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’ v e A PARAME.TRIC STUDY OF GRAPHICAL MATCHING , . '

AND COVERING PROBLEMS

y .bjf Lee J. White
o0 r - . =G

Given a weighted graph a matching is a subset of the edges

N
i such that rp two edges of the iubset are mc*dent to the same vertex.’

B ‘ . A covering is a subset of the edges such that each vertex is 1nc1dent

to ai: least one edge of the s.ubse,_//ruo 1nteresting problems are to
. A c
find a ma.ximum weight matching and minimum weight covering. In the i

seecia.l .case of bipa.rtite gra.phs/(matching s.nd covering problems are
equiva.lent to the well-known a.ssignment and transportation problems of
linea.r programing theory. T

. Edmonds 'ha.s developed “an algoerithm of a,lget?ra.ic growth to
’ X ) ' E . . ] - . - o L4 ."
find & maximum matehing. -A review of this method is presented. -t “'

) vl . Aodew algorithn} far the solution of the minimum covering -

'- L oo problem is developed a.nd pgesented in this dissex‘tation.

, ) ' { " Under 'certam conditions, Lq.grange ’uultiplier nethods can ‘be
I
applied to discrete prog‘aming probl}ns 'lhis is ca.lled the para-

' v

metric approach apd is used in this disserution 1:0 ‘Find mi-n-

matchings subject to 'the conditiou thlt»ﬂ\e mﬂer of eigu in the . S e

v N
solution is some fixe‘ mmbsr, k. A tudy otntlndl fm‘ this \\ !
"xofrmmiw"pmmqmmMWhm Bl ol
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iy ] k-ca.rdina.lity covering problen. This- nlgorithm is shown to Pe & N
;oW )
£, 2 genera.l:l.za.tion of Kruska.l's algorithm for & minimum =g tree. .
* e - This leads natura.lly to ‘a discussion of. ma,troid systans and’ greedy . L h
2 algorithms a.nd their relationship to: /f.he para.metric appr%ch. ', . i o &
i .t % | % . i
58 A I Ma.tchings and - coveriqgs in-weighted grapbs have app ications :
i a e in reaource allocation, tﬁagnosttés, and la.rge sca.le systen design
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: J St e, b .
;- P INTRODUCTION
»os o8 . ' \l. b A
Ll Introdnctipn _' ) 2 ' . g )'

-Many engineering problans encountered in the deai.gn of large -

Py

scale’ systems can be fomleted as opt,;l.niution problem in greph t.heory
Exmnp].es of such Engineering quest:lons o.re found the areas of commun- -
icatioxis, date’atornge, and sy;tmruegnostics. 4 ) o .
.+, [These yroblens are primerily c htnatorhl in netu.re." ?or s
le.rge systems, efficient algorithms t be developed :I.n order to find
solutions which can be progremed vithout 1nvolv:l.ng inordimte a.nounts
of céupuﬁation time and data storé )
me successful technique for the efficient. solution of such
canbinetoria.]. problens is lmeer progz-_ing Speciel l!.goritt-s heve

bé'en deve }oped to: solve the class of trmportation end usigment

..~

.

e g5 \The‘purpose of this dissertl.tion u to doveiop etfici.ent' o -

{ elgorithms to find optm- -,tchinse llld. cqveru?l,. Vhich qre gemenl
iutions of the ue:l.g-ent prohl-. Bctq’cmﬂ\uc pmhl-,
let us conlider some neceqm deﬁ.nitim ﬁh m% :

.




Rty . B - /'. . » . - l_v

0 the, edge eij Vertices v:L and, vj are Ca.lled' the E ints of'
eu Where :I.t is clea.r ﬁ-an the context A, 1inea.r orderiug on the
edgesmybeused.l,'~ .'  k ' . _ _
.\"' ' » ol A’subgraph Gy = (El, Vl) ef a graph G = (B V) is a subset 7 _ - "
= i" v of the nodes N toéether with a subset B et e edges E, - such PR
. < that both endpoints of each edge in El “are ifi. weoo
e 8 ¥ A vei@ m [G ciJ] is a graph togei;her with an 1nteger— _
: v&lued vei@t cij assoqated with each edge ei:j o~ _;" ' -
3 'Apgt;tgmagraph isaseq/ce of _edges P-(ela, €23y s,

B --: . n a, n) such. that consecuti.ve edges In th:‘:ynce have a common vertex, L

and each edge e.ppea.rs only once :Ln the edg Quence P. The vertex
vy is called the initial vertex of path P. The vertex ‘v, is the . ' ,
temin&l ve:\bex of path P.» Bach vertex whué appears in the pe.th ' . " : -

md is neither the initia.l ‘nor terminal vertex, is called an intemedia.te

)

vertex .

» . —_— . : . s

N e ~

,'.['he __e& of a vertex rela.tive to a graph is the num‘ber of ed'ges -

inc.‘cdenttothevertexinthegraph. R W val WY

Jar e Amnepathfe)rwhich T T R P RS
o vy ( (l) The degree of the init!'.al apd teu:lm.l vert.icee is . :
: ) 4.»'- ; ! - .‘ / ‘-

o ',_ exa.etly one. e T TR AL RS "a e

~(2) The,degreé of mtemedinte'ertiﬁwhmm:. ., ‘




','all ya.yhs to be connected Houever, certain subgrephs mw not be.

: 1.3. Gz'aphién.l mtcmmd Goveang Problem ~

connected define a —M_ as’'a nn:iml connected aubgraph

'rhe incidenCe matrix A of a. graph is deﬁned as

. 1 if edge’ eJ is incident to vertex "1’
R -
AL 3 0, otherwise. - - PR P )’

.

‘ The jth row. vector of metrix A 'corresponding to. vertex Vi' will

be indica.ted As. L el Ey

T

Defineha .- -bipartite Eaph as a gra.ph ;uch that the vertices can”®
o »

be partitioned 1nto two sets in such a way that eech edge connects a
I

verte:; in cue set to some vertex in thq other set.

,./—_/ ' ‘ ) .‘,

o A2

.\ - Given a weighted grAph\ {(where ¢ 1is a vector of edge . ) 2

weights, ‘ahd A the mcidence matrix of ‘the graph deﬁ.ne a tch

-

M in G as a subset of the edges such tha.t no more than one edge

6f M- is incident to a.ny node of G. The ma.ximm mtchi__ug Eroblen is

to find a matching of minrm weight ‘sum. This can be’ written as an oS
\ ) :

integerpnogramas. ) s e e S

Max cx . sub:]ectto Ax<1 i."' x“ Oorl

where cx isascala.r innerproductof\vect.om e m x. “ i E
Ry Define a coveri_x_xg .o G as ‘ Stlbtet ofthc edges auch :

" that each vertex is inc:ldent tp lt lo-at one. adge of the nﬁet e
coverygggb_é ntoﬂniamrfn;ﬂmni&tm\

mmmmw \

¥ Iia u'"
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III respectively S ) )

Note tha.t it Py ‘edge weights of G .are a.ll unity, the above .
'problems correspond to ﬁ.nding the nqximm ca.rdinality matching and
minimum cardina.lity covering respectively.

-

If' a mgtching is also & covering for some gra.ph G, it is LR ' i
called a pe.rfect mtching (or l-fector),. o Ay« 8E )’
y , i . o ‘ s 5l -

Gra.phical htehing and corvering problems }mve been studied ) .
'for some ﬁ;l.me. In POLT7, Tutte [16] gave necessary and sufﬁc:.ent
-eonditlons :for the existence of & perfect mmg in a g;ven gra.ph )

The m&ximm metching problem for the specia.l case of a

-

., bipartite greph 1s known as the ass@ent problem An efficient solutl.on Ll
i A % S T
. to this &;roblem was obta:med in 1955 by

[13] An alternate cha.r.-, . : =

acterization of bipa.rtité graphs is that, the graphs contain m odd

) cycles 3 it is precisely this propegty of odd cycl,es uluch is shown to

_ceuse/ difficu'lty in ma.tchmg and covering problems in Cheptere II and -

7

In 195'?', Berge [ 3] gave necessary : ' surficient conditi‘ons

TR 1 in’ Chapter II. Houever, this resi t amnot lud toanaﬂticient ot
a.lgorithm v - &) £F 00 Con R ko 0

N In1959, Nommandktbin [ﬁ]»mmmm
| :conditions for amm. clrdindity : '




1s demonstra,ted by Theoren 3.1 in Chapter III In 1962, mmom [6}

extended this vork considerably, but without ‘hint of' an efficient

algoritmn
: ) . - In 1965, however, Edmonds [7] solved the mimm cardinality
a matching problem, e.nd subsequently solved the more genern.l ﬁ.ximm 7‘

matching problem [8] N giving efficient a.lgorithm for both.

. . &

. % . ) \ . . ’ . . y &
. 1.5 Algorithh Growth B =
2 Lepul ok - ¥
N What is mee.nt by an efficient a.lgorithm? Since the number of

euges ofthe graph is finite, one ¢ always exhaustively list e.ll
possible matchings, and compa.re tbeir weights. But this could not be
done for any graph with a’ rea.sona. ly la.rge number of nodes.

.'\ ", ‘Let the number of nbdes of a graph be N. since we lmou that
the number of edges of any graph- ce.nnot exceed -(-w 2. l ‘seems. to be
‘a logicai pa.r:emeter by .vhioh to judge. e.lgotithm compluity. i

" ",‘ The number of distinct ma.tchings vhich exist for a gre.ph of

’

;

-

. "N n\odes is.on the ordez’ of N . If Berge s necessary and sufficient
condition [2] were implemented to find a mimn ..tching the grar!;h

{ : ~of such an implenentation would be of expongﬁ.tl oraer, : 2‘

' . Bywthofanalgorithniemnawmbonndmtbe
3 cqnplexit:( of the aigoutn-; where cqnunw s measured by the u-e
.4 : reguired to find a sq;.ution using a W mu& mimtaa
r storage ca.péacity ; : 7




algéﬁra.ic-g'roirﬁi{vifh N i.e.'_,’ 5 ‘Nk, where k 1is a constant independent”
e » :of‘ the size of the gra.ph A ' : -
F&r example, _consider existi.ng shortest path algoritms for

T . >3y

veighted gra.phs - the best of such algorit.!mﬂ have grcvth on the order

Y ‘of 82 of- N3, Leas etficient algorithms exist for the solutio): of

e shortest path probleris vitb; exponenti&l growth; but no one would ever ‘ - 9

3 . use such an approach for a la.rge grnpb
Faes 3 N - '
! sdmgpds' algorithms {7,§] for the solgtiou of the luximn .
g matchihg problen possess a.lgebraic grovtb,, on. the,order of Nh. An

ana:lysib of ¥his P growth figure /i_s/gresented in Append.tx B together 3 Co A
: K
with a canputer program for Ed.monds ~slgorithm. - : BELL A L Z\

§u}>sequent algorithms deve}gped in this work possess compara- TR
\ e

- ble- a.lgebraic grovth. For exm]_.e, the~ grovth of the minimum covering
algorium described in Chapter IIT is§ on tbe order of Nh as compared

. ~ to methods of Norma.n and Rabin Y15} which- grbw exponentia.lly vith n. e
" . * . L . =l 2SN ¥ . & i il >

’1 6 Loggcal Contents of TheLis s - = N T .- . i

g '-1 Ey - ' Chapter 11 gives Edmonds' solution to the problan of mximm
( ma.tchi.ng, ‘as well as not.ation and teehni.ques usul'{:hrwghmt t.he te-rt
Chapter III presents the solution to t.he"-ini-— caver!ng p.cblen. o el

e memmx-cmmwummuuhm;m-- *

e

dp
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cover.i.ng for a e graph. In C‘ha.pter VII, the reletionehip 1 esm-
: . liahed betmeen the minimm sph.nning tree &lgorithn of xrunkn.'l [12] and
' algontm of Chepter v.:

~an a.lgorit.hn to -obtain linin. k—euﬂinnltty‘ coverincs,

&

o , ‘Some- cf the 1mp11cations of this relation-
ship are exenined. cmpter VIII presfnts some engineering eppnc.uons i
of thehe techniqpes a.nd ideas “for. f}xture research. - ; _' p )’ 3 ?" 5
‘L " Appendix A gives some results frun 11near prom_ing theory
used throughout the text. Appendtx B shuvs a cmputer progran-for b
"'solving the m}.’xﬁmm ca.rdinaliti matching pr%blun, together with’ sone :
V‘_.anutational experience with that progran Appendix C reletes a nini.nun
.‘cévering?to the concept o; a reduc ﬂth. A - = Aty Y
ol : The prima.ry eontributions of this dissertation are: |
s _ l) an exposition oft Rdnonds mfmm mtching a.lgoritl:m, L
..\ vtogether with sdne suggested improvaedts of thl.t g
algorifim, . . .- . - -
_ ] 21) an efficient 'algorithm to: sohne t.he ninin- cowering
1 = ,')‘_ R i . , . \ gk or
& \ “3) an a.lgorit}n to, obtain mm- x-cu-dineuty utchings
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gl ' MAXIMUM MATCHING
: 2.1 Introduction R 0" TR A A

A ; .
'.l'his chapter uill cha.racterize\solutions ‘to the mximm

\Aa N

mtching problem a.nd deseribe efficieut algorithms to find these

| solu'hions Section 2.2 gesents notation and motivntion for the mi-

mum ca.rdinalit.y m%chﬁ:g algorithwd/ lobed by Bdmonis{('ﬂ,

Section 2 3 exanines that algorithm -vAppendix BZgives = couputer

program implenenta.tion or the algorithm, tational experience i

viththe programf o L R : o K

Sqetion 2 o describes matching "b;;&'ssolm These are subgraphs‘

related to noninteger solutions to. the muimnn mtching proble-, Section

2 .5 discnsaes ‘the weighted mtching problen, and Section 2.6 prelnmts

=%

’».Edmonds' )J.gorithm [‘8] for 1t.s solution. A proof thot this o.lgoritl:n e

a.chieves the optimm solution is given in Section 2.7

7

'i‘his ?mpter constitutes réviev of Bamonds’ olgorithn, pre-'
pa.red(in collabora.tion and also apped-ing in the: dioserto,tion of Mert
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Ak v Inor&erto indioate the operation of uchnngingedgesina . B
e mtchtng with those edges not in ‘a matching slong some ntermtng mth C e
¢ . ‘, P. the symetr'.lc difference nota.ti.on, mp, 1s used. Ir M “is . m@.. yo i d ';_:-'
B g an alterna.t:lng pa.th then both mre sets of edges, denote RERICRE
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% as - a new matching i the g)aph wh;re .
e > (u-r)mr-u) o .
s T o SIS . ~
8 L . An w:; g alternating,pa.th between two uposed
B . e } 4 vertit‘.es, relative to some natching in a, graph. Such an augi’enting path
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ixe u is mt a wdm éardmuity mtching, ‘then let u*

béinymin- cardimnty na.tching quﬂ.ne the cunponenta aq sub- ko _ 4
frl(t w smce both M and\/u* are la.tch‘lngs, each ceuponent R 2 Ty )'
| of MaM* isen altenna.ting pa.th. “Three trpes. of,paths are possible, S !

ushom!.nﬂgure22 "_' o . * P
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: s;lnce {l(*] > IKI, one of’ the conponents of I‘(* -mt ht.u
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a.sinl?igure22 mtsdmonstutestheethume"
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i.n greph G- incident t6 an- outer vertex are also mcident to. another -
vertex of the tree. A Hmrinn tree is shovn in Figu.re 25 5

A ki_._mgle blossan B with reapect to a given ma.tching M is a

o g sinrple closed path consisting of (2r + 1) edges and (2r + 1) vertices, e

wher.e r of the edges are in M. ’l’hus there is. one: vertex of fé‘

simple blosscm which is aposed relative to MnB.
. e ' o When a simple blossom\ is fonnd in the metching algorithm, 1t

is shrunk to a sihple vertex, thui forming a ne\;, gre.ph. By shrinking
/
simple*blossoms in this ma.nner, the concept of an a.Lternating tree can

g g .
e . & . - -

o Sty M be préserved’r\in tHe resulting graph B

" As a consequence of several such shrinkings, a vertex Vi in i CL
’ -~ - the result:l.ng gra.ph may be the ima.ge of several simple blossoms frcm
B prevlous gra.phs. If so, the preimege of "k will be satie . odd set of A - : =1
vertices sk in the origina.l graph. . The vertices S tegether vith g
all edges with both. endpoints in- Sk will be ca.l.led a blossan.

e . . v
o ‘_

3 amiis? . -
a5 o X A blossan vhich; is ot contained within some other blossan

wdll be\a.lled an ‘outermost plosson. These blos:c-s will be pa.rticularly‘ A
importa.nt fn ‘the veighbed latching ngouu- d:lscussed in Section 2. 5, B
: ol { A discussion of the structure of blossc-s will lp*stm 1.n Secuon 2 ‘t

ety ;::.4. e Ablossmed tree ia an nmmﬁ%‘h mmu :

N

Let Pl be the “pc.th froqvl to m‘ma;, qul. :

: ,,2 -to the root, ﬁm %szy
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2.3 Maximum Cardinality Matching Algorithm

The algorithm is initiated by specifying &n initial matching
(possibly empty), and proceeds by sysﬁématically searching for augmenting
paths. Trees are rooted &t an exposed Vertex, and are grown by alter-

gnately adding édges in the matching and met in the matching as in Figure
-

'

2.3 until the tree either
(1) augments, as in Figure 2.L,
(2) blossoms, as in Figure 2.6, or

(3) Dbecomes Huggarlan, as in Figure 2.5, %
{1 \y
See Figure' 2.7 for-a flow‘a"éram of the algorlthm

If the tre{naugments, the cardinality of the matching‘can be

incfeased by one. ' This is accpmplighed by .tracing the :augmenting path
back to the root, .and then interchpnging the. role of edges in the
matching and not in tﬁe matching aiongbthat path. The tree is discarded
foliowing augmentation and a new tree is rooted at ‘some remaining exposed

vertex. S ‘

-~ If the tfee blossoms, the resulting blossom, is ‘ideMtified by
. backtracing the‘tﬁo paths to “the root. The blossom is then‘shrunk, the
tree is retained, and further search for an augmenting path continues. *

If the tree becomes Hungarian, then the maximum cardinality
. . : > it
matching in this tree is independent of the remaining\graph. This fact 2

will be proved in Theorem 2.2
\\\ The overall °trategy of the algorlthm is to elther succebsively

find augmenting paths, or to flnd Hungarlan trees wh;ch can bg,glhmln&ted ‘jkw\ *

from ‘urther cons1derat10n. Since each Hungarian tree eliminatéé one

" exposed vertex, and_eaeh augmentation eliminates two exposed vefticgs,

e
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2.3 'Meximum Cardinality Matching Klgorithm
The élgorighm is initiated by specifying ar.initial matching
(pgssibly empty), and proceeds by systematically searching for augmenting

paths. Trees are rooted at an exposed vertex, and are grown by alter- ’
Rately adding edges in the matching and not in the mat%hing as in Figure

2.3 until the tree eithér .

r * -
(1) augments, as in Figure 2.k,
N (2) blossoms, as in Figure 2.8, or : 2-
o " - £ -
s (3) . becomes Hungarian, as in Figure 2.5. : N
Seq Figure 2.7 for a flow diagram, of the algorithh,

If the tree augméﬁis, the cardinality of the matching can be

increased by one. This is accomplished by tracing thé augmenting path
1°* _ V4
\ A 4
back to the root, and then”interchanging the rcle of edges in the

matching and not in the matching along that path. The tree is discarded
following augmentation and a new tree is rooted atAéome reﬁaining exposed
Veftex.

3 . If the t?ee b;pssoms, the resulting blossom is identified by

backtfacing the two paths- to the root. The blossom is then shrunk, the

-

_ tree is retained, and further search f?r-an augmenting path continues.
'If the tree becames Rungarian, then the meximum cardinalify

Sl ﬁatching in this tree is independent of the remaining graph. " This fact

will be proved in Theorem 2.2.

The overall sfréﬁegf.qf the algor@thh is-to'either\ﬁgsfessivelﬁ .
’ b . . Mt x 5 i ; p A bl
1 £ind augmenting‘paths, or to fghd Hungarian trees which can be eliminated
2 3 5 : & = % -
..from further consideration. Sihée'each Hungarian trée eliminates one’
- \ - . . z

" ~ -"; v S - ;
exposed vertex, and each augmentation eliminates two exposed vertices,
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Chozse an initial i ’
matéhing M
. { Expand )
1" =) blossoms
M.ntching‘ None Choose an exposed .
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Maximm . ) vertex 85 root
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b - £ incident to s outer No Hungarian ‘tree £
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we cen conclude that fewer than N° trees will have to be grown, where
N is the number of vertices of the graph.

'Edmonds computes an asymptotlc upper bound on the growth of

computation time with the number of nodes as Nk.‘

J
This algorithm- . -
growth -is- examined in Appendix B, where a computer pra§ram for maximum
cardinality matching is pr;séhted.

r

The follewing theqrem proves. that as a Hungarian tree forms

relativy to a particulér matching M, the ehtire tree can be removed
froﬁyfurther consiaé;atfon without af;;éting the overall maximum /
cardinality matching. - oo , ‘-*’7’:
Theorem 2.2 o 7
If J isia Hungarian- tree in graph G with matchiné M,
\ ‘and AMG_J is any maiimup éérdinality matching .of subgraph 7(G-J), then
MJIJMG_J is a maximum cardinality matching in G.
Proof
P %
k ' Let - V5 - be the set of vertices in the Hungéii&n tree J; .
partition tge edge"of. G into three sets: )
(1) Ej, the set of edges with both endpoints-in V.
(2) EJj,qthe set of edges ﬁ}@b one endpoint in V.
(é) Eg_g» the set of edges with neither endpoint in Vi

Let K- be any matching in G; then K can be partitioned

relative to the'edge partition above into : : Py
i P 20 .-\, ReT sty . \ . «
et X i 9 |
g , Ko KU -
3 :




e S

Since My ; - is a maximum cardinality matching in (G-J),
1) v

J Every edge in KJ3 touches exactly one inner vertex of . J by

_definition of a - Hungarian tree. Let I(J) be the number of rinner :
vertices of "~ J. The removal of P inner Vertice% frem the alterhating
tree J breeks it into (p + 1) disjoint trees with a total of [I(J)-p]

inner vertices.

» . Since the maximum cardinality of any matching on an alternating "
YRR 4 4 ."'
s tree is equal to the number of inner vertices, we:have
- o ’_‘ t\‘>’\//
- Ve _ L’(J) = lKJ:J-}' 2> lKJ,I ’ <o At
= T( ‘ -y ‘

2) “ M| =T(E) > |K;| + [R5 A
Combining 1) and 2), we have |Ml > |K!, but siﬁce K is an

- v - /

\ ,

arbitrary matching weé”conclude M is of maximum cérdinality.

2.4 Matching Blossoms

The maximum matching problem could be fbrmulated as & linear

programming p}oblem except for the constraint of integrality. Removal
v of these constraints may result in a noninteger. solution, as shown in

{ Figure 2.8. The maximum solution wjthout the.integer constraint 4is
. : . i

X, =Xy = x3‘= x3 = X) = (5 = fS' which has cost 2.5, while the largest

92 cardinality of ‘any mgtchihg in this éraph is clearly 2.0.
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The following theorem due to Balinski [1] shows that all

vertices of the convex polyhedron specified by

have coordinate values 0, .5, ‘or 1. {
A )

Theorem 2.3 (Balinski) &
Any square nondecomposable‘ submatrix of an incidence matrix

- of a graph hgs & determinant value 0, + 1, or~+ 2.

> ~ 4 7 . /1
. : /)
N 75N
: (\
Since.-all suchsubdetermigants of matrix A are 0, + 1, * 2, teny
any.basis change encountered im = linear programming solution will ‘ ) 7

produce the component values O, .5, or 1.
\ d The sources of nonint-’eger solutions are odd cycles of the
graph. - If a graph contains no odd cycles, then it is a bipartite graph,

and the maximum matching problem reduces to the classical assignment

¢+ . problem. Efficient solutions for this problem are well known. [13].

o
Edmonds found,that the following set of linear constraints .
were sufficient to guarantee integrality:
( ' Let Sx be a set of (2rx + 1) vertices, and let Rx be a
vector such that -
A v g 1, if edge e; has both endpoints in set Sy
By = s Ehen
. + 0, otherwise. '
THen " AR KL AR g : 2
or #f R ‘is-the odd} vertex set-sdge\ incidence matrix, this can be stated.
o generally as ’ \ 3 < ¥
W ;A : : ; ; T :

RX < T,




et . : il

where  r ' is the appfopriate'vectar of odd vertex set indices. It
should be notéd that in the definition of 'a blossom.in Section 2.2,
t?e appropriate constraint in the above system is satisfied with equality, .
. i.e.,
2 ka=rk. . I f
D
The sufficiency of these constraints to insure integrality will be

proved constructively byfthe aigorithm in Section 2.7.

