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Edmonds developed an efficient algorithm for finding in a given graph G a matching of maximum

cardinality.

fication presented in this paper avoids shrinking.

nating paths.
the main part of the paper.

1. Introduction

A matching M in a graph G is a set of edges of G
such that no two meet the same vertex. Edmonds
[1]' developed an efhicient algorithm for finding in a
given graph G a matching of maximum cardinality.
The maximum matching problem belongs to a class of
problems which for the most part have defied efficient
treatment. These are integer linear programming
problems —in particular those associated with net-
works. A celebrated and still largely intractable
representative of this class is the traveling salesman
problem.

The techniques on which Edmonds bases his
algorithm have some interesting theoretical con-
sequences. For example, Edmonds assigns the labels
“outer” and “‘inner” to the vertices of the graph G.
This assignment is based on the underlying matching;
however, it turns out to be the same for all maximum
matchings. Therefore the “inner” and ‘“outer”
property is an invariant of the graph itself. The outer
vertices (with respect to any maximum matching) are
precisely those vertices which are “exposed” —that
is, they meet no matched edge —in some maximum
matching of the graph. The set of outer vertices is of
considerable structural interest (compare Edmonds
[1]).

The notion of outer vertices is closely related to
accessibility by simple alternating paths. To clarify
this statement, we need some definitions.

First we note that it involves no loss of generality
when searching for a maximum matching to restrict our
considerations to graphs whose edges can be con-
ceived of as unordered pairs of vertices. Indeed, if
the graph G possesses pairs of vertices that are con-
nected by a bundle of more than one edge, we construct
a subgraph G by deleting from every such bundle all
but one of its edges. Every maximum matching of
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G is also a maximum matching of G.
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This algorithm “‘shrinks”™ parts of the graph G. Although helpful to the intuitive under-
standing of the theory, shrinking is complicated to implement on an eléctronic computer.
It employs instead a treelike arrangement of alter-
The possibility of such an arrangement is also of theoretical interest, and its proof forms

The modi-

Due to the absence of multiple edges, we may
characterize paths by sequences of vertices (vi, . . .,
vn) every two consecutive ones of which are adjacent.
A path is simple if its vertices, and therefore its edges,
are distinct. A closed path is simple if its vertices
and its edges are distinct with the only exception
vi=vn. Every path forms a subgraph consisting of
the vertices v; of the path and the edges joining its
successive vertices. A simple closed path, for in-
stance, forms a circuit, that is, a connected graph
each of whose vertices is incident to exactly two
vertices.

A graph G, along with a matching M, will be called
a matched graph (G, M). The set of edges of G not
in M will be denoted by M. An alternating path in
(G, M) is a path whose successive edges are alternately
in M and M. In particular, the path of one node is
an alternating path. An exposed vertex in (G, M) is
one which is incident to no edges in M. An augment-
ing path is a simple alternating path connecting two
exposed vertices. The significance of augmenting
paths for matchings is demonstrated by the theorem
of Berge [4]: A matching M is of maximum cardinality
if and only if there exists no augmenting path in
(G, M). The easier part of this theorem is that, in
the presence of an augmenting path, a matching cannot
be maximum. Indeed, by changing all nonmatched
edges of an augmenting path into matched edges and
vice versa, the cardinality of the matching is increased.

According to the theorem of Berge, the maximum
matching problem can be solved by searching for all
alternating paths from each exposed vertex. How-
ever, one can do better. To see this we reformulate
Berge’s theorem, defining a vertex v to be an outer
vertex rooted at e if e is an exposed vertex which is
linked to v by a simple alternating path of even length
(=number of edges). (In particular, we regard all
exposed vertices as outer.) The reason for considering
outer vertices becomes evident if one examines an
augmenting path connecting two exposed vertices
e; and e,. Let v; and v, be the neighbors of e; and
e» within the augmenting path. Then v, is an outer



vertex rooted at e;, and v; is an outer vertex rooted
at es.
no exposed vertex e is adjacent to an outer vertex
which is rooted at an exposed vertex different from e.

