIGHTS

1989 Gabow, Galil & Spencer mn log log logd n + n2 log n d = 2 + m/n

1990 Gabow mn + n2 log n

1991 Gabow & Tarjan m
√

n log n log(nN) INTEGER WEIGHTS

2012 Huang & Kavitha Nm
√

n/κ MWM ONLY, INTEGER WEIGHTS

2012 Pettie Nnω MWM ONLY, RANDOMIZED, INTEGER WEIGHTS

Cygan, Gabow
2012

& Sankowski
Nnω RANDOMIZED, INTEGER WEIGHTS

Note: N is the maximum integer edge weight, ω is the exponent of n × n matrix multiplication,
and κ = log n/ log(n2/m). The bounds of Huang & Kavitha and Pettie reflect a reduction from
MWM to N instances of MCM.

Table IV. Approximate Maximum Cardinality/Weight Matching

Year Authors Approx. Problem Time Bound & Notes

1971 Hopcroft & Karp

1973 Dinic & Karzanov
(1 − ε)-MCM mε−1 BIPARTITE

1980 Micali & Vazirani

1991 Gabow & Tarjan
(1 − ε)-MCM mε−1

folklore/trivial 1
2 -MWM m log n

1988 Gabow & Tarjan (1 − ε)-MWM m
√

n log(n/ε) BIPARTITE

1991 Gabow & Tarjan (1 − ε)-MWM m
√

n log n log(n/ε)

1999 Preis

2003 Drake & Hougardy
1
2 -MWM m

2003 Drake & Hougardy ( 2
3 − ε)-MWM mε−1

2004 Pettie & Sanders ( 2
3 − ε)-MWM m log ε−1

2010 Duan & Pettie

2010 Hanke & Hougardy
( 3

4 − ε)-MWM m log n log ε−1

mε−1 log ε−1 ARBITRARY WEIGHTS
new (1 − ε)-MWM

mε−1 log N INTEGER WEIGHTS

Note: N is the maximum integer edge weight and ε > 0 is arbitrary.

et al. 2001; Sankowski 2009], or when an MWM is sought [Duan and Su 2012], or when
a matching of a specified size is sought [Ramshaw and Tarjan 2012]. Of particular in-
terest is Sankowski’s algorithm [2009], which solves MWPM in O(Nnω) time, where ω
is the exponent of square matrix multiplication.

Journal of the ACM, Vol. 61, No. 1, Article 1, Publication date: January 2014.



�

�

�

�

�

�

�

�

1:6 R. Duan and S. Pettie

1.2. Algorithms for General Graphs

Whereas the basic solutions to (1,3) are integral on bipartite graphs, the same is not
true for general graphs. For example, if the graph is a unit-weighted cycle with length
2k + 1 the MWM has weight k but (1) achieves its maximum of k + 1/2 by setting
x(e) = 1/2 for all e ∈ E. Let Vodd be the set of all odd-size subsets of V. Clearly every
feasible solution to the integer linear program (1,2) also satisfies the following odd-set
constraints.

∑
e∈E(B)

x(e) ≤ (|B| − 1)/2 ∀B ∈ Vodd (4)

Edmonds [1965a, 1965b] proved that if we replace the integrality constraint (2) with
(4), the basic solutions to the resulting LP are integral.5 Edmonds’ algorithm mimics
the structure of the Hungarian algorithm but the search for augmenting paths is com-
plicated by the presence of odd-length alternating cycles and the fact that matched
edges must be searched in both directions. Edmonds’ solution is to contract blossoms
as they are encountered. A blossom is defined inductively as an odd-length cycle alter-
nating between matched and unmatched edges, whose components are either single
vertices or blossoms in their own right. Blossoms are discussed in detail in Section 2.1.

The fastest implementation of Edmonds’ algorithm, due to Gabow [1990], runs
in O(mn + n2 log n) time, which matches the running time of the best bipartite
MWPM algorithm [Fredman and Tarjan 1987]. Gabow and Tarjan [1991] extended
their scaling algorithm for MWPM to general graphs, achieving a running time of
O(m

√
n log n log(nN)), which is the fastest known algorithm for integer-weighted

graphs and nearly matches the O(m
√

n) time bound of the best MCM algorithms
[Micali and Vazirani 1980; Vazirani 1994].6 As in the bipartite case, faster algorithms
for MWM and MWPM are known when the graph is dense or N is small. Huang and
Kavitha [2012] and Pettie [2012] gave reductions from MWM to N instances of MCM,
which can be used in conjunction with the MCM algorithms of Mucha and Sankowski
[2004], Harvey [2009], and Goldberg and Karzanov [2004]. Cygan et al. [2012] recently
showed that MWPM on general graphs is solvable in O(Nnω) time, matching the time
bound of Sankowski [2009] for bipartite graphs.

1.3. Approximating Weighted Matching

The approximate MWM problem is remarkable in that it has been studied for decades,
has practical applications, and yet as late as 1999, essentially nothing better than the
greedy algorithm was known.7 Moreover, the (1 − ε)-MCM problem had been solved
satisfactorily in the early 1970s. Although not stated as such, the O(m

√
n)-time exact

MCM algorithms [Dinic 1970; Hopcroft and Karp 1973; Karzanov 1973; Micali and
Vazirani 1980] are actually (1 − ε)-MCM algorithms running in O(mε−1) time. These

5In the MWPM problem
∑

e=(u,u′) x(e) = 1, for all u ∈ V, and we have the freedom to use an alternative
variety of odd-set constraints, namely,

∑
e=(u,v)∈E : u∈B,v 
∈B x(e) ≥ 1, ∀B ∈ Vodd.

6Gabow and Tarjan [1991] claim a running time of O(m
√

n log nα(m, n) log(nN)), where the α(m, n) factor
comes from an O(mα(m, n)) implementation of the split-findmin data structure [Gabow 1985a]. This can be
reduced to O(m log α(m, n)) [Pettie 2005]. Thorup [1999] noted that on integer-weighted inputs, split-findmin
can be implemented in O(m) time on a word-RAM.
7The greedy algorithm repeatedly includes the heaviest edge in the matching and removes all incident
edges. Gabow and Tarjan [1989, 1991] observed that by retaining the O(log(n/ε)) high-order bits of the
edge weights, their exact scaling algorithms become Õ(m

√
n)-time (1 − ε)-MWM algorithms for bipartite and

general graphs.

Journal of the ACM, Vol. 61, No. 1, Article 1, Publication date: January 2014.



�

�

�

�

�

�

�

�

Linear-Time Approximation for Maximum Weight Matching 1:7

algorithms are based on three observations (i) a maximal set of shortest augmenting
paths can be found in linear time, (ii) augmenting along such a set increases the length
of the shortest augmenting path, and (iii) that after k rounds of such augmentations
the resulting matching is a (1 − 1

k+1 )-MCM.
Preis [1999] gave a linear-time 1

2 -MWM algorithm, which improves on the greedy
algorithm’s O(m log n) running time but not its approximation guarantee. Drake and
Hougardy (see Vinkemeier and Hougardy [2005]) presented the first linear time al-
gorithm with an approximation guarantee greater than 1/2. Specifically, they gave a
(2

3 − ε)-MWM algorithm running in O(mε−1) time, for any ε > 0. The dependence on
ε was later improved by Pettie and Sanders [2004]. These algorithms are based on
a weighted version of Hopcroft and Karp’s [1973] argument, namely that any match-
ing whose weight-augmenting paths and cycles have at least k unmatched edges is
necessarily a (1 − 1

k )-MWM. Duan and Pettie [2010] and Hanke and Hougardy [2010]
presented (3

4 − ε)-MWM algorithms running in time O(m log n log ε−1).8

1.4. New Results

We present the first (1 − ε)-MWM algorithm that significantly improves on the
Õ(m

√
n) running times of Gabow and Tarjan [1989, 1991]. Our algorithm runs in

O(mε−1 log ε−1) time on general graphs and O(mε−1 · min{log ε−1, log N}) time on
integer-weighted general graphs. This is optimal for any fixed ε and near-optimal as a
function of ε, given the state-of-the-art in MCM algorithms.9 Moreover, our algorithm
is as simple as one could reasonably hope for. Its search for augmenting paths uses
depth first search [Gabow and Tarjan 1991, Sect. 8] rather than the double depth first
search of Micali and Vazirani [1980]. It uses no priority queues, split-findmin struc-
tures [Gabow 1985a], or the blossom “shells” that arise from Gabow and Tarjan’s [1991]
scaling technique.

1.5. Remarks on Approximate Weighted Matching and Its Applications

Our focus is on algorithms that accept arbitrary input graphs and that give provably
good worst-case approximations. These twin objectives are self-evidently attractive,
yet nearly all work on approximate weighted matching (prior to Preis [1999]) focused
on specialized cases or weaker approximation guarantees. Early work on the problem
usually considered complete bipartite graphs, and confirmed the efficiency of heuristics
either experimentally or analytically with respect to inputs over some natural distri-
bution [Avis 1978; Brogden 1946; Kuhn and Baumol 1962; Kurtzberg 1962; Motzkin
1956; Thorndike 1950]. See Avis [1983] for a more detailed discussion of heuristics.