\, _When blossoms are detected in~the algorithm, Edmonds shrinks

. B > . s
them to a single Vertex{ This is & very convenient notation, in terms /|
. 1. N
2> o . ’ (1
of retaining the alternating trgg structure. N e R
Notice that'by <ur definitions of inner and outer vertices s

- : ’ ~-

given in Section 2;2, each vertex within a blossom is both inrfer and
\ -~ outer. Edmonds suggests sé}inking the vertices of a blossom to a single
vertex, thus creating a new gréph. The same result can be obtained by

identifying which vertices are in a particular bloésom, ciassifying

\

¢ them all as outer vertices, and continuing to grow trees using edges

of the original graph. Thus the vertices of the blossom remain distinct,

but- edges between vertices of the same blossem are ignored in subsequent

-

{ i growth. N

P .
I . We will always talk.of-shrinking blossoms tO'a.singlg vertex,

: rthereby creating a new graph. - That is, when & blossaom B forms, we

say By 1is shrunk to vertex. b3 +1 fonming greph Gy 4 3, etc. We

will not actually form\ G, but rather tag the vertices of B with

i+ 1’ ‘\\\\

the label" b \-l’ and continﬁe to use edges of Gy'=6G for subsequent

! ymmn p g SRR 2 = el o*

»

g \ . . . . = ’
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. T .
S : “
Iﬁ order to see some of the campleiity which can arise in

:blossom structure, let us cohsider a case which may arise in the cou}se
of fhe.algorithm. Suppose ihit after a blossom B; has béeen formed -and
ghrunk, ;notﬁer edge‘is féuhd in the- same tree which connébts some
vertex wiﬁhin b;ossom Bi to another' outer vertex of the trge,vas
illusﬁfated in Figure 2.9.. This forms another blossom Bi ¥>l whi&h.

contains all the verticéds of B; along with a number of other vertices.

4
l.
W
o Exposed Root 'Zf
a) G, =G X
SO S {7) 8, 9}: ) PO = (378) e89,' 69’7\' in GO 5 =)
Sl = {3: %, 5 6,7 8, 9}17 c By = (631&: €45 e5-b1’ eblé? 963\’ in G

Figure 2.9 Complex Blossom Structure
' *

R Pi is the simple closed péth of the biosspm B; in graph
Gi‘ “Figure 2:9 a) depicts the blossoms ABo’ Bl in the original graph
G, while Figures 2.9 b) and 2.9 c) show the effect of shrinking p1Osgams

: S \ X

as ‘they occur. - SSaa

Y 3

’ N\ = > o
Assugf'that edge e;g -was the last edge added to the tree.
- ‘ % » .




gt-> - S

Notice vertex vy, waé an inner vertex prior to the addition of e79,

but ‘after that-edge was added -toc the tree, v), - is also an outer vertex.

LS

The path of even length from v), to the root vy is:
J : g .

{ehs’ 58> “891 977 76 637 32 eort -

<
J
In order to.find the path of even lergth frém any vertex

within a blossom iBi back to the'root, certain information is required
about th structure of 'the treé when that blossom was forméd. It is
éuff{cient to rememiber $he simple cloSed path Py associated with each /(

bl?ssom By - o € 4, R 45

Notice that each subsequent blossom* B. is either disjoint

from & previous blossom By, where k < i, or else B; properiy contains

-Bkll The odd node sets S.;_,/Sk induce a natural partial ordering on the

\

blossoms.

\ 8;D8, => B; > B.

This partiai ordering is.important when blossoms are subsequently

exp‘anded to induce) the appropriate matching in - G.

-

A vertex In graph G{ which is the image of some blossom

i

structure can be treated as a simple vertex in Gi as .far as tree
' .. )

growth” and augmenting paths are concerned; but eventually the vertex

s

must be,'expanded to obtain the actual matching in graph G, = G. The

folklowing ;heorém charapterizeS‘the freedom allowable in obgsining a
g 20 o g

matching in a §omplicated blosjom structure.

Theorem 2.k . P = Sk =

N e : 5 : ’
Given an odd set of (2ry + 1) nodes Sy, where S, is the b2




it -0
set‘of vertiées of a biosscm.'Bk in -a greph . G. - If w ~is any vertex
: in 'Sk, then there exists a maximum cardinality matching in the subgrﬁph‘
25, 00 nédés-JSk whith leaves v éxposed.‘
The blossom structure is expénded in any manner con§3stent

with the partial ordering, i.e., By © is expanded before Bj “if and

only if either Si:>Sj oi, Sif1Sj = ¢.A For an,illustrafion of this

process, one cogld refer to Figure 2.9. ~
“‘At"the first step, Bé is expanded by replacing B, with /
A3 ' . /
) (1
the simple closed path Py .~ One of the vertices of path- Py is either ~—
e o ~ b z

v or contains ' v. That vertex is le€ft exposed, and & meaximum cardinality

by matching is-induced on the remaining vertices of Py. But now we have”

the same ‘situation relative fo the;4ertex containing v as in-the

N

hybothesis, so eventually v is exposed in graph Go = G. At each step

the vertices of Pi which do not contain. v . become matched.

\

p If the vertex which is matched is & simple vertex, we are
finished with.it. if, howéﬁerz it is the image of a blossom Bj, then .
the edgerin‘the matching is actually incident to some vertex vkesi,

Vi v, A maximum_cardinalfty mﬁtching can be induced on the subgraph
¢ 5 - .

defined by vertices Sj by leaving the. image of Vx exposed in this

: -

.

but with fewer blossoms. Since the number of blossoms is finite, the

- process eventually_terminatés with only the-specified wvertex v &

- - \ . » 2 \
exposead. s 3 T2 Y : : ;

N

\
\

\

| : , ' :

i ~subgraph, Thus we return to the same situation as in the hypothesis,"
\

|

|

-

=iA e v ¥ : , e - : 4

N




2.5 Weighted- Matehing

The ﬁaximuﬁ mgtching problem in a weighted;g:aph G can be

formulated as an integer program:

1) Max ex subject to
AC) Ax SJ. /\
3) X33 = 0.or 1.

As statéd in Section 2.4, Edmonds replaced the explicit inte-

gralitf\ccnstraints 3) by a set of linear constraints. The maximum - 3
> _~~ § £ /
. matching problem can then be stated &s a linear programming problem: f

X ) Max cx subject to v L -
o ¢ K -
5) Ax<1 L
6) Rx<r
\ B - /
: 7) x>0 ¥

where Ris an odd vertex set-édge incidence matrix of graph G. S is
& k

an-odd set-of ‘ (2ry + 1) vertices, and Rk 1is a vector such that

1, if edge e; has both endpoints in set Sk
ki T _
‘}, otherwise

4.5 A typical constraint in 6) is
{ ' i -
: ka < Ty

-
. Where it is clear frop context, we shali él§o:use £he symbol Ry to
indicaté that §et of edges.with bpth éndpoints in vertex set Sy

It cah be seen ihat\apy matching satisfies 65. Whet is not

\ v ; \
clear is ﬁhethér this set of cénstraints is sufficient to guarantee -

Y : - 3
. integrality. This proof will e given in Section 2.7
v N\ s - 3 . ’
b} { .

oo
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Appendix A describes some resulfs fram the théory of linear

:programming, which will be néeded here. By considering linear system

4),’s), 6), and 7) as a priﬁal'linear program, we can obtain the corres-
J . : . .
ponding dual -system as 8), 9), and 10).

8) - 'Min (Zy; + Zrygzy) " g
The dual variables Jj are summed over all vertice& v;€G,

J

and the products }kzk ére summed over all odd vertex sets S, Where

ISk| = 2ry + Lﬂ z, -~ is the dual variable assocjated with the odd ‘vertex

set’ S« » S G 7 //
. ,/"
9) ATy + RTz > ¢ L
. : - ~ y
10) ¥ 20,2z>0 I -
A typical dual equation in"9) is 5 -
\ ~11) Yy + ¥+ E z Z_‘ijr
' eijERk .
where Rk indicates the set of edges with both endpoints in odd vertex
set Sk. \
The algorithm is motivated by Theorem A.3 from Appendix A; T

Theorem A.3 guarantees op)imality of the primal system if a primal-dual’

'solutioh‘is both feasible and orthogonal. For this case, the~p}imal-duai

£l

solution is a set 'of vectors . x,y,z. A feasipie set-of such vectors

must satisfy constraints' 5), 6), 7), ®), end 10). 'The orthogonality

cqnditiéns are : p
12) Xgq > 0 => y; + yy+ Lz = €4 55 5 .
4 . . e €, . €R ; : .
; : ‘ \ B 3 ~
b e : 0
v 13) Y320 P AX=1, .\ :
Y 'i.e:, vertex, v5 is not\ exposed. - . =

1b) “ 20> 0 =D Rix = 1y, ¥ g . G .
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» 0 YN an odd set of vertices Sy ' has a nonzero.dual
variable only if it i5 maximally matched using edges of Rk‘

p The algorithm, which will ‘be described in Section 2.6, begins

s with and maintains feasible primal and dual variableé, which are glsp A b

orthogonal- except - for condition‘l3). S
A feasible primal is the null matching, xij’= 0, for all

.

edges eijeG, which also.-satisfies condition 12)} A feasible dual is

" obtgined\by setting zk'= 0 for all odd wertex sets Sk, and by.

i Cﬁoo;;ng positive iéf£exlvariables yj('sufficiently large to satisfy //
conditions \9) and 10Y. 4 y e LL
9) ¥i *+¥j > ciy for all eyjeG. » 4
10) y>0 ‘

N

\ Con&ition 14)is satiéfigd;‘éince all zy =.0.  Thus 13) is the only
orthogonality condition which'is'not satisfied initially. We will
show in Section.2.6 that every time a -tree is growh; this tree eventually
» v h . . .
leads .to a reduction in the number of vertices violating éonditionAl3).

Thus fewer than N , trees are required.

g As in the case of the maximum cardinality matching problem
{ : described in Section 2.2,. we are searching fo: augmenting paths. These

\ - . \ 4
! augmenting paths have a more cqpplex structure than in the cardinality.

L Case. . Define the weight w(M) - of a matching M as the sum &f the edge

weights of M, and the weight of an alternating path P relative to

a matching .M & =\ - %

S

AR O S TS ' w;(p;\i) -";'('pnn)‘.‘

~

\-
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A weighted augmenting path P ‘relative to & matching M -in

a wéighted graph G 1is an alternating path such that:

) 1) . M' = MP is a matching, and

: 2) w(PnM) - w(BNM) > 0. ' * Sz LREL, ;

This definition leads to three different types of weighted augmenting

~

paths P, shown in Figure 2.10, whic-h are used throughout this thesis’_.'

1) 1 |pnM| > |p /TVMVI, P 1is a strong sugmenting path.

2) Xt . |pny| IPhM|, P 1is a weak augmenting path.

¥ 4

> — 4 7. /
3) If |pnMf< |Pf¥Ml, P is a deaugmenting path. f

. : ~
Strong Augment v.9” T e Edges:
l . N > . N
o—oeo M

L\ g _ g _
Vo A —f ., e R
. Weak Augment Vi ¢~ o . l

Deaugment — e — e e

. }
_ w(PAM) - w(PNAM) >0
& | i

Figure 2.10 = Weighted Jugmenting Path Types

s

v
’

Theorem 2.5 , VAR o
: A mé.tching' K is maximum in a’weighted graph G if and only ) g
' : . A\ Fea s : ~
it t‘ne{e does not exis&c a weighted »aug?entingapath‘ir'l G. : = s

-~

SN . 7 :

s gl ¥
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Necessity ; 4 G
If a weighted augmenting path P ‘exists in- G, then form

MSP. But since

oIl

w(PAM) - w(PANM) > O,

L

w(M') > w(M),

\ R

and M 1is not a maximum‘matching in G.

Sufficiency
\ Syppose .-'M is not a méximum matching in  G; then there. exists
some ;;ximum matchiﬁé” M*i such that w?M*) > w(M).

" Consider subgraph M@M;;\each component bf MBM* is an slter-
nating path. But since. w({¥) > w(M), there exists at least one compo-
nent’ P‘ such that' ) )
| w(M*N P) >w’(MQP;./

Thus P - is one of the ﬁhree types of yeighted augmenting paths

shown in Figure 2.10.

\

2.6 Maximum Matching Algorithm

+ ' The maximum matphing algorithm is based upon the primal ‘and
dual linear .programs as formulated in Seetion 2.5.° The algorithm is a
. ‘ [
generalization of ‘the Hungarian method used by Kuhn [13] to solve the

aSsignmént problem.

. * Classify the vertices of G into four sets relative to an

altemating.trees L &
= Nl o . T £ 4 e 3
=3 gmker, $. This sé{ contains all outer nodes 'in the tree.

»

e,

2) 1Inner,”I. This se% contains all innef nodes in the tree.
N ' < 3 s

3) ' Neutral, NU.,JTﬂis set contains nodes that are maiched

-

e




e
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" and not in the tree.

4). Exposed, E. This set contains nodes "that are exposed

and .not in the. tree.

The maximum matching algorithm is shown in Figure 2.11, and

can be described as follows: . . ‘ -

()

(2)

(3)

(¥)

P

(5)

f

)
Begin the #lgorithm with-no edges in the matching M,
and sufficientiy.high vertex weights yj such that

y=>0, ¥i +,yj >F for everf’edge e, .€G. Set

ij? ij . g TN
for all odd vertex sets [ Sk-

s _ ~ _ !
Define a subgraph "*) which contains all the vertices

of G and edge set. E¥, -

Ex = {e iyi + yJ_ :,glij'; Vi and \’J.

)

ij
not in the same b;ossom}.

Choose & nonzero exposed node to root an alternating

tree. The cardinality matching aigorithm described in

)

Section 2.2 |is used to grow this alternating tree in
: g g

" subgraph . G*,

>

A succession of blossoms may fo;m, at which ‘time all

the vertices of the blogsom are identified as outer

vertices. Urlike the cardinality algorithm, blossoms

.formed.in previous treeés may appear ag inner vertices.

If a strdng augmentlng path occurs. it 15 used to agﬁmqgi\

the ma@chlng, and the tége is discarded

-
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J .
¢ Choose initial . ' :
vertex weights
1 Maslaing " such that \'
Cardinality 3 + yJ'-Z Cijs Veij -
Matching .
~ Algorithm
e o i sangd ——————;4~—-\ ————— o
T no nonzero ,
y:. v _{~ Ghoose exposed? . |-exposed vertices
’ : ﬁ nonzero vertex H K | )
| . 1 s as rpot ‘ : Ma\tc’hing (
| o - P | Maximm )
| . |
| Strong | Grow alternating : N
Augmen tree in G¥*
W g e} !
| : I
| Hungarian :
| Tree Blossom |
Bt e ol s s i i s s gy sl s . s i s, g ot il
. IAd just dual variables:
1) vq inner =y =yj+A e
"‘2) _"1 outer =y ;=yy-A
) 3) By inner =pzy=z)-2A
i ) 4) By outer =>z =z, +2A|
¢ : s Vi
New edgq zx = O . y¥y=0
: in G* 4« for inner| -for outer
s B ' | blossom- |.. vertex
he TS 1 = (expand) | ° (weak augment)
' 3 : v 3 : '
B - — .
: _ ~
» = A\ \

Figqré 2.11 Maximum \datchin-g Algorithm

i » \ . = WL -
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(6) .Eventually either an augmentation oceurs,.or the tree

cannot be "extended further, in which case the tree is
called Hungarian as in Section '2.2. At this time leave
| - ] .
. the cardinality algorithm, 'and perform the foll'owing
calculation: ,
{
A ="Min (8], Op, B3, Ay; Ag) where -
&, = Min {Cij*' Y3 = )"j}
Vi€¢ )
N \'jeNU
» o~ f o
.
2<.o
- by = -_2‘M1r1 {Clj r ¥y - YJ}
. < 1 ~
viEp
- 4
‘vj€¢ &
\ 5 ‘A3 = iMin {zk}, over e.l/l outermost blossoms serving as
inner nodes of the ftree.
A, = Min {"yi} .
\';‘Qﬁ
5 N
Af = Min {Cij)' ¥y - y:}
vie¢
v.;€E z
¢ y e
Upon calculation of A, agjust dual variables:
x, * a‘) Outer node weights yj’ are decreésed. by A.
b) ' Inner riode weights, y; are ifcreased by A.
" ) S 2 " )_ \ \ s - .‘ :
c Dual \arlagles. g _Zk a§§0c1ated witt} c;utemos‘c b‘o-ss‘.;{
" which kerwe as ‘outer nhdes of the tree are increased
\ by A NoFies :
B
- v .




]

(7)

*(10)

algorithm.

a matﬁring.iuduced, and the tree growth continued. . |,

‘the vertex vy gecomes exposed. Eut since - O,_ ,, o %

/ 4.‘A -' :

- N -‘31'-

d) DualIQariablés z,~ @associated with outermost blossoms
J whicﬁ appear as inner nodes of the tree are decreased
by ,2A.
If~ A=15, a new.edge enﬁers subgraph .G*, and the tree

can be grown further by returning to the c?rdinality.-

r

If A= A?, & new edge enters subgraph G* such that a

new blossom forms. Return £ the cardinality: algorithm.

v

- Y. .
If A= A3, an -outermost blossom By must be expanded,

and the tree may be¢ grown further by.:eturning to . the

cardinality aXgorithm. In this case, the blossom By

formed as an outer vertex-in a previous tree has become

involved in thé present tree as an.inner vertex. Further

< increase in A WOuld have caised the dual variable Zk

to<become negative, and the dual solution would no longer
. - . o
be feasible. Thus the outermost blossom 'Bk is expanded,

If A=4), then )"j becomes zero for some -outer vertex,

-

and the tree. is discarded. - Jf this outer vertex should
: :

be the root of the, tree, then clearly we have reduced

the number of nonzeéro exposed vertlces If the weight

-of an outer vertex vl, other than the root, becomes

zerd, we chnnge the matchlng along the . even patb\QEEYeen
YJ‘ and the root. \This path is a weak augmenting path,

since the cardlnalfty of the matching is‘unchanged. Now

’
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N

still satisfiesAthe orthogonality condition.l3), and
wé have succeeded in reducing the number of vertices
violéting»lB).A A Aiagram illustrating this change, as
: well as strong éugments,'is showﬁ’in Figure 2.12.
‘;l)i it A= AS’ a strong augmenting path exists. The
cardinality.of the matching can be increased, and the
tree Aiscardéd. J : o
(12) IR the tree is discarded, a.new tree is rooted as in
,step (3). Tdé-hetiresult is th&é‘each time a tree is
rooted and grown, the numbei of vertices vidlating
condition 13) of Section 2.5 is reduced.  Thus after s
growing less than N trees, the.orthogonality V

ket - A oo . i
\ ’ conditions are all safisfied, and the matching solution

found is optimum.

Example X
Find the maximum fftcning in the graph G shown in Figure
Bl 3, .
& . "
i F o i
- V2 =, \ :
A .
E B N
» 1‘ \\
R ] “ -
'\ 3 3 . : G
Figure 2.13 Weighted Graph G 2 A :

. s a .‘ 7 Bt _' | i e
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SA - Strong augment

‘WA - Weak augment

Violates Orthogonality Conditiop
.y'j>0 =$ij=1. ”

.
»
s
-
o
y=0
Matched
%
Figure 2,12 - Vertex State ﬁ@sttion Diagram
{Weighted Matching) <
: g ~
» ‘ \ \\
: 7,
v \ 3
~
‘ -




A valid set of dual varjables is .y, = 7, fof all v_.eG.
J

Tree 1

(;) Root at .vy; tree is Hungarian.

' (2)  Lower yl‘ to yy = 0.

Tree 2 {
(1) Root at vyj trée \is Hungarian.
(2) Lower Yo to- yp, =-5; grow edge €,p, augment.
- NP =0
. o ) o ‘( 7.
N 5 .Ml . {5‘12} y W (Ml) =5

o ----
<
n
"
\n
7

\ p B
\ (2) Lower y2 to yi = Of grow edge e,),, augment.
oyy =T
1 ~
]
o § -
¢ M, = {e oyt e_‘} w(M,) = 12
t \ 4C 3%
I
¥ ‘y_\ =.0
3 N
Tree 4 )
(1)« Root at vc; grow edges ecy, ey: in tzee
-
[ Tree is then Hungarian. :
( -
\ 14
(2) A weak augmenting path P = {e L } exi
gme; i < Sh: €43 xists;
= . implement the.path P.
mn =7 v = 7 .
i Y5 v :
______ -_.
4 14 « ” 2 \
<
. r 2;} . = N
3 \ M, = €12, sk w(M3) = 19
Y N, : i
."2 \
. :
. | .




. N

: Tree .5
(1) Roét at v ;- tree is Hungarian.
) (25 Lower yg. to yg = O.
3 Thus Mé is_the maximuﬁ matching. The orthogonality

conditions are now satisfied. AsAa check, compute: {
W=cx =15 # lhj = lé. 3
U=>:yj='[0+5"+o+’-(>+7+o]=19.

» £ 4

2.7 Maximum Matching Algorithm Proof

5 The basis for the proof/of the max imum maﬂching algorithm was
provided in Section 2.5. VWE'ﬁist show that terminally the algorithm
arrivés‘at primal and dual .variablés whiéh are both feasible and érthc—

\ goﬁal, for then the scl&tion ig optimal by Theorem A.3 frdm Appendix A.

Thus’ we must show:

1) x;.>0, for all ey 4€G.

ij ;
d 2) Ax <1, for all v,eG Primal Feasibility .
3) Rex < rf, for all odd .

vertex sets Sk

-

g
'
~
“ .
Vv
»

> 0, for all vjeG
.

'5) 2z > 0, for all oddi

vertex sets Sy : " Dual Feasibility
- &) ¥y Imzeg, .
3% 1 e
: ;
< ‘ for all e, . eG>
2 ij
Y T - A




—

s

Cij—\'

7) xij>0%yi,+y'+ sz

8) y; >0 = Agx =1
J o : .
(vertex v not exposed) Orthogonality

9) zk>Q@ka=rk. . \’
» (vertex set . S, meximally o
"matchéd by edge set” R.) _, ‘

) . \
Since t% algorithm solution is a matching, conditions 1), 2)
. b A~ f & .

and 3) yare verified immediately. Since the algorithm always stops

lowering verkex weights as an outer vertgxMny. . variable goes to zero, ’

2

J
— 4
and all ‘inner vertex weights are raised, 4) is always satisfied. 2, v M

variables are always maintained nonnegative in the algorithm, so 5) is

veri;\‘ied. ' ,
Our convergence afgument was based on the systematig elim'Lj.-

ation of nonzero exposed vertices, .thus orthogonality condition 8) is

‘sa'tisfied. The only way in w}l}ic'n & nonzero zy variabl‘e occurs is 1 AN

when a blossom forms, but th?’r. Rkp( = Ty, and condition 9)- follows. e

Thus the proof reduces to showing 6) and 7) are valid.’

{ Proc;f of 6) %, s : i

Let yJ-* be the final value o ¥y . when the algorithm.ter-

P

minates. If some edge ei_j

edge set Ry, then the algorithm maintains the condition

does not belong terminally to any blossom

. e s :
S A =

: yy.>e

» - 4 ‘ yi .YJ o 153

I N .4 : o - . 2
and 6) is‘.veri'fied.\imnediatel_y for this case. ‘ : : ,

. : : v E % V .
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“

But. if .edge e;j is involvéd in a blossom structure, let

vi', Yj' be the ﬁeightéyofAthe endpoints of ej5 at the first time

}s absorbed into a blossam. Then at this point,

Yi' *¥5 2%y :
)
and the final vertex weights are related
N egjekk
» { 7.
* 1
yJ* . yJ = Z %Zk
¥ N eljeRk
- *.

Substituting this above, we obtain the geheral verification .of coqdition

. 6)s -
)
6) yi + yJ. + R;. _zci.j'
Proof .of 7) ;
g S
If edge e is in the matching, then it entered this set

+J

By forming a portion Jf aﬂ"augmenting path in some tree.. But its béesence
. in tie‘tree implies’ . ‘
& g |
¥i +.yj'= Cij-
Further, all edges ‘in the matching~;hich are not within a
blossom, but in any tree are always between an inner and an outer vertex.
.