For the purpose of establishing maximality or non-
maximality it is therefore sufficient to search for all
outer vertices. This is a genuine improvement over
searching for all alternating paths, since there are in
general more alternating paths emanating from ex-
posed points than there are outer vertices. More-
over, a list of vertices is easier to handle and store
than a list of paths.

The method of Edmonds, as well as its modification
described in this paper, searches for outer vertices.
It should be realized, however, that if the matching
turns out to be not maximum, that is, if there are outer
vertices adjacent to exposed vertices other than their
roots, then we still face the problem of actually finding
an augmenting path. This means essentially that we
should be able to retrieve for each outer vertex a simple
alternating path that leads back to a root. The
difference between Edmonds’ method and our modi-
fication lies in the kind of additional information
furnished to permit this “back-tracing”.? Edmonds
shrinks the graph in such a manner that at each outer
vertex in the shrunken graph there is only one possi-
bility for stepping backwards along an alternating path:
one is forced to proceed in the right direction. The
modification presented in this paper is based on the
notion of a “‘predecessor.” It should be noted that
in general the two methods will find different back-
paths. When expanded into paths of the original
graph, the back-paths defined by Edmonds’ method
will in general not display the treelike arrangement

described in the next section.

2 Rather surprisingly, in both methods the process of finding the outer vertices also re-
quires back-tracing from outer vertices already found. The importance of back-tracing
is therefore not restricted to augmentation. This “back-tracing” should not be confused,
however, with so-called “back-tracking” methods that usually involve an unpleasant amount
of trial and error. Our algorithm, as well as Edmonds’, is a good one.

2
Iz
Ficure 1. pB3)=1, p(5)=3, p(7)=5, p(9=7, pB@)=3, p6)=3,
p(6)=8, p(4)=6.
———, Matched edge.

., Outer points.

Therefore, a matching is maximum if and only if
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We assign to each nonexposed outer vertex v another
outer vertex u=p(v) which is connected to v by an
alternating path of length two. Vertex u=p(v) is
called the predecessor of v. We shall prove that this
assignment of predecessors can be specified in such
a way that the alternating path formed by consecutive
predecessors is simple and joins v to an exposed vertex.
(This is what we mean in saying a complete set of
alternating back-paths has been arranged in a tree-
like manner) We employ the fact that an alternating
path is uniquely determined if only every other vertex
is given.

As an example consider the graph in figure 1. The
vertices are numbered I, ., 9. Heavy lines dis-
tinguish the matched edges. Vertex I is the only
exposed vertex. As an augmenting path would re-
quire two exposed vertices, the matching is maximum.
Solid points designate outer vertices. Vertex 2 is
not outer, since every alternating path of even length
joining vertex 2 to the “‘root”, as for instance (2, 3,
9,8, 5,4, 3,2, 1), passes the edge (2, 3) twice, thus
being not simple.

The assignment of predecessors p(v), as specified in
figure 1, yields a simple back-path for each outer
vertex. Vertex 7, for instance, is joined to vertex

I by the path (7, 6, 5=p(7), 4, 3=p(5), 2, 1=p(3)).

2. Graph of Bi-edges

The situation is best understood by considering the
graph of bi-edges (Edmonds [5]) which is associated
with the matched graph (G, M). A bi-edge is an
alternating path of length two, that is, a path consisting
of an unmatched edge followed by a matched one.
Bi-edges are the units of which even-length alternating
paths are composed. The bi-edge graph B(G, M) is
defined over the same vertex set as G, two vertices
being linked if they are the end-points of a bi-edge in
(G, M). We regard bi-edges as directed: they lead
from the end that is incident with the matched part
to the end that is incident with the unmatched part
of the bi-edge (fig. 2). Consequently, the graph of
bi-edges is a “directed” graph. directed graph
consists of vertices, and edges which are ordered
pairs of the vertices. According to this definition,
a directed graph can have two edges, (vi, v2) and
(v2, v1), incident to the same pair of vertices. Figure
3 shows the graph of bi-edges that corresponds to the
matched graph in figure 1

