
Fast Algorithms for (max, min)-Matrix Multiplication

and Bottleneck Shortest Paths∗

Ran Duan
University of Michigan

Seth Pettie
University of Michigan

Abstract

Given a directed graph with a capacity on each edge,
the all-pairs bottleneck paths (APBP) problem is to de-
termine, for all vertices s and t, the maximum flow that
can be routed from s to t. For dense graphs this prob-
lem is equivalent to that of computing the (max,min)-
transitive closure of a real-valued matrix. In this paper,
we give a (max,min)-matrix multiplication algorithm
running in time O(n(3+ω)/2) ≤ O(n2.688), where ω is
the exponent of binary matrix multiplication. Our al-
gorithm improves on a recent O(n2+ω/3) ≤ O(n2.792)-
time algorithm of Vassilevska, Williams, and Yuster.
Although our algorithm is slower than the best APBP
algorithm on vertex capacitated graphs, running in
O(n2.575) time, it is just as efficient as the best algo-
rithm for computing the dominance product, a problem
closely related to (max,min)-matrix multiplication.

Our techniques can be extended to give subcubic
algorithms for related bottleneck problems. The all-
pairs bottleneck shortest paths problem (APBSP) asks
for the maximum flow that can be routed along a
shortest path. We give an APBSP algorithm for edge-
capacitated graphs running in O(n(3+ω)/2) time and
a slightly faster O(n2.657)-time algorithm for vertex-
capactitated graphs. The second algorithm significantly
improves on an O(n2.859)-time APBSP algorithm of
Shapira, Yuster, and Zwick. Our APBSP algorithms
make use of new hybrid products we call the distance-
max-min product and dominance-distance product.

1 Introduction

It is well known that many network optimization prob-
lems can be solved by reducing the problem to a series of
fast matrix multiplications over a ring [5, 4, 11]. Among
such problems are finding maximum weight match-
ings [13, 14, 15, 10], finding least common ancestors in
DAGs [6], finding maximum weight subgraphs isomor-
phic to a fixed graph [22, 7], and computing shortest
paths in weighted and unweighted graphs [2, 8, 9, 18,

∗Email: {duanran, pettie}@umich.edu. This work was sup-

ported by NSF CAREER grant no. CCF-0746673.

16, 19, 24]. Generally speaking, algorithms based on
matrix multiplication have a difficult time with weighted
instances. They may not work at all for real-weighted
graphs and, even for integer-weighted graphs, their run-
ning times often scale linearity with the maximum edge
weight.

In recent years, however, researchers have success-
fully found “truly” subcubic time algorithms for some
real-weighted optimization problems that improve on
the best combinatorial algorithms for moderately dense
graphs. Vassilevska and Williams [22] showed that it is
possible to find a maximum weight triangle in a vertex-
weighted graph in O(n(3+ω)/2) time; their algorithm has
since been improved to O(nω) [7] and generalized to
finding larger induced subgraphs, not necessarily trian-
gles. Here ω is the exponent of square matrix multi-
plication, which is known to be less than 2.376 [5].1

Chan [3] has shown that various shortest path prob-
lems can be solved in sub-cubic time if the vertices are
points in d-dimension space and the edge weights some
well-behaved function of the vertex coordinates. As a
special case, Chan showed that shortest paths in real
vertex-weighted graphs can be solved in O(n2.844) time.

Very recently Shapira et al. [17] and Vassilevska
et al. [23] considered the all pairs bottleneck paths
problem (APBSP, also known as the maximum capac-
ity paths problem) in graphs with real capacities as-
signed to edges/vertices. It is shown that APBP can
be computed in O(n2+µ) = O(n2.575) time on ver-
tex capacitated-graphs [17] and O(n2+ω/3) = O(n2.792)
time on edge capacitated graphs [23]. (Here µ ≥ 1/2
is a constant related to rectangular matrix multiplica-
tion.) Shapira et al. also considered a variation called
all-pairs bottleneck shortest paths (APBSP), where one
asks for the maximum capacity path among shortest
paths. Their APBSP algorithm runs in O(n(8+µ)/3) =
O(n2.859) time. An unpublished algorithm of Vas-
silevska [20] computes APBSP on edge-capacitated
graphs in O(n(15+ω)/6) = O(n2.896) time.

1As in most other papers that use matrix multiplication, we
abusively use the notation O(nx) to mean O(nx+ε) for all ε > 0.

Our Results. In this paper we develop faster
algorithms for (max,min)-product, APBP in edge-
capacitated graphs, and all-pairs bottleneck shortest
paths in both vertex and edge-capacitated graphs. We
introduce a simple technique called row balancing (or
column balancing) that decomposes a matrix into a
sparse component and a dense component with uni-
form row (or column) density. Using this technique we
exhibit an extremely simple algorithm for computing
the dominance product on sufficiently sparse matrices
in O(nω) time, as well as an algorithm for somewhat
denser matrices that runs in time O(

√
mm′n(ω−1)/2).