Thus tbe Hungarian\\exghu adjustmqgt process maidta ns this equaiTty

L B if Tthe edge enters a blosscm, then\the proof of 6) can be used with the

abova equality holding instead qf the inequality. . Thus 'T7) is ‘valid,
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i+ 73’3"

and -the algorithm has beén showﬁ'to obtain an optimum solution.

G AT Appehdix A, u convex polyhedron is definéd, and it can
be seen'thatjthe constraints '

i Ax <1, Rxg'r,'xzo,-

form a convex polyhedron. We assumed & 0,1 integer éolution vector X,
corresponding to a matching, for'an arbitrary weight vector c, ;;d
found this would alwa&s yielaAan opfimum solution for this set of con-
straints.: Thus by\Tpeorems A.4 and A.5 from Appendix A, we conclude
this cohvex“pof§hedron pbssesséé o&ly integer ve;tices. Since- there

5

.-are no, noninteger vertices, this alsc proyes the sufficiency of the
5 ~ :

linear constraints Rx <r to elimineté noninteger vertices. *




CHAPTER III

MINIMUM COVERING

3.1 ., Introduction ' ‘ %

The minimum covefing problem in a weighted graph G is to
'find a subset of edges of.minimum weight such that each vertex is

incidernt to\at-least one edge of the subset. Formulated as an integer
‘ TR ~ § 7.

problem:
. Min “ex subject fon Ax. > 1, | xij'= O or .
This chapter will describe an algorithm which solves this. , £%

-4

probled. The algorithm 'is similar in many ways to that presented in
- /
Chapter II for solving the maxXimum matching problem.

Minimum cafdinality goverings are investigated.in Section

3.2.. It is proved ‘that the solution to the maximum sardinality matching

probles implies the so%yticn to the minimum cardinality cs;ering problem. P N
Sections 3.3)and'3.b describe and prove the algorithm for the

special‘cése of a bipartite graph, using the lirnear programming theory

-

< summarized in Appendix A. ;-

The linear programmlng fermulation for a general graph together
. 7 with llnear 1ntegra11ty constralnts is given 1n Section 3.5. Sectlon

3.6 discusses these integrality cénstgaints in detail, and describes

the toﬁolbgicai nature of Blossoms for fhe case_of coverihgs.- tlon
: : .
3.7 presents the-aggeral algorlthm “and Sect1on 3.8 provides a proof of -
- X 3 %
-that algorlthM‘u51ng llnear progranming theory.

= : Q .;’ / : % : . : . :
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3.2 "Minimum Cardinality Coverings

A star is a tree which has at most one vertex with degree

greater than one. Any subgraph which consists of a union of disjoint

‘ stars is said to be a star subgraph. See Figure 3.1.

\ -

Y

2 -~ /£
\ ’ Figure 3.1 A-8tar Subgraph

A transmitter T of a star is defined as a vertex of degree

M

greater than one. - A receiver R

¥

to a transmitter. Thege definitions are unique to this thesis.

is‘a vertex in -a star which is adjacent

A forest is a subg}aph of disjoint trees.

1

Lemma 3.1

2>

& " A minimom: cardinality covering in a g:ﬁpE G- 'is a star sub-

.graph. e
Proof .

A minimum cardinality covering contains no cycles, for .other-
: : NG \ ; : :

. \ : ~
wise some edge of the cycle could be'remqred, resulting'in a covering >
J o » . .

- of‘loweﬁ cardinality. ' Thus the minimum,céfdinality—covering must be a
’ o0 < y %

-

forest. -~ O R e : : A : ;




¥ i

‘each component of C, &rbitrarily choose one edge to be in a matching M.

.

. ¢ by

But if the minimum cardinality covering is not a star subgraph
there must exist some path 1n a tree of the forest of length three or
greatern. Then there exist two adjacent'vertices, both of degree two or

greater. The edge between these two vertices can be removed, producing .
L
a covering of lower cardinality. ’ g

r

Let us consider two constructions which will produce a maximum

cardlnality\matching from .a minimum cardinality covering, and conversely.
. » £ A
Cponstruction 1 : '

. Let 'C- be & minimum cardinglity covering ih_a-graph Gv- ‘From

-4

Construction 2 : )
Let -M be a maximym”cardinality matching. in a graph . G. Add

one edge incident to each exposed vertex to obtain a covering C.

Theorem: 3.1

S

Given a graph G, construction 2 produceé a miniﬁﬁm cardinality

covering C " 'from a majimum cardinality matching M.

Proof.

Suppose there ;re a total of N ‘nQdes in graph G. By con-
struction 2, ‘Jc| = M|+ (¥ - 2 |K}) = N - u].
s “ﬁbw consider any miqimum‘cardinality7c9vering C*, which must
be a star sdﬁgraph by Lemma 3.1. ‘From these component stars of C*,
extract’ a matching ¥ by constructlon 1. -But \iﬁ*l < |M[;'sincg\::
is a:sumed a max1mu& cardlnallty ma%ch1ng : :

Then- |oé| .= D] + (-2 ) - IM'I,

by virtue 6f the star composition of OO, . : : 4
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Hence |c] < [c*], and -C is & minimum cardinality covering.

Corollary ‘3.1

, Given a graph G, construction 1 produces a maximum. cardinality
matching M ‘from.a minimum ¢erdinality povering C.
{

S

Theorem 3.1 also shows that covering C produced by con-
struction 2 is a star subgraph, as shown in Figure 3.2. Note that’
any trﬁnsm;tfg; vertex must pe aqfendpoint of an edge from matching M.

Edges:. .

——

]

al

*—-—-—-—¢

C = MUQ

~

Figure 3.2 Minimum Cardinality Covering by Construction 2.

3.3 Minimum Covering Algorithm for a Bipartite Graph

For simplicity of exposition, let us éonsider the special

case ‘of a weighted biparti{e graph G fh the discussion-and proof of
i v 1 14 E - \' -
the -minimum covering algorithm.. Sirice there is no.difficulty with inte-
grality, the linear program can be written:

\
\ -
L \

Primal Min  cx : . .- ‘subject ‘to .Ax >1; x>0, TR X
» A SR \ . \\ o : T
Dual o v Max Zij subject to A’y <e, y > 0.
’ N > s > -
S
- A}
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The algorithm will be similar to that presented in Section 2.6,
and 'is motivated by TheoremfA.3 in Appendix A. Assign nonnegative weights

Y3 td all nodes Ve Defineh-Vj to be a saturated vértex if there

exists -an edge eij incident to Vj such that

\ -

¥y = &4, ¥; = O

A vertex vj is unsaturgted if" for all edges i3 incident to wvs,
s N
» ey 7.
Vs < Cijs "¥j >0, and.y; + Y; < 5

v

. ~
- 4

The algorithm is divided into two phases:

1) - phase 1, in which,a matching is obtained, and

1, Y,

2) phase 2, wheré edges are added to form a covering.

Unlike the -case of matching discussed -in.Chapter II, the primal con-

straints are infeasible during phase 1 of the algorithm, and not until 2
phase 2 terminates aré these primal constraints satisfied. <
' During phase 1 of the algorithm, we need to'classify the
vertic;&c 'I‘,ive sets relative to an elsefnating tree:
1) - outer,.p =
2) ~dnpey, L. .7 .-
'3) - neutral, NU : : z: 7
- . : 4 L .(\ - ) . ’ . 2% 2
4) ~‘exposed saturated, ES y S s Ty
» . » 4
3 5) exposed unsaturated, EU :
- d \ ¢ 3
= S ! c :
8 k| ; 3 -
An outer vertex.is at the end of a path of even length from ; . °
& . : N S 5
— PR {




the root of the tree, and an inher verfex is at the end of é path of

oda léngtb from £he root, A déut?al vertex is .incident to some edge of
:'the matching, but not in the tree currently under construction. An

expésed node_is not incfdent to. any edgé of the‘matching, and is not in

the tree.:. The meaning of classifications exposed saturated andgexposed

2 -

~

unsaturated should be evident.

A flow \graph of the algorithm is- given In Figure 3.3, and
» P 7.

proceeds as follows:
s

1), Begin 'phase 1 with no edges J4n the matching 'C,-and

vertex weights Y5 stich that y > 0. y. + y.

< C;
1 7 M

1)’ el ks
" for every edge eing.
\ '2) Define & subgraph G*~ thch contains all %the vertices of
G and-edge set E¥*,

E¥* = {eijlyi - ys = Cij}‘

Choose an exposed unsaturated node to root an altérnating =
tree. Search}for an augmenting path through the growth of
v this tree in G*.
¢ . 3) If the tree becomes Hungarian as degeribed in Section 2.6,
5 h &
perform the following calqplation:
: ' A = Min (5,, A_2’ §3),
o) = Min {c; 5 - y; - yy} : 3
2 ; v ef : ‘ 4
‘1 L \ e "4 ' . ~
: v_eNU, i e . A A i
; R i L S
¥ - ) i .‘ - =
7,. B e {ci.j"yi'ya'}-\' ; : ‘
; _\\vi§¢ < it ey 3
v.el : ’ it




—_/—\ » . -
5 -bs- >
Phase 1
J _ ;
' Let C be empty; choose node
weights such: that
y20- (
)
: Yi*yyseqy - *
— -{ ) . Phase 2
N ’ ’ ~ Construct ‘
s . ee Root an a.lter,nati:f tree at an EU 4 No EU covering C .by
node in G#; classify as §. ) node adding an edge
b to each ES node.
- " Py
-— -
& = Min (8), 8, 83)
J : G { C 1is the minimum
\ 3 1) Al = Min {(‘i“j- Yi = ?':'}-; Vi€¢’ Vj(NU covering.
' 2) &y =Min {CU- Yg - ¥}, vieP, Vel
3) 85 = Min {fij- vy - ¥y}, vyeh, V(€ES or EU
’ . Y
4
e
e A X
' - R P A =4y Strong sogmenting patbv
‘ ViR WOy TIy A {5 c=ow
& YL W g« ¥y >4 5
- * &
et All o= ‘@el ;
i p . Grow tree; reclassify Weak augmenting pa
—<€-] added ‘nodes. 5 . P, C = COP. e '
- . ~ \ = \ N
Reclassify every . 3 3 - - i = 2, Nl
= pode as % s A : : : :
£ ES, EU,~or N. >
) : % : S

Figure 3.3 -Algorithm for Kintll‘ll Covering in a Bipartite Graph




A3‘= Min {_cij - .yi - yj}
viep 7
v.€ES or EU
| J :

~ Upon calculation of A, adjust dual variables:

i

a) - Outer node weights are increased by A. \’

b) Inner node weights are decreased by A.

v s W M &, , a'new edge enters subgraph G*. Continue
. thg\growth of the tree. b
W, " e -~ & .
5) 'If A =A,, an outer node v; bécomes saturated, ‘and

o+
4

5
... some inner node weight y. ARecomes zero. That'is, in --
: J V

yi + yJ - cij: ,
) Yi = %430 ¥3 < 0. .
\ . = - /
. Expose this outer nodé vy by implementing a weak aug-

[

menting path to the root of the tree, thus covering the
root. -Discard the tree. - |

d 6)> If A = A3, a strong augmenting path exists. The'cardinality
of ‘the matchi?g c&q.be increased,’and the tree discarded. -

7) + IT the tree is discarded, a new treé is rooted as in step

-

2). Continue until ‘all nodes are‘éither,matched or
saturated. | -
B) Phase 2: Complete the covering C by adding an edge from

each exposed saturated. vertex to some zero-weighted vertex.

hy )
X e . . .
. % > o

. ; - ; £ s i =3
_This algofitbm\converges becauée each tree reduces the number

A

of exposed unsaturated vertices by at least one, 80 that no more than
g % \ : = a . .
- : : k) : y -
N trees need be grown. The convergence arguments are similar to those : »
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‘given in Section 2.6 for the case of matchings. A vertex state
transition disgram is shdwn;in Figure 3.4. Prior to the réotiné of

a newjtree, the possibie states of a vertex are EU, ES, or N. The
diagram 1llustrates that ‘intermediate Hungarian weight adwustments. as
well as operations which termlnate the subsequent free gr;Lth i.e.

strong augments and weak augments,-tend to reduce the number of EU

vertices.
» ~ 7
SA - Strong Augment EU. - Exposed Unsaturated
5o o " ' ! ~ . .
WA - Weak Augment . ) ES - Exposed Saturated 2
N - Neutral . ‘ Bt
d 7
¢
N ' .
Figure 3.4 Vertex State Transigion Diagram (Weigh?ed Covéring) .
Example . X ' A :
: - .Find- the M1n1mum COverlng in the graph ‘G shown 'in Ft&\\\ 3.5:
: ‘ A valid éet of dual varlébles is yj = 0, for all vjeG.
- ) 41 e o
Tree 1 B ; S :
: ™ N o 3 ; ; . & N
{1) Root-at vy; tree is Hungarian. ’ , : .




3 )

..-/'\ :&é_.
(2) Raise yi© to'y; = 2; grow edée e,}, augment.

y; =2 cy ={ep}, w(cy)=2.
) *--——-9 y

)

]
o

v % 3
n s
8
~ vq
5
. p ’ ~
— 4
Figure 3.5 Weighted Graph G v : <]
Tree 2 A - [
(1) Root at V,i tree is Hungarian,
(2) Raise Yo to yp = 3; grow edge ey,, augment.
Yo = 3. . - Co = {e‘“: 833}, w(Cs) =5 N
-3 -8y, =0
Tree 3 )
k (1) Root at 'v.; tree is Hungarian.
{ : . &
¥ (2) Raise yS to y5 =4; grow edge €56 augment.
-
v 1 % ‘ " B
,y‘? - % , - Cy = {elu’ €oqy :€ 6}: w(C;) = 9.
’,0-~----0‘y6=0 3 gl 300 3
L :
Tree 4 ) \ R . ' ~
s e _‘\.r i Sy o \\
3 B \ , .
(1) Root at Va3 tree is  Huhgarian:
" 3 : : .
b g . ’ > \ 4 %
A{2) .Ral§f yr to yp =3; g:ow edges §72, e23. X i




:Lg- e

(3) Adjust weights; y7 = 6, yo =0, Y5= 3 Discard tree.
yo =3

3 =0
v =3 6 ._,-o-—-——--——oy3
4 7 .-;('_"
Tree 5.
(1) Root at vg; tree is Hungarian: %
2) - Raise_ y, to yo = U4; grow-edges e, , e
r ¥8 >v8 . 85’ 56, k
(3) Adjust'weights;'ys = 8, Vg = 0, ¥g = 4. Discard tree.
;e ™
» £.
ys = Jr ‘( ¥
N Proim—8 Yo = 0
|
. P -
. 8 : ~
: K .
. y8 =4 g

£

\ g Since -all nodés are/either covered by C3 or saturated, the

\

orthogonality conditions are satisfied. Now induce a covering from Cq

by adding edges &72 and egq, both .from saturated nodes to zero-weight

A

‘ nodes. :
h g |
s Cu = {81)_.', 823, 856, 872, 885}, W(Ch) = 23.
Cy™~ is then the minimlm covering of graph G. As a check, ' compute:
‘ i :
< W=cx=[3+24+4 +5% 8] =23,
U:Zyj=[2+‘-0+3+O+O+A+6+8].—.23,‘
3.4 Proof of Algorithm for Bipartite Graph - X
- . . : ; RS \ sy ! j
The linear program for the bipartite. graph case frcmigbcgion
) < N d \\ . -
S %.B-is: . >
‘ v £ \ 3 '\ 3 . A
Primal. - Min- ex subject to Ax > 1,.x > 0. :
o? e b} ! < B s 5 3 L I
Dual ' Mex Zys ¢ subject to ATy <e, ¥y20. - o
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——— ;'56_‘

Writing out the primal and dual feésibility and orthogonality
" conditions .explicitly,
Feasibility

1) Asx >'1; for all v4€G

Primal

2) X5 >'Q, for all eijeG :

3) vy + yj_s ¢4 for all gijeG ] . .
Dual

4) ¥5 20, f?r 1 vs€G -

‘ R ‘{ 4

Orthogonality

5) X5 > 0 = y; + Y5 = €45 - ~

6) 5 >0 => Ax =1, _ . . .

B S W ’
From . the linear programming theory presented in- Appendix A,
the covering solution is minimum if we can.show that the glgorithm of .-

Section 3.3 attains conditions 1) through 6).
Condition 2) is .always valid. Although the solution is primal . ~
infeasible during phase 1, c?ndit;on 1) is terminally satisfied since o

n

phase 2 of thé dlgorithm attains a.covering.

-

( When an edge €ij enters covering C,‘écndition
-
; ‘ o Bl i

’

ﬁolds, and as loné as 'that edge belongs to C, 55 is not vioclated.

Since' 'C is terminally ‘a covering, 6) states that every

e S
» . A e
transmitter in C’ must»hzve yi = 0. ‘Siéce edges are added from exposed
R 3 ' it . L { e
nodes to vertices of‘zero weight in phase\2, 6) is valid. :
3 6 o

¥ : et .

3 o & . , / g JHe. ~‘ : . :
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This leaves conditions 3) and 4) to be verified. No inner
node weight is ever lowered below zero.. If some inner node weight

becamd zero, then some outer or exposed node becomes saturated; and

either a.weak or strong augmenting path exists. Thus 4) is valid, The

Hungarian weight adjustment maintains condition 3)'as nodégweights change.

-
\

r

" 3.5 Linear Programming Formulation and Integrality

fhe‘minimum covering problem in a general weighted .graph
y w f g .

C dgme
uyls.

3 Min ~ ex . subject to ‘Ax.-> 1, xij =0orl.’

It is desired to add linear constraints in order to drop the

explicit demand of integrality:/ In coVering, as in matching, the sotrce

of difficulty in this regard is odd cycles. . Consider the graph in

_Figure 3.6 with unity edge weights.

¥ 2 " Figure 3.6 . 0dd Cycle Graph

s

The minimum solution'to: Ax >'1, x >0, is 2.5, whereas a

minimum integral co;ering héq weight 3.0.. = = Ko D

¥ As in .Section 2.4, theré exist appropriate linear constraints
vvhich'preclqgé noninteger solutions for these odd cycle configurations.
e - - b s : - 7

\

~&
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For .every subset Sk of (2rk + 1) “vertices in G, where rk'

is a strictly positive integer,

J . i
: . ETxij > (ry +. 1)
: €13k

i
f

whefe Tk ié the set-of edges having at least one endpoint in SKa
It_is clear that thf; coﬁstraint is satisfied by integer

.covering solutions. The sufficiency of the cbnstraigt to precilude

noninteger soluétons is difficudt tqg show, and reqhires a proof using

linear proéramming duality theory. The following modified linear

g i " v ~

program incorporating these constraints will be shown to yield only

integer solutions. . ‘ "

Primal, ¢ ‘ - A
\ L] = /1
Min cox ~ subject to x- - sy X220, .
) T > r+l
‘where T is the matrix: .
¥ » - » '3 ) 2 s »
1, if edge ‘e; has at least one endpoint in the odd ~

tes =) set 5, of (2r;,, + 1) vertices

K
0, otherwise)

and where r,- is 'a positive integer.

-

Min (Z vy +Z (rx * 1) z) « subject to
ATy +‘TT; <c, ¥y>0, z>0, ‘
where 3 @& <

y; corresponds td vertex\ fj, and : & e Tk

» : i v . 3 \
2y correéponds.gg odd node set \Sk. :
7 ’ , & 7 > > - T v 1

v

=
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‘3,6 Linear Integrality'Constrainﬁs and‘Blossoms

Blossoms for tho matching problem were defined ‘and discussed
in Secgion 2.4, Many of the comments relative to matching blossoms are

applicable to covering blossoms. A covering blossom Bx is defined s °

‘

the add set of vertices Sk, together with all edges with b@th endpoints
5 ) >

in Si.. The corresponding-{ntegrality constraint from Section 3.5;'
'Tkx _>_'(rK + 1), is satisfied with equality, relative to some covering C.
A\blessom may have one of two topologlcal forms relative to

- » > !
a covering C as .shown in Figure 3.7.
>

. N ;
Eqd,
3 ges .

e——e." i
. *-—---9 ¢
i Isk] =5
Blossom Type (A) Blossom Type (B) r, =2

, ;
Figu®e 3.7 Covering: Blossom Types T

Note thdt in each case, an integrality constraint is satisfiéed with

-

equality. d ;'a

A type () blossom is fonped in the same way as the matching

: blossoms cf Chapter II Moregver, a covering is_igduced on a blossom

of this type exactly as described in Theorém 2.4,

-

Blossum type (B) drises when thé- ‘dual variable yj beésQ\\

zerc for some verte} vj with*n a élossom Therefore vJ can become
¥ %
a transmltter without violating the orthogonality conditgon

: ¥ >OQAJII=/.‘, e BT
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Given .a blossom which cbntains'a vertex for which yj =0,

we induce a covering such that Vj .is a transmitter, and every .other

vertex withinjthe blossom is.incident to only one edge of . the covering.
' (1) Successivel& expand the blossom, inducing a matching as

explained in Theorem 2.4 until V3 appears as-a s%nple'

vertex in blossom B,-

(2) cover By - as A type (B) blossom with v as the associated

J
.tradgmitter. ' ™

b d > .
(3) Expand all reméining‘blossoms, and induce matchings as in

. Theorem 2.4,

~

~&

The algorithm descriptién imthe next section will describe

the various conditions which re$ult in type (A) or type (B) blossoms.
. | T ) 2

\ v v

8.7 Minimum Covering Algorithm

) The algorithm to. find % minimum coyering in a generéi weighied
graph.is complicated by the existence of odd cycles. It is odd cycles
which necessitate the éﬁnsider“tion of blossoms. Unlike the algoritmm

of Section‘3a3.for the case of bipa;tite graphs, it is not convenient

<to assign the dual variable yj1 as the weight of vertex vj. We shall
: i .

associate a weight wj to. each vertex Vj; This vertex weight is’

'reiiged toAthe dual variable ¥y by
2Rk s - s
o b SRR TR B
e s T N : - b
. & 3 The algorithm consists of two phases, and is shown in the flow
. - . \ % “ : . .
graph in Figure 3.8 o _ . ; s e i

Mes




' =
__/—\ ™ b4 -
s 795+ -
’ ~
e g -~
Phase 1
J Let” C be émpty; cheose node
N weights such that
w>0
b, Sl -2 ” Y.
o
. Phase &
y S e g Y s ,
by : ) Add en edge to-
Root an alternating tree at No EU
- ik - each ES node.
an EU node,in 'G*, classify Bode
as §. -
\ - l ~

- —*ir

A = Min (Aly o, A}) oy, Af; A’(‘\

) : - ¥ (e g v N
.| &, = Min 1Cy 4= vy = "'j}.’ vi€p, ,\j(\ﬂ}
&, = Min {Cij' w - Hj}' V€0, vj(f
&, = MMin {:k},inn'er B

%
1A = éﬂ]n {‘i.- \li.: VC}’ "j{:’ ’.'{;(Z

Induce covering
C on blossom
structures.

PRy

is the minimum

' Reclassify gvtiy

covering.
A S —
- -~ A
- & o Form new blossom;
de =?) vy =N; A = &g reclassify blossom B
g vyl =P wg =g - A nodes.a.s( g
Outer B, *=» zx = zx +.2A
"Inner By =» 2z = zx -24A A -
y o _ Expand -
) 7 y " A blossom,
A_,=A1l ’ A‘%l g [“-'Ahc.’r
‘Grow tree; Stro:*g augment- Weak ;uéuenttng
reclassify 9 ing path. P, path P, C = C#P
added nodes. C = CoP X
Ay
-~ \ g

node-as

- e <
L ‘\\
-
’ L X

ES,  EU, or N.

DN

"

v‘-»F‘.gure' 3.8 . Algorithm for Rinimmm Covertng in a ﬁeight.ed Graph
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n

: a) Phase 1: . The algori£hm finds successively highér'
» _cardiﬁality matchings until all vertices not in blossoms
are either matched or satqratedl ‘ ) . v
b) Phgse 2: An édge is added from each.exposed saturéted
,~vertex to its associated zeroiweignt vertex. A final;

covering is induced on all blossom structures.