A path in a directed graph can be characterized
again by a sequence of vertices (vy, v2, ,Un). How-
ever, we insist that each linking edge lead from a ver-
tex to its successor in the path; more precisely, we
require the edge that links two successive vertices v;,
vi+1 to be the edge (vi, vi+1) in this order. Each path in
the bi-edge graph B(G, M) corresponds to a unique
alternating path in (G, M). We shall say that a path
in B(G, M) expands into the corresponding alternating
path in (G, M). Alternating paths gained by expansion
of bi-edge paths have even length (= number of edges,
where each edge counts as often as it is traversed).
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. On the other hand, each alternating path of even length
corresponds to a path in the bi-edge graph. However,
there is one crucial difficulty: a simple path in B(G, M)
may expand into an alternating path with double
edges. For an example consider the matched graph
in figure 1. lts graph of bi-edges is given in figure 3.
' The simple path (2,9, 5, 3, 1) in the bi-edge graph
expands into the alternating path (2, 3,9, 8, 5, 4, 3,
2, 1) with the edge (2, 3) occuring twice.

In view of this situation we call a path in the bi-edge
graph legal if it expands into a simple alternating path.
Vertices that can be reached from a vertex r by legal
paths are called legally accessible from r. We then
have the

THEOREM. Let B(G, M) be the graph of bi-edges of a
matched graph (G, M), let v be an arbitrary vertex of
B(G, M), and denote by Q) the set of all vertices of
B(G, M) that are legally accessible from r. Then
B(G, M) contains as a subgraph a tree T which is rooted
at r, such that (i) T has Q as its vertex set, and (it)
every simple path in T that joins a vertex v to the root
rislegal.

Note that the theorem would be trivial if the legality
requirement were dropped.

Any rooted tree T in B(G, M) corresponds to an
assignment of predecessors as discussed before. For
instance, the predecessors specified in figure 1. define
the subtree shown by heavy lines in figure 4.

FIGURE 4

The relation between the above theorem and the
algorithm for maximum matchings that will be pro-
posed in this paper is as follows: generality of the
theorem is not restricted by assuming that the root r
is an exposed vertex. Indeed, if r meets a matched
edge, then removing this edge from the matching does
not change the set of simple alternating paths emanat-
ing from r along nonmatched edges. The problem
then becomes to arrange into a tree TCB(G, M)
alternating paths which connect outer vertices to an
exposed vertex r. Our algorithm T will sucessively
construct this tree, thereby proving the theorem. On
the other hand, the algorithm will rely at each step on
the fact that the alternating paths which connect the
outer vertices established at this moment to the root
r are properly arranged in a tree-like manner. A
combination of the algorithm ¥ with augmentation
using augmenting paths gives the algorithm M, which
yields a maximum matching.

3. Labeled Subgraphs

Let r be an exposed vertex in a matched graph
(G, M). We define a “labeled subgraph” with the
root r to be a quadruple

L=4,0,1,p)

where A4 is a subgraph of G. The vertices of A4 are
labelled either “outer” or “inner”, () denoting the set
of vertices labeled “outer”, and I the set of vertices
labeled “inner”. Q and [ are disjoint. Finally,
p is a single-valued function p: Q—{r}— Q called
the predecessor function.

In addition, we shall require certain relations to
hold between the elements of the quadruple (4, ,
I, p). To formulate these requirements, and for later
use, we introduce the following matching function m,
which maps the set of all nonexposed vertices of G
into itself, and which is defined by

m(v): =u if and only if (v, u)yeM.
The requirements for a quadruple (4, Q, I, p) to be a
labeled subgraph then are:

(i) If one vertex of a matched edge is in A then the
entire edge is in A.
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(i) If x € I then m(x) € Q

(iii) The edge (m(v), p(v)) is in A for every v e Q— {r}
Note that (i) and (iii) imply that I and Q — {r} consist
of nonexposed vertices. It also follows that for xel,
(x, pm(x)) must be in 4.3

(iv) Decomposition: If x € | then deleting the edge
(x, pm(x)) decomposes A into two connected com-
ponents.