(This last bound was claimed earlier in [23]; it was
based on a more complicated algorithm [21].) Using the
sparse dominance product and row balancing we show
how to compute the (max,min)-product (and, there-
fore, APBP) in O(n(3+ω)/2) time. This improves on the
previous O(n2+ω/3) time algorithm [23]. As a stepping
stone to our APBSP algorithms we develop fast algo-
rithms for computing hybrid products that operate on
pairs of matrices. In particular, we show how to com-
pute the distance product ((min,+)-product) of a pair
of matrices under a dominance constraint on a second
pair matrices, and, in a similar way, the (max,min)-
product under a distance constraint. These hybrid
products allow us to compute APBSP in O(n(3+ω)/2)
time on edge-capacitated graphs and O(n2.657) time
on vertex-capacitated graphs, which are significant im-
provements over [20, 17], which run in O(n(15+ω)/6) and
O(n(8+µ)/3) time, respectively.

Organization. In Section 3 we present our
new algorithms for sparse dominance products and
(max,min)-products, which leads directly to a faster
APBP algorithm. In Section 4 we define new products
called dominance-distance and distance-max-min, both
of which operate on pairs of matrices. In Sections 4.3
and 4.4 we show how to compute APBSP in edge- and
vertex-capacitated graphs using the distance-max-min
product.

2 Definitions

In our paper, we assume w.l.o.g. that the capacities for
edges or vertices are real numbers with the additional
minimum and maximum elements −∞ and ∞.

2.1 Row-Balancing and Column-Balancing
Most algorithms in this paper will use the concept
of row-balancing (and column-balancing) for sparse
matrices, in which we partition the dense rows into
parts and reposition each part in a distinct row.

Definition 2.1. Let A be an n×p matrix with m finite
elements. Depending on context, the other elements

will either all be ∞ or all be −∞. We assume the
former below. The row-balancing of A, or rb(A), is
a pair (A′, A′′) of n × p matrices, each with at most
k = dm/ne elements in each row. The row-balancing is
obtained by the following procedure: First, sort all the
finite elements in the ith row of A in increasing order,
and divide this list into several parts T 1

i , T 2
i , ...T ai

i such
that all parts except the last one contain k elements and
the last part (T ai

i) contains at most k elements. Let A′

be the submatrix of A containing the last parts:

A′[i, j] =
{

A[i, j] if A[i, j] ∈ T ai

∞ otherwise

Since the remaining parts have exact k elements, there
can be at most m/k ≤ n of them. We assign each part
to a distinct row in A′′, i.e., we choose an arbitrary
mapping ρ : [n] × [p/k] → [n] such that ρ(i, q) = i′ if
T q

i is assigned row i′; it is undefined if T q
i doesn’t exist.

Let A′′ be defined as:

A′′[i′, j] =
{

A[i, j] if ρ−1(i′) = (i, q) and (i, j) ∈ T q
i

∞ otherwise

Thus, every finite A[i, j] in A has a corresponding ele-
ment in either A′ or A′′, which is also in the jth column.
The column-balancing of A, or cb(A), is similarly de-
fined as (A′T , A′′T), where (A′, A′′) = rb(AT).

2.2 Matrix Products We use · to denote the stan-
dard (+, ·)-product on matrices and let 4,6, and ? be
the dominance, max-min, and distance products.

Definition 2.2. (Various Products) Let A and B
be real-valued matrices. The products ·,4,6, and ? are
defined as

(A ·B)[i, j] =
∑

k

(A[i, k] ·B[k, j])

(A 4 B)[i, j] = |{k | A[i, k] ≤ B[k, j]}|
(A 6 B)[i, j] = max

k
min{A[i, k], B[k, j]}

(A ? B)[i, j] = min
k
{A[i, k] + B[k, j]}

In Section 4.2 we introduce hybrids of these called
the dominance-distance and distance-max-min prod-
ucts.

3 Dominance and APBP

Matoušek [12] showed that the dominance product of
two n×n matrices can be computed in O(n(3+ω)/2) time.
However, in our algorithms we need the dominance
product only for relatively sparse matrices. Theorem 3.1
shows that A 4 B can be computed in O(nω) time

when the number of finite elements is O(n(ω+1)/2). The
algorithm behind this theorem is used directly in our
APBP and APBSP algorithms. Using Theorem 3.1
as a subroutine we give a faster dominance product
algorithm for somewhat denser matrices; however, these
improvements have no implications for APBP or related
problems. Theorem 3.2 was originally claimed by
Vassilevska et al. [23]. Their algorithm, which does not
appear in [23], is a bit more involved.

Theorem 3.1. (Sparse Dominance Product) Let
A and B be two n × n matrices where the number of
non-(∞) values in A is m1 and the number of non-(−∞)
values in B is m2. Then A4B can be computed in time
O(m1m2/n + nω).