Most work in the area considers graphs defined by metrics, often Euclidean met-
rics. Reingold and Tarjan [1981] proved that the greedy algorithm for metric MWPM10

has an approximation ratio of ≈ nlog 3
2 > n0.58. Goemans and Williamson [1995] gave

a 2-approximation for metric MWPM that can be implemented in O(n2) time [Gabow
and Pettie 2002], or O(m log2 n) time [Cole et al. 2001] in metrics defined by m-edge

8Hanke and Hougardy [2010] also claimed a ( 4
5 − ε)-MWM algorithm running in O(m log2 n log ε−1) time,

though the details were not substantiated.
9Note that any (1 − ε)-MWM algorithm running in O(f (ε)m) time yields an exact MCM algorithm running in
O(m · (f (ε) + εn)) time, for any ε. Thus, any (1 − ε)-MWM algorithm running in o(mε−1) time would improve
the O(m

√
n) MCM algorithms [Dinic 1970; Hopcroft and Karp 1973; Karzanov 1973; Micali and Vazirani

1980].
10For metric inputs let MWPM be the minimum-weight perfect matching problem.

Journal of the ACM, Vol. 61, No. 1, Article 1, Publication date: January 2014.



�

�

�

�

�

�

�

�

1:8 R. Duan and S. Pettie

graphs. The Euclidean MWPM comes in two flavors: the monochromatic version is given
2n points and the bichromatic version is given 2n points, n of which are colored blue,
the rest red, where the matching cannot include monochromatic edges.11 Both the
mono- and bichromatic variants of 2D Euclidean MWPM can be (1 + ε)-approximated
in O(n poly(ε−1, log n)) time [Sharathkumar and Agarwal 2012; Varadarajan and
Agarwal 1999]. Some work considers the even more specialized case of Euclidean
matching in the unit square, which allows for algorithms that guarantee absolute up-
per bounds on the weight of the matching; see Iri et al. [1983], Reingold and Supowit
[1983], Avis [1983] and the references therein.

There are several applications of MWM (on general or bipartite graphs) in which one
would gladly sacrifice matching quality for speed. In input-queued switches packets
are routed across a switch fabric from input to output ports. In each cycle one partial
permutation can be realized. Existing algorithms for choosing these matchings, such
as iSLIP [McKeown 1999] and PIM [Anderson et al. 1993], guarantee 1

2 -MCMs and it
has been shown [Giaccone et al. 2005; McKeown et al. 1996] that (approximate) MWMs
have good throughput guarantees, where edge weights are based on queue-length. See
also Leonardi et al. [2003], Shah and Kopikare [2002], and Shah et al. [2002]. Ap-
proximate MWM algorithms are a component in several multilevel graph clustering
libraries.12 (PARTY, for example, builds a hierarchical clustering by iteratively finding
and contracting approximate MWMs; see Preis and Diekmann [1997].) Approximate
MWM algorithms are used as a heuristic preprocessing step in several sparse linear
system solvers [Duff and Gilbert 2002; Hagemann and Schenk 2006; Olschowka and
Neumaier 1996; Schenk et al. 2007]. The goal is to permute the rows/columns to max-
imize the weight on or near the main diagonal.

1.6. Organization

Section 2 introduces some notation, states well-known properties of augmenting paths
and blossoms, and reviews Edmonds’ optimality conditions for weighted matching. In
Section 3, we present our (1 − ε)-MWM algorithms.

2. PRELIMINARIES

We use E(H) and V(H) to refer to the edge and vertex sets of H or the graph induced
by H, that is, V(E′) is the set of endpoints of E′ ⊆ E and E(V ′) is the edge set of the
graph induced by V ′ ⊆ V. A matching M is a set of vertex-disjoint edges. Vertices
not incident to an M edge are free. An alternating path (or cycle) is one whose edges
alternate between M and E\M. An alternating path P is augmenting if P begins and

ends at free vertices, that is, M ⊕ P def= (M\P) ∪ (P\M) is a matching with cardinality
|M ⊕ P| = |M| + 1.

Because we are only seeking a (1 − ε)-approximate solution, we can afford to scale
and round edge weights to small integers. To see this, observe that the weight of the
MWM is at least wmax = max{w(e) | e ∈ E(G)}. It suffices to find a (1 − ε/2)-MWM M
with respect to the weight function w̃(e) = �w(e)/γ � where γ = ε · wmax/n. Note that

11The weight of the bichromatic MWPM is also known as the earth mover distance between the red and blue
points.
12For example, METIS [Karypis and Kumar 1998], PARTY [Preis and Diekmann 1997], PT-SCOTCH
[Pellegrini 2008] CHACO [Hendrickson and Leland 1995], JOSTLE [Walshaw and Cross 2007], and
KaFFPa/KaFFPaE [Holtgrewe et al. 2010; Sanders and Schulz 2012].

Journal of the ACM, Vol. 61, No. 1, Article 1, Publication date: January 2014.



�

�

�

�

�

�

�

�

Linear-Time Approximation for Maximum Weight Matching 1:9

w(e) − γ < γ · w̃(e) ≤ w(e) for any e. Define M∗ and M̃∗ to be the MWMs with respect to
w and w̃. It follows that:

w(M) ≥ γ · w̃(M) Defn. of w̃

≥ γ · (1 − ε/2) · w̃(M̃∗) Defn. of M

≥ γ · (1 − ε/2) · w̃(M∗) Defn. of M̃∗

> γ · (1 − ε/2) · (γ −1 · w(M∗) − |M∗|) Defn. of w̃
≥ (1 − ε/2) · (w(M∗) − γ n/2) |M∗| ≤ n/2
= (1 − ε/2) · (w(M∗) − ε · wmax/2) Defn. of γ

> (1 − ε) · w(M∗) w(M∗) ≥ wmax .

Since it is better to use an exact MWM algorithm when ε < 1/n [Gabow 1990; Gabow
and Tarjan 1991], we assume, henceforth, that w : E → {1, 2, . . . , N}, where N ≤ n2

is the maximum integer edge weight. For notational convenience, we also assume that
N is a power of 2.

2.1. Blossoms and the LP Formulation of MWM

The dual LP of (1,4) is

minimize
∑

u∈V(G)

y(u) +
∑

B∈Vodd

|B| − 1
2

· z(B)

subject to yz(e) ≥ w(e) ∀e ∈ E(G)

y(u) ≥ 0, z(B) ≥ 0 ∀u ∈ V(G), ∀B ∈ Vodd

where, by definition, yz(u, v)
def= y(u) + y(v) +

∑
B∈Vodd,

(u,v)∈E(B)

z(B) .

Note that y and z map vertices and odd sets to their dual values. It is convenient to
create a dual yz(e) for each edge e, defined to be the sum of the y-values of its endpoints
and the z-values of all odd sets that contain e.

Despite the exponential number of primal constraints and dual z-variables,
Edmonds [1965a] demonstrated that an optimum matching could be found in poly-
nomial time by maintaining information (z-values) on no more than n/2 elements of
Vodd at any given time. At intermediate stages of Edmonds’ algorithm [1965a], there
is a matching M and a laminar (nested) subset � ⊆ Vodd of blossoms. A blossom is
identified with a vertex set B ∈ Vodd and an edge set EB on B. If v ∈ V, then B = {v}
is a trivial blossom with EB = ∅. Suppose there is an odd-length sequence of blossoms
A0, A1, . . . , A	 with associated edge sets EA0 , . . . , EA	

. If the {Ai} are connected in a cycle
by edges e0, . . . , e	, where ei ∈ Ai ×Ai+1 (modulo 	+1), then B = ⋃

i Ai is also a blossom
associated with edge set EB = ⋃

i EAi ∪ {e0, . . . , e	}. A short proof by induction shows
that |B| is odd. A blossom B is full with respect to a matching M if |M∩ EB| = (|B|−1)/2,
that is, M ∩ EB matches all vertices except one, which is called the base of B. Only full
blossoms are included in �. Note that E(B) = E ∩ (B × B) may contain many edges
outside of EB.

A key property of blossoms is that any vertex b ∈ B can be made the base by choos-
ing a suitable matching M on EB. Suppose, without loss of generality, that b ∈ A0
and let ei = (ui, vi+1) (modulo 	 + 1), where ui, vi ∈ Ai. Recursively find matchings
in {EAi} using b as the base of A0, ui as the base of Ai when i is odd, and vi as the
base of Ai when i > 0 is even. At this point the only unmatched vertices are the bases

Journal of the ACM, Vol. 61, No. 1, Article 1, Publication date: January 2014.



