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Edmonds d e veloped an efficient a lgorithm for finding in a given graph C a mat c hing of maximum 
cardinality. Thi s algorithm "s hrinks" part s of the graph C. Although helpful to the intuitive unde r­
standing of the theory, s hrinking is compl icated to im plem e nt on an e l<!'c troni c comput e r- The modi­
ficati on presente d in thi s paper avoids s hrinking_ It e mploys ins tead a treelik e arrangement of alt e r­
nating paths. The possibili t y of s uc h an arrangement is also of theo re ti ca l int e res t , and it s proof form s 
the main part of th e paper-

1. Introduction 

A matc hing M in a graph C is a set of' edges of C 
such that no two meet the sa me vertex. Edmonds 
[1]1 developed an e ffi c ie nt a lgorithm for finding in a 
given graph C a matching of' maximum cardinality. 
The maximum matching problem belongs to a class of 
proble ms which for the most part have defi ed effici e nt 
treatment. These are integer lin ear programming 
problems - in particu lar those assoc iated with net­
works. A celebrated and st ill largely intractable 
representative of thi s class is th e traveling sales man 
problem. 

The techniques on which Edmonds bases hi s 
algorithm have some in teres ting theore ti cal con­
sequences. For example, Edmonds assigns the labels 
"outer" and "inner" to the vertices of th e graph C. 
This assignment is based on the underlying matching; 
however, it turn s out to be the sa me for all maximum 
matchings. Therefore the "inner" and "outer" 
property is an invariant of the graph itself. The outer 
vertices (w ith respect to any maximum matching) are 
precisely those verti ces which are "exposed" - that 
is, they meet no matched edge-in some maximum 
matching of the graph . The set of outer vertices is of 
considerable structural interes t (compare Edmonds 
[1 ]). 

The notion of outer vertices is closely related to 
accessibility by simple alternating paths. To clarify 
this statement, we need some definitions . 

First we note that it involves no loss of generality 
when searching for a maximum matching to res tri c t our 
considerations to graphs whose edges can be con­
ceived of as unordered pairs of vertices. Indeed, if 
the graph C possesses pairs of vertices that are con­
nected by a bll.l1dle of more than one edge, we construct 
a subgraph C by deleting from every such bundle all 
but one of its edges . Every maximum matching of 
G is also a maximum matching of C. 
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Du e to th e absence of multiple edges , we may 
characterize paths by seque nces of vertices (v I, - .. , 

VII) every two consecutive ones of which are adjacent. 
A path is simple if its vertices , and th erefore its edges, 
are di s tinc t. A closed path is simple if its vertices 
and its edaes are di stinct with th-e only exception 
VI = V". E:ery path forms a subgraph co nsisting of 
the vertices Vi of the path and the edges joining its 
successive vertices_ A simpl e closed path, for in­
s tance, form s a circuit, that is, a co nnected graph 
eac h of whose vertices is incide nt to exac tly two 
vertices. 

A graph C, along with a matching M, will be called 
a matched graph (C, M) . The set of edges of C not 
in M will be denoted by M. An alternating path in 
(C, M) is a ~th whose successive edges are alternately 
in M and M. In partic ular , the path of one node is 
an alternating path. An exposed ve rtex in (G, M) is 
one whic h is incid e nt to no edges in M. An augment­
ing path is a simple alternating path connecting two 
exposed vertices. The significance of augmenting 
paths for matchings is de monstrated by the theore m 
of Berge [4]: A matching Mis 0/ maximum cardinality 
if and only if there exists no augmenting path in 
(G, M). The easier part of this theorem is that, in 
the presence of an augmenting path, a matching cannot 
be maximum. Indeed, ' by changing all nonmatched 
edges of an augmenting path into matched edges and 
vice versa, the cardinality of the matching is increased. 

According to the theorem of Berge, the maximum 
matching problem can be solved by searc hing for all 
alternating paths from each exposed vertex. How­
ever, one can do better. To see this we reformulate 
Berge's theorem, defining a vertex v to be an outer 
vertex rooted at e if e is an exposed vertex which is 
linked to V by a simple alternating path of even length 
(= number of edges). (In particular, we regard all 
exposed vertices as outer.) The reason for considering 
outer vertices becomes evident if one examines an 
augmenting path connecting two exposed vertices 
et and e~. Let VI and V2 be the neighbors of e l and 
e2 within the augmenting path. The n Vt is an outer 



vertex rooted at el, and VI is an outer vertex rooted 
at e2. Therefore, a matching is maximum ifand only if 
no exposed vertex e is adjacent to an outer vertex 
which is rooted at an exposed vertex different from e. 