Proof. Let (A′, A′′) = cb(A) be the column-balancing
of A. We build two Boolean matrices Â and B̂ and
compute Â · B̂ in O(nω) time.

Â[i, k] = 1 if A′′[i, k] 6=∞

B̂[k, j] = 1 if B[k′, j] ≥ max T q′

k′ , (k′, q′) = ρ−1(k)

One may verify that Â[i, k] · B̂[k, j] = 1 if and only
if B[k′, j] is greater or equal to all the elements in
the kth column of A′′, which is the q′th part in k′th
column of A, where q′ < ak′ is not the last part
of column k′. What (Â · B̂)[i, j] does not count are
dominances A[i, k] ≤ B[k, j], where either A[i, k] ∈ T q

k

but B[k, j] dominates some but not all elements in T q
k ,

or A[i, k] ∈ T ak

k (the last part of column k) and B[k, j]
does dominate all of T ak

k . We check these possibilities
in O(m1m2/n) time. Each of the m2 elements in B is
compared against at most dm1/ne elements from A.

Using the procedure from Theorem 3.1 as a subrou-
tine, we can compute A 4 B faster for denser matrices.
The resulting algorithm is somewhat simpler than that
of Vassilevska et al. [23].

Theorem 3.2. (Dense Dominance Product) Let A
and B be two n × n matrices where m1 is the number
of non-(∞) elements in A and m2 the number of non-
(−∞) elements in B, where m1m2 ≥ n1+ω. Then A4B
can be computed in time O(

√
m1m2n

(ω−1)/2).

Proof. Let L be the sorted list of all the finite elements
in A. We divide L into t parts L1, L2, ..., Lt, for a t to be
determined, so each part has at most dm1/te elements.
Then we build Boolean matrices Âp, B̂p, Ap, and Bp, for
1 ≤ p ≤ t as follows:

Âp[i, k] = 1 if A[i, k] ∈ Lp

B̂p[k, j] = 1 if B[k, j] ≥ max Lp

Ap[i, k] =
{

A[i, k] if A[i, k] ∈ Lp

∞ otherwise

Bp[k, j] =
{

B[k, j] if min Lp ≤ B[k, j] < max Lp

−∞ otherwise

Notice that every finite element of B is in at most one
Bp. One may verify that

A 4 B =
t∑

p=1

(Âp · B̂p + Ap 4 Bp)

From Theorem 3.1, the computation of Ap 4 Bp takes
time O((m1/t)|Bp|/n+nω), where |Bp| is the number of
finite elements in Bp. Thus, the total time to compute
A 4 B is O(m1m2/tn + tnω). The theorem follows by
setting t =

√
m1m2/n(1+ω)/2.

3.1 Max-Min Product In this section we give an
efficient algorithm for solving the max-min product of
two matrices that uses the sparse dominance product
as a key subroutine. One corollary is that all-pairs
bottleneck capacities can be found in the same time
bound [1]. By incurring an additional log n factor,
we can find all-pairs bottleneck paths using existing
techniques [24, 23]; see Appendix A for a review.

Theorem 3.3. (Max-Min Product) Given two real
n × n matrices A and B, A 6 B can be computed in
O(n(3+ω)/2) ≤ O(n2.688) time.

Proof. It suffices to compute matrices C and C ′:

C[i, j] = max
k
{A[i, k] | A[i, k] ≤ B[k, j]}

C ′[i, j] = max
k
{B[k, j] | A[i, k] ≥ B[k, j]}

since (A 6 B)[i, j] = max{C[i, j], C ′[i, j]}. Below
we compute C; the procedure for C ′ is obviously
symmetric.

Let L be the sorted list (in increasing order) of all
the elements in A and B. We evenly divide L into t
parts L1, L2, ..., Lt, so each part has at most d2n2/te
elements. Let Ar and Br be the submatrices of A and
B containing Lr:

Ar[i, j] =
{

A[i, j] if A[i, j] ∈ Lr

∞ otherwise

Br[i, j] =
{

B[i, j] if B[i, j] ∈ Lr

−∞ otherwise

Let (A′
r, A

′′
r) = rb(Ar) be the row-balancing of Ar.

After we compute Ar 4 B, A′
r 4 B, and A′′

r 4 B, for
all r, we may determine C[i, j] as follows:

1. Find the largest r such that (Ar 4 B)[i, j] > 0.
Thus, C[i, j] must be in Ar.

2. Check whether (A′
r 4 B)[i, j] > 0. If it is, since

A′
r contains the largest part of each row in Ar,

C[i, j] must be in the ith row of A′
r. It follows

that C[i, j] = maxk{A′
r[i, k] | A′

r[i, k] ≤ B[k, j]}.

3. If (A′
r 4 B)[i, j] = 0, find the largest q such that

(A′′
r 4B)[ρ(i, q), j] > 0. It follows that C[i, j] ∈ T q

i .
We determine C[i, j] be checking each element of
T q

i one by one.