�

�

�

�

�

�

�

�

1:10 R. Duan and S. Pettie

Fig. 1. Thick edges are matched, thin unmatched. (a) A blossom B1 = (u1, u2, B2, u8, u9, u10, B3)

with base u1 containing nontrivial sub-blossoms B2 = (u3, u4, u5, u6, u7) with base u3 and B3 =
(u11, u12, u13) with base u11. Vertices u15, u16, and u17 are free. The path (u16, u2, u3, u7, u6, u5, u4, u17)

is an example of an augmenting path that exists in G but not G/B1, the graph obtained by con-
tracting B1. (b) The situation after augmenting along (u15, u14, B1, u17) in G/B1, which corresponds
to augmenting along (u15, u14, u1, u2, u3, u7, u6, u5, u4, u17) in G. After augmentation B1 and B2 have
their base at u4. If, instead, we augmented along (u15, u14, B1, u16), corresponding to the path
(u15, u14, u1, u13, u12, u11, u10, u9, u8, u6, u7, u3, u2, u16), the base of B1 would be relocated to u2 and the
bases of B2 and B3 would be relocated to u6 and u13, respectively.

{b} ∪ {ui}i odd ∪ {vi}i even. Include in the matching the edges {(ui, vi+1)}i odd, which leaves
only b unmatched. (See Figure 1.) The blossom structure guarantees that there is an
even-length alternating path from b to every other vertex c in B. Inductively assume
this claim holds for A0, . . . , A	. Suppose c ∈ Ai. If i is even, take a path from b to c
via edges (u0, v1), (u1, v2), . . . , (ui−1, vi). The inductive hypothesis gives us even-length
alternating paths from b to u0 in EA0 , from v1 to u1 in EA1 , and so on. If i is odd,
we go around the cycle in the other direction, taking a path from b to c via edges
(v0, u	), (v	, u	−1), . . . , (vi+1, ui). (See Figure 1.)

Matching algorithms represent a nested set � of full, active blossoms by rooted trees,
where leaves represent vertices and internal nodes represent nontrivial blossoms. A
root blossom is one not contained in any other blossom. The children of an internal
node representing B are ordered according to the odd cycle that formed B, where one
child is distinguished as containing the base of B. As we will see, it is often possible
to treat blossoms as if they were single vertices. Let the contracted graph G/� be
obtained by contracting all root blossoms and removing spurious edges. To dissolve a
root blossom B means to delete its node in the blossom forest and, in the contracted
graph, to replace B with individual vertices A0, . . . , A	. Lemma 2.1 summarizes some
well-known properties of blossoms and the contracted graph.

LEMMA 2.1. Let � be a set of full blossoms with respect to a matching M and let
B ∈ � be a root blossom.

(1) If M is a matching in G, then M/� is a matching in G/�.
(2) Every augmenting path P ′ relative to M/� in G/� extends to an augmenting path P

relative to M in G. (That is, P is obtained from P ′ by substituting for each nontrivial
blossom vertex B in P ′ a path through EB. See Figure 1.)

Journal of the ACM, Vol. 61, No. 1, Article 1, Publication date: January 2014.



�

�

�

�

�

�

�

�

Linear-Time Approximation for Maximum Weight Matching 1:11

(3) Let P ′ and P be as mentioned in (2). Then, � remains a valid set of full blossoms
(possibly with different bases) with respect to the augmented matching M⊕P. (See
Figure 1.)

PROOF. Part (1) follows from the fact that M ∩ EB leaves only one vertex in B
unmatched, namely its base, implying B is incident to at most one edge in G/�. For
Part (2) consider an augmenting path P ′ = (B0, B1, . . . , Bk) in G/�. The matched edge
in G corresponding to (Bi, Bi+1), where i is odd, necessarily connects the bases of Bi
and Bi+1. We can therefore extend P ′ to an augmenting path P in G by substituting
for each Bi a suitable even-length alternating path through EBi , one endpoint of which
is the base of Bi. Turning to Part (3), suppose P enters a blossom B at its base b and
leaves at a vertex c. It follows that b is either free or matched to a vertex outside of B.
After augmentation b will be matched and c will be matched to a vertex outside of B,
that is, augmenting along P shifts the base from b to c. Augmenting along P may also
shift the bases of other blossoms contained in B. For example, suppose b ∈ A0, c ∈ Ai,
and i is even. (As defined earlier, B is composed of sub-blossoms {Ai} connected by cycle
edges {(ui, vi+1)}.) The portion of P in EB traverses cycle edges (u0, v1), . . . , (ui−1, vi) and
even-length alternating paths in each of A0, A1, . . . , Ai; augmenting along P relocates
all of their bases. For example, the base of A0 is relocated from b to u0 and the base of
A1 from u1 to v1, since (u0, v1) ∈ M ⊕ P.

Implementations of Edmonds’ algorithm grow a matching M while maintaining
Property 2.2, which controls the relationship between M, � and the dual variables.

Property 2.2. (Feasibility and Complementary Slackness Conditions)

(1) Nonnegativity. z(B) ≥ 0 for all B ∈ Vodd and y(u) ≥ 0 for all u ∈ V(G). If y(u) > 0,
then u is matched.

(2) Active Blossoms. � contains all B with z(B) > 0 and all root blossoms B have
z(B) > 0. (Non-root blossoms may have zero z-values.)

(3) Domination. yz(e) ≥ w(e) for all e ∈ E.
(4) Tightness. yz(e) = w(e) when e ∈ M or e ∈ EB for some B ∈ �.

If the y-values of free vertices become zero, it follows from domination and tightness
that M is a maximum weight matching, as the following short proof attests. Here M∗
is any maximum weight matching.

w(M) =
∑
e∈M

w(e) =
∑
e∈M

yz(e) tightness

=
∑

u∈V(G)

y(u) +
∑
B∈�

|B| − 1
2

· z(B) free y-values, defn. of yz

≥
∑

u∈V(M∗)
y(u) +

∑
B∈�

|E(B) ∩ M∗| · z(B) y, z nonnegative

=
∑

e∈M∗
yz(e) ≥ w(M∗) domination

Our approximate MWM algorithms are based on the observation that if domination
and tightness are satisfied up to a 1 ± ε factor, then the given matching is a (1 − O(ε))-
MWM.

LEMMA 2.3. Let M and � be a matching and set of nested blossoms, and let y
and z assign their dual values. Suppose y, z satisfy Property 2.2(1,2) and satisfy Prop-
erty 2.2(3,4) in the following approximate sense. For all e, yz(e) ≥ (1 − ε0) · w(e), and for

Journal of the ACM, Vol. 61, No. 1, Article 1, Publication date: January 2014.



�

�

�

�

�

�

�

�

1:12 R. Duan and S. Pettie

all e ∈ M ∪ ⋃
B∈� EB, yz(e) ≤ (1 + ε1) · w(e). If the y-values of free vertices are zero, M is

a
(
(1 + ε1)−1(1 − ε0)

)
-MWM.

PROOF. From the definitions of approximate tightness and approximate domina-
tion, we have the following.

w(M) =
∑
e∈M

w(e) ≥ (1 + ε1)−1
∑
e∈M

yz(e) approx. tightness

= (1 + ε1)−1

⎛
⎝ ∑

u∈V(G)

y(u) +
∑
B∈�

|B| − 1
2

· z(B)

⎞
⎠ free y-values, defn. of yz

≥ (1 + ε1)−1

⎛
⎝ ∑

u∈V(M∗)
y(u) +

∑
B∈�

|E(B) ∩ M∗| · z(B)

⎞
⎠ y, z nonnegative

= (1 + ε1)−1 ·
∑

e∈M∗
yz(e) defn. of yz

≥ (1 + ε1)−1(1 − ε0) · w(M∗) approx. domination

3. A SCALING ALGORITHM FOR APPROXIMATE MWM
Our algorithm maintains a dynamic relaxation of the feasibility and complementary
slackness conditions. In the beginning, domination is weak but becomes progressively
tighter at each scale whereas tightness is weakened at each scale, though not uni-
formly. The degree to which a matched edge or blossom edge may violate tightness
depends on the scale when it last entered the blossom or matching.

Recall that N is the maximum integer edge weight. The parameter ε′ = 
(ε) will
be selected later to guarantee that the final matching is a (1 − ε)-MWM. Henceforth,
assume that N ≥ 1 and ε′ ≤ 1/4 are powers of two. Define δ0 = ε′N and δi = δ0/2i. At
scale i we use the truncated weight function wi(e) = δi�w(e)/δi�. Note that wi+1(e) =
wi(e) or wi(e) + δi+1.

Property 3.1. (Relaxed Feasibility and Complementary Slackness). There are L + 1
scales numbered 0, . . . , L, where L = log N. Let i ∈ [0, L] be the current scale.

(1) Granularity. z(B) is a nonnegative multiple of δi, for all B ∈ Vodd, and y(u) is a
nonnegative multiple of δi/2, for all u ∈ V(G).