-

Let us ‘describe this\algorithm in greater detail: -
» ) "

(1) Begin phase 1 with noledges in the ﬁétching C, and
Z v

vertex weights wj sgch thay

w >0, and — . 9
Wy + V3 < Cij . for every edge- eijes. )
T . £

\ " Set 2 .= 0 for all qddrvertex sets Sk' Define a

subgraph - G* which contains all the vertices of G,
and edge .set: E*:

¥ E*:{e..lwi+w.:c

i3 v; and v. not in the same
oJ

3 ij’ Vi
; ° : blosscm§, )
j (2) . Chootse an exposed unsaturated node to root an alternating

< . tree. Search for an augmenting path by growing this
p .

alternating tree in G*. =

s (3) If an edge is found between two outer vertices, form

- .

and identify the blossom_as in Chapt'er IT. Reclassify

41l nodes in the blossom as' outer. .

(%) If the tree %ecomes Hungariah, perférm the following
¢ : ; 3
.calculation: . o Oy, < : : : :
R < oo x 1
& =Min (8, &, 83, &y, &, &) : : :
i QA‘ : .' / > Ta > »' - . 2 3 . o




A&y ="Min {CiJ - Wy -'w‘j}

ve¢

Vi€NU
) = - )
K AQ = %Mln {CiJ - wi - WJ}
ViE¢ ; { ; ;
{
v._€¢ i R .
L TN A3' = —Mln- {zk_(, over all- outermost blossoms Bk serving

a8 inner r1odes of the tree,.
. o T -
L% Ab = %Min"{cij f— Vi - WJ} <

. Vi€¢’
Y V'jEI ~

A = Min {wj. - ‘L"zk}, over all nodes v: in blossom 7
7 v S .

™ V€S

3%k

serving as oufer rnodes of the tree.
= Mi k= Wy - w.}
Aé Mm. {CIJ i 3
g \7.6 )
<P
v:€EU or ES
J \

Upon calculation of A, the weight adjustments are as
]

v ' &) Outer node weights Wy are increased by &.
¢ . b) Inner node weights wj are_decreased by A.
5

c) Dua_l; variables Zp associated with,outermbs‘c
, . blossoms whlch serve as outer nodes of the tree are
1

mcrea.sed by .2A.

d) Dual varlahlés ik associated with outermost A

ol‘)ssoms which - ser\ze as inner nodes.of the tree are

- - 7 . 3 . ; \ - 2 : =
: -~ decreased by 2A. :
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- TR A
(5) If A= Ai,.a new édge enters gubgraph ' G*, ana the
tree‘can be grown further. '
A '(6) JIE 8 = Ap, an edge Detween outer vertices of the trée
. enters subgfaph G*. .This forms a Blossom which must
be identified, and all nodes within this blossom arg
classified as outér.~ The iree can be grown further.
{7) It A= 83; en ;utermoét'bloésom B, - must be expanded
and the tree grown further. In this wase, the blossom

» -~ f £
Bk has an assobiatedidual variable 2, Wwhich goes.to

Zero.
o ~ .
(8) 1f A =4, then some outér node of the tree becomes R
. . —
saturated, and an inner node weight becomes zero. .A -
\ N . - o £ " -
\ weak augmenting path cax be implemented, and the tree
is discarded.
(9) If A = A, .some blossom serving as an outer node of
s \ .
K the tree contains a vertex vs; such that .
-
<
: Ja.™ = Ny . - '
vjesk
’ ' -
% . B
{ A weak augmenting path to the root is implemented.
, L, :

(10) If A = &g, .an edge from én.outer node ‘to an exposed
el + node (either EU. or ES) enters subgraph G*. This

prqv{des‘a strong augmenting path, and the tree is

‘digcprdpd.. v L TaEErED o
a ol =NE \ . AR \\
(21) 'If the ‘treelis discarded, a\new tree is rooted as in :
L Step (2). ‘Since each tree heduces the “nimber of o
= . i A b -

exposed unsaturated nodes) fewer than N trees need be grown. .
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(12) . At the beginning of phase 2, all vertices not in & blossom
are either matched or saturated. An edge is added from
J each saturated exposed vertex not in a blossom to -an

associated vertex of zero weight. These zero weight

4

vertices will serve as transmitters. in the coveklng C.

(13) There exist three alfferent ul&SSlflcatlons of blossoms.

Induce & covering on, each blossom as indicated below.

\h)~ One edge of the matching is fhcident to some vertex -
» — } <

in the blossdm from phase 1. For this case, successively
(A : o 5 " expand the blossom staucture, and induce ‘a covering'

as explained for a type (A) blossom in Section 3.6.
b) There exists.a vertex in the blossom which is satur-
- S
ated relative ¥o some vertex which is not in a blossom.

-

"Add the edge between these vertices. Then expand
the’ blossom structure as in case a).
¢) There exists a vertex vj in the ﬁlossom éuch that

Wy = !z 2y, ' which implies y; =0,
v eSk

. Use the construction for type (B) blossoms as described
¢ ‘in- Section 3.6 to induce a”covering.
-

The set of edges ¢ cbteined by phases 1'and 2 of the elgorithm
form a minimum covering of.the graph G.  This will be proved in Section *
1 AT > :
. Y S : 5 Rl
8.5 s ¥ e \ : o s

< \

N - s 3 3
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3.8 Prodf of Minimum Covering Algorithm

’

The linear programming formulation of the covering problem was
given' in Sectionj3.5. Writing out the primal and dual feasibility and _ .

orthogonﬁlity conditions expiicitly:

Feasibility {
1) Ajx > 1, for all vjeG A g B
2) X;5 20, ‘for all e €6 : - Primal
3) Tyx > (ry + 1), for all odd node sets S ~
» L ol 7.
: ; L) Vi * ¥y Lz < €3 50 for all ej 5€G
S : SIS v T n
5) ¥5 20, for all v4eG R Dual
6) z, >0, for a2l 8, S 2
- f

Orthogondlity - ) 4

7) x 5 0 7o+ Yy 4 Lz =c¢ .
) X320 =yt e ek i

I
=

8) ny >0 @ ij
9) zx >0 = TyXx =
Identify

|
~~
2]
=
+
et
-

]

1 =W, - . . ,
. 3=y - e -

\ ‘ Vjesk . 5

Using the results of Appendix‘A, if the algorithm achieves

these conditions, then. . C ‘is-a minxmum coverlng This would also -

X \

. prove that the added linear constraints 3) i$troduced in Sect1on 3. 5 . DG
» \ : :

are suffchfnt to guaranfee 1ntegral'lty.

ASES 53 7
‘Since € ‘isia covering, 1), 2), and 3) are valid. Since
- % ; )
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2z, >'0 in the algorithm, condition 6) holds. Definition
10) Y=y - Zz,
‘ vJ.eSk

J - .

shows 5) holds, since by definition of a type (B) blossom structure,

the algorithm always maintains i’ g
wj > z Zy s i
vJ.eSk :
. T ~
together withwthe fact that_.wj 210, 7.

* Condition 8) is satisfied, since we only create transmitters
. . " b ~ ‘ . .
at vertices ‘for which y: = 0. -During the algorithm, z > 0 only for
v o U

blossoms. Since blossoms satisfy the constraints T Xx = (rk + 1), 9) .

is yerified. 5 A
\ ) s
Prior to the time an edge &3 -is absorbed into a blossom
structure,
¥ wi + wj < Cij'
Let - wy', wj' repregent node weights at. the time €5 is -absorbed

_into & blossom (if ever), aJd y%* be the final'¥alue of yj when the

J

s> 9§

algorithm terminates. Then -

W'+ wyt-Lgyy,
' -
oy yi*=wgt o D ] .
Il g eijeTh ' 2 T T
* = 3 b a ;
yj ’wj : ?T%zk : ; A |
. ~ O - b it e

. : ‘ : ~
,. By subgtiputin§ these'variablaf in the above ‘inequality, we g

obtainya Verification of condition % T 4 3

ry.+ Tz <
e JEP k=
33K i

k)~ yt 0131




Since an edge in the coveriné must satisfy wi';+ wj' = Cij
. 2 b5 o ’ .. 5 '
- as ‘it is absorbed in & blossaom, this equality is maintained, ‘and
condition 7) follows similarly.

'

3/

A )
This chapter has investigated‘varioﬁs forms of the minimum
&

r

covering problem.-

In Section 3.2y the minimum cérdinality covering and .maximum
‘ o ~ | X
cardinality matching. problems wer€ shown equivalent. "“The problems
. !

were -equivalent in the sense. that one solution copld be found from another
by a simple construction. —

An algorithm for obtaining a minimum covering in a bipartite
graph was énven in Sections 3.3 and 3.4.\ Here the principal features
and motivations of  this approach were examined without the complications

of blossoms.

¥ In Sections 3.7 and 3.8, the general minimum covering -algorithm
was presented.” The growth 6f this ;lgorithm can be shown to be _NL.
Tﬁis is the same Qrder’ of comple;ity as for the maximum matching

algo<ithm( However, the description of the minimum covering algorithm
: 3 -

is. more involved due to the increased complexigy of covering blossoms.

,' ,The m1n1mum covering algorxthm will be used in Chapter v,

and appllcatxons of tbls‘technlque discussed in Chapter VIII.

-




CHAPTER IV

. A PARAMETRIC APPROACH AND MAXIMUM MATCHING

'

¥ g

4,1 Introduction

S

An extension of maximum matching discussed in Chapte; II

is the problem of obtaininé.a maximum k-éardinality matching in a

weighted graph qQ: ' ~
L. w - Z '
Max cx subject‘tc Ax <1, z Xi4 = k, Xy 4 = O or 1.
: . ei_.EG
o~ ; ’ e ) . ™ )

As will be explained in Chapter-VII{; this extension was motivated

by consideration of possible applications of maximum matchings.

\

\ - The method .of attack is tz/transform the weighted graph

[G,.cij] to the graph [G_, c,, - \] - by subtracting A from each edge
‘ A J

weight of G. This will be called the parametric approach;- There are

»
#wo other ways to view this process.

1) From the viechint cf linear programming. A may be
. eonsidered as a dual variable corresponding to the..

{ ) primal constraint

) Zx.. 2k
. : e €G
3 = 5

2) lternately A may be vieved as & Legrange multiplier,
: . 5 N R ' .
since o A % ey TR S
: e B A s
.i = Max [e "zn(cijfij)+x(k-e \icqu)]=ua¥[e gc(c}j-k)xiika].
W - e P B = 5
~ - P ;

This technique of. using Lagrange nqltipliers to sblve

\

’
-

: l.l¢‘ 3
L. r .
- - ".. a

A
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integer optimization problems is developea by Everett [11].
In Section- 4.2, this parametrlc approach is explored for the
maximum k-cardinality. problem. It. is shown that an approprlate value

for the thrange multiplier x always ex1sts

A direct algorithm is developed in Section 4.3, .which utllr#es

»this Lagrange multiplier concent. This dlrect algorithm solves the

r

maximum k-cardinality matching problem, and also indicates the solution .
to the maximum matohidé problem. Section 4.3 develops~ihis direct
algorithm for~tﬁé s;ecial case of“Sip&gfite graphs, ;hile Section 4.k
applies the algorithm to general gfaphs. ~
A geometrlc 1nterpretat10n of fthe parametric approach is
given in Section i 6 Section h.(<shous the maximum-matching values
- /f

are conca&e with respect to cardinality K. An extension of tke para-‘

metric.technique to minimum matchings is indicated in Section 4.8.

4.2 THe Parametric Method

Given a weighted graph )[G,-gii], construct. a graph

s i = A) by subtracting A from the weight of each edge. -If+ M~
Y :

1J

is<? matéhing in G, let ‘w(M) represent the weight Pt.thatvmatching in

G.  Define wK(M) to be’ the weight of matchigg ‘M- in gfaph GK' The
maximum matching in graph G is in general different from the maximum

matching in graph G,, ‘as seen in Theorem.k.l.

Theorem 4.1 : : . oAt e : , %

2 3. N
For h given ‘A,'supggse that & magimum matching M in

SN
graph uk has cardiqallby k. Then M is = ﬁhximum k-cardinality

matching in G.
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Proof
2 L e b e R-cardinality matching in G. Ther for any A,
W) (M) = ;‘(M) = KA, :
1 WK(M') = w(M'~) - kA,
.Thus ‘

NP

w.;\(M) > WK(M') }mpliés

wM) >w(M').
Since M’ was a>xy -k-cardinalit)-f matching in 9,\ M must be a maxlmum

» e - 7.
k-cardinality matching in G as‘( claimed.
. y ) ~

Theorem 4,1 suggests »thag we might be able to solve the
meximum k-cé.rdin&lity matching problem in G by using the maximum
mat\\:bing‘&]:gorithm in G)\. _.ﬁT;ere éx/ists a question of whether the
cardinality of the maximum matching in G, 1is monotonic relative to A.
This question is answered in Lemma L4.1.
{emma 4.1 -

Given My Ao, sx?ch that A > A, Let M; be a maximum
matching #n* Gl}‘l’ where . |[My| = kj, and Mp @& maximim matching in
G)\le’ where |M2| - kg Then k; > ko. 3 P>

Proof ’ . N

" By assumption,

s

Yy () 2%, (), e .

3. Expanding, i 2 \ :

w(dp) = Koy Y
wiMy) - kﬂz‘-

v

vl ) - )

(i) - kohy
ol o

v




Adding these inequalities, and rearranging yields;

2

Ky (o= M) 2 Xplha = 1)

But since A2 > A3 was assumed, we have the desired result

3/

lkl Z ke. : ’

[

Though the cardinality k of the maximum matching in Gy, ﬁ&s

begn shown monotonic with A by }emmé\h.l, not all values of k may
be obtained as continuous values of A are examined. ‘Everett [11] refers
to this pfob}em as'lgagh"‘in the ngraéfe multiplier gezhod. This means
that many solqtions correspond to’£he séme value of thé Lagrange multi-

—_ - pliér. The following Theorem 4.2 éhows_that by fthe -use of ﬁlterﬁating

paths, we can overcome this difficulty. gbecifically, by the use of

the parametric methqd, we can always find /F maximum k-cardinality
matching. ' S

Theorem 4,2
Let m -be the maximum cardinality of any matching in graph G.

, 7
Given k < m, there exists a A such that some maximum matching in Gy

is of-k-cardinality. )
Proof )
{ We will prove this theorem by the Construct;dn of such a

matching. Since k is monotonic with A by<emma 4.1, the only
: r— v A $ .
problem i's when "gaps" occur as follows: .

Suppose there\exists_a A for which Ma is a maximum matehing

)

¥ 3 B X % \ - > 2 .
in G,, where [My| =%k,, &nd M, is‘d‘@nximqt.match§ng in G 41y - N
’ : . 3 . Z 2
where ™ |M;| = k,. Further, suppose that k given in the hypothesis
e S G e : % : £
: i, S :
i snch that: .-~ =Y 3

N S : : : 2
k) <k < ko,




¥

The components- of MIGMQ in 'Gx are altérnating paths.
Partition these alternatiﬁg paths into one of three sets relative
to the cardinality of Ml‘ and M2 edges in the path. Define these

.pathé as strong augments, deaugments, and weak augments as shown in .

i

Figure 4.1, : X 3
T ’ . ; L 4 ?
R - t o
: - : \: H > 1 I
1 £ 7
: —e
fen L | : 1
y : < §
1 i 3 i i C-——‘
! | | I 2 i
s s
¢ b o4 : I L
———— s N——— 3 -
r - ky - 1| ' ;
‘ 2.m k1 /
-Strong Augments DeéugmentsA Weak Augments
(k5 - ky) of these This set is.empty
o— NNk,
} = o--—0 ilr\ME -
, ; Figure b1 Aiternating Paths in M; @M,
f - -
\ h ) 5

Let us consider each of these sets of paths in G, :

(l)f_Deaugd%ntS'

-

There exist no deaugments in 'Gk. To see this, note that
for any path P in this set, ol ‘,4 S S SN
: T lran) - w (PAy) > o,

for otherwise this weuld contiadict the agkumbtion that iﬁ. Hq'a maxi -
3 S > > *

mum matching in b

: ¥ :
\" But if the above inequality holds, examine 'its
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implication in G(/\ +.1 ):

)\ + l(Pan) >\ +. 1(PnM2) > 1.

But this violatesjthe‘assumption that M, is a ‘maximum matching in

e

Gix + 1)
(2) Weak Augments

For any path P :'Ln this set,

W (Pan) " (PﬁMz) = o

If this relatlonshlp wexe a strict mequa.llty, it would Violate either
» . { 7
the a.ssumptlon ‘chat M is ms.x:u.mum in G); or the assumption that Mg
s

is maximum in G();*~+ 1) : v ~

L

(3) strong Augments

Since it ‘has been shown that there are no deaugments, there
' ;o - 4
must be ex\ctly'(kg - kl) strong augments:’ For any strong augment P,

' w (PNN,) - w, (PNM,) N
cannot be negative, as this would contradict the assumption that M; is
a maximdm matching in Gy. Yet the inequality

v, (pnm)[ w)\(PﬂMe, >1

in Gk implies that in graph 4(;\ + 1)

‘ b l(Pan) . l(PnMQ) - O’ -
¢

which viélates the assumption tha,t M, is a maxmum matchmg in G()\ % 1)

Therefo,re, if we” cons:Lder only mteger weights in graph G for any

st.rong augment 2, : 3 >

w, (PAM, ) & w, (PAN,) = O or 1.
: i S A

-

5
Nos- if the theorem is true, there must exist a matching M
\

which is maximim in elther graph G)\ or G()\ + 1) vhere the ca.rdina.lity

of M_is k. -~ & . | & K 2. 2 o :




Suppose . r . 'strong augments P are such that

1

as shown in Figure 4.1. 'Then -(k, - k; -~ r) strong augments -P,  are

a/ ;

such éhat
Y ‘D ‘) X ‘ f
\(Bp M, ) - wy (P, NM,) = + 1. )
it &> (k -_kl), the required matching -M can be constructed .
by implementing (k - k; ) of the strong augments Pl‘
v : . i If rK ?k = kl), there exist more than  (k, - k) strong
A . - P <
augments ?2 such that -
s . L ¥ (B M) - w, (B AN )= + 1,

which implies
X + 1“’2”“1} "\ 2 1(PoNM) = o.
' Tﬁe required matching' M :can be constructed by melemenfing
(k2 - k) of the strong augménts Ps. QiE.D.
As iilustratgd in Figure 4.2, it can be shown that ther; exists
a-value of k, i.e., )
5 . k=k +7r,

{such that a E-cardinality matching M is maximug $m both graphs

he Wi B0 (RS 1) 0
' Thus if k is such that - .
' k <k°g k, |
'a maximué matcﬁing M1 bx of k cardinality can be constructed from N
mate hlngg)jnl Vand Mé ss§ng (k - kl) strong augments P
But if .K\gis such that

N : : 5




J
.\\1 i d
/Matching M,;, Cardinality ky
Maximum - P \‘
Matching vy (M2) : ) p
Weight in - e -
Graph G, ’ , Slope = - k
’ (ky +\r) units N
: » A f g .
")\: l(Ml) y . Matching M,
‘ Cardinality k .
5. ~ - d
\ , - g
o . A ‘ A+l A
Lagrange Multiplier
. ' .
I i | i . i P2 ? T
; Fy - I : I
. ] ] - - 8 1 H
y ¢ ¢ © « ¢ 4
\ - . o B rﬁ
v)\(leﬁ) - gx(PlnMQ) =0 v)\(pznul)' = w{PoNN) = +1
. hicit - Edges:
4 i : ‘ S . 'o—o‘.v N
= ) ; s s ne . 3
y 5 \ ; . \ Droel) MNN : L
Y igure 4.2 Results of Thecrem 4.2 : =

K




¢

Thus 3 3 : :

O+ 1) of k-cardinality can be constructed

from ma#chings M, and MQ, using; (k5 - k) strong augments Ps..

a meximum matching M in G

Only if k = k 1is the matching M  a maximum matching in both

[ hd G .
GK - (A + 1)

Theorem 4.2 thus shows that any systematic search for the
appropriate Lagrange mpltipiier A will always yield a maximum k-cardin-
ality matching for any specified feasible k. If "k =m, where m  is

the maximum c&rdidblity of any matching in ‘G, no search is necessary for

P ¢ !
this special case. Define o
L3
K =Mex {c,'}, 5
c. s
€ 5€ e

N = the number of nodes in G. =

Lemma 4.2 » ' _ P 4

For A=-X K, a maximum matching M in graph Gy, has
5. . .
cardinality m.
Proof
LS

Let M' be &ny matching in G, and of eardimality k. Then

w?\()l)

fl

= o _ <
w(M) + = Knm
00+ | _

-

’ ' Y o ' N !
uX(M ) =w(M') + > Kk = .

-

If 'k <m, then (k + 1) <m, and

v

= »

w(M') <kK <

-

Kk < (k + 1)}

e B gl
wx(M ) < 2 K + : - ‘
and > - Ty ‘ 5 \

’

nj=

\
~

ey (M') <w, (M) es rdquired.
g . .
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4.3 Direct Algorithm (Bipartite Graph)

The maximum k-cardinality matching problem is:

Max ex subject to Ax < 1, v xi-,j =k, .xij =0 or l..

~ eije

First let'us consider bipartite graphs, in order to remove :
‘ 3 ' ' )
the difficulties of nonintegrality. .A linear- programming formulation -

of ‘the above problem, together with its dual, is:

Primal N
o . - <1
Max ex subject ¥o NE ~ 1 , x>0 T .

s 1 =\k

~

Dual’ vt . E ~

. - . § = ¥y gl =
Min ( -Z ¥+ K\) subject to _[A 1] >c, y¥.>0, A unrestricted

v'jeG . A _

in sign. Sgubsequently we shall find-that: /

A> 0 for cardinalities k <m,

A<O0 for cardinalities k > m,-

Note that the dual variable A here is the Lagrange multiplier
mentioned in Section 4.1, and used ‘extensively in Section 4.2. If the
value of A were known, the k-ca.rlina.li.'ty constraint could be dropped

from.the primal, and in the dual comstraint every edge weight could be
) N 5 - ¥
considered as reduced by A. This would result in an ordinary maximum .
' -
matching- problem'e.s solkved in Chaiater s & 68

] ’

Now what we wish to do i§ develop an algorithm which at all

times satisfies the, prim&l-dua.l"‘feasibi;ity canditions:

- S W i N SR = |
1) A.:jx <-1, Ifor_&lj ‘vje(}. o\ 2 : : /

.

T+ 2) Wy, >0, for ald £G. i ~ ~ -
v - - ‘

eij
3) ¥y +¥5 £ X204y, forall e xc

B e s
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L) V52 >,0, for all VJ€G

but terminaily satlsfles the cons‘traint

5) ' - Ex,.=k
. _ ij .
' eijeG

together with the orthogonality conditions;

S

6) X35 >0 => y1+y3+)\-ciJ.
7 vy > 0 => A x-=1.

B) Ao = Zx sk | <
$ GG J
PR ©13 {

Jdt will be convenient for the description of the algorithm to

4

assign a weight w; to each vertex V4 This vertex -weight is related
<

to the dual variable y

Consider the -direct algorithm for the special case of bipartite

‘graphs, shown in Figure 4.3: >

(1) Begin the algorithm with no edges in the matching M.

Start all verte)( we_ights at the same level,

W, = %Ma.x,{cij},,for ‘all vjeG.

. g .

{ J ' ‘ ="

(2) Define a subgraph G*, which contains all the vertices

of G and edge set E%,
* = {ei_j!'wi"+ vy o= Ci‘)}‘
. \

> \

L = - - \ . - .
(3) Grow s forest of slternating trees .in G*,. each rooted- M

X o o + at an expdsed node, Thus all exposed nodes a.re classi-
: A% :

fled Q.s outer during this forest grouth ; :




- ! Let M be ty; let
A = Max ic efzp Then let
e; s€G :
‘ ij £ .
) _ : wi =3\, ¥ vieG.

S

r'i/

Root alternating forest at all
vertices, and reclassify afl E
nodes §. )

- S : e ' ~
n . s

7 . & < Min (AI) A2\ ™

b~
¥\

1) &= Min {Cij' Wy - wJ-}, viep, vjeN'U" - A Undefined

. Ty
2) A, = Win 16y = wy = vﬁ}, vyep, Vj€-¢

- £

i\ A -
A A ~ &
No k-cardinality
vJ.eI = W, =W, + A matching exists.

¥ -

A=A1l s A‘-‘-»AQL

Grow forest; - . Implement the
" reclassify added strong augmenting
nodes. ' .path P, M. = MOP.

f oL
,Eeclassiﬁr’ all . No ‘Yes s

—<€— nodes E or HNUjee— .lM.|D°‘?:9 ¢ —3 Optimux,

-
\

X : Nt
Figure 4,3 ’Direct Algorithn *or Max imum k-Card\pallty :
v Matching — (Bipartite Graph)

v

SE :
o~ ]




(4) - If a strong augmenting path dccurs, it is used to
augment the matching, and the forest is discarded.