Steps 1–3 take O(n/t) time per element, for a total
of O(n3/t) time. To compute Ar 4 B we begin by
building two Boolean matrices Âr and B̂r for all r such
that:

Âr[i, k] = 1 if A[i, k] ∈ Lr

B̂r[k, j] = 1 if B[k, j] ∈ Lr+1 ∪ · · · ∪ Lt

It is straightforward to see that Ar 4 B = Ar 4
Br + Âr · B̂r: the inter-part comparisons are covered
in Âr · B̂r and the intra-part comparisons in Ar 4 Br.
The products A′

r 4 B and A′′
r 4 B can be computed in

a similar fashion.
By Theorem 3.1 the time to compute Ar4B,A′

r4B,
and A′′

r 4 B, for all r, is t ·O(n3/t2 + nω). In total the
running time is O(n3/t + tnω). The theorem follows by
setting t = n(3−ω)/2.

Theorem 3.3 leads immediately to an algorithm
computing all-pairs bottleneck capacities in O(n(3+ω)/2)
time. We review in Appendix A an existing algo-
rithm [24, 23] for finding explicit bottleneck paths.

Corollary 3.1. APBP can be computed in
O(n(3+ω)/2) time.

4 Bottleneck Shortest Paths

In this section, we consider the All-Pairs Bottleneck
Shortest Paths problem (APBSP) in both edge- and
vertex-capacitated graphs. Let D(u, v) be the un-
weighted distance from u to v and let sc(u, v) be the
maximum capacity path from u to v with length D(u, v).

When the graph is edge-capacitated we give an
APBSP algorithm running in Õ(n(3+ω)/2) time, match-
ing the running time of our APBP algorithm. This is
the first published subcubic APBSP algorithm for edge-
capacitated graphs. It improves on an unpublished algo-
rithm of Vassilevska [20], which runs in O(n(15+ω)/6) =
O(n2.896) time. For vertex-capacitated graphs our al-
gorithm runs slightly faster, in O(n2.657) time; this im-
proves on a recent algorithm of Shapira et al. [17] run-
ning in O(n(8+µ)/3) = O(n2.859) time.

In Section 4.1 we review some facts about rectangu-
lar matrix multiplication. In Section 4.2 we present fast

algorithms for certain hybrid products based on domi-
nance, distance, and max-min products. In Sections 4.3
and 4.4 we present our APBSP algorithms for edge- and
vertex-capacitated graphs.

4.1 Rectangular Matrix Multiplication In our
algorithms we often use fast rectangular matrix multi-
plication algorithms [4, 11]. Let ω(r, s, t) to be the con-
stant such that multiplying nr×ns and ns×nt matrices
takes O(nω(r,s,t)) time. We use the standard definitions
of the constants α, β, and µ.

Definition 4.1. Let α be the maximum value satisfy-
ing ω(1, α, 1) = 2 and let β = ω−2

1−α . Define µ to be the
constant satisfying ω(1, µ, 1) = 1 + 2µ. If ω = 2 then
α = 1, β = 0, and µ = 1/2.

Then following bounds on α, β, and µ can be found
in [4, 11]:

Lemma 4.1. α > 0.294, β > 0.533, and µ < 0.575. For
s ≥ α, ω(1, s, 1) ≤ 2 + β(s− α).

4.2 Hybrid Products Our all-pairs bottleneck
shortest path algorithms use products that are hybrids
of dominance, distance, and max-min products.

Definition 4.2. (Dominance-Distance) Let (A, Ã)
and (B, B̃) be pairs of real matrices. Their dominance-

distance product is written C = (A, Ã)
4
? (B, B̃), where

C[i, j] = min
k:

Ã[i,k]≤B̃[k,j]

(A[i, k] + B[k, j])

In a similar fastion we define the distance-max-min
product as a hybrid of distance and max-min.

Definition 4.3. (Distance-Max-Min) Let (A, Ã)
and (B, B̃) be pairs of real matrices. Their distance-
max-min product is defined as:

(C, C̃) = (A, Ã)
?
6 (B, B̃)

where
C = A ? B

C̃[i, j] = max
k:

A[i,k]+B[k,j]=C[i,j]

min{Ã[i, k], B̃[k, j]}

Our algorithms make use of Zwick’s algorithm [24]
for distance products in integer-weighted matrices.

Theorem 4.1. (Distance Product) [24] Let A and
B be n × ns and ns × n matrices, respectively, whose
elements are in {1, . . . ,M}. Then A?B can be computed
in O(min{n2+s,Mnω(1,s,1)}) time.

Theorem 4.2. (Dominance-Distance Product)
Let A, Ã,B, B̃ be matrices such that:

A ∈ {1, . . . ,M,∞}n×ns

Ã ∈ (R ∪ {∞})n×ns

B ∈ {1, . . . ,M,∞}n
s×n B̃ ∈ (R ∪ {−∞})ns×n

where M is an integer and s ≤ 1. If the number
of finite elements in Ã and B̃ are m1 and m2, resp.,
then (A, Ã)

4
? (B, B̃) can be computed in O(m1m2/ns +

Mnω(1,s,1)) time.