For the purpose of establishing maximality or non· 
maximality it is therefore sufficien t to search for all 
outer vertices. This is a genuine improvement over 
searching for all alternating paths, since there are in 
general more alternating paths emanating from ex­
posed points than there are outer vertices: More­
over, a list of vertices is easier to handle and store 
than a list of paths. 

The method of Edmonds, as well as its modification 
described in this paper, searches for outer vertices . 
It should be realized, however, that if the matching 
turns out to be not maximum, that is, if there are outer 
vertices adjacent to exposed vertices other than their 
roots, then we still face the problem of actually finding 
an augmenting path. This means essentially that we 
should be able to retrieve for each outer vertex a simple 
alternating path that leads back to a root. The 
difference between Edmonds' method and our modi­
fication lies in th e kind of additional information 
furnished to permit this "back-tracing".2 Edmonds 
shrinks the graph in such a manner that at each outer 
vertex in the shrunken graph there is only one possi­
bility for stepping backwards along an alternating path: 
one is forced to proceed in the right direction . The 
modification presented in this paper is based on the 
notion of a "predecessor." It should be noted that 
in general the two methods will find different back­
paths. When expanded into paths of the original 
graph, the back-paths defined by Edmonds' method 
will in general not display the treelike arrangement 
described in the next section. 

~ Hathe r surpri s ingly , in both me thud s the process of find ing the o uter vertices al so re­
Quires back-trac ing from outer vertices already fo und. The importance uf bac k-trac ing 
is therefo re not ,-es tri cted 10 augme ntati on. Th is "back-trac in g" should not be con fu sed. 
howeve r, with so-call ed " back-track ing" methods that u suall y invo lve an unpl easa nt amount 
of tri a l a nd errO f. OUf algorithm, a 5 wel l a s Edm onds", is a good one . 

FIGURE 1. p(3)= 1, p(5)=3, p(7)=5, p(9) = 7, p(8) = 3, p(6) = 3, 
p(6) = 8, p(4) = 6. 
--, Matched ('(Jg('~ . 

e , Out er point s. 
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We assign to each nonexposed outer vertex vanother 
outer vertex u = p(v) which is connected to v by an 
alternating path of length two. Vertex u = p(v) is 
called the predecessor of v. We shall prove that thi s 
assignment of predecessors can be specified in such 
a way that the alternating path formed by consecutive 
predecessors is simple and joins v to an exposed vertex. 
(This is what we mean in saying a complete set of 
alternating back-paths has been arranged in a tree­
like manner.) We employ the fact that an alternating 
pat~ is uniquely determined if only every other vertex 
IS gIven. 

As an example consider the graph in figure 1. The 
vertices are numbered 1, . .. , 9. Heavy lines di s­
tinguish the matched edges. Vertex I is the only 
exposed vertex. As an augmenting path would re­
quire two exposed vertices, the matching is maximum. 
Solid points designate outer vertices. Vertex 2 is 
not outer, since every alternating path of even length 
joining vertex 2 to the " root", as for instance (2, 3, I 

9, 8, 5, 4, 3, 2, 1), passes the edge (2, 3) twice, thus 
being not simple. 

The assignment of predecessors p(v), as specified in 
figure 1, yields a simple back-path for each outer 
vertex. Vertex 7, for instance, is joined to vertex 
1 by the path (7, 6, 5 = p(7), 4, 3 = p(5), 2, 1 = p(3)). 

2. Graph of Bi-edges 

The situation is best understood by considering the 
graph of bi-edges (Edmonds [5]) which is associated 
with the matched graph (G, M). A bi-edge is an 
alternating path of le ngth two, that is, a path consisting 
of an unmatched edge followed by a matched one. 
Bi-edges are the units of which even-length alternating 
paths are composed. The hi·edge graph B(G, M) is 
defined over the same vertex set as G, two vertices 
being linked if they are the end-P9ints of a bi-edge in 
(G, M). We regard bi-edges as directed: they lead 
from the end that is incident with the matched part 
to the end that is incident with the unmatched part 
of the bi-edge (fig. 2). Consequently, th e graph of 
hi-edges is a "directed" graph . A directed graph 
consists of vertices, and edges which are ordered 
pairs of the vertices. According to this definition, 
a direc ted graph can have two edges, (VI, v~) and 
(V2, vtl, incident to the same pair of vertices . Figure 
3 shows the graph of bi-edges that corresponds to the 
matched graph in figure l. 