(v) Legality: For each vertex v € () the sequence of
vertices (v, p(v), p*v), . . .) eventually contains r,
and the back-path

P(v):=(v, m(v), p(v), mp(v), p*v). . . , p™(v)=r1)

has no double vertices.
The back-path P(v) lies entirely in 4 according to
(i) and (i1).

The vertices of the form p*(v), including the vertex v
itself, are said to be even in P(v), the rest being odd.
The even vertices, in particular the root r, are of course
in ). The sequence of even vertices in a back-path
defines a simple and legal path in the graph of bi-edges
B(G, M).

By virtue of the recursive structure of the back-
paths, we have P(u)CP(v) if u is even in P(v). There-
fore we may define a partial ordering in () by letting:

u<v if and only if u is even in P(v).

Any two vertices u and v in () have at least one common
lower bound. By finiteness, they have greatest
common lower bounds. Let w and w be such greatest
common lower bounds. Since w=<u and w<u,
both w and w are even in P(u), and therefore compar-
able. Hence w=w because they are both maximal.
It follows that the greatest common lower bound
w=uNv is unique.

We shall now describe two operations which enlarge
labeled subgraphs. If L is a labeled subgraph, and
there is a bi-edge (v, x, u) with ueQ, x¢QUI, (v, x)eM,
then veQUI by (i). We obtain a new quadruple
l~,=(/f, Q, I, ;)) by letting A: =AU, x)U(x, u), Q:
=QU{v}, I:=1U{x}, and

o {p(z) for ze()

u for z=v.

3 We write pm(v) for p(m(v)), mp(v) for m(p(v), p*wv) for p(p(v)).

FIGURE 5

In other words, we add the bi-edge (v, x, u) to A,
labeling v “outer” and x “inner”, and putting p(v):
=u. The predecessor function is not changed for
the old €. Clearly, L is a labeled subgraph. We

write
L:=F(L)

to indicate that L is obtained by a forward step.

Tf L is a labeled subgraph, and there is an edge
(s, t) which is not in 4 but joins two vertices of Q,
then again we can enlarge the subgraph: Since s and
t belong to Q, and L is legal, we have back-paths
P(s) and P(¢). Let b:=sNt denote the greatest
common lower bound of s and ¢ with respect to the
ordering defined above. Then P(s)DP(b) and P(¢)
DP(b). The paths P(s)— P(b) and P(t)— P(b) together
with b form a path P(s, b, ¢) joining s and ¢t. Following
Edmonds [1], we call this path a blossom with the
base b (see fig. 5). We shall see later that all vertices
of a blossom are indeed legally accessible: the inner
vertices, for instance in P(s)— P(b), are joined to ¢
by an even alternating path, which will be shown to
be simple. Labeling the inner vertices in a blossom
“outer”, and adjoining (s, t) to A is called a blossom
step*

L:=B(L).

The details of a blossom step are as follows: Let §
be defined as the greatest even vertex in P(s) such that
P()—P(b) contains no inner vertex, and let 7 be
similarly defined. Either §=s, or the vertex xeP(s)
— P(35) which is next to 5in P(s)is in I. If5# s, then
let u;:=x, and let u; be defined inductively as the
unique vertex of P(s) such that pm(ux)=m(ur-1)
until some u,,=m(s). Put the set {u;|i=1,. .. ,m}
into (), deleting vertices from I whenever necessary,
and define the new predecessor function by p(u;)
=u;jy1 for 1<i<m where umi1=t Notice that
some u; may be in ) and already have a predecessor
which is hereby changed. The same procedure is
repeated for ¢ in place of s, and then we add the edge
(s, t) to A to obtain the new graph 4. If the counter-
parts of the u; in the path P(t) are denoted v; then

formally we get A:=AUG, 1), Q:=QU{u}U{v},
[:=1—A{ui}—{vj},

w1 for z=u;
p(z) : =1 vj41 for z=v);
p(z) otherwise.