Proof. Let (Ã′, Ã′′) = cb(Ã) be the column-balancing
of Ã. We build two matrices Â and B̂, defined below.
Here (k′, q′) = ρ−1(k).

Â[i, k] =
{

A[i, k′] if Ã′′[i, k] 6=∞
∞ otherwise

B̂[k, j] =
{

B[k′, j] if B̃[k′, j] ≥ max T q′

k′

∞ otherwise

In other words, (Â?B̂)[i, j] is the minimum A[i, k′]+
B[k′, j] such that B̃[k′, j] dominates all of T q′

k′ , the part
containing A[i, k′]. Furthermore, q′ < ak′ , i.e., T q′

k′ is not
the last part that appears in Ã′. What we must consider
now are sums A[i, k] + B[k, j] which could be smaller
than (Â ? B̂)[i, j]. If Ã[i, k] ∈ T q

k then we must examine
B̃[k, j] if it dominates some, but not all, elements of T q

k ,
or if q = ak and B̃[k, j] dominates all of T ak

k . Each
of the m2 elements of B̃ participates in dm1/nse such
sums, requiring O(m1m2/ns) time. The product Â ? B̂
is computed in O(Mnω(1,s,1)) time.

Just as the max-min product may be applied di-
rectly to compute APBP, the distance-max-min prod-
uct will be useful in computing APBSP on both edge-
and vertex-capacitated graphs.

Theorem 4.3. (Distance-Max-Min Product) Let
A, Ã,B, B̃ be matrices such that:

A ∈ {1, . . . ,M,∞}n×ns

Ã ∈ Rn×ns

B ∈ {1, . . . ,M,∞}n
s×n B̃ ∈ Rns×n

where M is an integer and s ≤ 1. Then
(A, Ã)

?
6 (B, B̃) can be computed in O(min{n2+s,M1/2 ·

n1+s/2+ω(1,s,1)/2}) time.

Proof. Recall that (C, C̃) = (A, Ã)
?
6 (B, B̃), where

C = A ? B and C̃[i, j] = maxk min{Ã[i, k], B̃[k, j]}
such that A[i, k] + B[k, j] = C[i, j]. (Note that we
could always compute C and C̃ by the trivial algorithm
in O(n2+s) time.) We begin by computing C in

O(Mnω(1,s,1)) time with Zwick’s algorithm [24], then
compute matrices C̃1, C̃2:

C̃1[i, j] = max
k
{Ã[i, k] | Ã[i, k] ≤ B̃[k, j] and

A[i, k] + B[k, j] = C[i, j]}
C̃2[i, j] = max

k
{B̃[k, j] | Ã[i, k] ≥ B̃[k, j] and

A[i, k] + B[k, j] = C[i, j]}

One can verify that C̃[i, j] = max{C̃1[i, j], C̃2[i, j]}.
Below we describe how to compute C̃1; computing C̃2

is symmetric.
Let L be the sorted list of all the elements in Ã and

B̃. We divide L into t parts, L1, L2, ..., Lt, so each part
has 2n1+s/t elements. Define the matrices Ar and Br,
for 1 ≤ r ≤ t, as:

Ãr[i, j] =
{

Ã[i, j] if Ã[i, j] ∈ Lr

∞ otherwise

B̃r[i, j] =
{

B̃[i, j] if B̃[i, j] ∈ Lr

−∞ otherwise

Let (Ã′
r, Ã

′′
r) = rb(Ãr) be the row-balancing of Ãr. We

compute the dominance-distance products Gr, G
′
r, and

G′′
r , for 1 ≤ r ≤ t, defined as:

Gr = (A, Ãr)
4
? (B, B̃)

G′
r = (A, Ã′

r)
4
? (B, B̃)

G′′
r = (A, Ã′′

r)
4
? (B, B̃)

For every pair i, j we determine C̃1[i, j] as follows:

1. Find the largest r such that Gr[i, j] = C[i, j], then
C̃1[i, j] must be in Ãr

2. Check whether G′
r[i, j] = C[i, j]. If it is, C̃1[i, j]

must be in the ith row of Ã′
r. Check all the finite

elements in that row one by one.

3. If G′
r[i, j] 6= C[i, j], find the largest q such that

G′′
r [ρ(i, q), j] = C[i, j]. Thus, C̃1[i, j] must be in

T q
i , the qth part of the ith row of Ã. Check the

elements in T q
i one by one.