A path in a directed graph can be characterized 
again by a sequence of vertices (VI, V2, . . . , vn) . How­
ever, we insist that each linking edge lead from a ver­
tex to its successor in the path; more precisely, we 
require the edge that links two successive vertices Vi, 

Vi+ 1 to be the edge (Vi, Vi +l) in this order. Each path in 
the bi-edge graph B(G, M) corresponds to a unique 
alternating path in (G, M) . We shall say that a path 
in B(G, M) expands into the corresponding alternating 
path in (G, M). Alternating paths gained by expansion 
of bi-edge paths have even length (= number of edges, 
where each edge counts as often as it is traversed). 



FIG URE 2 

FI GURE 3 

On the other hand, eac h alternating path of e ve n length 
corres ponds to a path in th e bi-edge graph_ Howe ver, 
there is one crucial difficulty: a simple path in B(G, M) 
may expand into an alternating path with double 
edges . For an example cons ider the matched graph 
in fi gure 1. Its graph of bi-edges is given in figure 3. 
The simple path (2,9,5,3, 1) in the bi-edge graph 
expands into the alte rnating path (2,3, 9, 8,5,4,3, 
2, 1) with the edge (2, 3) occuring twice. 

In vi e w of thi s situation we call a path in the bi-edge 
graph legal if it expands into a simple alternating path_ 
Vertices that can be reached from a vertex r by legal 
path s are called legally accessible from r. We then 
have the 

THEOREM. Let B(G, M) be the graph of bi-edges of a 
I matched graph (G, M), let r be an arbitrary vertex of 
, B(G, M), and denote by n the set of all vertices of 

B(G, M) that are legally access ible from r. Then 
B(G, M) contains as a subgraph a tree T which is rooted 
at r, such that (i) T has n as its vertex set, and (ii) 
every simple path in T that joins a vertex v to the root 

I r is legal . 
Note that the theore m would be trivial if the legality 

requireme nt were dropped. 
Any rooted tree T in B(G, M) corresponds to an 

ass ignment of predecessors as discussed before. For 
instance, the predecessors specified in figure 1. de fin e 
the subtree shown by heavy lines in fi gure 4_ 

FIGUHE 4 

The relation between the above theore m and th e 
algorithm for maximum matchings that win be pro­
posed in this paper is as follows: generality of the 
theorem is not restricted by assuming that the root r 
is an exposed vertex. Indeed, if r meets a matc hed 
edge, then removing this edge from the matc hing does 
not c hange the se t of simple alternating paths e manat­
ing from r along nonmatched edges. The proble m 
the n becomes to arrange into a tree T r:;;,. B(G, M) 
alte rnating paths whic h co nnec t outer verti ces to an 
exposed vertex r. Our algorithm ~ will sucessively 
construct thi s tree, thereby proving the theorem. On 
the other hand, the algorithm will rely a t each s tep o n 
the fac t that the alternating paths which co nnec t the 
outer verti ces es tablished at thi s moment to the root 
r are prope rly arranged in a tree-like manner. A 
combination of the algorithm ~ with augmentation 
using augmenting path s gives the algorithm 9)1, which 
yields a maximum matc hing. 

3_ Labeled Subgraphs 

Let r be an exposed vertex in a matc hed graph 
(G, M). We de fine a "labeled subgraph" with th e 
root r to be a quadruple 

L =(A, n, J, p) 

where A is a subgraph of G. Th e vertices of A are 
labelled either "outer" or "in ner", n de noting the set 
of vertices labeled "outer", and I the se t of vertices 
labeled "inner". nand J are di sjoint. Finally, 
p is a single-valued function p: n - {r} ~ n called 
the predecessor function. 

In addition, we shall require certain relations to 
hold between the elements of the quadruple (A, n , 
I, pl. To formulate these require me nts, and for late r 
use , we introduce the followin g matching function m , 
which maps the set of all non exposed verti ces of G 
into itself, and which is defined by 

m(v): = u if and only if (v, u)EM. 

The require ments for a quadruple (A, n, I, p) to be a 
labeled subgraph then are: 

(i) If one vertex of a matched edge is in A then the 
entire edge is in A. 
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(ii) If x E I then m(x) E D 
(iii) The edge (m(v), p(v)) is in Afor every v E D - {r} 

Note that (ii) and (iii) imply that 1 and D- {r} consist 
of non exposed ve rtices. It also follows that for xEl, 
(x, pm(x)) must be in A.3 

(iv) Decomposition: If x E I then deleting the edge 
(x, pm(x)) decomposes A into two connected com­
ponents. 