(2) Active Blossoms. � contains all B with z(B) > 0 and all root blossoms B have
z(B) > 0. (Non-root blossoms may have zero z-values.)

(3) Near Domination. yz(e) ≥ wi(e) − δi for all e ∈ E.
(4) Near Tightness. Call a matched or blossom edge type j if it was last made a matched

or blossom edge in scale j ≤ i. (That is, it entered the set M ∪ ⋃
B∈� EB in scale j

and has remained in that set, even as M and � evolve as augmenting paths are
found and blossoms are formed and dissolved.) If e is such a type j edge, then
yz(e) ≤ wi(e) + 2(δj − δi).

(5) Free Vertex Duals. The y-values of free vertices are equal and strictly less than the
y-values of matched vertices.

Property 3.1’s definitions of near domination and near tightness differ from their
analogues in previous (exact) scaling algorithms. The differences stem from the halting
conditions for a scale and how dual variables are adjusted between scales. In Gabow
and Tarjan’s [1991] algorithm, for example, scale i begins by forgetting the matching

Journal of the ACM, Vol. 61, No. 1, Article 1, Publication date: January 2014.



�

�

�

�

�

�

�

�

Linear-Time Approximation for Maximum Weight Matching 1:13

and blossom edges from the previous scale (though not the nested structure of the
old blossoms), replacing the weight function wi−1 by wi, and adjusting the duals to
guarantee domination with respect to wi.13 Since the matching and blossom edges
are forgotten, near tightness holds trivially. The scale ends once the algorithm finds a
perfect matching, blossoms, and duals y, z that satisfy tightness to within δi.

For subsequent scales of the Gabow-Tarjan algorithm to be efficient, it is critical that
each scale ends with a perfect matching and nearly optimum duals. Our algorithm,
however, is obliged to run in linear time (for fixed ε) and therefore cannot afford to
find a perfect matching, nor can it afford to discard the matching computed by one
scale before proceeding to the next. The goal of a scale must be different. Consider the
difficulty of preserving Property 3.1(3,4) (near tightness and near domination) across
multiple scales. At the end of scale i − 1, we have yz(e) ≥ wi−1(e) − δi−1 whereas at
the beginning of scale i we require yz(e) ≥ wi(e) − δi. We force near domination to
be satisfied by simply having each vertex add δi to its y-value. However, doing this
effectively weakens near-tightness on matched and blossom edges by 2δi. If an edge
e enters the matching at scale j and witnesses i − j scale changes, in scale i it may
violate tightness by as much as 2δj+1 + · · · + 2δi = 2(δj − δi). The question is whether
violations of tightness of this magnitude are tolerable.

In order to invoke Lemma 2.3, we need to write Property 3.1(3,4) as multiplicative
(1 − ε0)- and (1 + ε1)-approximations, for some ε0, ε1 = O(ε). The algorithm halts after
scale L. At this time wL = w, δL = ε′ and the y-values of free vertices are zero. Since
weights are positive integers the near dominance condition yz(e) ≥ wL(e) − δL =
w(e) − ε′ implies yz(e) ≥ (1 − ε′)w(e). We will show later that the near-tightness
condition yz(e) ≤ wi(e) + 2(δj − δi) implies yz(e) ≤ (1 + ε1)w(e) for an ε1 = O(ε′).

3.1. The Scaling Algorithm

Initially, M = ∅, � = ∅, and y(u) = N/2 − δ0/2 for all u ∈ V, which clearly satisfies
Property 3.1 for scale i = 0, since yz(e) = 2(N/2 − δ0/2) ≥ w0(e) − δ0. The algorithm,
given in Figure 2, consists of scales 0, . . . , L = log N, where the purpose of scale i is to
halve the y-values of free vertices while maintaining Property 3.1. In each iteration of
scale i, the algorithm (1) augments a maximal set of vertex-disjoint augmenting paths
of eligible edges, (2) finds and contracts blossoms of eligible edges, (3) performs dual
adjustments on y- and z-values, and (4) dissolves previously contracted root blossoms if
their z-values become zero. Each dual adjustment step decrements by δi/2 the y-values
of free vertices. Thus, there are roughly (N/2i+2)/(δi/2) = O(ε−1) iterations per scale,
independent of i. The efficiency and correctness of the algorithm depend on eligibility
being defined properly.

Definition 3.2. At scale i, an edge e is eligible if at least one of the following hold.

(i) e ∈ EB for some B ∈ �.
(ii) e 
∈ M and yz(e) = wi(e) − δi.

(iii) e ∈ M and yz(e) − wi(e) is a nonnegative integer multiple of δi.

Let Eelig be the set of eligible edges and let Gelig = (V, Eelig)/� be the unweighted
graph obtained by discarding ineligible edges and contracting root blossoms.

Criterion (i) for eligibility simply ensures that an augmenting path in Gelig extends
to an augmenting path of eligible edges in G. A key implication of Criteria (ii) and
(iii) is that if P is an augmenting path in Gelig, every edge in P becomes ineligible

13By “wi” and “δi”, we mean the weight function and granularity used in the ith scale of their algorithm.
Their initial granularity δ0 differs from ours.

Journal of the ACM, Vol. 61, No. 1, Article 1, Publication date: January 2014.



�

�

�

�

�

�

�

�

1:14 R. Duan and S. Pettie

Fig. 2. The scaling algorithm.

after augmentation. This follows from the fact that eligible unmatched edges must
have yz(e) − wi(e) < 0 whereas eligible matched edges must have yz(e) − wi(e) ≥ 0.
Regarding Criterion (iii), note that Property 3.1 (granularity and near domination)
implies that yz(e) − wi(e) is at least −δi and an integer multiple of δi/2.

Journal of the ACM, Vol. 61, No. 1, Article 1, Publication date: January 2014.



�

�

�

�

�

�

�

�

Linear-Time Approximation for Maximum Weight Matching 1:15

3.2. Analysis and Correctness

The aim of this section is to prove Lemma 3.5, which states that the algorithm main-
tains Property 3.1 after each of the O(ε−1) Dual Adjustment steps in each scale. Lem-
mas 3.3 and 3.4 establish some facts used in the proof of Lemma 3.5.

LEMMA 3.3. After the Augmentation and Blossom Shrinking steps, Gelig contains
no augmenting path, nor is there an even-length alternating path from a free vertex to
a blossom.

PROOF. Suppose there is an augmenting path P in Gelig after augmenting along
paths in �. Since � is maximal, P must intersect some P ′ ∈ � at a vertex v. However,
after the Augmentation step every edge in P ′ will become ineligible, so the matching
edge (v, v′) ∈ M is no longer in Gelig, contradicting the fact that P consists of eligible
edges. Since �′ is maximal there can be no blossom reachable from a free vertex in
Gelig after the Blossom Shrinking step.

Lemma 3.4 guarantees that all y-values updated in a Dual Adjustment step have
the same parity as a multiple of δi/2, that is, they are either both even or both odd
multiples of δi/2. In the proof of Lemma 3.5, this fact is used to argue that if both
endpoints of an edge e have their y-values decremented, then yz(e) is a multiple of δi.

LEMMA 3.4. Let R ⊆ V(Gelig) be the set of vertices reachable from free vertices by
eligible alternating paths, at any point in scale i. Let R̂ ⊆ V(G) be the set of original
vertices represented by those in R. Then, the y-values of R̂-vertices have the same parity,
as a multiple of δi/2.

PROOF. The claim clearly holds at initialization (i = 0) since all vertices have identi-
cal y-values. Assume, inductively, that before the Blossom Shrinking step, all vertices
in a common blossom have the same parity, as a multiple of δi/2. (This property is
clearly preserved when transitioning from scale i − 1 to scale i.) Consider an eligible
path P = (B0, B1, . . . , Bk) in Gelig, where the {Bj} are either vertices or blossoms in �
and B0 is unmatched in Gelig. Let (u0, v1), (u1, v2), . . . , (uk−1, vk) be the G-edges corre-
sponding to P, where uj, vj ∈ Bj. By the inductive hypothesis, uj and vj have the same
parity, and whether (uj, vj+1) is matched or unmatched, Definition 3.2 stipulates that
yz(uj, vj+1)/δi is an integer, which implies y(uj) and y(vj+1) have the same parity as
a multiple of δi/2. Thus, the y-values of all vertices in B0 ∪ · · · ∪ Bk have the same
parity as a free vertex in B0, whose y-value is equal to every other free vertex, by Prop-
erty 3.1(5). Since new blossoms are formed by eligible edges, the inductive hypothesis
is preserved after the Blossom Shrinking step. It is also preserved after the Dual Ad-
justment step since the y-values of vertices in a common blossom are incremented or
decremented in lockstep. This concludes the induction.

LEMMA 3.5. The algorithm preserves Property 3.1.