Steps 1–3 take O(ns/t) time per pair, that is,
O(n2+s/t) time in total. What remains is to show that
we can compute Gr, G

′
r, G

′′
r in the stated bounds. To

find Gr, we begin by constructing two matrices Âr and
B̂r such that:

Âr[i, k] =
{

A[i, k] if Ã[i, k] ∈ Lr

∞ otherwise

B̂r[k, j] =
{

B[k, j] if B̃[k, j] ∈ Lr+1 ∪ · · · ∪ Lt

∞ otherwise

We compute Ĝr = Âr ? B̂r using Zwick’s algorithm [24]

and G̃r = (A, Ãr)
4
? (B, B̃r) using the algorithm from

Theorem 4.2. One may verify that:

Gr[i, j] = min{Ĝr[i, j], G̃r[i, j]}

If Gr[i, j] = A[i, k] + B[k, j], the Ĝr matrix covers the
case where A[i, k] and B[k, j] come from different parts
and G̃r covers the case where they are both in part
Lr. The matrices G′

r and G′′
r are computed in a similar

fashion.
In total, the time required to find Gr, G

′
r, and

G′′
r , for 1 ≤ r ≤ t, is t · O(Mnω(1,s,1) + n2+s/t2),

where the first term comes from [24] and the second
from Theorem 4.2. (Recall that Ãr and B̃r have
at most 2n1+s/t finite elements.) We choose t to
be n1+s/2−ω(1,s,1)/2M−1/2, which makes the overall
running time O(M1/2 · n1+s/2+ω(1,s,1)/2).

4.3 APBSP with Edge Capacities For the
APBSP problem, we use the “bridging sets” technique;
see Zwick [24] and Shapira et al. [17]. A standard prob-
abilistic argument shows that a small set of randomly
selected vertices will cover a set of relatively long paths.

Lemma 4.2. [24] Let S be a set of paths between distinct
pairs of vertices, each of length at least t, in a graph
with n vertices. A set of O(t−1n log n) vertices selected
uniformly at random contains, with probability 1 −
n−Ω(1), at least one vertex from each path in S. Such
a set is called a t-bridging set. A t-bridging set can be
found deterministically in O(tn2)-time.

Theorem 4.4. Given a real edge-capacitated graph on
n vertices, APBSP can be computed in O(n(3+ω)/2) =
O(n2.688) time.

Proof. We begin by computing unweighted distances in
O(n2+µ) = O(n2.575) time [24]. Let D and C be the
distance and edge capacity matrices, respectively. For
vertices at distance 1 or 2 it follows that:

sc(u, v) =
{

C[u, v] if D[u, v] = 1
(C 6 C)[u, v] if D[u, v] = 2

In general, once sc(u, v) is computed for u, v with
D[u, v] ≤ t, it can be computed for all u, v with
D[u, v] ≤ 3t/2 as follows. Let B be a bridging set for
the set of bottleneck shortest paths with length t/2.
We compute such a set if t ≤

√
n and, if not, use

the last bridging set when t was at most
√

n. Thus,
|B| = Õ(max{n/t,

√
n}). If D[u, v] is between t and

3t/2 there must be some vertex b ∈ B that lies on the
middle third of the bottleneck shortest path from u to
v and, therefore, satisfies D[u, b], D[b, v] ≤ t. In other

words, sc(u, v) can be derived from sc(u, b) and sc(b, v),
both of which have already been computed. We have:

sc(u, v) = max
b∈B

D[u,b]+D[b,v]=D[u,v]

min{sc(u, b), sc(b, v)}

This is clearly an instance of the distance-max-min
product of n× |B| and |B| ×n matrices. If B = Õ(

√
n)

we use the trivial O(n2.5)-time algorithm. Otherwise,
let ns = |B| = Õ(n/t). By Theorem 4.3 this product
can be computed in time:

O(t
1
2 · n1+

s+ω(1,s,1)
2)

= O(n
3+ω(1,s,1)

2) t = n1−s

= O(n
5+β(s−α)

2 ω(1, s, 1) ≤ 2 + β(s− α)

= O(n(3+ω)/2) s ≤ 1, β(1− α) = ω − 2

By Lemma 4.2 B can be computed in O(tn2) =
O(n5/2) = O(n(3+ω)/2) time. The procedure above
is obviously repeated just log3/2 n times, for a total
running time of O(n(3+ω)/2).

4.4 APBSP with Vertex Capacities In this sec-
tion, we consider the APBSP problem for vertex-
capacitated graphs. There are two variants of the prob-
lem: closed-APBSP, where the endpoints of a path are
taken into account, and open-APBSP, where they are
not. However, Shapira et al. [17] showed that open-
APBSP is reducible to closed-APBSP in O(n2) time.
Thus we only consider the closed-APBSP problem in
this paper. The Shapira et al. algorithm runs in time
O(n(8+µ)/3) ≤ O(n2.859). Here we improve their result
by the techniques introduced earlier.

Lemma 4.3 shows how bottleneck shortest paths can
be found quickly for relatively close pairs of vertices.
The proof borrows extensively from [17].

Lemma 4.3. Given a vertex-capacitated graph on n
vertices, the bottleneck shortest paths can be com-
puted for all pairs at distance at most nt, in time
O(n(3+ω+t−3β)/(2−β)).