(v) Legality: For each vertex v E D the sequence of 
vertices (v, p(v), p2(V), ... ) eventually contains r, 
and the back-path 

P(v): = (v, m(v), p(v), mp(v), p2(V) ... , pn(v) = r) 

has no double vertices. 
The back-path P(v) lies entirely in A according to 
(i) and (ii). 

The vertices of the form pk(V), including the vertex v 
itself, are said to be even in P(v), the rest being odd. 
The even vertices, in particular the root r, are of course 
in D. The sequence of eve n vertices in a back-path 
defines a simple and legal path in the graph of bi-edges 
B(G, M). 

By virtue of the recursive structure of the back­
paths, we have P(u)c;;,P(v) if u is even in P(v). There­
fore we may define a partial ordering in D by letting: 

u ~ v if and only if u is even in P(v) . 

Any two vertices u and v in D have at least one common 
lower bound. By finiteness, they have greatest 
common lower bounds. Let wand w be such greatest 
common lowe r bounds. Since w ~ u and W ~ u, 
both wand ware even in P(u), and therefore compar­
able. Hence w = w because they are both maximal. 
It follows that the greatest common lower bound 
w= unv is unique. 

We shall now describe two operations which enlarge 
labeled subgraphs. If L is a labeled subgraph, and 
there is a bi-edge (v, x, u) with uED, xtDUI, (v, XlEM, 
then vED U 1 by (i). We obtain a new quadruple 
L=(A, D, i, p) by letting A:=AU(v, x)U(x, u), D: 
=DU{v}, i:=IU{x}, and 

-(z): = {p(z) for zED 
p u for z=v. 

3 We write pm(v) for p(m(v», mp(v) for m(p (v». p~(v) for p (p (v)). 

FIGURE 5 
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In other words, we add the bi-edge (v, x, u) to A, \ 
labeling v "outer" and x "inner", and putting p(v): 
= u. The predecessor function is not changed for 
the old D. Clearly, L is a labeled subgraph. We 
write 

L: = F(L) 

to indicate that L is obtained by a forward step. 
T[ L is a labeled subgraph, and there is an edge 

(s, t) which is not in A but joins two vertices of D, 
then again we can enlarge the subgraph: Since sand 
t belong to D, and L is legal, we have back-paths 
pes) and pet). Let b: = s n t denote the greatest 
common lower bound of sand t with respect to the I 

ordering defined above. Then P(s)-;;J.P(b) and pet) I 

-;;J.P(b). The paths P(s)-P(b) and P(t)-P(b) together I 

with b form a path p es , b, t) joining sand t. Following 
Edmonds [1], we call this path a blossom with the 
base b (see fig. 5). W e shall see later that all vertices 
of a blossom are indeed legally accessible: the inner 
vertices, for instance in pes) - PCb), are joined to t 
by an even alternating path, which will be shown to 
be simple. Labeling the inner vertices in a blossom 
"outer", and adjoining (s, t) to A is called a blossom 
step 4 

i:=B(L) . 

The details of a blossom s tep are as follows: Let s 
be defined as the greatest even vertex in pes) such that 
pes) - PCb) contains no inner vertex, and le t T be 
similarly defined. Either s= s, or the vertex XEP(S) 
- pes} which is next to sin pes) is in T. If s =P s, then 
let UI : =x, and let u" be defined inductively as the 
unique vertex of pes) such that pm(uk) = m(uk- d 
until some Um = mrs). Put the set {U i I i = 1, . . . ,m} 
into D, deleting vertices from 1 whenever necessary, 
and define the new predecessor function by p(Ui) 
= Ui +1 for 1 ~ i ~ m where Um +1 = t. Notice that 
some Ui may be in D and already have a predecessor 
which is hereby changed. The same procedure is 
repeated for t in place of s, and then we add the edge 
(s, t) to A to obtain the new graph A: If the counter­
parts of the Ui in the path pet) are denoted Vj then 

- - I 
(ormally we get A: =AU(s, t), D: =flU {Ui} U {Vj}, I 
I:=I-{ui}-{Vj}, 

lUi+1 for Z=Ui 
p(z):= Vj+1 forz=vj 

p(z) otherwise . 