(5) JIf all the trees-of the forest become Hungarian,- perform

v/

the following calculation:

L

= Min @, &) where
8, = Min{ey; - wy - vy

Vi€¢

\v .€NU ; » -

£ &g £ & J-e¢ ' A
Upon calculation of. A,/é]djust va.ri_ables:
a) ter node welghts \}J

\ b) Inner node welghts

are -decreased by A.
are increased by A.
(6) If A =4, a new edge ent'ers' subgraph. G*, and the
forest can be grown further. i
X (7)) 1 A= A5, a strong augmenting path exists. The
cardinali‘.ty of )ime mgtching can be increased,. and the
forest discarded. |
{ ' (8) If the forest is qdisca.rded, a new f?r,est is rooted as
in step ('3). This process 4§ iterated until a k-
‘ carciinality matching is obtained. A‘t;. thi{s jcemina.l

point, all exposed nodes have the same weight, and the

Lagrange multlplier x is identified as A= 2 w5 \\
" for vy egp%sed A1l mtch\ed e have veight
2 3 ;: . 2
i s W, > & W :

(3) In case k > m, the a.lgori‘thm detects that there exists
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UM PR N

no feasible matching of k-cardinality. This is detected

. in-step (5) if the parameter A is undefined.

J
In Edmonds' .algorithm described in Chapter II, a. single

- ‘ . r
alternating tree.is rooted at an exposed node, and eventually this tree)

S

will be terminated with either a strong augmenting path or weak augment-

ing path. This aigorithm, however,”roots'a forest of alfernating trees,

one tree at each eprsed\hode. It can be proved that:
: ,: W — 7 .

(a) An edge between' outer nodes. of the foreét implies the

existence of & strong augmenting péth to be implemented.

-—

An edge between inmer nodes of the forest cannot be used
in an alternating path. An egge from an outer node to

\ g YL . 5 Va

an inner node can be ignored, as it contributes no new

information.
(b) There is no longer any need for weak‘augmenting paths to
terminate the growth of a forest, for th§s growﬁh will -
walways end in a stro,g augmenting path. ; 22
(¢) Some maximum kjcardin%}ityjmatching is achieved at every

( step of the dlgorithm, as will be proved; ifi Section 4.5.

7

(d) A - is monotone decrgasing as the®algorithm progresses.

Example ' ' & Bty

Find the maximum k-cardinality matchings in the graph G

g 3 i > X ; N 1o S g .

shown in Figure 4.4, and draw the maximuﬁ k-cardinality curve (Figure 4.5).. \‘\\\
» o - 8 3 : 2

A good 8ét of %nitial vgftex weights is w3 = 7, for all v4€G.

. k=0 M, = empty set . A = 1k, ' A :




Y |
\_: ’
)
Figure 4:4 Weighted Graph G
Y e ' h
K=l + (1): Rwot forest at gii eyposed nodes. 7
2) Augment edge €ls.
K - . r ~
{ ' w)y, =17 ."__T;”’°’x/w5= 7
. &
M = {eus}, w(M; ) = 1k, A= 1k,

; - V4 .
k=2 )\ (I) Root forest at all expefed nodes; forest is Hungarian.

(2) * Lower all expcdsed node weights to 23.

(3) -Augment .edge €12

¢ w; =23 =
+ : M2 - {6121 ehs,’: "(Mg) =19
. i .
iR A ZANH B
' e 15 A =5,
¢’ oo e "
4 y w2=2%_ )
§ : _ %
k =3 (1) Root forest at exposed nodes V3, Vg
‘ “ -~

gt (29 Lowér exposed node weights to #; grow edgeg €30, €3

(3) Lowgr'exposed nbde weig?ts,to O;‘grow'edges e3h, e“S'

2 : 2R s
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(4) Lower exposed node weights to - l%; impl ement
Laugmenting path.

SR SRR o L

— 9"
= 4
5 Ti . e {eses €3 esé} 3
3 ! y '
W, = 43 O=——m= —41 : , w(My) = 16
w3 = - 15 - ¥ » ;
9 . A= - 3\

The maximum #-cardinality ;natchyng curve is s¥own in Figure

4.5. This approfich shoiild be compared to that of) Edmonds' method used

> @& " ~
on the same example in Section 2.6.

Max imum Ao Y
Matching \ 7
Weight in
Graph G .
10
{ e
\\ . r
. >
QO 1 - , 2 RE. k

-
o= : ; L Cardinality .

Pig}xre 4.5 Maximum k-Cardinality’ Matlching Curve flor 'Gre{pﬁ G

& .
X \ = \
SN

- : 1= .o : ~
4.4 Direct Algoxithm (General Ggaph) -~ - "-\ e 3 ; = s
. y : : 3
T We ary now- in & position to generalize \ﬂle' algorithm from a =

-

‘bipartite to a géheral igifghted graph, utilizigg the discussion of

blossoms from Chapter II. - B S .




Using -‘Edmonds’ constraint equations from Chapter II,‘we can
state the linear programming formulation of the maximum k-cardinality

matching problem, together with its dual:

A7t Primad
Max - cx ,§ubject to S
A < 1\’ y ’
R x < r - x >0
» f 4
Dual i A
7 : : ; s [T o7 y X b
g e Min (, T Vi +, L r %, + kA) subject to [A".R* 1] z] >¢ y> o0, z 2.0,
4 v5€G Sy . A

A unrestricted in sign.

The primary differencé,betwegp this algorithm and that described

in Section 4.3 is that now an cuter\node to.outer node incidence does
not'necessarily indicate that a strong augmenting path exists.. In case-

: both outer nodes are in the same ‘tree of the forest a blossom is formed.

4

The direct maximum k-cexrdinality algorithm is shown in Figure 4.6. The

basic difference between this}iirect algorithm and Edmonds"algorithm

)

* are: .

2

Q (1) Instead of roctlng a single tree td flnd a strong or
weak augmenting path, a forest of trees is produced to
flnd a strong augmenting path one tree rooted at each

.

exposed node. Philosophically, this might be viewed

: > \ ~
as taklng a%vantagp of para{lel precessfng _ e
- o Y (2) . No -weak augmentlng paths neﬁ? be found during the course

of the algorithm { .-' ; s
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‘Figurey 4.6 . Direét Algorithm for Maximm k-Cnidtmuty

Matching
- N

- Let M ty; let
A = Max; Cijf? Then let
\r. ei:jeG .
\ Py 48 :
¥j A, - ¥ Vi G. i
: . . _ .
Root alternating forest at all
:E wertices and reclassify all
E nodes 8.
3 - A;i -
‘ PR = 1 4
A= M‘in (&5 22, 23)
A 1 _A1= o {S}j- ¥is vj}’ vieh,. vyem s No k~cardinality
1 oy i p—tim—————iml matching exists.
( 2) Oy = 3Min {(13' Wy - "_j}: V,_‘ﬁ: VJ€¢ —44 Undefined
3) &3 = Min [2zx], Blossom Bx' an inner
node., j . -
Rl - S
vief = wy =w; - A '
A : A= Strong asugmenting
chI => Wy =yt a | not in path P, -
same - tree M = MOP
By Outer =3 2z = z)x'+ 24 N
) .
¢ By Inner =p 2z = zp - 24 a=a,
A=A-2a i
‘ K Y
& =40 in sem v
5 = iree
Crow forest; Shrink bldssom, Expand
{ reclassify added reclassify blossom blossom By
nodes. modes . - ”
[ A A d
: . ¥
> Reclassify all . . s A 3 oy
. 5 S —
nodes ‘E or NU. ; Does |¥‘ =k?
: Yes
3 x AR 2 . l

‘ : -': .'\\‘

in & General Graph

]
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{3) 'The algorithm systematically solves the maximum matching
= - . " problem in the course of solving the ‘maximum k-cardinality

datching problem. -

(4) The algorithm shows the geomefrical nature of the maximim
; k-cardiﬁality matching érob%em. This will beA;hown éh
Section h;é. . |
(5) . All exposed node"weight.s are lowered unfformly, as
: cég;r;;téd with ?gmongf' algorithm of Chapter II, where-
s+ the weight of onlyione exposed nodeiis decrease§ at ény
‘G : 4 B time. : . g

-—

(6) The algorithm is more deterministic, -since there is no
r;ndom choice of wh}ch"exgpsed node zo use .as the root
of a tree.. Actually, the algorithm is totally deter-
ministic,:in thét it will nét depend  on graph isomor-
phisms [h}, e#cept for inevitablé ties in edge and pﬁph
weights.

X (7) Though the upper)boudd‘on the growth of the two algorithms -7

L

5 "is the same, i.e., N', the work and storage involved ‘in

" i

growing é,foresr of trees is greatersthan growing and

keeping track of a single trée,

’
s

»

4,5 Proof of the Direct Algerithm

X \ - \

To prove that the §lgorithm actua;i? achieves the maximum o S
» . » - 2 .

k—ca:ginalﬁty“matchtng at every step, we need only show that the
’ \ o z >

following primaiadq&lifeasibility and orthgonnlity conditions are é iy

satisfied:

: 5 q’;’ / 5 V'-_ .\ .- : u.v-




‘Feasibility
1) Ax <1, for all vseG
2) ka < T\ for al? odd vertex sets Sk . :
' : ‘ " Primal
3) xij Z O, for all ‘eij€G v |
A u) Z Xi = k ) /\
eij€G
5) yi‘ + yJ. - z z, + A> Ci3s for all eijeGW 5
eiJ.eR.K . .
, . w i P Dual .
6) Y > 0,. for all vJ_eG ’ .
s
-7 2 > 0, for all osid vertex sets S Y

Orthogonality

r A =
8) xij>o‘:yi+bj+ sz+" &5 4

-9) y;>0 %ij=1
10) 2z >0 = Rx = 1y

11) A£0 = Ix,.=k

Identify~the dual variables y and XA -at the termination

-

of the, algorithm as:

2 AR | '
" 32) Yj = Wy -3A ; -

. Since we obtain & matching by the algorithm, conditions 1),
2), and 3) are satisfied. 3 . : N A -
- : 7 7 :" ; * 2 ¥ : \

For evey node Viy Wy 3 4\ at the end\of the algorithm, ' :

so by defirition! 12), condition 6) is -verified. Since all exposed ° <

. 4 T
nodes have weight ' w, = #Xx at The end of the algorithm, y; >0




guarantees node Vs ,is matched, so 9) is wvalidated.

83 - et

The dual variables z, @are- always maintalned nonnegatlve in

the algorlthm sb 7) is verified.” The only way in which a nonzero Zy

variable occurs is when a blossom:forms, but then Ryx = ry, and condi-
- T . ¢
tion 10) follows. D

N

Conditions 4) and 11),depend upon convergence of the algorithm.

Thus 1f a k- caralnallty matchlng is fe351ble the algorithm generates

~

N -
& k-cardinglitx ma&ching. Thus the pﬁoof reduces to showing 5) and 8)

are valid.

Proof of 5) y E »

ITf some edge eij does not belong terminally to any -blossom

Bk the n the algorlthm maintains the cOn§}tlor

W, +WwW, Se, .

and substitution of definition (12) shows that condition 5) is verified

77

immediately for this case. >

¥

But if edge eij is ipvolved in a blossom. structure, let

]

Wity wj' be_the weights of the }ndpéints of e;; at the first time <

iJ
€43 is absorbed into a blossom, and gt this point,
& LWt ewt >c i
then ’ . =
' , 1
Yy = Wy -3 'z, -3\
1j€RK
: Vo= W' '%2 \%)\ T S : . g s
{ g J‘ J ’ : : :
= v 3 - 3 = 41€Rk

P R R = oy
,Substitutingkdbove, we obtain the general verification af’

condition 5);
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‘But its presence in the tree implies N

Example 1

e T L —8&-

5) Yy +yyt sz+>.>cid.

Proof of 8)
- J

If édge eij is in the matching, then it entered this set

by forming a portion of an augmenting path in the' tree of the forest. i

We %, ¥ Ci.u0
i J - i

The.Hungariap weight adjustment process maintains<this equality.

If the edge enters a’blgksam, then the prook of 5) can beé used with the

s

-~equality . =

i J “i3
holding instead of the.inéquality. Thus 8) is valid, and the algorithm =
has been shown, toiobtéih an ‘optimum solution.,/

N

4.6 Geometric Interpretation

\

In Appendix A, the concept of a convex polyhedron is defined

in terms of a linear programmiﬁg formuiationu Let us consider two

\ ‘ . i+

examples.

]

Example 1 is shown in Figui-e 4.7. The maximum matching is
M = {eé},~ w(ﬁl) = lo.“Tpe'maximum 2;edée m;tghing is My =A{ei,-e3},
W) = 6.0 et L
: If p .represents the nuﬁber.of'edéesjig\graph tG, e;cg

vertex of the poi&hed;ou ié specified by p independent constraints %

3 N > s .
satisfied with equality, and each edge of the polyhedron is specified




Graph. G

o)

Vertex Constraints

v_:L x <1
R H*RmEL ‘
5 Xp * Xy S2 )
Y x3 X1
Coct:cx-2x1+1o'x2+hx3
v I-‘igure“&.’( Example 1

-85-‘.




by (p-1) independent constraints satisfied with equality. There are
int‘eresting reiatiohs .between matching co:icepts in graph G and
characteristics of the gonvex polyhedron. Each vertex of thls polyhedron

corresponds to a posmble matching. Each edge of the polyhedron corres-

i

ponds to an augmenting path in- G by which one moves from one matching \'
‘to another. A few instances are shown' in Figure 4.8.
Polyhedron Edge ' - - Nternating Path in G = Edges:
: > - - 7 .
EC . V3e--—--gV4 Strong Augment e—oM
4 ~
N €3 .- =
. . . ~ .-f-. M.
AC v V3 V), Weak Augment,
- - - — < -
62 83
\ . g » / a
AB \ vy Vo v3 . V), Strong
: — - e ~ Augment
e R ey ey
Figure 4.8 Correspondence of Alternating Paths and Polyhedron Edges
The edge weights in: G detenj.‘lne -a cost hyperple.ne. For
Example 1, the equation of ‘the plane is
/ ' 2%y + 10xo + s
( 1 2 B ;-
where. (2, 10, 4) is a normal- vector -n_ of the pline, and W 'is the
weight of the ma.tching if vector x represents a fea.sible matching
The maximum matching va.lue is the largest value of - W such that the
cost plane intersects the polyhedron. By the theor’y revieved in y \\

Appendix A, a maximuh value is alvaﬁ a.ssumed at sm\ vertex of - the

pclyhedron. For tqls problem, from Figure 4.7, the haximum utching

M = {ep_} correspouds to polyhedron vertex A and W = 10.




v

if

B “ L

‘ .

‘,Now consider the'parametric technique. The matching constraints
are unchanged, and thus the polyhedroﬁ remains the same. But as A is

subtracted from’all the edge weights of graph G, the cost plane becomes:

’

’

{2 = k)xl + (10~ >\)x2 + (& - >\)x3 =W .
- U
whosé normal Vector is .8 = (2 - A, 10 ='A, & - A)." The effect of Phis
change is to tilt the cost planﬁ, so that as A -is varied, the optimum
solutlon w111 occur at dlfferent polyhedron vertices. For sufficiently

~

negative ‘values o§ A, the cost plangfapproaches the cardinality cost

.plane, and shus the maximum matching will also have maximum cardinality

~

m; as proved in Lemma L:E.
' The value of A for.which th;;e is a transition of the optimum

solution from oné.polyhedron vertex to aaother dccd;s when the polyhedron

edge beg;een these vertices is in the Céat plane For Example 1, at

Am- L the optimum matchlng will move from, polyhedron vertex A to B. This

occurs when polyhedron edge AB lied in the cost plane. 1In Figure @:5,_

¥

is a“vector alopg this .edge, then

8} Lyg = o
Lyp = (1,0,1) > (0,1,0) = (1,-1,1).

Téen ; . &

Lis

',S'EAB=(2")‘)'(IO'-")‘_* (% - x) =
or ' :
A== b
G Y > _ X \\ o \ . 7. 23 2 &
Notice that (- k)\ is exactly thq\?eight,of the ‘strong SN
i 3 : :

augmenting.path in .G corlespordlng to polyhedron edge AB. Thus for
R4 i -

all A<= h the optimum polyhedron vertex is B, correspoading toa - s

meximum matching Jn graph /91, an anregse in cardina;ity

L e




For - A > 0, a deaugmenting path exists in G corresponding

td polyhedron edge. ‘AE, a vector along which is 'EAE = {0;-1,0). When

A_\a vector EAE ?s /i\n thd cost plane,
0+ Lyg=0, - [10 - A)=0, or A =+ 10.

Thus the null -matching is ma.xlmum in G)\ whén k forces 'all edge's' in j

G to be of negative weight.- . \
For \n;eak aﬁgments, since no'éudinﬂity change is made.in

moving ;betwee;l the a?pi'gpri\até polyhec}‘r_o_n v?.rtices, :1\ . Ll\is always

constant. ~ Thus the only situation in which €. L=0 is if ‘the weight

% 7of the weak augmenting~path ié zero, wh;ch indicat‘es"ties in' the maxi-
mum k—cardin&li‘ty matching. o A
_ Vs
Example 2
. Example 2 is shown ixi Figufe L.9. The optimal solution is
4 noninteger at polyhed}pn vertex D'(% % %)\. Edmonds'! consrtraint,
X, + X + x; < 1, eliminates pglyhedron vertex D, so the maximum
A ﬁlatching_ ‘M; océurs at polyhedron ver}:e;; 'C, Ml = {el}, w(Ml) = 10. : 3

. ; As'suming Cl pS ¢p, c3  for edge wéights ¢; > cp + c3; i

Edmonds( odd cycle constraint 1s not necessary for mtegen solutlons
If?t° that the ma.x:Lmum matcblng in G cﬁntmues to be Ml’

corresponding to polyhedron vertex C, for ala va.lues of AKX lO

For va.lues of A> 10, all edge wei:ghts_ are neé&tive,-. and Ithe null

matchiné ig optimum. ‘ : ‘ .\ -" \:\ Tl e % \‘\\

' e e e o
e ¥ Y ' i - 3 .

4.7 The Maximum k-Cardmalkty Matchigg Curve : S : P . =
A} : y

The curve representing?e veight of the maximum k-cardinality




U
)
i .
’ (o01)
y. D
: x (o10) . ’xz
P 5 ~ A
(100) ¢ D Coordinates: (3 4 %) =
\ x{ ’”tonvex.'éolyhedron for Graph G
Vertex Constraints Edge Constraints
i 1 Wy *¥p =2 » % 20
Vo xl+x3§1 , 2 x>0
| noomtasr 0L
(\ Edmonds' 0dd Cycle Constraint: X +x +x3 <L, F R,
‘ -
% Figure 4.9 Example 2
S ~-
: . = : -
'Y \ \
Y < g
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matching in graph G as a functioh of cardinality k -is shown in

Figure 4.10. . Define a convex curve or convex function as & function

f(x) such that for any Xwo elements ‘in the domain; X, X €X, 'and
. " - . .

i 2
O0<a<1, implies

‘

X ) f
flox; #(1 - a)xy] <af(xy) + (1 - a) £(xp). )
Similarly, define a concave curve or concave function as & function £(x)
such that for any two elements in the dixnain, Axl; xo€X and 0 <@ <1,
con P h
implies >
TN " | 7.
f[o:cl‘+ (1 - a)x,] _>_af(x1) + (1 -:a) £(x5).

Linear functions ‘are both corvex and concave. ™
Theorem 4.3°

The maximum k-cardinality matching -cur;e is concave.

" : - .

Proof . ‘

Let' M; be the maximum k,-cardinality matching in G for any
0 <k <m. Let M, be the meximum k,-cerdinality matching in G for
any O<kp<m, ky £-ky. Let ), be the minimum value of A for
which .My -is the maximum matching in ?)\l: ‘and let A2 be the minimum =%
value of A for which Mé is the maximum matching in G,o. (Nofe: let

"Ny A kfl\e the ‘maximum value of ' A in case kl or kp equﬁs zero).

Asi\'zme k, < ky, so M2 >\2,. by Theorems®™4.1 and h2 Now
if M* is ehy’'maximum k¥*-cardinality matching in G, for k. 5 k* < ky,
and if “A* .is the minimum value for.which M* ‘is the maximum match-

> ; 3 B : . : N Voo e .
ing in. G, then S 3 S . \
» e te \ : \\ 2 - :
p o o NSRS .
K » e > ' AT T
- w)\*(w') = w(M®) - ke, b ; g : s

; , ]
Identify .a . in the definition of a concave, curve as

: 4 33 / “._1. I : ~ b‘..
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Figure 4,10 Maximum k-Cardinality Matching Curve

&
—
P

7 > . Cardinality
Figore 4.11  Minimup k-Cardinality Matching Curve
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‘ menting paths.

L e

1) a= > 0, for then k*=czkl+(l-a)k2.
¥k ‘

2) () > > w)\*(Ml).

3) ‘w (M*)>w oM)

Expanding -inequalities 2) and 3):

s

L) w(mx) S o >w(My) - ki.k*, ] .

5) W) - B > W) - k.

Since. 0<a<1, m\t‘zltiply 4) by @, and 5) by (1 - @), and
add the resulting inequa]:inies, ‘using l),,'andfnote that allvfterms involving

A¥ cancel, leaving €) w(M*) >aw(M) + (1 - a) w(Mp), and the maximum
3 - . ' ~
k-cardinality matching curve :is concave as claimed,

' There \exist,a.l-te‘rnate methods of‘prc.wig_g Theorem 4.3 which

better characterize the role of strong augmenting paths in determining
the concavity‘ of the curve. These methods utilize ‘the concept of aug- -
menting paths, x;;otivatedv by Theofem Lk, stated without proof.

Theorem L. 4

Let M} be a maximum k-ca.rdix)a.lity" matching in a weighted graph

G. Select My . to be the maximum (k ¢ 1)-cardinality metching such that
|M10MQ| i‘s mi‘nima.l.' Then subgraph. Mj®M> consists-of one ‘strong ‘aug~

*
1

'
~

It can then be shown tha't: é’s maximum k-ca.pdinality matchings
are obtained for incyeasing values o“ ca.rdina.ity k, \the strong uxgnent- : E boy

ing paths of ‘Fheorém By have monotonic nonincrea.sin( values, as does

-

thg Lagrange multi plier B 'Ihus.pr.oof of Theoremy%.3 by the-use of: 3 7 e
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strong augmenting. paths is equivalent to the broof’given utilizing
the Lagrange multiplier A.
J

4,8 Minimum Matching

i

Given ¢ graph G with nonnegaﬁive edge weights, ‘a mihimum ﬂ

matching problem is trivial. However, the problem of a minimum
R-cardinalify matching is interesﬁing, and can be solved by our present

tecﬁniqueé with the usé\of the edge weight transformagjon

where ‘K = Max [cj3], which induces a graph [G', ci3'].

eiJ-EG ) i ; . -

Q maximum k-cardinality matching /M . can be found in graph

(¢', cj3'], and can be shown to be the desired minimum k-cardinality

matching in graph [G, cjjl, since

\S

w'(M) = z Ci.j' B "): [K"l‘j] = kK - z Cijs
e, €M N ) e, eM
ij j . ij -
i)ut v N(M) = Z' 'Cij,
. %, .€M
/ : i X
{ i -

50 : A W' (M) KK - w(M). «

Thus since kK {s a constant, maximizing, w' (M) is equivalent to

. '

minimizing w(M). » i >
Moreover the minimum k-cardiﬁaJity matching curve Qs shown : “\\\
: ; .
in Figure 4.11 is both conv= ~ and monotoni~ noé&ecrensing. In the equa-
S Y : s - s =
tion, R AR e ) i 7 : : : ; Z
> \ < : : >

w(M) = KK - w' (M),




the term kK 1is'linear in k, and is thus a convex'funciion; w;(M) has
already been proved to be a concave function. . It can be shown that if
a concave function is spbtracted from a convex fpnction,'that the result

will be a Eonve& function. Thus the minimum k-cardinality matching

curve is convex. The, curve ‘cah then be seen-to be monotonic nonincréasing %

= -

since ‘it must pass through the origin, but this can be proved rigor-

ously by consideration of the strong augmenting paths involvéd.