PROOF. Property 3.1(5) (free vertex duals) is maintained as only free vertices have
their y-values decremented in each Dual Adjustment step. Any newly matched edge
e is ineligible so neither endpoint of e can be in V̂out. Property 3.1(2) (active blos-
soms) is also maintained since all the new root blossoms discovered in the Blossom
Shrinking step are contained in Vout and will have positive z-values after adjustment.
Furthermore, each root blossom whose z-value drops to zero is dissolved, after Dual
Adjustment. At the beginning of scale i, all y- and z-values are integer multiples of δi/2
and δi, respectively, satisfying Property 3.1(1) (granularity). This property is clearly

Journal of the ACM, Vol. 61, No. 1, Article 1, Publication date: January 2014.



�

�

�

�

�

�

�

�

1:16 R. Duan and S. Pettie

maintained in each Dual Adjustment step. If e 
∈ M is placed in M during an Augmen-
tation step or placed in

⋃
B∈� EB during a Blossom Shrinking step, then e is type i and

yz(e) = wi(e) − δi < wi(e), which satisfies Property 3.1(4).
It remains to show that the algorithm maintains Property 3.1(3,4) (near domination

and near tightness). It is clear that these properties are preserved during Augmenta-
tion and Blossom Shrinking. First consider the dual adjustments made at the end of
scale i (the last line of pseudocode in Figure 2). Let e = (u, v) be an arbitrary edge and
let yz and yz′ be the function before and after dual adjustment. It follows that

yz′(e) = yz(e) + 2δi+1 y(u), y(v) incremented by δi+1

≥ wi(e) − δi + 2δi+1 near domination at scale i
≥ wi+1(e) − δi+1 wi(e) ≥ wi+1(e) − δi+1.

That is, Property 3.1(3) is preserved. If e ∈ M ∪ ⋃
B∈� EB is a type j edge, then at the

end of scale i Property 3.1(4) is also preserved since

yz′(e) = yz(e) + 2δi+1 ≤ wi(e) + 2(δj − δi) + 2δi+1 ≤ wi+1(e) + 2(δj − δi+1).

The first inequality follows from Property 3.1(4) at scale i and the second inequality
from the fact that wi(e) ≤ wi+1(e) and δi = 2δi+1.

Now consider a Dual Adjustment step. If neither u nor v is in V̂in ∪ V̂out or if u, v are
in the same root blossom in �, then yz(e) is unchanged, preserving Property 3.1. The
remaining cases depend on whether (u, v) is in M or not, whether (u, v) is eligible or
not, and whether both u, v ∈ V̂in ∪ V̂out or not.

Case 1. e 
∈ M, u, v ∈ V̂in ∪ V̂out. If e is ineligible, then yz(e) > wi(e) − δi. However, by
Lemma 3.4 (parity of y-values), we know (yz(e)−wi(e))/δi is an integer, so yz(e) ≥ wi(e)
before adjustment and yz(e) ≥ wi(e) − δi afterward (which could occur if both u, v ∈
V̂out), thereby preserving Property 3.1(3). If e is eligible, then at least one of u, v is in
V̂in, otherwise, another blossom or augmenting path would have been formed, so yz(e)
cannot be reduced, which also preserves Property 3.1(3).

Case 2. e ∈ M, u, v ∈ V̂in ∪ V̂out. Since u, v ∈ V̂in ∪ V̂out, Lemma 3.4 (parity of y-
values) guarantees that (yz(e) − wi(e))/δi is an integer. If yz(e) − wi(e) = −δi, then e is
ineligible. Thus, both u and v are in V̂in and yz(e) = wi(e) after dual adjustment, which
preserves Property 3.1(3,4). If yz(e) − wi(e) ≥ 0, then e is eligible, u ∈ V̂in, and v ∈ V̂out.
It cannot be that u, v ∈ V̂out as otherwise e would have been included in an augmenting
path or root blossom. In this case, yz(e) is unchanged by dual adjustment, preserving
Property 3.1(3,4).

Case 3. e 
∈ M, only v 
∈ V̂in ∪ V̂out. If e is eligible, then u ∈ V̂in and yz(e) will increase.
If it is ineligible, then yz(e) ≥ wi(e) − δi/2 before adjustment and yz(e) ≥ wi(e) − δi
afterward. In both cases, Property 3.1(3) is preserved.

Case 4. e ∈ M, only v 
∈ V̂in ∪ V̂out. It must be that e is ineligible, so u ∈ V̂in and
yz(e) − wi(e) is either negative or an odd multiple of δi/2. If e is type j, then, by Prop-
erty 3.1(1,4) (granularity and near tightness), yz(e) ≤ wi(e) + 2(δj − δi) − δi/2 before
adjustment and yz(e) ≤ wi(e) + 2(δj − δi) afterward, preserving Property 3.1(4).

Recall that Lemma 2.3 stated that the final matching will be a (1 − O(ε))-MWM if
free vertices have zero y-values, and |yz(e) − w(e)| = O(ε) · w(e). Lemmas 3.6 and 3.7
establish these bounds.

Journal of the ACM, Vol. 61, No. 1, Article 1, Publication date: January 2014.



�

�

�

�

�

�

�

�

Linear-Time Approximation for Maximum Weight Matching 1:17

LEMMA 3.6. Let i ≤ L be the scale index. Then

(1) for i < L, all edges eligible at any time in scales 0 through i have weight at least
N/2i+1 + δi;

(2) for any i, if e ∈ M, then yz(e) ≤ (1 + 4ε′)w(e).

PROOF.

Part 1. The last search for augmenting paths in scale i begins when the y-values
of free vertices are N/2i+2, and strictly less than y-values of other vertices, by Prop-
erty 3.1(5). An unmatched edge e = (u, v) can only be eligible at this scale if yz(e) =
wi(e) − δi ≤ w(e) − δi. Hence, w(e) ≥ wi(e) ≥ y(u) + y(v) + δi ≥ N/2i+1 + δi.

Part 2. Let e be a type j edge in M during scale i. Property 3.1(4) states that yz(e) −
wi(e) ≤ 2(δj − δi). Since wi(e) ≤ w(e) it also follows that yz(e) − w(e) ≤ 2δj − 2δi <

2δj = ε′N/2 j−1. By part 1, a type j edge must have weight at least N/2 j+1 + δj, hence
yz(e) − w(e) < 4ε′ · w(e).

LEMMA 3.7. After scale L = log N, M is a (1 − 5ε′)-MWM.

PROOF. The final scale ends when free vertices have zero y-values and δL = ε′.
According to Lemmas 3.6 and 2.3, w(M) ≥ (1−ε′)(1+4ε′)−1 ·w(M∗) > (1−5ε′) ·w(M∗).

THEOREM 3.8. A (1 − ε)-MWM can be computed in time O(mε−1 log N).

PROOF. Each Augmentation and Blossom Shrinking step takes O(m) time using a
modified depth-first search [Gabow and Tarjan 1991, Sect. 8]. (Finding a maximal set
of augmenting paths is significantly simpler, conceptually, than finding a maximal set
of minimum-length augmenting paths, as is done in Micali and Vazirani [1980] and
Vazirani [1994].) Each Dual Adjustment step clearly takes linear time, as does the
dual adjustment at the end of each scale. Scale i < L = log N begins with free vertices’
y-values at N/2i+1 (or N/2 − δ0/2, if i = 0) and performs Dual Adjustments until they
are N/2i+2 − δi/2. Since y-values of free vertices are decremented by δi/2 in each Dual
Adjustment step, there are exactly (N/2i+2 + δi/2)/(δi/2) = N/(2δ0) + 1 = ε′−1/2 + 1
such steps. The final scale begins with free vertices’ y-values at N/2L+1 and ends with
them at zero, so there are fewer than (N/2L+1)/(δL/2) = ε′−1 Dual Adjustment steps.
Lemma 3.7 guarantees that the final matching is a (1 − ε)-MWM for ε′ ≤ ε/5. Note
that M is not represented explicitly. After scale L, we have computed a nested set of
blossoms � and a matching, call it M′, in the contracted graph G/�. Extending M′ to
the corresponding matching M in G is easily accomplished in O(n) time by dissolving
the blossoms in a top-down fashion. Hence, the total running time is O(mε−1 log N).

3.3. A Linear-Time Algorithm

Our O(mε−1 log N)-time algorithm requires few modifications to run in linear time,
independent of N. In fact, the algorithm as it appears in Figure 2 requires no modi-
fications at all: we only need to change the definition of eligibility and, in each scale,
refrain from scanning edges that cannot possibly be eligible. In light of Lemma 3.6(1),
it is helpful to index edges according to the first scale in which they may be eligible.

Definition 3.9. Define μi = N/2i+1 + δi, for i < L, and μL = 0. Define scale(e) to be
the i such that w(e) ∈ [μi, μi−1).

In other words, once we compute scale(e) we can ignore e in all scales i < scale(e),
thereby saving time. The idea of our linear time algorithm is to forcibly ignore e in

Journal of the ACM, Vol. 61, No. 1, Article 1, Publication date: January 2014.