The above definition of p(z) implicitly requires the 
sets {Ui} and {Vj} to be disjoint. Since the Ui are 

4 In practice one will use a more elaborate blosso m step . L ei x and y be I wo adjace nt 
vertices of the blossom P(s, h, I). Afte r execution of the blossom step defined by sand 
t , both x and y will be ouler whereas their connec ting edge (x, y) need not be in A. In 
this case, x and y wiD give rise to another blossom-step. The corres ponding blossom , 
however, is eas ily ve rifi ed to be contained in the circuit formed by P(s, b, t) a nd the edge 
(5, t ). Thi s blossom the refore contains no inner verti ces, and aU the blosso m step does is 
adjoin the edge (x, y) to A. The more elabo rate blossom s tep consists of adding not onl y 
the edge (5, I ) but all other "diagonals" of the blosso m P (5, h, t) to A. 



odd in P(s) and the Vj are odd in P(t), this will be a 
consequence of the following 

LEMMA 1. Let sand t be vertices in fl, and put 
b : = s n t. If the vertex v is of equal parity in both 
P(s) and P(t), then vEP(b). 

PROOF: If v is even in both P(s) and P(t), then 
v"s; s and v"s; t. Hence v"s; s n t = b, which implies 
vEP(b) by definition of the partial ordering. 

If v is odd in both P(s) and P(t), then v cannot 
be the root r, because r is even in both P(s) and P(t). 
Hence m(v) is defined, and it is even in both P(s) 
and P(t). By the preceding argument we then con· 
clude m(v)EP(b) and therefore vEP(b). 

Before proving that the blossom step B as d~fined 
above always yields a new labeled sub graph L, we 
illustrate the blossom step by two examples. 

The first example (fig. 5) shows that the two halfs of 
the blossom, P(s) - P(b) and P(t) - P(b), need not be 
disjoint. 
Starting with the root r = 1, the assignment of pred­
ecessors has progressed as follows : 

p(3) = 1 forward step 
p(5) =3 forward step 
p(7) = 5 forward step 
p(9) = 7 forward step 

p(8) =3 ] 
p(6) = 8 blosso m step (9, 3), base 3 
p(4) =6 
p(10) = 9 forward step 

Now a blossom step is due for s = 10 and t =4. The 
back-paths are 

P(s)=(lO, 11, 9, 8,7,6,5,4,3,2,1) 
P(t)=(4, 5,6,7,8,9,3,2,1), 

b = 3 is the base. It is seen that the part (4, 5, 6, 7, 8, 
9) of the blossom is traversed by P(s) as well as P(t), 
however in opposite directions. Changing predeces­
sors in the area common to P(s) and P(t) would 
clearly destroy legality. This is one reason for chang­
ing predecessors only up to the last inner vertex. 
Later on we shall indeed see that P(s) - P(s) and P(t) 
- P(I) are always disjoint. 

Even if the blossom has no double points, legality 
may be destroyed if predecessors are changed beyond 
the last inner vertex. This is shown by our second 
example (fig. 6). 

Starting with the root r= 1, the assignment of 
predecessors has progressed as follows 

p(3) = 1 forward step 
p(5) = 3 forward step 

~i~~:~} blossom step (5, 1), base 1 

p(7) = 2 forward step 
p(8) = 7 forward step 
p(9) = 7 blossom step (8, 7), base 7. 

Again a blossom step is due for s = 9 and t = 4. The 

757-6 15 0-65-7 95 

FIG URE 6. --, Matched edges; . , outer points. 

back-paths are 

P(s) = (9, 8, 7, 6, 2, 3, 4, 5, 1) 
P(t) = (4, 5, 1), 

yielding b = 4 as base . The blossom step as de fined 
before puts 

P(8) = 4 
jJ(6) = 8. 

Note that the predecessor of 8 has been changed from 
7 to 4. If one would c hange the predecessor beyond 
the inner point 6, that is , if one puts 

p(3)=6 

then the new back-path P(5) will not be simple. 

4. Preservation ot Legality 

It must be shown that F(L) and B(L) are again 
labeled subgraphs. Verifying (i) to (iii) can be left 
to the reader. Proving the decomposition property 
(iv) and, in particular, the legality (v) is the main burde n 
of this paper. 

LEMMA 2. The decomposition property (iv) is pre­
served by the operations F and B. 

PROOF: In the case of a forward s tep F there is really 
nothing to prove since no new circuits are introduced 
in A. In the case of a blossom step, however, new 
circuits are generated, and we have to show that these 
circuits contain no inner vertices . 