% h
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CHAPTER" V

MINIMUM k-CARDINALITY 'COVERING

5.1 Introduction - ' ¢ f

)

The minimum covering -problem™is solved by an algorithm described

in Chapter TII. ‘We wish to find 2 minimum weight covering of a specified

cardinality k, and conyemplate using parametric techniques similar to

-

. 2 w e 1 3y
those of Chapter IV. Given a weighted éraph G, this problem can be
. ‘ .

formulated as: 5 ; -3

Min-- cx subject to Ax > 1, I X4 = k, x..=0or 1,

The approach will be to tfgnsforqythe graph [G, cij] to graph
\ : y

[GA’ Cij - A] by subtracting A from each edge. weight of G. The
parameter ‘A may be interpreted as either the dual variable correspond-

hS

ing to the primal constraint

: Ix, . =k,
e, .G .
137 : :
or as a Lagrange multiplier [11]. :
Q Section 5.2 presents a characterization of ﬁiﬁimum'k-cardinality

; ' -
coveripgs. A 5 :

L4
1 ’

“A parametric approach to the pfoblem is given in Section 5.3,
and some of. the impliéations'of this approhch are pointed out in Section
N N A\ - \

N\

5.4, . Section 5.5 offers a geq?etric intefpxe&gfion of -coverings ‘ 25 R

similar.to that'of Section 4.7 for matchings.
s \- e = . -

Sincé & minimﬁm k-cardinality covgfing will ia'genenll cobtiin : aad

cycles for sufficienply,largg/ k, Section 5.6 explores the extension of
3 : k. 4_ o ; ; S

’
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restricting the oétimum covering configuration to be a férest for

7

k 5'(N-i), where N is the number of nodes in graph G. Section 5.7

proves that the minimum )&-ca.rdix'mlity_ covering curve is convex. The

" maxinium k-c'ardin'élity covering problem is introduced in Section 5.8.

L

\;
5.2 Characterization of Minimum }{-Car&inalit‘y Cove-rings }
| . A strong reducing path P rel"ative tb c;ovefings Ci, Co,
where ]C1| <X, ICE] = k, -is\a path P in G such that: .
» (1) P ;lfer:nat’;s in C19C2 wlth f'{espect to edgevs' in Clj C2.
; {2) c'.)=.Co®P, is & (k-1)-cardinality cove;:ipg in G. A
/ T
' Theorem 5.1 2
Let C:\t be a ﬁiﬁimum k-c&rdinal{ty pcVéring in a weighted
graph G. Se_lec.t. C,  to be the minimum (k + l)—ca;rdinality covering
in G. such that ICl@C2| is minimal. Thep subgraph C,®8C, consists
; of one strong ’reducingv péth P. |
3 It can be showniby a graphical argument that a strong reducing
Ap;.th f.wa.ys'exists in Cl@CEf Such aqpathv P is illust‘rajed in
 Figure 5.1.. T6 show that P ccxnéletel;;y comprises QIOCQ, form:
Cl'ﬁ,'h:,.caeP,. & covwez:ing in G of gard;.nality K. .
.CQ’ = C,8P, a covering in G ;af cardinality (k + 1).
Then : ; : . L AR S : : ~
-w(Cl') Zu(ql_), S } ke :
“(ee') 2¥(e), . - ' N : :

80




w(cem?) >w(C,NP)
: : | :_—-; w(Cy NF) = w(c,NF)
w(C, NP);> w‘(CZ‘n P) '

By the minimaiity of |C16C2], it can be seen that path P completely

‘

comprises subgraph C;®Co: %
Edges:
s W e o N T,
» f g
/ *-—-—e le\C?
i ' 17 s
e - - ————— — — — :
: &0 N
S - = = 0 "Ce
P
: ) Figure 5.1 Strong Redcing Path
53 Paiametric Approach
Given graph [G, Ciﬁ]’ construct graph fG>, cij - A
Define
K = Max [Cij] )
e. G i
ij -
I‘ g .-4
X ' 4
. L = Min [Cij] -
~ ei.'eG

e
wx(c) = Weight‘.of‘ covering C im G)\.
Tbe-use of the parametric 'appf\og’ch i‘g ,éomplic_:a.ued,by' the
formaticn of r%e.gg’_.tive ec_igeé. ‘Clnsider‘ O t}x‘e range A <L in

order to temporarily a.voi\d’this can,ﬁlication.
: ; 5




gﬁ"‘ l:: - g - j: = * ) :- =% ‘_'. Sl % . :

e N ¥ ‘ <

'{{'fm = ; o e y Tz o s ~

E - e . i % Yot o 4 -

gt. _.;( ; ‘, SE= . > 5% L R " "3
? R . -
% i . > '98~. ‘ e

Deﬁne col .avs the car&imlity ottheninimncov&ing c° m
G,and c asthenini.mncudinnityofunycommg
."____Z_'l‘hm 2_ '  SEL | e . .
: ‘ Given k c<k<c,thereexistsa k<0 suchthntanini-
mmcovering c in Gkisofk'-cardinality,tnd c luamm
’ '.k—cardin.litycoveringin B TR TR T

s < v' N ol

-

o 'nxe proot of nxeoren\s 2 is si.nilu' to the developen‘t of
I S P | X. g
cupterrv..@ N Co an . 5 -

s

'. ' : - (,. CURES S‘.I.n:l.lu:ly, if we. obbcin ‘the nininun cover

2N

A= L, and the cu&inality of C- 13 p, then th pannetric appronch
vill obtain the minimum k-ca.rdimlity covening C in Gx for
'c <k<p,nsi.ng\0<k<1-. . \/ E S

-

- X ) . . ¢

.

\,

 For arbitrary positive velues of }, consider the following

-~

. ) .~

e Partition the nodes in G intf two setr
1) v,,, nodes which are mcid’ nt to an edge of negu.tive vei.ght. . 3
; : {) Vp, nodes which are: not incident to an edge of Pcptive
3 & ~ i . _“‘ F - 'émt' . 1 ; .' ; T : "‘ " . .\- ':,. .. =5 .‘ ’ B -‘ .‘A‘ 2

>

i Det:hnelnedsepurtiticnof o A e Al

> 5 . o

_<1) Pk, -.uedpi.n ax '!.ﬂ:d:lout-n
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- l.
s eorem 5.3

2) N,, all edges in- G, - with both endpoints in Vi 3

For an iljustration of these.concepts, see Figure 5.3,

Th

Define \C as ‘thé edges of a minimum covering of Ve, 'iogethel's

AT

with all the negative edges of G If the cardinality of C is Kk,
then C 1is the minimum k-cardinality covering in graph “G.
Proof ' = M s o g
. w - ! v 5 . §
Let D be any k-cardinality covering in G. Consider the
L3

weights of - G ;and 3D in’ graph Gy, - v ~n

«Q

N)\ EdgES) P)\Edges - ~

¢ e _ &
' Figure 5.2 Venn Disgram for Proof ef Theorem 5.3

v

s

w,(C) = w(cnp,) + w(CANN, ) »
D) = w(D AP, ) + wi S . ' N
w, (D) v(l? NE, ) + w(D.hNX) hest : A NG
3 : : ;
But since we found a minimum .covl_ring of Vg, \
- 3 ) bR = S5 -
~ : NG »
VK(L_QPK‘)\S ?’)\(Rnp)\)) - 3 B 4

and since C uses all the ne.ga.tive edges in G

SRS e




W, (CAN;).< %, (DA, ). ' -

Thus '
> wx(c)‘s w, (D).
“But sipée lc] = !DI =k by assumptioﬁ,
| wk(c)'= w(C) - kA, and
’ e WA(D) =w(D) - k\. ‘ ' g i

Thus - w(C) <w(D) in G,

and C is a minimum k-cardinalidy covering in G as claimed. >
» o 7

s

5.4 Implications of the Parametric Technigue
¢

~

We are now in an excellent position to afiswer many questions
about minimum k-cardinality coverings. Consider Figure 5.3, which
\ $- 9% /
shows the decomposition of graph Gy, into edge gets P, and N, for

some A > L.

Vgrtex Set V.
Edée Set NK.

N?

Vertex Set Vp
3 P

r S Y ¥ ' i indicatié Fid

+ indi__ca‘bi's .ci.j"' A>0

-A<0

: : 3 2 R
Figure 5.3. Decomposition of Graph Gy into Ed&e Sets P, K

A

\ -



e 301~ 2

As. A increases, more edges become negative in Gy thus

mofe nodes'move out of node set VP fnto V- Simultaneouely the
negative edges, togefher with p051t1ve edges with both endpoints in
. set VN, move from edge set Pxf into NK, as seen in Figure 5: 3%

The algorithm suggested by Theorem 5.5 solves the minimum

N

k-cardinality covering problem by using wll the negative edges, together

with a minimum covering of Vp:

Thus the origikal problem is decomposed into an~"easy" problem

¢ 2 N - P

in .N,, and & "hard" covering probiem fo# node set Vg.
3 ,

When. A Dbecomes sufficienfly large sucg\that all nodes are. in

set. Vy, the minimum k-cardinality cove}ing/prdblan becomes easy for all

k above a correspondiné value. Theicritical value Acrit for which 4

this occurs\is: ~ } ./
Meriy = Nex {alTl“ [Cij]}
J ®1i3
) 1nc1dent
i to node v

J
The implications™of this result wiJA be discussed in Chapter VII.

< There are two ways in whicH the cardinality of the minimum

-

. » i
covering in G, ' increases as ‘A increases:
: -
(1) A Zero weight strofig reducing path appears. in edge,set. P,,

yielding a cardlna.ity change.

1
»

(2) - An -edge ‘becames negative, thus ensqring that it will not only be in

N
the next.larger cerdinalitx minimum coveriﬁg but in every subse- F\\.
quert miﬁﬁmum CUvering of greater cardinal{py :~ e -
Ties occur vhen several zero weight strong refucing paths appear in PK : e
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- or several edges become negative at the same value of A.

)

One migh£ inqui:e at what cardinalify the minimum k-cardinality
covering ceases to be & subgraph of disjoint stars. Since the minimum
-Eovering.in Pi catt only consist of stars, edge set N, is responsible : ]

4

for providing non-star minimum coverings.

L

One also might ask at what cardinality the minimum k-cardinality

covefing will contain cycles. The answer cén again be seen clearly in

the edge set 'N): it occurs-at the .lowest value of A for which all
X - w i f < .
edges of a cycle become negative in GX' SO
s

. il ~

e
5.5 Geometrical Interpretation

—

The parametric process of Sections 5.3 and 5.4 may be~interpreted
’ B - /
geometrically. \ ¢

N

Given a weighted graph G, the c¢dvering constraints

: A
; Ax.> 1, x >0,

¥

are a function only.- of the topology of G. These‘COnstraints are associ- . s

até&,with a convex.polyhedrony 'The vertices of the convex polyhedron -

b -

.represent,posifble éovering solutions, except for noninteger veq}ices
which must be removed by additional constrg}nts as described in Chapter

. IIT.. The edgeslgfithe pdlﬁhedroé correspond to'strpng and weak .
reducing pathé, by which one'moveé‘frap one ;overing\solution'to'another.

The edge weights of the graph ate rélevhnf’oniylio.th! cost, N
> - -\ £59%° 2 v

and determine a.cost hyperpléne, - ¥ R
S \ & ’ o : : 9 |
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“

. where W is the weight of the covering'if vector x represents a
feasible cdvefing. As . A 1is subtracted from each edge weight to form
graph _Gx, the costjhyperplhne,tilts, and becomes
; (c - 1A) x =W,
P
whose normal vector is n = (¢ - 1A). {
Since negative edges play such“an important role in Sections B

5.3 and 5.4, note that edge ey enters NX as & negative edge juét

W The condi-

A : ) .
when unit vector x;. lieg in the hyperplane (c - 1))

’ 43 88 -~ .
tion which must be satisfied for this to éccur is

. A A 5
- b n-xi—. ~

This geometric interpretation is illustfated’by the following simple

examples. g i ke -
\ A - /£

\ -
\

».\'.

Example 1

Example 1 is shown in Figure 5.4, The minimum covering'ié'
{el, 92} with cost W = 14, which corresponds to polyhedron vertex A.
In éene;al, af c3 > ¢ +.Cp, polyhedron yertex A is optimum, but if
c3 < él + ¢5, the'noninteger vertex F is optimum. - The constraint usged .
to el&minate the noninteger vertex F is
xl+x2+x322. -
T}Consider this constraint added to the system, and.subtract
A >.0 from each edge weight in graph G, tilting the cost plane to

(6 = A)xy + (8 3 M), +\(20 - M, = V.

- The polyhedron -edge ‘EXB = (0,0,1) fe&\prs the cost plane

S %
when L “n 3 0, or for ) = 20. Thus for A.>» 20, the minimum

N SoES . 2
e ea}, vhich has chrdinality three. This

a8 " O ,
- covering in G, ' is {él;
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-will contain cycles for sufficiently large ‘k. We would like to consider

a0

solution is represented. by polyhedron . vertex B.- Subtracting A <0
from each edge welght maintains the solution at polyhedron vertex A
for arbitrarily large negative A.

Example 2»
Example 2 is shown in Figure 5.5.

)

r

For any’ e,, ¢p, c3, the minimum.boverihg in G is {el; es},
represénted by vertex A Qf polyhedron AB. However, as \ >0 is

. PRI Y _— v v £
subtracted from each graph edge weigtt, ané as polyhedron edge AB comes,

5

" into the cost plane, govering ,{el, e, e3} represegped by polyhedron

vertex B will become the minimum coverihg i Gx. This occurs when

T A
LﬂB +n= O‘
y /£
Lyg = (0,1,0)} 2= (2 -2\,20 -2, 8- or A=10.

5.6 The Minimum k-Cardinality Forest Covering Problem
Ay . -

The solution to the minimum k-cardinality covering problem

a minimum covering ‘solption which would contain no cycles for cardinali- .

-

ties u{ through k = (N - 1).. x

a : 5
Define a forest covering in a graph G W88 8 forest such that

some edge of the forest is incident to. every vertex of G. . A minimum

forest covering of a graph G, can be found by. the use. of the minimum

spanning tree algorithm .[12],. which will be presénted in. Chapter VII.
The not&tlon far~Theorem 5.4 is the samx\as developed in

Section 5 . B K

R 5 S =
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v3 Xn + X3 >1 X3 >0 x,
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vy X, ey 5
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Theorem 5.4

Let C be the edges of a minimum covering of V,, together
with a minimum forest c‘overing of Vy, using edge set N)\ If the
.c.a.rdinality of C is k, then C is the minimum k-cardinality forest .

|

covering in graph G.

N4

Proof %

Let D be any k-cardinality forest covering in -G. Consider

the weights of C  and. D \in_graph Gy, - ‘ ' e
. 4 , —_.‘ ! 4

Figure 5.6 « Venn Diagram for Proof of Theorem 5.k
wy(C) = w,‘(cnpx) - w,‘(C n,Nx), x
'wk(n) - w,gnnp.) + \;A(Dnn)\)

But since’'we found a minunum covering of ¥ - ot

e
(cnp ySW AR L oage S &
& 3 b, _\\
We formed (Cnh‘, as the- minimun; forest covering\of nodes VN, 80 g
u)\(cnqw ) < w)\(DnN,‘) ' s 5 : :
3 : v K :
Thus w,(C ) < w, (D), :

AR, PR o T e
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and since |C| =/|D] = k was assimed,

“wy(C) = w(C) - K\,
w, (D) = w(D) - 1§x. | ' |
8o w(€) <w(D) #n G, and C 1is the minimum k-cardinality forest

‘

covering in G -as claimed.

The major implications of this a.lgorithin will be reserved

~

. for Chepter  VII. - : i N

i\

s

z 5.7 " The Minimum k-Cardinality Cowering Curve =

7

The minimum-k-cardinality covering c_urve’is convex, as shown
in Figure 5.7. The curve repfesenting miniﬁ_mm g-cardinality forest
coverings is also donvex. Tﬁese results can be pra‘i;ed using the mono-
tonic behavior Qf fhe Lagrange multiplier A. An alternéte approach
would be to ,utilize. the concept of reducing pgths, but reducing paihs
are more complex’ graph structures than are augmenting paths used in

matching.

5._8,‘ Maximum, -‘Covering 2 ;

G‘L\\/en & graph G with nonnegative edge weig};ts, a ma.ximum
covering problem would be' trlv:.&l A covering inclludin'g all the ed'ge_sv
cf G would be of ma.ximum weigh‘t. However., the problem of _ma.x'imum

k-cardinality covering is interesting, ahd can be solved by onr : : \\

present techniques \,onslder the édge \)eigbt transfométiom
2 2 ¥ . AV 2 : 5
g = S R g >
Ci,j» = K ,‘._-CIJ, for all e €G, 4

i
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where .K = Max [cij]; which induces.a weighted graph [G', éij'].
eijeG
A minimum k-cardipality éovering C .can be found in graph

G, cij’]; and can’be shown to be the desired meximum k-cardinality

covering in graph [G, Ciﬁl‘ The proof is essentially the same as indi-~

Nt

N

) cated in Section 4.8 for matching.

This maximum k-cardinality covering is shown in Figure-5.8,

and can be proved to be both- condave and monotonic nondecreasing.™

> _ { 7.




- Yy g _ CHAPTER VI

J - :
% . . RELATIONSHIPS BETWEEN MATCHINGS AND' COVERINGS

6.1 Introduction

\ -

Chapters IV and V dealt with the.k-cardinality matching and

4

covering problems in detail. The question of the relationship between

these matchings and coverinds naturally arises in the course™of this
’ - -~

-~

parametric study; Ehi; chapter addresééé itéﬁlf to that queétion.

¥ et * Section.6.2 introduces a new ébncept--a k ,.p-subgraph yhich 
allows us to exdmine matchings and coverinés ffom a more general
point of view. Optimum'k,p-subgraphsvafe discussed ‘in -Seetion 6.3.

/

This developmeét motivétes the considerafion\of.a special case in
Section 6.4; optimum k, (m + k)<subgraphs. Section 6.5 contributes

an additional idea on the specifinrelatignship betweep matchings an&.A
coverings.

6.2 Feasible k, p-Subgraphs

£l

{. A k,p-subgraph S is a subgraph of a graph G such that
\ ; s ;

a)" 8 contains k “edges, ‘and =
b) sexactl§ p -of the vertices are covered by S.

v

\

Consider some specisl cases: - Foa X T ' !
{1) Matching: a'k,pfspghraph for which \p = 2k, for
sa ) e o
0 <k <m, where m is the maximum “ardinality of
: e e
-

any matching.




e -

kE) Covering: a k,p-subgraph for-which p =N, for k 5 c,

S ‘N‘
where c¢ is the minimum cardinality of any covering, and

N . represents the number of nodes in G,

) .. (3) k,(m'+ k)-Subgraph: a k,p—subgraph for which p=(k+m)),

i
for m <k c.

We would like to know which values of k apd p represent

feasible k p;subgréphs. Flgure\ﬁ 1 shows the fea31ble k-p reglon for
b £
a typical weighted graph G The topology of G determines the

'-p§rameters m- and .c. . Note_that: ' - ' ~
c=N-m T
for all graphs, and thus sincde m < g and c¢.<m, ¢ =monly for

£
Such graplis are said to

]
]
2

special graphs G fbr which ¢ = m

contain a 1-factor or perfect matching [16].

The: special cases of matchings; k, (m + k)-subgraphs, and
coverings form an”upper bound on the region of feasible k,p-subgraphs
in the'k-p ﬁlane as- shown in Figure 6.1. )

-

The lower bounds -om the feasible region .of ' k,p-subgraphs

-

are_ more diff{Fult ﬁo determine, and:are complex functions of gaaph

topology. - Let us éxamine the constraints for low values!of'cardinaiity

k, and then for some general classes of graphs.,

s

k=0 p =0 -is the only‘feasible ﬁoint.

O .
k=1 p = 2-1is the only feasible pol‘nt for each’ edg\ has two
5 .) p \ z ¥
endpoints. Lot SEESY j :
; Ny

e
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Kwm 23, p-= 3,4 are ‘the only feasible.points, corresponding to
subgraphs . .
Sl I I J . 52 k .

k3. .. p = 3,"k, 5, 6 are feasible points correspondihg to subgraphs

S S

& E o

The Yowest bounds on. feadible p. for kr,p-subg;raphs are valid —
TR ~ B 7 .
for complete graphs, and arise from the exisfence of complete subgraphs,
. A >

\ P

as shown below. - g ' ; )

k=3 k=4, 5,6
Pp=3 p =24
- k_: 25 6: 7: 81 9, 10 : @
- PSS s e

In geher&l' a cssmplete subgraph in' G- on. p nodes will- have a léwerv

-

bound of  p “for "k_ in the range .

-@E:2) 4 pe=-2) '

2 : 2

- N : * \ - \

b

‘Thus for large N, the app{'oximate lower bgund of the f__ee.s\{blé region

at k=Nis P;. =a2N YoF a complete éraph.

LB K

' The simplest 'estimate' ofA aip-feasible region ig above the-

line d : .
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p=k+1, for 1<k<N-1,; -

for ‘connected graphs, and this is a strict lower bound for tree graphs.

J
"\ 6.3 “Optimum k,p-Subgraphs

i

Having determined the values of .k .and p for which

/ k,p-subgraphs are feasible, cons?der the question of obtaining the mini-
mum (or Aaximum) k,p-subgraph. !
‘The maximum k-cardigality matching'problem wﬁs charavterized
vand solved in Chapéer fV ;:ing the concéﬁf’offaugmenting pazgé, as
. .
~ exemplified in Theorem & k4. 2 3

‘ Theorem 4.4 . Sae

| . *

\ . ~Let Ml be a maximum k-cardinality matching in a-weighted

| e - /

: graph G. Select M, to be the maximum (k + 1)ccardinality matching
such: that |M1$M2| is minimal. Then. subgraph M @M, consists of one

strong augmenting path.

¥

The minimum k-cardinality covifing.problem of Chapter V possesses

& similar characterization in Theorem 5.1.

£l

. Theorem 2{1 . ” i
. &

Let Cl be a minimum k cardi,nallty coverigg in a weighted
graph . G. Select 02 " to be the minimum (k + l)-cardinality covering

in G such ‘that |C10C2| is' minlqal. Then subgraph C10C2 consists

X \ - )

of one strong reducing path. : \ ' 2 ' g

e R \

Since bc£Lnaugmenting,patbs and reducing paths are alternating
; B ‘ = o : : E
paths, we might suspect that some type of alternating path would describe

. "‘ 'jq_—.,"A' / /.-‘1“ “ ; s.."'




~ e
\'\, .
‘the characterlz.a.tlon ef optimum -k ,P- subgraphs, and would suggest a.lgorlthms
. Yor findxng these optlmum subgraphs This is not true, however, as seen
by the six characterlzatlonslbelc‘m. In each cha.racteri'zation; alternating

) » ' .
pé’ths' alterngte with respect to edges of subgraphs S a.fxd So.

3
1) Let Sy be the unique minimum k,.p-sub;p'-,aph,';nd Sp a minimum
k, (p + l)-subgraph.,( such that lsleszl is minimal.: Then in genera.l,
slese doe's not eonsist of a s\mgle alternetinf path. - )
2) Let §; be ‘the uniqye minimum k,p- subgraph and - Sp a mnlmum "
' / (k + 1), p-subgraph, ‘such %hat Isleszl is minimal. TheR in general,
SleS2 does not censist of a single alternating ;a;h.
3) ‘Le't Sl be the unique mm.mum k,p- subgraph and 72 a mlnlmum
(k + 1),(p + 1)- s\ubgraph, such that |S,@S5| 1= mmnnel. Then in
general, 5,85, does not consist cﬁf a single a.lterneting path.
b«)‘ Let Sl be the unique mipimum k,p-subgraph with covered txodes Ql.
For every mini;num k,p'-subgraph Sy, with covered nodes Qp, where
_p' > P _and_ 3 |816821 minimal, then in ge}’lexja.i-. Q1  is not a subset
of Qz' v g
5) Let Sl bé\ the unique minimum k,p subgraph with covered nodss Ql
‘For every mmmum k',p~ subgraph 82 with covered nod®s QQ, w}'xere
k' >k and [slesg| minima.l ‘then in geperal 4 # Qe ‘
v6) Let §; be the unlque mlnimum k,p subgraph with covered nodels Q’l
For every minimum (x + a), (p + @)- subgraph \82’ vi‘ covered nod~es-l s \

Qp, where . = ‘1, 2

nyt s and . Isle.,2| minimal then\in gener&l Q . =
is not a subset of Q5. . 4 S ~ :
' X . ) 4 :

The examples shown in Figure 6/2 illustrate characterizations
Y ; e % : SEdlie Ty : ¥ S

N




<
< A I | |
'8
N 7 pe
- 6 S €
j 3 Number 5 - = y ]
of Covered o ) l _
Nodes, ' p 4 : 4 ’
¢ A Feasible Regior of
¢ . k,p-Subgraphs for
-+ > 3Fs Graph G
Edges below: . ) ™ 1 s
T Slngg s 5 y :
;. " 5 B |2 5 1 “'\ - : )
{ > -0 SlnSQ / . 3 ’
=
0 1 ~2 3 %85 6%
gymber of'Edées, k
V‘x o o 3 »
a) Examplé of characterizations (1) and (4):
k=3, p= l‘) Kin Sl = {ery €¢s 97}} “(Sl) = 18,
s k=3, p=.5, Min 52 = {91! e:,'e_’}, V(Sg)\‘: 8.
¥ ) & . €c¢
Then subgraph S,8S, - is: l,,—‘ . <
-~ ‘l’ .
82 \55-‘ ) - - 06
b)) Example of characterizations (2) and (5):
k = 3,<F = 5, Min 5 = {el, 5. e7} w(s;) = 8. ‘-4
k=4 p=25, Min Sy = {elu €5y e6) e7’}: "(52) » 21‘-.
s » e6__) :
Then subgﬂ!ph 510»2, ins < ey ei " 8 vk :
‘ 1 ‘-.-‘_’0,— #3 o
b & - i
c) Example of characterizations (_s) and (6):
N .. -
k=2, p=3Mn 5 - {ey, 82} w 51) ° Ty -0 .'\\- ; SR e N

.

k=3,7p =—h, Min S = {ek, es, ef} v(sz) = 17.