�

�

�

�

�

�

�

�

1:18 R. Duan and S. Pettie

scales i > scale(e) + log ε′−1. Ignoring an otherwise eligible edge can cause violations
of near tightness and near dominance that increase with each dual adjustment. We
shall prove that beyond scale scale(e) + log ε′−1, the magnitude of these violations is
an O(ε′) fraction of the weight of e, which is small enough to obtain a (1 − O(ε′))-MWM.
Definition 3.10 redefines eligibility. The differences with Definition 3.2 are underlined.

Definition 3.10. Let γ = log ε′−1. At scale i, an edge e is eligible if at least one of
the following holds.

(1) e ∈ EB for some B ∈ �.
(2) e 
∈ M and yz(e) = wi(e) − δi and scale(e) ≥ i − γ .
(3) e ∈ M and yz(e) − wi(e) is a nonnegative integer multiple of δi and scale(e) ≥ i − γ .

Let Eelig be the set of eligible edges and let Gelig = (V, Eelig)/� be the unweighted
graph obtained by discarding ineligible edges and contracting root blossoms.

LEMMA 3.11. Consider an execution of the algorithm using Definition 3.10 of eli-
gibility rather than Definition 3.2. Property 3.1(1,2,5) holds throughout the execution.
For an edge e and k = scale(e), Property 3.1(3,4) (near domination and near tight-
ness) hold in all scales i ≤ k + γ and thereafter in the following form. For each e,
yz(e) > (1 − ε′)wi(e) and for each matching or blossom edge yz(e) < (1 + 6ε′)wi(e).

PROOF. The definition of eligibility has no bearing on Property 3.1(1,2,5) so they
are maintained correctly. In scales k through k + γ , Property 3.1(3,4) is maintained as
the two definitions of eligibility are the same. At the beginning of scale t = k + γ + 1, e
may still be eligible if it is in a blossom. The moment the blossom (if any) is dissolved,
e will become ineligible and remain so for the remainder of the computation. At the
beginning of scale t, the y-values of free vertices are N/2t+1. From this moment on, the
y-values of free vertices are incremented by a total of

∑
l≥t+1 δl (the dual adjustments

following scales t through L − 1) and decremented a total of N/2t+1 + ∑
l≥t+1 δl (in

the Dual Adjustment steps following searches for augmenting paths and blossoms).
We consider the effects of these adjustments on near tightness and near domination
separately.

Near Tightness. Let e = (u, v) be a type j edge (matched or in a blossom) at the
beginning of scale t ≤ L. Each adjustment to y-values by some quantity � may cause
yz(e) to increase by 2�. This clearly occurs in the dual adjustments following each
scale as y(u) and y(v) are incremented by �. Following a search for blossoms, it may
be that u, v ∈ V̂in, which would also cause y(u) and y(v) to each be incremented by �.
Putting this all together, it follows that at any scale i ≥ t = k + γ + 1 = k + log ε′−1 + 1,

yz(e) ≤ wi(e) + 2(δj − δt) + 2 ·
⎛
⎝N/2t+1 + 2 ·

∑
l≥t+1

δl

⎞
⎠

< wi(e) + 2(δk − δt) + 2
(
δk+2 + 2δt

)
j ≥ k, defn. of t

= wi(e) + (2 + 1/2 + ε′)δk defn. of δt = ε′δk/2
< wi(e) + 3δk

< (1 + 6ε′) · wi(e) w(e) ≥ wi(e) > N/2k+1 = (2ε′)−1 · δk .

The inequality yz(e) < (1 + 6ε′) · wi(e) also holds if i < t since, in this case, yz(e) ≤
wi(e) + 2(δj − δi) < wi(e) + 2δk.

Journal of the ACM, Vol. 61, No. 1, Article 1, Publication date: January 2014.



�

�

�

�

�

�

�

�

Linear-Time Approximation for Maximum Weight Matching 1:19

Near Domination. At the beginning of scale t ≤ L, the y-values of free vertices are
N/2t+1 and we have yz(e) ≥ wt(e) − δt. In the remaining dual adjustments, yz(e) will
be incremented by 2(

∑
l≥t+1 δl) (following each scale) and decremented by as much as

2(N/2t+1 + ∑
l≥t+1 δl). (This could occur if in each dual adjustment step, u, v ∈ V̂out.)

Thus, at any scale i ≥ t = k + γ + 1,

yz(e) ≥ wt(e) − δt − N/2t

> wi(e) − 2δt − N/2t

= wi(e) − (ε′ + 1
2 )δk t = k + γ + 1; δk = ε′N/2k

≥ wi(e) · (1 − (ε′ + 1
2 )/( 1

2ε′ + 1)) wi(e) ≥ N/2k+1 + δk = ( 1
2ε′ + 1)δk

= wi(e) · (1 − ε′) .

If t > L, that is, Property 3.1(3) holds at the end of the computation, then yz(e) ≥
wL(e) − δL = w(e) − ε′ ≥ (1 − ε′) · w(e).

THEOREM 3.12. A (1 − ε)-MWM can be computed in time O(mε−1 log ε−1).

PROOF. We execute the algorithm from Figure 2 where Gelig refers to the eligible
subgraph as defined in Definition 3.10. According to Lemmas 2.3 and 3.11, the algo-
rithm returns a ((1 − ε′)(1 + 6ε′)−1)-MWM, which, for ε′ ≤ ε/7, is a (1 − ε)-MWM. It
remains to prove that the running time is O(mε−1 log ε−1).

Consider an edge e with scale(e) = k. By Lemma 3.6(1) e can be ignored in scales
0 through k − 1. It can only appear in Gelig (that is, as an eligible edge not in any
blossom) in scales k through k + γ . In scales k + γ + 1 through L = log N, e may
remain eligible, but only as a blossom edge. As soon as the blossoms containing e are
dissolved, e can be ignored as it will never become eligible again. Since the algorithm
need not spend any time examining edges in contracted blossoms, each edge actively
participates in only γ + 1 = log ε−1 + 1 scales, with O(ε−1) iterations per scale. The
total running time is therefore O(mε−1 log ε−1), provided that the scale(·) function can
be efficiently computed.

Computing scale(e) is tantamount to computing the most significant bit of w(e). Once
MSB(w(e)) = �log2 w(e)� is known, scale(e) can be just one of two values. Recall from
Section 2 that we can assume, without loss of generality, that N ≤ n2. Using O(n)
space and preprocessing time we can tabulate the MSB function on log n-bit integers.
We can then determine MSB(w(e)) in O(1) time with two table lookups.

REFERENCES

Alt, H., Blum, N., Mehlhorn, K., and Paul, M. 1991. Computing a maximum cardinality matching in a
bipartite graph in time O(n1.5√

m/ log n). Inf. Proc. Lett. 37, 4, 237–240.
Anderson, T., Owicki, S., Saxe, J., and Thacker, C. 1993. High speed switch scheduling for local area net-

works. ACM Trans. Comput. Syst. 11, 4, 319–352.
Andersson, A., Hagerup, T., Nilsson, S., and Raman, R. 1998. Sorting in linear time? J. Comput.

Syst. Sci. 57, 1, 74–93.
Avis, D. 1978. Two greedy heuristics for the weighted matching problems. In Proceedings of the 9th Southeast

Conference on Combinatorics, Graph Theory, and Computing (CongrNumer XXI). 65–76.
Avis, D. 1983. A survey of heuristics for the weighted matching problem. Networks 13, 475–493.
Balinski, M. L. 1969. Labelling to obtain a maximum matching. In Combinatorial Mathematics and Its

Applications, R. C. Bose and T. A. Downing Eds., University of North Carolina Press, 585–602.
Bertsekas, D. P. 1981. A new algorithm for the assignment problem. Math. Prog. 21, 152–171.
Birkhoff, G. 1946. Tres observaciones sobre el elgebra lineal. Universidad Nacional de Tucuman, Revista

A 5, 1–2, 147–151.

Journal of the ACM, Vol. 61, No. 1, Article 1, Publication date: January 2014.



�

�

�

�

�

�

�

�

1:20 R. Duan and S. Pettie

Brogden, H. E. 1946. An approach to the problem of differential prediction. Psychometrika 11, 3,
139–154.

Brown, G. and von Neumann, J. 1950. Solutions of games by differential equations. In Contributions to
the Theory of Games, H. Kuhn and A. Tucker Eds., Annals of Mathematical Studies Series, vol. 24.
Princeton University Press, 73–79.

Cheriyan, J. and Mehlhorn, K. 1996. Algorithms for dense graphs and networks on the random access com-
puter. Algorithmica 15, 6, 521–549.

Christofides, N. 1976. Worst case analysis of a new heuristic for the travelling salesman problem. Tech. rep.,
Graduate School of Industrial Administration, Carnegie Mellon University.

Cole, R., Hariharan, R., Lewenstein, M., and Porat, E. 2001. A faster implementation of the Goemans-
Williamson clustering algorithm. In Proceedings of the 12th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA). 17–25.