The above definition of p(z) implicitly requires the
sets {u;} and {v;} to be disjoint. Since the u; are

4 In practice one will use a more elaborate blossom step. Let x and y be two adjacent
vertices of the blossom P(s, b, t). After execution of the blossom step defined by s and
t, both x and y will be outer whereas their connecting edge (x, y) need not be in 4. In
this case, x and y will give rise to another blossom-step. The corresponding blossom,
however, is easily verified to be contained in the circuit formed by P(s, b, ) and the edge
(s, t). This blossom therefore contains no inner vertices, and all the blossom step does is
adjoin the edge (x, y) to 4. The more elaborate blossom step consists of adding not only
the edge (s, ¢) but all other “diagonals™ of the blossom P(s, b, t) to A.
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odd in P(s) and the v; are odd in P(t), this will be a
consequence of the following

LEMMA 1. Let s and t be vertices in (), and put
b:=s Nt. If the vertex v is of equal parity in both
P(s) and P(t), then veP(b).

Proor: If v is even in both P(s) and P(z), then
v<s and v<t. Hence v<s N t=>5, which implies
veP(b) by definition of the partial ordering.

If v is odd in both P(s) and P(t), then v cannot
be the root r, because r is even in both P(s) and P(¢).
Hence m(v) is defined, and it is even in both P(s)
and P(t). By the preceding argument we then con-
clude m(v)eP(b) and therefore veP(b).

Before proving that the blossom step B as defined
above always yields a new labeled subgraph L, we
illustrate the blossom step by two examples.

The first example (fig. 5) shows that the two halfs of
the blossom, P(s)— P(b) and P(t)— P(b), need not be
disjoint.

Starting with the root r=1, the assignment of pred-
ecessors has progressed as follows:

forward step
forward step
forward step
forward step

blossom step (9, 3), base 3

QAL NN W~

L

TVWRVVEY
NR OO OO

S

=9 forward step

Now a blossom step is due for s=10 and t=4. The
back-paths are

P(s)=(10,11,9,8,7,6,5.4,3,2,1)
P()=4,5,6,7,8,9,3,2,1),

b=23is the base. It is seen that the part (4, 5, 6, 7, 8,
9) of the blossom is traversed by Pés) as well as P(t),

however in opposite directions. Changing predeces-
sors in the area common to P(s) and P(t) would
clearly destroy legality. This is one reason for chang-
ing predecessors only up to the last inner vertex.
Later on we shall indeed see that P(s) —P(35) and P(t)
—P(7) are always disjoint.

Even if the blossom has no double points, legality
may be destroyed if predecessors are changed beyond
the last inner vertex. This is shown by our second
example (fig. 6).

Starting with the root r=1, the assignment of
predecessors has progressed as follows

p3)=1 forward step
p(5)=3 forward step
pd)= 1}

p(2) =4 blossom step (5, 1), base 1
p(7)=2 forward step

p(8)=7 forward step

p(9)=7 blossom step (8, 7), base 7.

Again a blossom step is due for s=9 and t=4. The

757-615 O-65—7
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FIGURE 6. ———, Matched edges: @, outer points.

back-paths are

yielding b=4 as base. The blossom step as defined

before puts

p@8)=4
P(6)=8.

Note that the predecessor of 8 has been changed from
7 to 4. 1f one would change the predecessor beyond
the inner point 6, that is, if one puts

pB3)=6
then the new back-path P(5) will not be simple.

4. Preservation ot Legality

It must he shown that F(L) and B(L) are again
labeled subgraphs. Verifying (i) to (iii) can be left
to the reader. Proving the decomposition property
(iv) and, in particular, the legality (v) is the main burden
of this paper.

LEMMA 2. The decomposition property (iv) is pre-
served by the operations F and B.

PROOF: In the case of a forward step F there is really
nothing to prove since no new circuits are introduced
in A. In the case of a blossom step, however, new
circuits are generated, and we have to show that these
circuits contain no inner vertices.