. Theh subgraph 81082 is: - ,' /’ Gl \-'. 5 : A ‘_

Pigure 6.2 ’. ExampiSs o Ch-ru:élutiom (1) ‘n:rcngh (6) AT

St o e a . AN
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(1) through (6). These examples prove that in' general e single alter-
nating path exists in the appropriate symmetric difference subgraph
but further show -that the entjre concept of an alternatlng path 1s no

tlonger useful in descr;blng optimum k,p- subgraphs

i

A method.to solve.for some k,p-subgraphs is given by the

follow1ng theorem using notation from Chapter V.
Theorem 6.1

For a'given' A, partitioﬁ\the vertices of graph Gx into
: . ¥ w Y f £ .
two sets Vp, Vy, Where YN is' the set of nodes for which at least one

pegative edge is incident in G,.. If° 1VNI = p, and there¢/'ase k- nega-
4 A -

tive edges in Gy, » then these negative edges S; form a minimum

k,p-eubgraph in G. .
Bop pr o o |

Proof \
Let S, represent an arbitrdry k,p-subgraph in. G. Then for

the images of G

)

)\} . \

3%

- W, (5, n85) + wy(8,Nn8;), ,

v (81)
X - 5 E . N \

wk(se) = wx(Sln.Sa) - w)\(_SlOSQ)‘ g : \

But -by-assumption, '*W)\(Sﬂﬂ.s‘g) <0, wk(Eln Sp) >0, and Q(sl) < w{sp).

"

Thus since IS;] = |so| = i, w(Sljifiv(SQ). N

\ /-
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This algor*thm solves one minimum k,p-subgraph problem for
each k; where k =1, 2, 3, ces, and p cbagges by zero, one, or two
between successive probl;ms. This process is illgstrated for two

A exampies in'Figufe 6.3, apd the miniﬁum k?p-subgraph>problem$ solved in

I
each example are noted in the respective feasible k-p region.

)
J yike \ N
6.4 Optiﬁum k, (m'+ k)-Subgraphs :
‘In Section 6.2,. thrde special types of k, p-subgraphs™were
. - f £
defined:. j
: .
(1) matchings, : "
( (2) coverings, and N
(3) k,(m + k)-Subgraphs.
These subgraphs Jere.fbuhd'to form an uppef'bogn&'on the region of
feasible k,p-subéraphs in the k-p-plane as shown in'Fiéure 6.1.
‘Although no general algorithm was found in Section 6.3 for .
; obtaining optimum k,p- subgraphs, 1t would seem possible that k, (m + k\-
subgraphs are so constrained that an alg rlthm should exist for the
solutlon of this special case. The fol}owing development will show that
tgis is iqéeed true. | y : "4
_Lemms 6.1 a
If .S, is aiminimuﬁ k,(m + k)-subgraph in & graph G, fhgnv s
is a star gubgraéh. . b

Suppos° 5 possesses a paéh of length thrgk or more. - Construct

a (k -1), (m + k)-.,ubgrapn §' . by deleting an interhediste edge in
5 2
this path. Add (N < m ~ k)- edges incident to the exposed nodes in §'

AR Wouse o s
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to obtain a covefihg. The number of. edges in this covering is then

- ‘ k-1)+{(N-m-k)=R-m-1=¢-1,
J -
2 since. c=N - m.'l But this contradicts the assumed minimum cardinality

[

c . -of any covering, so. S5 is-a subgraph of star components.

3
A k, (m + k)-subgraph augmentin; path P _relétive to subgraphé
S, end S, is & path such thet: T, *
1) 5 » a'k,(,l'n + k)—subgra’p‘fl-.’ 4
N
4 (2) s ;is a k',(m + k')-subgraph. i
( (3). k'.> kK. C
(4) P is a path in subgraph‘ Si@sz' which alternates with
re“spect'to ‘Sl, 8, “edges. » -/
(5) .w(PNSy) = w(PNS ) >0
{6) . 8* = S5,8P 'is a (k +1),(m +k + 1)-subgraph.
) Tfu_‘oughout this section,“ we wil)l; simply refer to P as an
-e.ugment'ing path. where‘the wcohtext of k, (m + k)-subgraphs is clear.
',I‘h-eore,m 6.%‘ ' . . 2 ;-
Let B, be the unique m‘inimum k, (m+ k);sgzbgraph in a gra.pb
G, for m < K < g Let' 32 be & minimum (k +1),(m + k'+1)- subgraph
such that .ISl@SQ.[ is minimal’ Then subgraph S;882 consists of a
single augmentmg path, and -the (m + k) coveréd ﬁodes of Sl is a sub- ; ~
set of the (m + k + 15 covered nodes 3¢ 82' . \
: ; S X A .
There must exist séme node v, which is zxposed relative to

oo s e S e




— s AP

Sl but hot S, in 6. Thus there exists some alternating path P  with
Vendpoints'i vy and . vp, of maximal length in S;8S5. A constructive
argument as to the nature of this path, together with examples of various

X 3 i
. stfuctures, is given in Figure 6.4. The conclusion is that P is an

g .

augmenting path of:the form:

VIg S S S 5>
oot SN IR R S S Wl ‘
il —_— o 4

P

. y ~

To show path' P comprises all of sjesg, c;mstruct

S1' = Sp8P, a k, (m + k)-subgraph. ' g
S," =58P, & (k +1), (m+k + 1)-subgraph.
Then since Sy, Sy - are assumed minimuxii, '
1) ‘w(Sl') > w(s,) D e N
n2) w(sy') > w(s,).
Identify the weights of. S8,', S, a.?
3) w(8;').= w(spNP) + w(s,NF)
4) w(85') = w(§,NF) + w(s,NP). & _ i

Substituting 3) ‘and-4) into 1) and’ 2), we obtain

V(Sl)w N ; ' : : ) '

v

= 'u("‘sln-ﬁ) ;\‘w,(ser-ai?)

5) w(s;NP) + w(s,NP)

v

IV »

w(s, N 'f) + w(S,NP) w(se)‘ : . o
» & S e
By the minimality of |51932i, ~ié can be seen th& subgraph
s T 3 : : e E : %
5,85, consists only of path ‘P. . 558 g ' ! X
o : b
Since no new exposed nodes relative to S; in G can be

-

T i i
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Since’ isel > |Sl|! there

exists some maximal alternating

path P in -5,8S,

o

dicts 8 aor S

vi,v2_/ s s2 F has endpoints vy, vp, and:
‘\_1.4. v exposu{relative to 5
in G. .
= > 2 -
Existence.of P
in 8,085, contra- Sves

Does v) = v2?

i %

B2 8 § H %

e e -

o

¥

Figure 6.4 " Proof of Theorem 6.2

minimum, & No forf®radicts the
4/ minimality of
Is vp exposed relative Yes s S, or‘ |sye851.
to- 85 in G? ’
v B V2 52
\ t No a .-Fg--O—l——w
% N 5
Is"¥p" expobeld relatioe |} Yeu Contradicts ¢ minimm
. B S
to Sp in 5,052 ? ! cardinality of -any
covering.
l No :
¥ Contradicts ¢ "minimum
Is only one S; edge Yes cardinality of any
incident to v, in G2 [ covering. .
‘ -4 8
No 7 vlﬁ----o—l—.----“'z
Contradicts y #
- Yes Is
S, minimum. e—w(PNS;) 3 w(PNSz) 2 7
15 b g
§ o
Contradiction, No Is only one ‘S, edge 3 *
since P comprises éncident'to vy in 8,08, ?
all of §5,8S;. s i
v Yes Bk
. : B >t s
P is an sugmenting .‘-.‘.\L‘_sa.. —
path. \ - . v2

=
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constructed, the set of (m + k) covered nodes of - S is a subset of

1

the (m + k + 1) covered nodes of - Sp.

p
P . A minimum mlcardinality matching M partitions the set of all

nodes V _into two.sets.

2%

VE = The set-of (N - 2m) nodes exposed relative to M.

Vy, = The set of 2m nodes matched relative to M.

M-
< Theorem 6.3 ; : - N
)|, ——) i o o 4
Assume -thet the minimum m-cardinality matching M in & graph
L3 y

Ve
~3

G /is unique. - Then no node in. Vg “is a transmitter in any minimum : Lo s

k,(m + k)-subgraph S.' ol

Proof :
’ —_— \ UL ) p
Figure 6.5 §hows node sets - Vg, Vy, and that (k - m) nodes of

Vg are to be covered by the k,(m + k)-subgraph S. As shown in the
figure, construct (k - m) alternating paths in sybgraph SéM from the
- appropriate nodes in Vg. The alternating paths are either maximal in

subgraph’ S@M, or. terminate as they 'interact 7ith'gn¢ther alternating

path. .Note.that there is one more S edge. than M. -edge in each path,’

>

andithat an eve@ number of nodes from set VM are involved in th§'4

* paths. -At least as'many edges in S are required to cover the rest
of the nodes in Vﬁ 'as the number of edges in M incident to these

. 1

nodes. ' . : & :

Thus we have already accounted for k edges 1&,,3.‘ If any ~.

o o : A ; . . X
node in set Vg 'is a trensmitter in S,Lsxch as vo»shbu;\in Figure
5 Y 2 : ; s
6.5), this will contradict.the assumption that’ S containd Kk edges.
ssinsg e
: - L

e e S R B
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-Théorem 6.3 pfovi@es the key result neeaed to solve the optimum
k, (m + k);gubéraph préblép, ,Sinée the minimum m:garginality matching
can be found, the.results of Theorem 6.3 allow a linear_progfamming
_fofﬁulation.to be.writ£en. This formulatién can' then be sﬁlved by

‘

primal-dual methods.similar to that exhibited in Chapter IV.

N

AN

2 -
»

€.5 Specific Relationships Between Matchings &nd .Coverings

Consider the minimum k-cardinality matching problem discussed
: » o~ 4 "3
in Chapter IV, -and compare it to the minimum k-cardinality covering
N L 3

ptoé;em of Chapter V. . Figure &.6 illustrates a'specific relationship

between these problems for a general weighted graph.

In Figure 6.6, note that construction 1 given in Sectior 3.2
. y - £
\ ,
for obtaining a matching from a covering shows that «B"> A. Construction

1 also shows that the weight of the minimum covering of cardinality

k=c+4q,q=0,1, 2, ... forms an upper bound for :the minimum weight

A

-matching of cardinafity k =m - q. This is seen by comparing curve

#3 to curve #1, where-the. former is gimply a t?anslgted mirror image of

curve #2. : .

-

Simile{‘ conclusions can be drawn for the case of ma.ximum‘ P>

k-cardinality matching and covering problems.: -

P

v

' ’
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Minimum
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Figure 6.6 Minimum k- Ca.rdina.lity Matching a.nﬁ Covering
for a Weighted Graph G.




- - ' CHAPTER.VII ' = s
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MINIMUM SPANNING TREES, GREEDY

ALGORITHMS, -AND MATROIDS ; l

-

r e d Introduction

r

For the matching and covering problems discussed in this

dissertation, the algorithms present®d for their solution have been
V% TR s 7 .
conceptually difficult and complex. One is impelled to search for

s y

simpler algor thms. G AL B ' ~
7 :

Edmonds [10] introduces the notion of'a "greédy" algorithm.

Define an algorithm as greedy if" each element reguires examination"only
p 30 _ 4
\ ’ /
once, and upon examination, can either be placed in thé”solution set or

permanently discarded. Section 7.2 introduces a general system of
independence, called a matroid, developed by Whitney [17]. As . shown by

.Edmonds [9], greedy dlgorithms often exist for the solution of optimi-

“

zation prob1ems in matroid systems. “Section 7 &;SO presents an

1nterest1ng optlmlzatlon problemsand algorithm for such a matroid

e -

- system. & _ i P P

-An. important concept in network theory is that of.g R ning
tree, defined to be a tree 1n61dent to every node of a glven graph.
Kruskal [12] pr°sented an algorlthm for findlng & minimum spanning tree

in a weighted graph Sectlon 7.3 examines tHat algorithm and shows

it to be a spec1al case of the solution for &atroids presented in
X 3 : s - S %
Section 7.2. . e g : : 4
. _ Py

Section 7.4 demonstrates that the minimum k-cardinality forest
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‘covering problem of Sentioa 5.6 is a generalization of the minimum
spanning'trée problém, ahd_how both probléms a:é related to a greedy
algorithm. )

N : " ’

7.2 Matroids

) " Define a matroid M as a finite set M .of elements together

r

with a family of subsets, called independent,- such that

(1) "every subset of an \independent set is independent,

» ~ 4 vf.

and
5

(2) for every subset A: of- M, all maximal independent
subsets’ of- A have the same cardinality, called the

‘rank r(A) of A. = Ly
\\ " ’ = /

In the definition of a matroid, the concept of independence

is defined axiomatically by conditions (1) and (?). It can be seen

)

However, thené are systems of independence snflsfylng axioms (l) and

(2) wblch have no 1nterpretat10n in the sense of l‘near independence.

> -

Consider the f(}lowing example. ’ .

-Example s> ; 2 : e -
Assume M a set of N. élements, and define an indepeddent

_set as any set consistlng of p elements br less \wﬁere we assume

p < N. This system of 1ndependence satis;ies axioms (1) >nd (2), but

N -

has no relevance to thg concept of limear independence. A

Fen &

: : 3 Q ".' / = "“, ." ~’ . Nb =

that the ordinary fiotion of linear 1ndependence satisfies (1) and (2).
&

o
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Suppose.we consider the edges of a graph.as set M; 'is it

true that matchinés or coverings define appropriate ihdependence systems

A in order‘ﬁhat M  might be a matro%d? Unfo}tunatelytlboth systemé fail

to define a matroid. “Though a matching will satisfy exiom (1), axiom

(2) Tails to be valid. Defining a covering as the independence system

\ ok

ihsures that (2) holds, but (1) fails immediately: In the course of

the developﬁent of this chapter, this may suggest from oné point of

viéy why the maximum matching and minimiw covering probiems are so
7. : - o f 7 .
difficult. ; '

s

" Let us consider the follawing aptimizationﬁproblem, and, sub-
7 ; " )
sequently an algorithm for its-solution together with a préof, in order

to emphasize.this point of view: By
Vo e
Problem
Given a matroid M as a finite set of elem§pts M= {gl,_eé,
..t,eN} ‘together with &/ family Qf independent subsets. Associate
a weight ¢y -with éaéb element ejeM of th; matriéd. - Find a maximhl‘

independed% subset S, of minimum weight, where the weight of the sub-

-

set S is-indicateqd ' ‘ L
i | - , | :
W(sl) = inciy : -
G S ei 91
Algorithm p : ALk U :
» - . X .\ - 2

(1) Well order €lemepts of M accor%iag to_inCrégs£§§ .

-

weight as,‘{el;yeé} ---i'eu}:ISO

i<}y =}c‘i$c3

;s ”. —q"":.'. / ..": .'~ ' 7.,. “.
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(2) Initislly select S, as {el}. ] ‘ .
(3) Add’ eé' to S; . if this forms ‘an independent set;
otherwise, p?rmanenfly discard ep.
A e (4) ‘Continue adding minimum elements to 8, 'in a similar

fashion such that 8, remains independent until

NeZn

-

s, | = r(M). &

(5) Claim ‘that * 87 is the maximal indepenﬁent subset

of minimim weight\of matroid M. ~
» P ¥,

5
Before proving that this algorithm dctually obtgins the opti-
7~ . v
mum solution to the problem, consider the fellowing-Tfiecessary result

5
17]

from Whitney [17]. ; ' .
i i : A - /
Theorem 7.1 (Whitney) ‘ .

Given a matroid M, if S -is a maximal independent set, and

D -an independent set, then for
]

1]

\

ome. subset A of S, (AUD) "is a

maximal independeht. set.

Aléorithm‘Proof : T T

If [51 is not of minimum weight, then there exists some
ey ' k . &
maximgl independent set S of minimum weight, and

- P 2 ight,

»

¢  w(S,) < w(s,).

P

8 S,, there exists an element e*e§§f}$2. Of 411 such

If. 'S;

7]

e*, choose the minimum weight element. But for \uf$2) < w(8;); it must

be that Fali e S \

-~

c* < Max [e;]. ~ =k o




g =5

- Then. e* must have been c.onside,red during the algorithm and rejected

because it formed a dependent set; let the minimal such dependent set

Ay
be )

A c._=.{e*, e, eé, ras & gp}, such that

c* > ¢y, for' ey€S,,.1=1,2; ..., p. %
| Let "B = ~{e‘l, €y us ep} and note that B -is an independent set.
A,
¥ | .
Figure 7.1 = Venn Diagram for Algorithm Proof
) At this point- Theorem .7l is used to show that a new maximal
independent set S<' can be constructed from sets B and So. Thus %e‘t
S = AVUD be a maximal independent set, where- A€ Sy, D = BY(s;nso). :
But.e*fS, for otherwise this wolld violate the assumption that S is i
independent. : ; e ; G Gt
Now set (So - 8) is not a subset of 81; by iss@pfidn,“ .
c* < ¢y, for every element éie (8, Ns2) ‘and ;t_ms'is ‘true i‘or\every
SR Y : g : ~ oy =
element e;e(S, .- 8). P Neside N ‘ i
: o

Assigning weights, '
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w(S‘) =w[B - (Slﬂse)] + w[Slnse] +'w(A),’
w(Sp) = w(Sp - §) + w[8y ASpl-+w(A).

But since sets (Sp - 8)3 [B'- (8; NASz)] -are non-empty and of the same

 cardinality, and since for every
\ ej€[B -"(S; AS5)], and any 3’
J a - . S i N e =
ejé(s2 h S);
c; <c¥ S.cj, then \ - -
¥ w(s) <w(S2): f 7.
This contradicts the "assump‘cion that S, was a maximal independent set,
- i ‘ 5 P ~
P g

of minimum weight, and the algorithm is proven.

7.3 Minimum Spapning Trees - ! £
1) -

Given & connected weighted graph [G, ci], the minimum spanning

tree problem is to find a tree incident to every node.of the graph, such -
» -
» that the weight of the tree is minimum. . Kruskal [12] developed and

proved the Tollowing a.igorithm fof this problem:

(1) Well order the edges of G-~according to increasing
{ ‘ ]

\

-

X - - i1
;welght as {el, €p, €3, ee s eN}, ‘

=850 1iX j=ne; g Cy-
(2) Initially select a-tree T =‘{el; c2} :

{3). If the addition of ex” to. T forms & cycle, permanently
: - 13 \ T ARG D .
discard 33 ot_he.rwis% add eé to ,.T,.\\.

“(4):+Cont¥nue adding minimum elements to 'K in a similar

-

fashion, such that T remains a fogest, until the

e el e e R e e
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number of edges in tree T 4s (N - 1), where N
indicates the number of nodes of graph * G.
(5) T is ‘a minimum gpanning tree.of graph G.

(4

This algorithm appears remarkably like the a.igorithm described

N

in Sectic‘;n.7.2 for matroids. Let us try'_to couch ‘th.e\ spanning tree

problem in terms of matroids: :
T h
o W - i
Defme a matroid M as ‘the set. of edges of a connected

‘A

welgh'ged graph {G, ¢, ] ‘Define,an iridependent set as any sgtnof edges
whlch do not form a cycle in"graph G; these edges then form a subgraph
which is a forest of trees. This 'deflnltion of independence clearly

satisfies matroid axiom Yl), a.rd since' all maxima.l‘indeﬁé/r;dgnt sets

are spanning trees of.cardinality (N - 1), axiom (2) is &l:so satisfied.
Thus the mifimum spanning tree problem is just a special case
of the matroid 'o~ptimization problem described in) Sectj;cSn -2, forAwh’ich

there exists a greedy &lgorithin. i :
& : ok _ i
7.4 Coverings and Spa.r'ming Trees ; . a -

P~ ’

In Sectlon Se 3, an a.lgon\hm for solv1ng the minimum k- cardin-'
ality covering problem was presented and some i.nplica.tlons of that

result were explored in Section 5 L, It 'was pointed but that the
Lagrange multiplier N pe.r‘it*oned the nod.es\ of the graph G, into

s Y ' ot =4
two sets, Vp and VN: and the edges 1n'to sets, P;\ and NA.\ A mini.mun pat

covering of’ "P is then found using PM together \rith all negltive




.

S . e T

- edges in Nk' The assumptlon of all negative edges in’ N; “‘can now be
>
viewed as a greedy algorlthm Thus as A increases, more nodes move

to the VN set. As ‘A exgeeds a critieal value Aerits where

X ¥ v ‘

LMin {Cij}]’ : i
1rc1dent te . , .
node vJ )

crit

\J_

all nodes are in the set VN TE? algorithm for. the ﬁinimum k-cardin-

ality coverlng becomes' entiredy greedy, the approPrlate solu»loﬁ being

- all négative edges in graph N, .

- b 3 n P ~
{ Section 5.6 presents a similar algorithm for solving the

minimum k-cardinality forest covering problem, where & minimum Covering

of VP is found in\ PK’ together with a minimnm.forgst covering of

N

nodes ‘Vy in N,. ' The minimum forest coyering in Nx can -be found by
Kruskal's minimui spanning tree algorithm by terminating as soon as.a
covering of fhe YN nodes is obtained;dthis minimum forest covering will
consist entirely of negative edges. *Thus thris portion of the overall
algorithm can, be regarded as greedy )

® As A  exceeds the value crit; the algorithm becomes equi-

/

X

vaient to the min%mum spanning tree glgorithm. It is»precisely‘a; phel
edge o'f weight "An s¢ ent;ers Kruskal's co’i:xst;ructed set._‘thnt 'the,edges
of this set firs; %onm a covering in graph ‘G. * Thus it is clear how
the minimum k-cardinality forest covering problet is = genérllization
of the minimum spanning JXree. problem, uhfre for -this spetial case

= (N - 1),‘N the numiyer of nodées of the .graph.

\. - :‘ N o i
Still another exnmple o¥~a greedy nlgorithn‘}s that given for . : |

- ". (q' / . "'f. --‘ : ,."_"
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particular minimum k,p-subgraphs in Section 6.3. Though the general

problem of optimum k, p-subgraphs- remains unsolved, it is interesting

that a greedy algorithm exists for) these particular- configurations.
- : : ; > :

3




CHAPTER VIII
J

g e , APPLICATIONS AND FUTURE RE‘SEARCH

8.1 Introduction

-
N

The formulation and efficient soigtion of ‘optimum matching

and ‘covering problems in weighted graphs have been the objectivesIOf

: ' ' TR,
this dissertation.. In, this cQ&pter we would like!to consider sgme

epplications.of these problems and techniques, and-td‘suggest some

greas of future research. » . n

-—

Section 8.2 uses the concept of & maximum matching to.solve

a diagnostics problem for a communications system: ?pe problem"can be
\ : -
stated.as the Chinese postman's problem, which is‘discussed in Busacker

and Saaty [4]. Section 8.3 introduces an interesting problem of opti-

mum data storege. Though ‘' this problem ie not completely solved, the
,‘ .

optimum matching and covering techniques do offer a partial solution.