Let then sand t be two adjacent outer vertices deter­
mining a blossom P(s, b, t) with b: =snt, and execute 
the corresponding blossom step. Assume that th~ 
new subgraph A contains a circuit C with a vertex xEl. 
Since L satisfies the decomposition property (iv) and 
since xff!, C cannot be a circuit in A, and must there­
fore contain the new edge (s, t). Replacing this edge 
by the blossom path P(s, b, t) yields a closed path C* 
(not necessarily a circuit), which lies entirely in the 
old subgraph A, and which still contains the inner 



vertex x. Since pes, b, t) ni=cp whereas xEi, the 
vertex x is not a double point of C*. Hence X is con­
tained in a subcircuit 5 of C* ~A, contradicting (iv). 

LEMMA 3. The legality property (v) of a labeled 
subgraph L is preserved by the operations F and B. 

PROOF: In the case of forward steps F, the proof 
presents no difficulties, and may be left to the reader. 
Let then sand t be again two adjacent vertices in n 
such that the edge (s, t) is not in A, and execute the 
corresponding blossom step L: = B(L). Define for 
vED the - possibly infinite - sequence 

p(v):=(v, m(v),p(v), mjj(v),p2(v), . .. ). 

It is to be shown that P(v) is a simple alternating path 
connecting v to the root r. Trivially, this is the case 
if P_( v) = P (v) . Otherwise, let W be t~le eve~ vertex 
in P(v) that is closest to v, and that IS odd In P(s) 
- P (s) or P (t) - P Cn . Since predecessors are not 
altered outside the set of odd vertices of {P(s) - P(s)} 
and the set of odd vertices of {P (t) - P (l) }, we have 

(vi) i>(v) - P(w) =P(v) - P(w). 

Without loss of generality we may assu~~ that 
WEP(S) - P(s). It follows again by the defimt:~n of 
the blossom step B that the sequence (v, p(v), p (v), 
... ) of even vertices of P(v) contains t. Therefore 
p( v) consists of three pieces, the first of which may be 
empty: 

p(v) = (p(v) -P(w), pew) -Pet), p(t). 

The proof that P (v) is simple relies on the decompo­
sition property (iv). The vertex x, which 'precede~ s 
in P(s), is an inner point xEl. AccordIng to (IV), 
deIetion of the edge (5, x) decomposes A into two 
components Hx and H,. the latter of which contains 
the root r. 

We note that xEl does not occur in P (t) . Otherwise, 
it would be odd in both pes) and P(t), and lemma 1 
would imply xEP(b). This contradicts XEP(S) -pes) 
CP(s) -P(b). Since xq.P(t), the path P(t) cannot 
~tcr the component Hx because by (iv) every path 
from Hx to r passes through x. Thus 

( vii) P(t) ~H, .. 

Further we note that 

( viii) pes) - P(s) ~Hx. 

Indeed since pes) is simple, the edge (s, x) occurs 
exactly' once in P(s), hisecting this path. The piece 
P(s) - pes) lies in Hx, the piece P(s) in H,.. 

It follows from (vii) and (viii) that {P(s) - P(s)} 
np(t) =cp, and as a consequence, the predecessors 
of the even vertices of P (t) are not altered. Hence 

~ This argument is based on the following simple le mma : Let C ,be a c~ose~ path in a 
graph G. If C passes through I.he vertex x exactly once, then C contaws a ctrcutl through x. 

(ix) Pet) =P(t). 

The third piece of p(v) is therefore simple. The 
same holds for the two other pieces by virtue of (vi), 
and since the reverse of the path Pew) -p(t) is part 
of the simple path pes) - pes) by defiilition of B. 
Thus the proof of the lemma reduces to verifying 

(x) {Pew) - Pet)} n pet) =cp 
(xi) {P(v) -pew)} n pet) =cp 
(xii) {P(v) -p(w)}n{P(w)-?(t)}=CP. 

- -
Now (x) follows from (vii) and (viii) since P(w) - e(t) 

~P(s) -pes). To prove (xi), we note that WEP(S) 
-P(s)~Hx. Hence (s, x) bisects pew). Since 
P(v) 'dP(w), (s, x) bisects P(v) also, and we have 

P(v) -pew) ~lIx . 

This, together with (vii) proves (xi). 

Finally assume zE{P(v)- pew)} n {Pew) - i\t)}. 
Without restriction of generality we may assume that 
z is even in P(v); otherwise '!Ye repl?ce z by m(z). z oc­
curs in pes) - pes) since pew) - P(tKP(s) - pes). If 
z is even in pes), we have w ~ s as a consequence of 
w ~ z and z ~ s. But this contradicts the fact that w 
is odd in pes). If, on the other hand, z is odd in 
pes) - pes), then _w would not be the first even vertex 
of this kind in P(v). This proves (xii) and completes 
the proof of lemma 3. 