Let then s and ¢ be two adjacent outer vertices deter-
mining a blossom P (s, b, t) with b: =sNt, and execute
the corresponding blossom step. Assume that the
new subgraph A contains a circuit C with a vertex xel.
Since L satisfies the decomposition property (iv) and
since x¢(), C cannot be a circuit in 4, and must there-
fore contain the new edge (s, t). Replacing this edge
by the blossom path P(s, b, t) yields a closed path C*
(not necessarily a circuit), which lies entirely in the
old subgraph A4, and which still contains the inner



vertex x. Since P(s, b, t) NI=d¢ whereas xel, the
vertex x is not a double point of C*. Hence X is con-
tained in a subcircuit ® of C*C A, contradicting (iv).
LEMMA 3. The legality property (v) of a labeled
subgraph L. is preserved by the operations F and B.
PROOF: In the case of forward steps F, the proof
presents no difficulties, and may be left to the reader.
Let then s and ¢ be again two adjacent vertices in ()
such that the edge (s, #) is not in A4, and execute the
corresponding blossom step L:=B(L). Define for

v} the — possibly infinite —sequence

P(): = (v,

It is to be shown that P(v) is a simple alternating path
connecting v to the root r. Trivially, this is the case
if P(v)=P(v). Otherwise, let w be the even vertex
in P(v) that is closest to v, and that is odd in P(s)
—P(3) or P(t) —P(f). Since predecessors are not
altered outside the set of odd vertices of {P(s) —P(s) }
and the set of odd vertices of {P(¢) —P(7)}, we have

(vi) (w) P(w).

m(v), p(v), mp(v), p*(v), . . .).

P(v) —P(w)=P(v) —

Without loss of generality we may assume that
weP(s) —P(5). It follows again by the definition of
the blossom step B that the sequence (v, p(v), p2(v),
_..) of even vertices of P(v) contains t. Therefore
P(v) consists of three pieces, the first of which may be
empty:

P(v)=(P(v) —P(w), P(w) = P(t), P(2)).

The proof that P(v) is simple relies on the decompo-
sition property (1v)
in P(s), is an inner point xel. According to (iv),
deletion of the edge (5, x) decomposes A into two
components H, and H, the latter of which contains
the root r.

We note that xel does not occurin P(¢). Otherwise,
it would be odd in both P(s) and P(¢), and lemma 1
would imply xeP(b). This contradicts xeP(s) —P(3)
CP(s)—P(b). Since x¢P(t), the path P(t) cannot
enter the component H, because by (iv) every path
from H, to r passes through x. Thus

(vii) P(t)CH,.

Further we note that

(viii) P(s) —P(5) CH..

Indeed, since P(s) is simple, the edge (5, x) occurs

exactly once in P(s), bisecting this path. The piece

P(s) —P(3) lies in H,, the piece P(5) in H,.
It follows from (vii) and (viii) that {P(s) —P(5)}

NP(t)=¢, and as a consequence, the predecessors

of the even vertices of P(t) are not altered. Hence

5 This argument is based on the following simple lemma: Let C be a closed path in a
graph G. If C passes through the vertex x exactly once, then C contains a circuit through x.

The vertex x, which precedes 5

(ix) P(t)=P(1).

The third piece of P(v) is therefore simple. The
same holds for the two other pieces by virtue of (vi),
and since the reverse of the path P(w)—P(1) is part
of the simple path P(s) —P(5) by definition of B.
Thus the proof of the lemma reduces to verifying

(x) {P(w)—P(t)} N P(t) =¢
xi)  {P() —P)}n P(t) =¢
xi)  {P() —P(w)}N{P(w)—P(t)} =6.

Now (x) follows from (vii) and (viii) since P(w) —
CP(s)—P(s). To prove (xi1), we note that weP(s)
—P(5)CH,. Hence (5, x) bisects P(w). Since
P(v) DP(w), (s, x) bisects P(v) also, and we have

P(t)

P(v) —P(w) CH,.

This, together with (vii) proves (xi).
Finally  assume  ze{P(v)— Pw)} N {Pw)—P(1)}.

Without restriction of generality we may assume that
z is even in P(v); otherwise we replace z by m(z). z oc-
curs in P(s)—P(3) since Pw)—P(t)CP(s)—PG). If
z is even in P(s), we have w <s as a consequence of
w=<z and z<s. But this contradicts the fact that w
is odd in P(s). If, on the other hand, z is odd in
P(s)— P(5), then w would not be the first even vertex
of this kind in P(v). This proves (xii) and completes
the proof of lemma 3.