Cunningham, W. H. and Marsh, III, A. B. 1978. A primal algorithm for optimum matching. Math. Prog.
Study 8, 50–72.

Cygan, M., Gabow, H. N., and Sankowski, P. 2012. Algorithmic applications of Baur-Strassen’s theorem:
Shortest cycles, diameter and matchings. In Proceedings of the 53rd Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS). 531–540.

Dantzig, G. B. 1951. Application of the simplex method to the transportation problem. In Activity Analysis
of Production and Allocation, Cowles Commission Monograph 13, T. C. Koopmans Ed., Wiley, New York,
359–373.

Desler, J. F. and Hakimi, S. L. 1969. A graph-theoretic approach to a class of integer-programming problems.
Oper. Res. 17, 6, 1017–1033.

Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. Numer. Math. 1, 269–271.
Dinic, E. A. 1970. Algorithm for solution of a problem of maximum flow in networks with power estimation.

Soviet Math. Dokl. 11, 1277–1280.
Dinic, E. A. and Kronrod, M. A. 1969. An algorithm for the solution of the assignment problem. Soviet

Math. Dokl. 10, 6, 1324–1326.
Drake, D. and Hougardy, S. 2003a. Improved linear time approximation algorithms for weighted matchings.

In Proceedings of the 7th International Workshop on Randomization and Approximation Techniques in
Computer Science (APPROX). Lecture Notes in Computer Science, vol. 2764, Springer. 14–23.

Drake, D. and Hougardy, S. 2003b. A simple approximation algorithm for the weighted matching problem.
Inf. Proc. Lett. 85, 211–213.

Duan, R. and Pettie, S. 2010. Approximating maximum weight matching in near-linear time. In Proceedings
of the 51st IEEE Symposium on Foundations of Computer Science (FOCS). 673–682.

Duan, R. and Su, H.-H. 2012. A scaling algorithm for maximum weight matching in bipartite graphs. In
Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA). 1413–1424.

Duff, I. S. and Gilbert, J. R. 2002. Maximum-weighted matching and block pivoting for symmetric indefinite
systems. In Householder Symposium XV Book of Abstracts, 73–75.

Easterfield, T. E. 1946. A combinatorial algorithm. J. London Math. Soc. 21, 219–226. (Republished as: An
algorithm for the allocation problem, Oper. Res. 11, 3, 123–129, 1960.)

Edmonds, J. 1965a. Maximum matching and a polyhedron with 0, 1-vertices. J. Res. Nat. Bur. Stand. Sect.
B 69B, 125–130.

Edmonds, J. 1965b. Paths, trees, and flowers. Canad. J. Math. 17, 449–467.
Edmonds, J. and Johnson, E. L. 1973. Matching, Euler tours, and the Chinese postman. Math. Prog. 5,

88–124.
Edmonds, J. and Karp, R. M. 1972. Theoretical improvements in algorithmic efficiency for network flow

problems. J. ACM 19, 2, 248–264.
Feder, T. and Motwani, R. 1995. Clique partitions, graph compression and speeding-up algorithms. J.

Comput. Syst. Sci. 51, 2, 261–272.
Ford, L. R. and Fulkerson, D. R. 1962. Flows in Networks. Princeton University Press.
Fredman, M. L. and Tarjan, R. E. 1987. Fibonacci heaps and their uses in improved network optimization

algorithms. J. ACM 34, 3, 596–615.
Gabow, H. N. 1974. Implementation of algorithms for maximum matching on nonbipartite graphs. Ph.D.

thesis, Stanford University.
Gabow, H. N. 1985a. A scaling algorithm for weighted matching on general graphs. In Proceedings of the

26th IEEE Symposium on Foundations of Computer Science (FOCS). 90–100.
Gabow, H. N. 1985b. Scaling algorithms for network problems. J. Comput. Syst. Sci. 31, 2, 148–168.

Journal of the ACM, Vol. 61, No. 1, Article 1, Publication date: January 2014.



�

�

�

�

�

�

�

�

Linear-Time Approximation for Maximum Weight Matching 1:21

Gabow, H. N. 1990. Data structures for weighted matching and nearest common ancestors with linking. In
Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 434–443.

Gabow, H. N. and Pettie, S. 2002. The dynamic vertex minimum problem and its application to clustering-
type approximation algorithms. In Proceedings of the 8th Scandinavian Workshop on Algorithm Theory
(SWAT). 190–199.

Gabow, H. N. and Tarjan, R. E. 1985. A linear-time algorithm for a special case of disjoint set union. J.
Comput. Syst. Sci. 30, 2, 209–221.

Gabow, H. N. and Tarjan, R. E. 1989. Faster scaling algorithms for network problems. SIAM J. Comput. 18,
5, 1013–1036.

Gabow, H. N. and Tarjan, R. E. 1991. Faster scaling algorithms for general graph-matching problems.
J. ACM 38, 4, 815–853.

Gabow, H. N., Galil, Z., and Spencer, T. H. 1989. Efficient implementation of graph algorithms using con-
traction. J. ACM 36, 3, 540–572.

Galil, Z., Micali, S., and Gabow, H. N. 1986. An O(EV log V) algorithm for finding a maximal weighted
matching in general graphs. SIAM J. Comput. 15, 1, 120–130.

Giaccone, P., Leonardi, E., and Shah, D. 2005. On the maximal throughput of networks with finite buffers
and its application to buffered crossbars. In Proceedings of the 24th INFOCOM. Vol. 2, 971–980.

Gleyzal, A. 1955. An algorithm for solving the transportation problem. J. Res. Nat. Bur. Standards 54, 4,
213–216.

Goemans, M. X. and Williamson, D. P. 1995. A general approximation technique for constrained forest prob-
lems. SIAM J. Comput. 24, 2, 296–317.

Goldberg, A. V. and Karzanov, A. V. 2004. Maximum skew-symmetric flows and matchings. Math. Program.,
Ser. A 100, 537–568.

Goldberg, A. V. and Kennedy, R. 1997. Global price updates help. SIAM J. Disc. Math. 10, 4, 551–572.
Hadlock, F. 1975. Finding a maximum cut of a planar graph in polynomial time. SIAM J. Comput. 4, 3,

221–225.
Hagemann, M. and Schenk, O. 2006. Weighted matchings for preconditioning symmetric indefinite linear

systems. SIAM J. Sci. Comput. 28, 2, 403–420.
Han, Y. 2002. Deterministic sorting in O(n log log n) time and linear space. In Proceedings of the 34th ACM

Symposium on Theory of Computing (STOC). 602–608.
Hanke, S. and Hougardy, S. 2010. New approximation algorithms for the weighted matching problem. Re-

search rep. No. 101010, Research Institute for Discrete Mathematics, University of Bonn.
Harvey, N. 2009. Algebraic algorithms for matching and matroid problems. SIAM J. Comput. 39, 2, 679–702.
Hendrickson, B. and Leland, R. 1995. The Chaco user’s guide: Version 2.0. Tech. rep. SAND94–2344, Sandia

National Laboratories.
Hitchcock, F. L. 1941. The distribution of a product from several sources to numerous localities. J. Math.

Phys. 20, 224–230.
Hoffman, A. J. and Markowitz, H. M. 1963. A note on shortest path, assignment, and transportation prob-

lems. Naval Res. Logistics Quart. 10, 1, 375–379.
Holtgrewe, M., Sanders, P., and Schulz, C. 2010. Engineering a scalable high quality graph partitioner. In

Proceedings of the 24th IEEE Symposium on Parallel and Distributed Processing (IPDPS). 1–12.

Hopcroft, J. E. and Karp, R. M. 1973. An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM
J. Comput. 2, 225–231.

Huang, C.-C. and Kavitha, T. 2012. Efficient algorithms for maximum weight matchings in general graphs
with small edge weights. In Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms
(SODA). 1400–1412.

Ibarra, O. H. and Moran, S. 1981. Deterministic and probabilistic algorithms for maximum bipartite match-
ing via fast matrix multiplication. Inf. Proc. Lett. 13, 1, 12–15.

Iri, M., Murota, K., and Matsui, S. 1983. Heuristics for planar minimum-weight perfect matchings.
Networks 13, 1, 67–92.

Johnson, D. B. 1975. Priority queues with update and finding minimum spanning trees. Inf. Proc. Lett. 4, 3,
53–57.

Kantorovitch, L. 1942. On the translocation of masses. Doklady Akad. Nauk SSSR 37, 199–201.
Kao, M.-Y., Lam, T.-K., Sung, W.-K., and Ting, H.-F. 2001. A decomposition theorem for maximum weight

bipartite matchings. SIAM J. Comput. 31, 1, 18–26.
Karypis, G. and Kumar, V. 1998. A fast and high quality multilevel scheme for partitioning irregular graphs.

SIAM J. Sci. Comput. 20, 1, 359–392.

Journal of the ACM, Vol. 61, No. 1, Article 1, Publication date: January 2014.