Proof. Number the vertices V = {v1, v2, ..., vn} in
increasing order of capacity. We begin by computing
the distance matrix D in O(n2+µ) time [24]. For each
s = 0, ..., nt, we compute two n × n Boolean matrices
Ps and Qs, where Ps[i, j] = 1 if and only if there is a
path from vi to vj , of length at most s, in which vj has
minimum capacity, Qs[i, j] = 1 if and only if there is
a path from vi to vj , of length at most s, in which vi

has minimum capacity. From [17], the computation will
take O(nt+ω) time, as follows. Let E be the adjacency

matrix of G and F be the Boolean matrix satisfying
F [i, j] = 1 iff i ≥ j. Then P0 = Q0 = I, Ps = EPs−1∧F
and Qs = Qs−1E ∧ FT .

We define two n× n matrices A and B:

A[i, j] =
{

D[i, j] if PD[i,j][i, j] = 1
∞ otherwise

B[i, j] =
{

D[i, j] if QD[i,j][i, j] = 1
∞ otherwise

Then we just need to compute the bottleneck ca-
pacity matrix C in which:

C[i, j] = min{k | A[i, k] + B[k, j] = D[i, j]}

By the definition of A and B, A[i, k] = D[i, k], B[k, j] =
D[k, j], and vk has the minimum capacity in both paths.
Thus sc(vi, vj) is just the capacity of vC[i,j].

To compute C, as in [6], partition A into n×nr sub-
matrices Ap and B into nr × n sub-matrices Bp where
Ap covers columns (p − 1)nr + 1 through pnr and Bp

covers the rows (p − 1)nr + 1 through pnr. Then, for
every p, we compute the distance product Cp = Ap?Bp,
which will take O(n1−r ·nω(1,r,1)+t) time. For r > α we
have ω(1, r, 1) ≤ 2 + β(r−α) = ω− (1− r)β. Thus, the
time for this phase is O(nω+t+1+β(r−1)−r)

For every i, j, find the smallest p such that Cp[i, j] =
D[i, j], i.e., C[i, j] will be in the range [(p−1)nr+1, pnr].
We check all possibilities one by one. This will take
O(n2+r) time. To balance the two bounds we choose
r = (ω + t − 1 − β)/(2 − β), making the total running
time O(n

ω+3+t−3β
2−β).

Theorem 4.5. Given a vertex-capacitated graph
with n vertices, APBSP can be computed in

O(n
3+ω

2 − β2(3−ω)
4+2β(2−β)) = O(n2.657) time.

Proof. This algorithm has two phases. In the first phase
we use Lemma 4.3 to compute the bottleneck shortest
paths for vertices at distance is at most nt, for some
properly selected t. In the second phase, we convert
the vertex-capacitated graph to an edge-capacitated
graph by giving each edge the minimum capacity of
its endpoints. The algorithm from Theorem 4.4 will
compute bottleneck shortest paths for the remaining
vertex pairs in O(n(3+ω−βt)/2) time. To balance the two
phases we choose t = β(3 − ω)/(2 + β(2 − β)), making

the total running time: O(n
3+ω

2 − β2(3−ω)
4+2β(2−β)) = O(n2.657).

5 Conclusion and Open Problems

We have established new bounds on the complexity of
the max-min product and various hybrid products that
take into account extra constraints, e.g., distance prod-
uct with a dominance constraint, or max-min product

with a distance constraint. As corollaries we established
new bounds on the complexity of various all-pairs bot-
tleneck problems in arbitrary directed graphs. The effi-
ciency of our algorithms depended heavily on the simple
row balancing and column balancing operations, which
split a matrix into a sparse component and a dense com-
ponent that has uniform density. This technique is quite
basic and should be useful for designing subcubic algo-
rithms for other graph optimization algorithms.

Our algorithms use sparse dominance products as
a subroutine but only care to distinguish between two
values: zero and non-zero. It remains open whether this
simpler binary dominance product problem is provably
equivalent to computing the general dominance prod-
uct, or, for that matter, if either of these problems is
equivalent to computing max-min products.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The
design and analysis of computer algorithms. Addison-
Wesley, Reading, MA, 1975.

[2] N. Alon, Z. Galil, and O. Margalit. On the expo-
nent of the all pairs shortest path problem. J. Com-
put. Syst. Sci., 54(2):255–262, 1997.

[3] T. Chan. More algorithms for all-pairs shortest paths
in weighted graphs. In Proc. 39th ACM Symposium on
Theory of Computing (STOC), pages 590–598, 2007.

[4] D. Coppersmith. Rectangular matrix multiplication
revisited. J. Complex., 13(1):42–49, 1997.

[5] D. Coppersmith and T. Winograd. Matrix multiplica-
tion via arithmetic progressions. In Proc. 19th ACM
Symp. on the Theory of Computing (STOC), pages 1–
6, 1987.

[6] A. Czumaj, M. Kowaluk, and A. Lingas. Faster
algorithms for finding lowest common ancestors in
directed acyclic graphs. Theoretical Computer Science,
380(1–2):37–46, 2007.