5. Algorithms 1: and !lJl 

We proceed to describe two algorithms which are 
based on successively enlarging labeled subgraphs by 
forward and blossom steps. The algorithm ~ deter­
mines all vertices of a given matched graph (G, M) 
that are legally accessible from a given exposed vertex 
r. It also arranges the connecting alternating paths 
in a treelike manner, thereby proving the main theorem. 
The algorithm 9R is essentially based on the algo­
rithm ~ , however its purpose is the construction of a 
maximum matching. 

The algorithm ~ goes as follows: Start out with the 
trivial labeled subgraph L = (A, n, I, p) whose graph A 
consists of the root r only. r is labeled "outer", that 
is, n= {r} and I: =cp. The predecessor fun~t!on 
need not be defined since its region of defimtlOn 
n - {r} is vacuous. Then enlarge L successively by 
forward and blossom steps until a subgraph is reached 
that permits no further enlargement. We call such a 
labeled subgraph terminal. A terminal subgraph 
must be reached eventually since each step increases 
the number of edges in A, and this number is bounded 
by the number of edges in G. Terminal labeled sub­
graphs correspond to Hungarian trees (Edmonds [1]), 
if M nA is part of a maximum matching. 

LEMMA 4. If L = (A, n, I, p) is terminal, then the 
vertices in n are precisely those vertices that are 
legally accessible from r. 
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PROOF: Let v;O be a vertex which is joined to r by 
a simple even alternating path V. It is no res triction 
of generality to assume that all other even vertices of 
V belong to O. Denote by w the even vertex in vno 
closest to v. Thus (v, m(v), w) is a bi-edge . Now we 
treat two cases. 

CASE 1: v;!. Then vfOU! and so m(v);OU!(prop­
erty (i)). Hence the bi-edge (v, m(v), w) can be added 
to L (forward step), contradicting the fact that L is 
terminal. 

CASE 2: vEl. Hence m(v)EO according to (ii), and 
deleting the edge (v, pm(v)) decomposes A into two 
compone nts Hv and Hr according to (iv). The edge 
of V meeting v is (v, m(v)), which leads the path V into 
H v. Since V has no double points, it cannot contain 
the e dge (v , pm(v)). Therefore , since (v, pm(v)) alone 
joins Hv to the rest of A and since r is not in Hv, V must 
leave A eventually. Le t (z, u) with zin A be the first 
edge of V after v not in A. By virtue of prope rty (i), 
the edge (z, u) is not matc hed. He nce z is odd, and u 
is eve n in V. Since u 0/= v, we have UEO by hypoth esis. 
This impli es zE/ , because otherwise z and u would 
define a blossom co ntaining v showing L to be not 
terminal. 

The part of th e path V between wand z, but in re­
verse order, form s together with P (m(v)) the path. 

Z = (z, m(z ), ... , w, P(m(v))) c: A, 

that joins z to the root r. Z does not contain th e edge 
(z, pm(z)). Otherwise , z would occur twice in Z , and 
this is impossible since (z, m(z) , ... , w) is simple as 
part of V, and since zEH" and P(m(v))nH,,= {m(v) , v }. 
The existence of Z contradicts the fac t that, accord­
ing to (iv), the edge (z, pm(z)) separates z from r in A. 
Thus there are no legally accessible verti ces outside 
O. That all vertices of 0 are indeed legally accessible 
follows by (v). Thi s completes the proof of th e le mma. 

Algorithm 1: proves our theorem for exposed roots 
r. However, as we already pointed out in sec tion 2, 
this is sufficie nt to prove the theorem for general roots. 

Algorithm m starts out with any matched graph 
(G, M). If there are no exposed vertices, the n the 
matching is maximum. Otherwise c hoose an ex­
posed vertex e as a root, and e mploy algorithm 1: to 
find outer vertices connected to e. If some outer 
vertex v is adjacent to an exposed vertex f differe nt 
from e, then the edge (f, v) together with the back­
path P(v) forms an augmenting path. Replacing 
matched edges by unmatched ones, and vice versa, 
along this path yields a new matching M of higher 
cardinality. Algorithm 1: then is repeated with one 
of the remaining exposed vertices as roots. 