�

�

�

�

�

�

�

�

1:22 R. Duan and S. Pettie

Karzanov, A. V. 1973. An exact estimate of an algorithm for finding a maximum flow, applied to the problem
“on representatives” [in Russian]. Probl. Cybernetics 5, 66–70. (English translation available at the
author’s website.)

Karzanov, A. V. 1976. Efficient implementations of Edmonds’ algorithms for finding matchings with maxi-
mum cardinality and maximum weight. In Studies in Discrete Optimization, A. A. Fridman Ed., Nauka,
Moscow, 306–327.

Kuhn, H. W. 1955a. The Hungarian method for the assignment problem. Naval Res. Log. Quart. 2, 83–97.
Kuhn, H. W. 1955b. On combinatorial properties of matrices. George Washington University Logistics Pa-

pers 11, 1–11. (English translation of J. Egerváry, Matrixok kombinatorius tulajdonságairól, Matem-
atikai és Fizikai Lapok 38, 16–28, 1931.)

Kuhn, H. W. 1956. Variants of the Hungarian method for assignment problems. Naval Res. Log. Quart. 3,
253–258.

Kuhn, H. W. and Baumol, W. J. 1962. An approximate algorithm for the fixed-charges transportation prob-
lem. Naval Res. Log. Quart. 9, 1–15.

Kurtzberg, J. M. 1962. On approximation methods for the assignment problem. J. ACM 9, 4, 419–439.
Kwan, M. K. 1962. Graphic programming using odd or even points. Chinese Math. 1, 273–277.
Lawler, E. 1976. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart & Winston, New York.
Leonardi, E., Mellia, M., Neri, F., and Marsan, M. A. 2003. Bounds on delays and queue lengths in input-

queued cell switches. J. ACM 50, 4, 520–550.
McKeown, N. 1999. The iSLIP scheduling algorithm for input-queued switches. IEEE/ACM Trans. Netw. 7, 2,

188–201.
McKeown, N., Anantharam, V., and Walrand, J. C. 1996. Achieving 100% throughput in an input-queued

switch. In Proceedings of the 15th INFOCOM. 296–302.

Micali, S. and Vazirani, V. V. 1980. An O(
√|V| · |E|) algorithm for finding maximum matching in general

graphs. In Proceedings of the 21st IEEE Symposium on Foundations of Computer Science (FOCS).
17–27.

Motzkin, T. S. 1956. The assignment problem. In Proceedings of the Symposia in Applied Mathematics VI,
Numerical Analysis, 109–125.

Mucha, M. and Sankowski, P. 2004. Maximum matchings via Gaussian elimination. In Proceedings of the
45th IEEE Symposium on Foundations of Computer Science (FOCS). 248–255.

Munkres, J. 1957. Algorithms for the assignment and transportation problems. J. Soc. Indust. Appl. Math. 5,
32–38.

Ollivier, F. 2009. Looking for the order of a system of arbitrary ordinary differential equations. Appl. Algebra
Eng. Commun. Comput. 20, 1, 7–32. (English translation of: C. G. J. Jacobi, De investigando ordine
systematis aequationum differentialum vulgarium cujuscunque, Borchardt Journal für die reine und
angewandte Mathematik 65, 4, pp. 297–320, 1865.)

Olschowka, M. and Neumaier, A. 1996. A new pivoting strategy for Gaussian elimination. Linear Algebra
Appl. 240, 131–151.

Orlin, J. B. and Ahuja, R. K. 1992. New scaling algorithms for the assignment and minimum mean cycle
problems. Math. Program. 54, 41–56.

Orlova, G. I. and Dorfman, Y. G. 1972. Finding the maximum cut in a planar graph. Eng. Cybernet. 10,
502–506.

Pellegrini, F. 2008. SCOTCH 5.1 user’s guide. Technical report, LaBRI.
Pettie, S. 2005. Sensitivity analysis of minimum spanning trees in sub-inverse-Ackermann time. In Proceed-

ings of the 16th International Symposium on Algorithms and Computation (ISAAC). 964–973.
Pettie, S. 2012. A simple reduction from maximum weight matching to maximum cardinality matching.

Inf. Proc. Lett. 112, 23, 893–898.
Pettie, S. and Sanders, P. 2004. A simpler linear time 2/3 − ε approximation to maximum weight matching.

Inf. Proc. Lett. 91, 6, 271–276.
Preis, R. 1999. Linear time 1/2-approximation algorithm for maximum weighted matching in general

graphs. In Proceedings of the 16th Symposium on Theoretical Aspects of Computer Science (STACS).
Lecture Notes in Computer Science, vol. 1563, 259–269.

Preis, R. and Diekmann, R. 1997. PARTY – A software library for graph partitioning. In Advances in Com-
putational Mechanics with Parallel and Distributed Processing, B. H. V. Topping Ed., Civil-Comp Press,
63–71.

Journal of the ACM, Vol. 61, No. 1, Article 1, Publication date: January 2014.



�

�

�

�

�

�

�

�

Linear-Time Approximation for Maximum Weight Matching 1:23

Ramshaw, L. and Tarjan, R. E. 2012. A weight-scaling algorithm for min-cost imperfect matchings in bipar-
tite graphs. In Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science,
(FOCS). 581–590.

Reingold, E. M. and Supowit, K. J. 1983. Probabilistic analysis of divide-and-conquer heuristics for minimum
weighted Euclidean matching. Networks 13, 49–66.

Reingold, E. M. and Tarjan, R. E. 1981. On a greedy heuristic for complete matching. SIAM J. Comput. 10, 4,
676–681.

Sanders, P. and Schulz, C. 2012. Distributed evolutionary graph partitioning. In Proceedings of the 14th
Workshop on Algorithm Engineering and Experiments (ALENEX). 43–54.

Sankowski, P. 2009. Maximum weight bipartite matching in matrix multiplication time. Theoret. Comput.
Sci. 410, 44, 4480–4488.

Schenk, O., Wächter, A., and Hagemann, M. 2007. Matching-based preprocessing algorithms to the so-
lution of saddle-point problems in large-scale nonconvex interior-point optimization. Comput. Optim.
Appl. 36, 2–3, 321–341.

Shah, D., Giaccone, P., and Prabhakar, B. 2002. Efficient randomized algorithms for input-queued switch
scheduling. IEEE Micro 22, 1, 10–18.

Shah, D. and Kopikare, M. 2002. Delay bounds for the approximate maximum weight matching algorithm
for input queued switches. In Proceedings of the 21st INFOCOM. 1024–1031.

Sharathkumar, R. and Agarwal, P. K. 2012. A near-linear time ε-approximation algorithm for geometric
bipartite matching. In Proceedings of the 44th Symposium on Theory of Computing Conference (STOC).
385–394.

Thorndike, R. L. 1950. The problem of classification of personnel. Psychometrika 15, 215–235.
Thorup, M. 1999. Undirected single-source shortest paths with positive integer weights in linear time.

J. ACM 46, 3, 362–394.
Thorup, M. 2003. Integer priority queues with decrease key in constant time and the single source shortest

paths problem. In Proceedings of the 35th ACM Symposium on Theory of Computing (STOC). 149–158.
Thorup, M. 2007. Equivalence between priority queues and sorting. J. ACM 54, 6.
Tomizawa, N. 1971. On some techniques useful for solution of transportation network problems. Net-

works 1, 2, 173–194.
Varadarajan, K. R. and Agarwal, P. K. 1999. Approximation algorithms for bipartite and non-bipartite

matching in the plane. In Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms
(SODA). 805–814.

Vazirani, V. V. 1994. A theory of alternating paths and blossoms for proving correctness of the O(
√

VE)

general graph maximum matching algorithm. Combinatorica 14, 1, 71–109.
Vinkemeier, D. E. D. and Hougardy, S. 2005. A linear-time approximation algorithm for weighted matchings

in graphs. ACM Trans. Algor. 1, 1, 107–122.
von Neumann, J. 1953. A certain zero-sum two-person game equivalent to the optimal assignment problem.

In Contributions to the Theory of Games, H. W. Kuhn and A. W. Tucker Eds., Vol. II, Princeton University
Press, 5–12.

Walshaw, C. and Cross, M. 2007. JOSTLE: Parallel multilevel graph-partitioning software – an overview. In
Mesh Partitioning Techniques and Domain Decomposition Techniques, 27–58.

Williams, V. V. 2012. Multiplying matrices faster than Coppersmith-Winograd. In Proceedings of the 44th
Symposium on Theory of Computing Conference (STOC). 887–898.

Witzgall, C. and Zahn, Jr., C. T. 1965. Modification of Edmonds’ maximum matching algorithm. J. Res. Nat.
Bur. Standards Sect. B 69B, 91–98.

Received December 2011; revised March 2013, September 2013; accepted September 2013

Journal of the ACM, Vol. 61, No. 1, Article 1, Publication date: January 2014.