[7] A. Czumaj and A. Lingas. Finding a heaviest triangle
is not harder than matrix multiplication. In Proceed-
ings 18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 986–994, 2007.

[8] Z. Galil and O. Margalit. All pairs shortest distances
for graphs with small integer length edges. Information
and Computation, 134(2):103–139, 1997.

[9] Z. Galil and O. Margalit. All pairs shortest paths
for graphs with small integer length edges. J. Com-
put. Syst. Sci., 54(2):243–254, 1997.

[10] N. J. A. Harvey. Algebraic structures and algorithms
for matching and matroid problems. In Proceedings
47th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 531–542, 2006.

[11] X. Huang and V. Pan. Fast rectangular matrix mul-
tiplication and applications. Journal of Complexity,
14:257–299, 1998.

[12] J. Matoušek. Computing dominances in en.
Info. Proc. Lett., 38(5):277–278, 1991.

[13] M. Mucha and P. Sankowski. Maximum matchings
via gaussian elimination. In Proc. 45th Symp. on
Foundations of Computer Science (FOCS), pages 248–
255, 2004.

[14] M. Mucha and P. Sankowski. Maximum matchings in
planar graphs via Gaussian elimination. Algorithmica,
45(1):3–20, 2006.

[15] P. Sankowski. Weighted bipartite matching in matrix
multiplication time. In Proceedings 33rd Int’l Sym-
posium on Automata, Languages, and Programming
(ICALP), pages 274–285, 2006.

[16] R. Seidel. On the all-pairs-shortest-path problem in
unweighted undirected graphs. J. Comput. Syst. Sci.,
51(3):400–403, 1995.

[17] A. Shapira, R. Yuster, and U. Zwick. All-pairs bottle-
neck paths in vertex weighted graphs. In SODA, pages
978–985, 2007.

[18] A. Shoshan and U. Zwick. All pairs shortest
paths in undirected graphs with integer weights. In
Proc. 40th IEEE Symp. on Foundations of Computer
Science (FOCS), pages 605–614, 1999.

[19] T. Takaoka. Subcubic cost algorithms for the all pairs
shortest path problem. Algorithmica, 20(3):309–318,
1998.

[20] V. Vassilevska. Efficient Algorithms for Path Problems
in Weighted Graphs. PhD thesis, Carnegie Mellon
University, August 2008.

[21] V. Vassilevska. Personal communication. 2008.
[22] V. Vassilevska and R. Williams. Finding a maximum

weight triangle in n3−δ time, with applications. In
STOC, pages 225–231, 2006.

[23] V. Vassilevska, R. Williams, and R. Yuster. All-pairs
bottleneck paths for general graphs in truly sub-cubic
time. In STOC, pages 585–589, 2007.

[24] U. Zwick. All pairs shortest paths using bridging
sets and rectangular matrix multiplication. J. ACM,
49(3):289–317, 2002.

A Explicit Maximum Bottleneck Paths

The algorithm from Theorem 3.1 calculates the capaci-
ties of all bottleneck paths but does not return the paths
as such. In this section we review some well known al-
gorithms for actually generating the paths.

Let A0 be the original capacity matrix of the graph
(with∞ along the diagonal) and let Aq = Aq−1 6Aq−1.
Thus, Adlog ne[i, j] is the capacity of the bottleneck path
between vertices i and j. Let Wq be the witness matrix
for the qth iteration, i.e.:

Wq[i, j] = k s.t. Aq[i, j] = min{Aq−1[i, k], Aq−1[k, j]}

It is very simple to have our algorithms return the
witness matrix. Let I[i, j] = min{q | Aq[i, j] =
Adlog ne[i, j]} be the iteration that establishes the bot-
tleneck capacity between i and j. If the bottleneck

path from i to j is composed of l edges we can return
the path in O(l) time as follows. If I[i, j] = 0 return
the edge (i, j); otherwise, concatenate the paths from
i to WI[i,j][i, j] and from WI[i,j][i, j] to j. The proce-
dure above gives each edge in amortized constant time.
Zwick [24] and Vassilevska et al. [23] gave simple pro-
cedures for finding the successor matrix S, given W, I,
which allows us to generate the bottleneck path in O(1)
worst case time per edge. Let S[i, j] = k if (i, k) is the
first edge on the path from i to j.

It is straightforward to show that the witness-to-
successor algorithm is correct and runs in O(n2) time;
see [24, 23].

witness-to-successor(W, I)
S ← 0
For q from 0 to log n

Iq ← {(i, j) | I[i, j] = q}
For every (i, j) ∈ I0

S[i, j]← j
For q from 1 to log n

For each (i, j) ∈ Iq

k ←Wq[i, j]
While S[i, j] = 0

S[i, j]← S[i, k]
i← S[i, k]

Return S

The procedure above can easily be adapted to work
with our APBSP algorithms.