5. Algorithms € and ¢

We proceed to describe two algorithms which are
based on successively enlarging labeled subgraphs by
forward and blossom steps. The algorithm T deter-
mines all vertices of a given matched graph (G, M)
that are legally accessible from a given exposed vertex
r. It also arranges the connecting alternating paths
in a treelike manner, thereby proving the main theorem.
The algorithm 9 is essentially based on the algo-
rithm T , however its purpose is the construction of a
maximum matching.

The algorithm T goes as follows: Start out with the
trivial labeled subgraph L =(4, Q, I, p) whose graph 4
consists of the root r only. r is labeled “outer”, that
is, Q={r} and I:=¢. The predecessor function
need not be defined since its region of definition
Q—{r} is vacuous. Then enlarge L successively by
forward and blossom steps until a subgraph is reached
that permits no further enlargement. We call such a
labeled subgraph terminal. A terminal subgraph
must be reached eventually since each step increases
the number of edges in 4, and this number is bounded
by the number of edges in G. Terminal labeled sub-
graphs correspond to Hungarian trees (Edmonds [1]),
if MNA is part of a maximum matching.

LEmMmA 4. If L=(A, Q, 1, p) is terminal, then the
vertices in () are precisely those wvertices that are
legally accessible from r.
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PROOF: Let va be a vertex which is joined to r by
a simple even alternating path V. It is no restriction
of generality to assume that all other even vertices of
V belong to (). Denote by w the even vertex in VN
closest to v. Thus (v, m(v), w) is a bi-edge. Now we
treat two cases.

CASE 1: v¢l. Then v¢QQUI and so m(v)¢QQUI (prop-
erty (i)). Hence the bi-edge (v, m(v), w) can be added
to L (forward step), contradicting the fact that L is
terminal.

CASE 2: vel. Hence m(v)eQ) according to (ii), and
deleting the edge (v, pm(v)) decomposes A into two
components H, and H, according to (iv). The edge
of V meeting v is (v, m(v)), which leads the path V into
H,. Since V has no double points, it cannot contain
the edge (v, pm(v)). Therefore, since (v, pm(v)) alone
joins H, to the rest of A4 and since r is not in H,, J must
leave A eventually. Let (z, u) with z in A be the first
edge of V after v not in A. By virtue of property (i),
the edge (z, u) is not matched. Hence z is odd, and u
is evenin J. Since u # v, we have ue() by hypothesis.
This implies zel, because otherwise z and u would
define a blossom containing v showing L to be not
terminal.

The part of the path /' between w and z, but in re-
verse order, forms together with P(m(v)) the path.

Z=(z,m), ..., w,P(mv)) CA,
that joins z to the root r.  Z does not contain the edge
(z, pm(z)). Otherwise, z would occur twice in Z, and
this is impossible since (z, m(z), . . ., w) is simple as
part of V, and since zeH, and P(m(v) NH,={m(v), v}.
The existence of Z contradicts the fact that, accord-
ing to (iv), the edge (z, pm(z)) separates z from r in A.
Thus there are no legally accessible vertices outside
Q). That all vertices of () are indeed legally accessible
follows by (v). This completes the proof of the lemma.

Algorithm T proves our theorem for exposed roots
r. However, as we already pointed out in section 2,
this is sufficient to prove the theorem for general roots.

Algorithm IR starts out with any matched graph
(G, M). If there are no exposed vertices, then the
matching is maximum. Otherwise choose an ex-
posed vertex e as a root, and employ algorithm I to
find outer vertices connected to e. If some outer
vertex v is adjacent to an exposed vertex f different
from e, then the edge (f, v) together with the back-
path P(v) forms an augmenting path. Replacing
matched edges by unmatched ones, and vice versa,
along this path yields a new matching M of higher
cardinality. Algorithm T then is repeated with one
of the remaining exposed vertices as roots.