If algorithm 1: does not produce an augmenting 
path, then we con~der the terminal labeled subgraph 
A and the graph G: = G - A that results by deletin/L 
from G all vertices of A and all edges adjoining A. 
(;. is again a matched graph, and algorithm m is applied 
to it. This procedure is justified by the following 
lemma due to Edmonds [1]: 

LEMMA 5. If A is a terminal labeled subgraph 
none of whose outer vertices are joined to an exposed 
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vertex by an edge not in A, then the matching M of G 
is maximum if and only if its restriction to G - A is 
max unum. 

PROOF: The nontrivial direction is to show that if 
M is not maximum, then neither is its res triction to 
G - A. If e is the root of A, then e is not the e nd­
vertex of an augme nting path. Indeed, if there exists 
an augmenting path P joining e to an exposed vertex 
f, then the vertex v whic h is next to f in P is legally 
accessible from e. Hence VEO according to le mma 4. 
On the other hand, f;A, and therefore (v, 1) is not an 
edge of A, contradicting the hypothes is of the le mma. 

Now let the augmenting path V join the two exposed 
vertices f and g, both in G - A . We have to s how 

(xiii) VC:G-A. 

Assume VnA 0/= cpo Since xEVnA impli es m(x )EVn A , 
we conclude vno 0/= cp o Le t VEVnO , then th ere 
exis ts a back-path P(v) connec ting v and e. Le t w be 
the vertex in P(v) n V whi c h is closes t to e in P (v). w 
is odd in P(v) ; oth erwise, m(w)EP(V) n V would be closer 
to e in P(v) . w divides the path V into two pi eces; th e 
piece whic h contains m(w), forms toge th er with 
P(m(w)) an augme nting path ending at e. But such an 
augmenting path has been shown not to exi st. This 
proves (xiii), and there by the le m rna. 

6. An Example by E. Johnson 

Berge [4] con siders a ge neralization of the maximum 
matc hing problem. Given for eac h ve rLex v of a graph 
G a nonnegati ve integer d(v) , one calls a degreecon­
strained subgraph a subgraph M c: G whose degrees 
a t eac h vertex v are bounded above by d(v) . The 
problem is to find a degreeconstrained subgraph with 
a maximum number of edges. Th e maximum matching 
proble m results if d(v) = 1 for all vertices v of G. Maxi­
mum degreecons trained subgraphs are again charac­
terized by the absence of " augme nting paths". 
Augmenting path s are again alternating pa ths without 
multiple edges; multiple points howe ver are permitted 
(Berge [4], compare also Goldman [6J). 

Recently, Edmonds [3] exte nded his algorithm to an 
efficient solution algorithm for the above and even 
more general problems. This leads to th e ques tion 
of extending the predecessor technique described 
in thi s paper. 

Alternating paths and bi-edge graphs can be de fined 
for e very pair (G, 5), where 5 is any se t of edges of 
G, not necessarily a matching. The theory of degree­
constrained subgraphs suggests defining legal alter­
nating paths as alternating paths without multiple 
edges, but possibly multiple vertices . The predecessor 
technique now requires that our theorem holds for 
generalS with the above concept of legality. 

This conjecture is refuted by the followin g example 
due to E. Johnson. The graph G of thi s example is 
presented in figure 7; heavy lines distinguis h the edges 
in S. 

Choosing vertex 1 as the root, all vertices are legally 
accessible by alternating paths of eve n le ngth . From 



vertex 2, for instance, the root can be reached by the 
paths (2, 3, 5, 4, 3, 6, 7,8,9, 10,8,2,1) or (2, 8, 10,9,8, 
7,6,3,4,5,3, 2, 1). Up to interchanges of 4 with 5 
and 9 with 10, these are the only simple alternating 
paths joining 2 to the root. If the first path is to ap­
pear in a tree Tr;;;,B(G, 5), then the predecessor of 8 
must be 6. But up to an interchange of 9 with 10, the 
only back-path of 7 is (7, 8, 10, 9, 8, 2, 1) r equiring 
1 to be the predecessor of 8. A similar contradic tion 
appears if the second back-path of 2 is chosen to be 
in the tree. Thus the legal back-paths in figure 7 
cannot be arranged in a treelike manner. Without 
the legality requireme nt, however, no difficulty would 
have arisen. 

4~5 
, / 0": 6 

I 2 I 

1,---- , \ 7 

/ \ 
/ \ 

9~IO 

FIGURE 7 

This example proves that the maximum degree­
constrained subgraph proble m cannot be solved by a 
direct extension of the predecessor algorithm. An­
other generalization of the maximum matching prob­
lem, also solved by Edmonds [2], consists in maximizing 
a weighted sum of the edges. The shrinking technique 
of Edmonds appears to be more natural for this proble m 
also. 
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