If algorithm T does not produce an augmenting
path, then we consider the terminal labeled subgraph
A and the graph G: =G—A that results by deleting_
from G all vertices of 4 and all edges adjoining A.
G is again a matched graph, and algorithm I is applied
to it. This procedure is justified by the following
lemma due to Edmonds [1]:

LEMMA 5. If A is a terminal labeled subgraph
none of whose outer vertices are joined to an exposed

vertex by an edge not in A, then the matching M of G
is maximum if and only if its restriction to G—A is
maximum.

Proo¥: The nontrivial direction is to show that if
M is not maximum, then neither is its restriction to
G—A. 1If e is the root of 4, then e is not the end-
vertex of an augmenting path. Indeed, if there exists
an augmenting path P joining e to an exposed vertex
/, then the vertex v which is next to fin P is legally
accessible from e. Hence ve() according to lemma 4.
On the other hand, f¢4, and therefore (v, /) is not an
edge of A, contradicting the hypothesis of the lemma.

Now let the augmenting path ¥ join the two exposed
vertices f and g, both in G—A. We have to show
(xiii) VCG—A.
Assume VNA # ¢. Since xeV’NA implies m(x)eV/ N A,
we conclude VNQ #¢. Let vel/ N, then there
exists a back-path P(v) connecting v and e. Let w be
the vertex in P(v)NV which is closest to e in P(v). w
is odd in P(v); otherwise, m(w)eP(v) NV would be closer
to e in P(v). w divides the path V into two pieces; the
piece which contains m(w), forms together with
P(m(w)) an augmenting path ending at e. But such an
augmenting path has been shown not to exist. This
proves (xiii), and thereby the lemma.

6. An Example by E. Johnson

Berge [4] considers a generalization of the maximum
matching problem. Given for each vertex v of a graph
G a nonnegative integer d(v), one calls a degreecon-
strained subgraph a subgraph MCG whose degrees
at each vertex v are bounded above by d(v). The
problem is to find a degreeconstrained subgraph with
a maximum number of edges. The maximum matching
problem results if d(v) =1 for all vertices v of G. Maxi-
mum degreeconstrained subgraphs are again charac-
terized by the absence of “augmenting paths”.
Augmenting paths are again alternating paths without
multiple edges: multiple points however are permitted
(Berge [4], compare also Goldman [6]).

Recently, Edmonds [3] extended his algorithm to an
efficient solution algorithm for the above and even
more general problems. This leads to the question
of extending the predecessor technique described
in this paper.

Alternating paths and bi-edge graphs can be defined
for every pair (G, S), where S is any set of edges of
G, not necessarily a matching. The theory of degree-
constrained subgraphs suggests defining legal alter-
nating paths as alternating paths without multiple
edges, but possibly multiple vertices. The predecessor
technique now requires that our theorem holds for
general S with the above concept of legality.

This conjecture is refuted by the following example
due to E. Johnson. The graph G of this example is
presented in figure 7; heavy lines distinguish the edges
in S.

Choosing vertex I as the root, all vertices are legally
accessible by alternating paths of even length. From
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vertex 2, for instance, the root can be reached by the
paths (2, 3,5,4,3,6,7,8,9,10,8,2,1)or (2,8, 10,9,8,
7,6,3,4,5,3,2,1). Up to interchanges of 4 with 5
and 9 with 10, these are the only simple alternating
paths joining 2 to the root. If the first path is to ap-
pear in a tree TCB(G, S), then the predecessor of 8
must be 6. But up to an interchange of 9 with 10, the
only back-path of 7 is (7, 8, 10, 9, 8, 2, 1) requiring
I to be the predecessor of 8. A similar contradiction
appears if the second back-path of 2 is chosen to be
in the tree. Thus the legal back-paths in figure 7
cannot be arranged in a treelike manner. Without
the legality requirement, however, no difficulty would
have arisen.

F1GUure 7
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This example proves that the maximum degree-
constrained subgraph problem cannot be solved by a
direct extension of the predecessor algorithm. An-
other generalization of the maximum matching prob-
lem, also solved by Edmonds [2], consists in maximizing
a weighted sum of the edges. The shrinking technique
of Edmonds appears to be more natural for this problem
also.
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