In Settion 8'.&2 & communications Qrobicm illustrates why a
maximum k-cardinaiity matcﬁiﬁg would be desired. ‘Section 8.5 applies

the solution Qevhnlque of a minimum k cardlnality coverlng to a.problem
|
of. flndlng the qptlmum location of serv1ce centers. o

r

The.design of experiments is considered in Section 8.6, where:

.

the matroid'theory of Chapter VII and minihum coverfheﬁ are ptilized to
‘ \ » \ N : X
obtain an optimum deslgn of experiments.' SLR A%
Some ideas f%r €uture. researth are indicnted in Section 8 F &8
- 2 . \ 3 .\

6 e :
~ i NE Y ]

8.2 A Diagnostics Problem e ik

) .

25 5 ERET
Given a connected weighted 5raph G; the Chineae yoct-ln‘

~

e oy -“.A SRS

A ‘.:‘:{qﬁ' S
L, 2 n “ ‘. ‘5 -'-. ..

.
e

N




—’/-\138-

. problem [h] is to find & minimum weighted tour. - ‘A tour of & graph is a
sequence of" adJacent edges such that every edge of the graph is in the
sequence, and the 1n1t1al and teyminal vertlces of the sequence are

" cclncldent., I? the uelghted graph represents a communlcatlon system,

/
where an edge weight corresponds to message time delay or cost, the

L

solution to this problem might prov1de a basls for a dlagnostlc technique

of mlnlmum tlme delay or cost. A test message could be sent from a

-~

23 B i 1 7 .

partlcular terminal and routed over edch.link of the system Return of

the message to the orlglnatlng terminal without error would glve an’

. 1ndlca§10n of the present.statuslpf|the network. . JAE
Another disgnosfics formulation is relatlve to a directed )

graph. 'We can use this formulatlon to salve the followlng problem in

a computer system. Assoélate each arc of the directed\giaph with a
machine state transition together with a Cost. Find the minimum cost

input sequence such that all state transitions are implemented and

)

checked out. This prcblem can be solved as a special case of the commun-

ications prbblem def;ned above, or as & network 7lOW‘problem

An Buler EEEEh is a graph in which all vertices are of even

-2

degree. . An Euler plrcult is a tour of the graph in which no edges a;e~

repeated. It is well Known that a connected graph G contains an Euler

circuit if and only 1f G is en Euler graph. A prqof of this result

is given ™ Busacker ‘and Saaty [4]. ) ikl 22 b

>

Thus the solution to the Chinese pos%man s ﬁroblen 18 ianmdiate

for an Euler graph For a general graph we 3ust decide uhich edges to

v
duplicate in order that a minimun weighted tour is obtained \ln llter-'

nate point of yiew is- to duplicate a subaet of the edges of uinilun

< e R T

e )

: % . e 3 . 20 : >
e e 7k T e R Y : e R oot W
; :

-~
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y

weight such that the result is an Euler graph.

Edmonds developed an algorithm which uses maximum matching to

\ _ : 3
<« _ obtain the edges to be duplicated. , it T
i ; . ‘ : . 2
4 "l (1) Identify the set S of nodes of odd degree in the graph
G.

K)o

(2) Find the shortest paths in G ‘between every pair of
nodes in set 8.

(3) Create a complegé weighted graph G* using the nodes

» | 7
from Si and ‘weight edges by the shortest path values
Sl " found in. (R).. ' _ ~

N

(4) - Find a minimum lg{ cardinality matching M in G* as

described in Section 4.9, - ; .
. 3 . - /

\ > . Y
(5) Ideﬁtify the shortest path in G. dorresponding to each

edge in matching M in gfaph G*.

(6) The edges of these ]%I' paths arg those to‘bé duplicated

4 » " 3 -
Tor the splution of the Chinese postmarn‘s problem.

In a proof thét the above algorithm selves the Chinese post-

-

mari's problé@, the principal argument is that all |§| shortest- paths

selected in G are edge-disjoint. The falue of the mntching obtained
in G* . is equdl *to the éum‘df the weights of the duplicated edges'in;G.

-

8.3 Optimum Data Storage i : : \

- \

» 2 - Fx % X = 3 5 ;
Suppose there are N computer locatione,'al}\of which demand
= bl 3 23 : - - i a

access to a‘block of data: We would like to investigaéé the trade-off ~
A 4 N - < 3

A 2 P C AL b e
between the cost of storage of the data at all locations and transmission

e Pt St




R

" costs. Let- bi represent the data s+orage cost at locetlon . and

Ci4 the transm1551on cost between locationo i and J. We might

then think of this problem relative to a graph G- where both nodes -
: . , . - A
e ¥ 5 ’
- and edges are weighted.

i

Recall from: Chapter .III the deflnltion of a star supgraph

S: a subgraph in which each component is.a tree with at most ~one

vertex -of degree greater than one. Modify the concept of & transmittér

5 wen >
o ~ 1 7.
(1) A‘vertex of dggree greater ‘than one is a transmitter.

ih a star subgraph.

- '(2) If a compoment comsists’ of exactly one edge, ss€ign
s

the endpoiﬁt of minimum weight as the transmitter.

(3) A vertex exposed in S is a transmitter.

b T

N

Define T as the set -of all transmitters;relative toa staf subgraph

S. A receiver R 1is a node in a star subgraph whish is adjacenf to a

transmitter.

Deflne the cost. of a star subgraph S )as the sum of the edge

weights in S and the sum of the transmltter weights - 8, e,

cost = Lo, +" €.

ij - 3
eijes,, vJeT -

o, Ko ; in S Sk

The optimum data storage problem is then to ffnd a Stif ;ubgrupﬁiof
minimum cost in'a graph G where ‘both nodes ‘nd edges are. vé(ghted

Balinski [2] proposes -an inﬁbger*program for a delivery prolep which

is similar tp the above formu;ation.)mﬁ! points out that thfs is a

# ’ b % =S -
- & = ,
e . i paam X .
s s s . " ™~ . ’
N

o 5
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natural generalization of the covering problem described in

Chapter IIT.
The optimum data storage problem is .at.present unsolved, i.e.,
N : ' ¢ ; e
there exists n

'

o solution of algebraic growth. ~However, this disserta-

et/

ion does provide the solution to certain special cases‘of the problem,

and may motivate alternate approaches to the problem.

f
D
Consider the special case of the data sfor&ge problem where
; each transmitter vertex is dq& ;Bjdcent to more }han one receiyer vertex.
This restriéted problem,can then be solved by a maximum matching
/techhique: ' - y "
(1) Form'a weighted‘graph CG*¥ -from G by using edge weights. .
- - - . -
‘ ¥y Maxr(bi, bj> 359" 4
\ . o
Remove ‘all negative weighted edges from, consideration in
G*,
(2) -Find a maximum matching ‘M in G*.
(3) . The restrieted star sybgraph of minimum cost is _M¥, where
: ‘for each edge of M*, the tr}nspitter is the minimum
- weight vertex in G. The ‘cost is - ' PRt
rhé algofithm can be proved by cohsidering_any other maﬁéhing
M. - X . .\ = \
* : R ) 2 i ‘
zM:i 2‘\2;1"’. ek
T ey TR i : : ;
; Pt i~ ,
Then . =




ZMa.x.(b,b)-. £ey:> .ZMax (b, b.) -
i’ 3 ij =, "3

Z Cij
gijer . : eiJeM* 1j€M - . A 1JeM

Add Z bj to both: side of this) inequality and rearrange to obtain
uﬂe . - - g a
L‘Min(bi,b)+ by K L Min (b, bs) + Shbs .
J J = J J
eijeM* : VJET- 1jeM vjeT

N

in Me : ' v in M

This shows M* is the restricted star subgraph of minimum cost.

» Ty 7.

Another special casé can be addressed by the use of the mini-

~

mum kjéhrdinality coveridg algori€hm described in Chapter V. Consider

: the minimum cost star subgraph problem where all vertex weights bj are

equal,li.e;, . AR 5 = 4
\ v

bj = b, for all ;Vjecﬂ

A good upper bound on the solution of this special' case can
be provided by the maximum k-cardinality covering aléorithm of ‘Section
,t "
5.3 as follows:

(1) Definé a subset_ V* of the nodes in graph G which
. have at least one edge ej; incident for which (b - Cij)

-

is égsitive. .
|

: : 4 -

(2) Define,g‘weighted grapb G* -using only nodes V#*, and
those edges ej3 of G for which- (b - ciJ) is
p051tive Weight each of ‘these" edges in G* by ﬁhe :
value (b - CIJ) : ¥ e :\;

(3) Flnd-the maximpm” k-cardinality covering in G* which is

of star type by the algorithm of Section 5. 3‘

- e R R B S e

\Uia
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(—1&) The cost of this restricted star subgraph is & good
upper bound for the optimum value.
. 3 _
I® can b_e‘shown'that "the maximum k-cardinality covering in G* of the

4
star type is the restricteq star ~subgra.ph of minimum cost, but the

\J_

a.lgorlthm of Sectlon 5.3 may not obtain this specific configuratlon

The reason is that at ‘the corresponding ca.rdina.lity va.lue, the algorithm

~

may obtain a forest which is not A star subgraph

e

£
Further efforts should be made to solve both this spec:ua.l case

s

"a.nd the problem of a, minimum. cost star subgraph. "

8.4 A Communications Problem’

Given a coﬁnunications system represented ¥y a weighted graph,
where the weights on the edges correspond to channel capacity (bits/sec).

Let 'us assume the system has no multiplexing caPability, and thus

messages cannot be sent and received simultaheouslv. Consider ‘the

following des:.gn questions relative to this 7ystem "and how tbe maximum

matchlng algorlthms prov1de the ‘answers.,

-

(1) {Wr‘at is the ma.xmum number of messaées which can ?e
sent concurrently through thp systan? Th&s can be
mterpreted ‘as a- matching problem, ;nd solved by the ‘
max imum cardinality mtching algorithm of Cha.pter II.

(2)  What is the maximum channel capacity avadltble for con-

current mesu.ges? 'I'bls gutstﬂ.m can be un&vered by a

Y : :
maximum matching approach 2 KPR o ;
=

(3) Given the number “k  of channels desired‘, what is the

S » .
> N =y sy
= , - A JxE o
. S A0
™ , 5 T ! J I . *
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maximum channel capacity available for any k " channels?
- What is thé miﬁimum channel capécity fpr'any k channels?
This iﬁformation cap provide both upper and lower bounds
2 | ..for any demand situation. Both problems can be solved

|
4

by the maximum k-cardinslity algorithm of Chapter IvV.

X g

i - . " AN %

4

Though this approach ddes not provide a basis for .the design of

an “effective communica;}ods syéteugit cin offer the evaluation of one
: : o * T ~ 4

more index of performance for %n existing design. It waévan application
of thii/xype_which pfompted-the investigation of opfimum k-cardimality

configurations. ™
8.5 ‘Optimum Location of Sérvice Centers et

Let a weighted graph be given, where the nodes represent custo-

mers to be served, and edge weights correspond ‘to distances between

]

P d § M :
customers. An interesting problem is to locate. service centers at these

nodes such that the tatal distance from tustomers }o service centers is

minimum. This is a special case of'the data starage problem where the

-

vertex weights are {?ro. This problem can'be solved by the minimum "-

covering algorithm of Chépter III. ‘ ] -

The number of'centers ébtained by this formulatjon may be too ¥
large to be practical. With this solution as, a lower bound, the mipimﬁm
k-cardinality algorithm of Chapter V could:be used to ihvestigate the -

trade-off between a decrease in the number oﬁ.ghntersvind the shsocinted
) s Y & - 3%
N- - :

increase in distance. i Gk 0 %0 : o
. R i =E % o P : ;




8.6 Design of Experlments

. - -

In the. area of design of experlmenbs, one problem is. to find

)

_.an optlmum set of experlments such that each factor, of 1nterest is
N :
“associated w1th some experiment in this set. We shall examine two

L

formulations of:this problem.

Consider the parameters of interest .to form a Euclldean

linear space N, leen a set’ \A ‘of p vectors, associate a cost
t » .

¢j with edch vector q;eA The vector ai is 1nterpreted as an .

/expériment, and ¢y ' the cest of" that experiment. H

|

The problem is to find a minimum subset /ﬁ of the experiments

in A which spans the factor space BV such that py i

\ 5 . - s "
z ¢y is minimum.
Qi€B

It was pointed out in Chapter VII that linear independenCe
: . '
batisfies the axjoms of independence for -matroids. Thus identify a

matroid as a set of vectors A, where *the 1ndependent subsets aré those

subsets which are 11nea.rly 1ndependent in the® Eu lldean space EN.

The problem of finding a minimum subset of eXperiments can then be

-

, . g 2
solved by the algorithm'for matroids given in Section 7.2.
o ‘ -

Another formulation oﬁ3the problem of finding an optimuh

set of experiments uses concepts of a covering.\ Let tberérbe given a

N

set of fabtors,_ T = {71, Vs s 3 7N}\ and a set of\efperiments
A= {al, 02, = aﬁh where & cost ci is associated\yith each exper-

1ment_ Q. Associate 8- subsetuof the factors in T with each experinent

N

: gee -'»@,‘A. / = --,.' ..‘ : s_

X )

2 2 B ciae _
e G .- T s tigld g o
3

: 3 % PR 3 & ™~ .
= . \’ ; > - _- 5 S
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@i+ The problem is then to find a subset B . of the experiments in A

)

such that each factor 7jer is_associated with someiexperiment Q;€B,

and )
R %L ' s > ey . ié>minimum.
aj€B , '

) WS

This problem cannot be interpreted as a welghted grapb problem, and
is. an example of the general covering problem [i4].-

Consider a special cese,-whefb each experiment az€A is

, & oy B 4 7.
associated with two factors or less  from set TI.” Form a weighted graph
: : s ‘ ,

G as gpllovs. Let ‘a node correspond to eéach factor 7jer, and Jet
- an edge correspond to -each:‘experiment ;- If an experimént involves
two factors- 74, 755 place an edge'.eij between nodes .vi/‘and Vie

If an experiment involves‘Bnly one factor 7i, Pplace an, edge eij

between vi' and a new dummy node vy Weight each edge by the corres-

ponding experiment cost cj.

3

\

Then the following optimization problems can be solved for
this spe01al case u51ng technlques from 'Chapters: 711 and V:

(l) Find the fewest experiments from A uhich will involve

-

all Qactors from set T. rnhis problem can be solved by'l

frndlng & minimum cardinality coverlng of T npdes in

P ’
v

graph G." : = 3
(2) Find a subset B .of the experiments from A “which -

involves all factors from set f ond \ £ ci‘ is
s . ‘ aiEB \
minimum, Thl% problem can De‘solved by finding a ¢

e P
minimum covering of . I Qodes 1n.graph G.: = et

A ;. § Q -_>,.>.,'_ / = ‘-_.‘ : . l . e a
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(3) Given a specific number k of experiments to be performed,
- find those experiments which involve .all’ factors from set

I' such that the cdst is minimum. This problem can be

3/

solved by finding & .minimum k-cardinality covering of T .
i

nodes in graph &.

8.7 Future Research

The purpose of ‘this reseégfh\has to characterize the solutigns

g

of matching‘and covering problems in weighted gréphs and.to develop

'effici;at algorithms for finding these Solutions. This. work pattrally
|

—

" suggests further resedrch, prlma.nlv 1n the area of applymg these
technlques to more .complex englneerlng problems é y,
(1) Obtain a séﬁutlon to the general data stor;ée‘prpblem.
This problem is closely related tb the theore#ical
problem of finding a maximum cdrdinality covering'éf ;
the stat’type.
(2) De;elop téchniques to solve minimi?atidn broblems for
erlng and 1ntegfated c1rcu1t tecnnology
- 3) 'Cond&nue a theoretical 1nvestlgatlon of the general ,.‘
covering problem [4]. The graphital covering !ﬂgorithm
of Chaptéf_III sélved'a speeial case of the geﬂeral

coverlng problem Further research may show that

5= Y

alternating path "oncepts can be used té selve otb&r

»

special caseswof this imporunt problem

(4) Continue research on mintgum coverings in veighted
. \\/ 3

graphs.. The mininum k-clrd;nnlity covering algorith- i
. e e S i o
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of . Chapter -V does-not qtilize'reducing paths. It would
_appear that further research into this problem might
show that redutingl paths can be used as a basis for an

3 “: ‘algorithm to find the minimum k-cardinality covering.
X [

2

(5) Investigate optimum k,p-subgraphs further. It is

interesting that the concept of .an alternating path
¥ x - -

does not apﬁear to be applicable here. Some technique
might be déviséd to finé’optimum k, p-subgraphs, and
: Byt - —

~

thus give more insight into the class of matching and
covering prcoblems. > ¥ - i F

(6) Continue work on matroid theory, -greedy aiéérithms,
and.their applicat?éns as described 'in Chapter VII.
Research o% this‘type might lead to ‘the de%elqpment
of algorithms to solve manyxtheofetical and qﬁplied

problems. : y

4




APPENDIX A
J

5 _ y - LINEAR PROGRAMMING DUALITY THEORY [5]-

[ o

i

Let A‘ be a real-valued matrix and b,’¢; x, y be real-

4

\

valued vectors,

A primal linear program ig of the form:

l) Max cx subject to
: il - f -

2) Ax<b, x 30
N , The dual lihear program is defined relative to-agiven primal
program. The dual of 1) and 2) is: ’
3) Min by - subject to

\ 5 4, - A

) -
4) ATy > c, .y >o0. ‘

Let X' be. the set of all vectors which satiéfy the linear

inequality system 2), and- Y the set of all vectors which-Satisfy §).

A vector xe€X or yeY is called a feasible solution with respect to

the given constraints,: )

- Given a primal-dual linear system, a pair of vectors X s yé

are called oﬁthogonal if ) i

— ' T. e
o ¢ X (K%Y, -¢) =0
and : :
3 yo(b E Axo) =0 e i
’ ; Sk . ot \ 3
The fo;lowin§ theorems. from Iinear progrmniing heory . are
- \ s K

used in the text: : 'j iy e g . ¥
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Theorem A.1l

If X,y \are feasible solutions to the giveikpyimal-dual linear

program, then cx < by; J

Theorem\k.2

If  x,y are feasible splutions to the given primal-dual

\Za

l&near prog}aﬁ, and cx = by, then x and y are opfiﬁhm solutions to

r

the primal and dual systems respec¢tively.

Theérem A.3 ' ' ' - s P -
—_— ; S 4

If x,y are feasible solutions to.the given primal-dusl
. s >

™

linear‘pipgrah, and x,y are orthogonal, then x and Yy are gpiimum

-—

solutions to the primal. and -dual systems respectively.

J B L /
The set of vectoré X 1is called -a convex polyhed¥on; similarly

Y is also a convex polyhedron. A vector xe is ‘a vertex of the convex

polyhedron’ X if there do not exist two other vectors Xy, X in' X

]

such- that

X, T oem—— ‘
o > )
The following results relate vertices of cenvex polyhedra to

cptimum solutions of<iinear programming broblems:

; ; ; : (ed -
Consider.a convex polyhedron X defined by constraints
4 : . 3

7 ’

2) Ax<b, x >00

: 3 :

and some associated cost vectqr c.

Theorem A.4 el Y

-

The maximum value of ex océurd for x = X,, whereyx  is

. o 2 < g .
¥ i ot % e e ~ by i \ 3 . - ‘ \
.

_ s g .')q«
- " 5 ) A (o - .
- . ) . ok S I < S

N % : - : 2 TR, § s b 1 3 gl 'S

.
S st
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some vertex of the convex polyhedron X
Theorem A.5

If x, 1is a vertex of the convex polyhedron X, then there

exists.g vector ¢ such that a unique maximum of " ex occurs for

i

o]
Auia

(\ s
g -
% L4
:
. 1
>
" . wo- -
= .'\ X s
» \ \
2 .
: v . : :
. » \V
52 A




APPENDIX B
- MAXIMUM CARDINALITY MATCHING COMPUTER PROGRAM

'

In Section 2.3, Edmonds' meximum cardinality matching algorithm

7,

-

[7] was presented. It ‘was mentfoned that_ Edmonds computed the asymptotic
; - . : . % ‘. . .,\_ -7
growth of the algorithm as Nh, where N .represepts the pumber of .nodes

of' the graph. This appendlx presents a c‘onﬁ.rmation of that growth

~

N
flgure, and gives a computer, prograu;' for the solutlon of the maximum

cardinality matching problem for a given graph G. This computer

~n

.prograxlyvaé prepared by Robert Urglhart.

—

~Aflow chart of this algorit;hm was indicated in Figure 2.7

of Section 2.3; a breakdown of the algorlthm is shc\m in Fi}ure B- l
\

where the grnuth of each aperation is 1nd1cated The resuLts.of this
growth study are also shown in the figure,.and indicate the areas.in

the program of high' growth.  The program gfows as Nh‘ oily in one area,
¥
the expansion of blossoms.

In the .exp_a.r'lsion of blossoms; there is *e \o—peration within

this routine which rkequi’res sea.rc'hing for a simple yerté.i in one
biossom stfucture ctmnected by an edge ‘to ia, simple vertex, possibly im ~

another Blossom structure. ' This search is essentially of N2'growth,
and may be repeated. N times per tree. Since N. trees may be needed,

this results in Nh growth.

-
X \

NS f ' \ ' ..
A series of complete graphs in the range of .N.= 5 r N=3- -~

were studied by the. ma.ximm Cf.rdrma.lit.y utcﬁing couputer progran !
N 32 i
. Complete gra.phs were selected for studyQince the greatest nu-ber of s : ,

blossoms vould be necessu-y, and then anbsequ}nt expuuian vould requ!.re i
B i e
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a relatively long running time,

"tibh,. : . . "

The results of-this. study are shown

e - = ¢ - -

in Figure B.2 and show the growth to correspond to slightly less than

N3. This is due to the fact that J particular vector was stored es a_

'

. A g
36-bit word, ‘rather than allowing for a more general vector storage.

.
Thus it is conJectured ‘that N -

\ growth is indeed a Valid growtn figure,

e

but only large values of N would:realize .this asymptotlc behav1or

Cardinal ity Matching Program

. Sl ' .

> ~

¢ oY

The matching program consists of six routines whose main

funcfigés afé described beléw: ’ ' K o
(1)  Main g
| (&) Finds a root for the‘pext tree. ' =
(b) Finds an edge befween twovsimple vertices' such that the
- tree can- be .extended.
: (c) Directs the flow of the program. \
(d) Determinés campletion of algorithm and prints results.
(2) Grow ‘ }
(a) Aads two simple fe}ticés and @wo-edgis to the tree. :
-(b) Recoﬁgs baéktrace information. : ;.‘
(3)' Blossom’ _ ‘ -
(a) Backtradé %wo patﬁs from outer vertices to- the foot to
determlne Hamilton path HP H l f
(v) Reﬂlas81f1es b¢os°om>vertlces as outer ;ér;ice; ‘; R
(¢) -Updates .P, Thy;nd M _vectors;\ . : \\
(d): Computes vertex -set -(BVCEI) of ne; blossom, i : ;' : : it
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(4)  Augment -
(a) Backtraces path te root.
(b) Adjusts matching aléng path.

~N
(5)- Expand

Nl

Expands all blossoms into simple vertices.

(6) Hungarian

»

Tags vertices of Hungafian tree so they ﬁill not enter into

any subseéuent tfegs. o L 1} s :
, .
DATA ST;UCTuﬁEs ' . ; " o n
InEut Data P
N < An integer fnpm 1 to~36. ) _/
A; - 0,1 vector of N - bits; gives the vertices connected to

vertex vyi.

¥

Internal’Data
C(I) - The classification of simple vertices:

- E .is exposed, H™. is Hupgarian, )

&
IN is inner, OUT is outer,

SOUT -is scanned outer,
.

NU is neuter-this is a vertex which is matched, but

] ’
s

* " is not'in the tree. R ; :

- \

(1) - Backtrace information.for the tree, {

I runs fram 1 tos2N;. blossoms ary numberéd-frqm\\

N +1 to 2N. ne word per vertex or blossom. 1\ . 2

B «




BV(K)

IR (X)

15T
Outermost biossom containing simple vertex I.
If I is not in a blossom theh B(I) =I. If a

blossom K is an Putermoét blossam, then B(K) = K.

" If ‘a blossom is not being used then . B(K) = 0.

Matching information. .One word per vertex or ﬁlossom.

Hamilton path storage. N ‘words .reserved from each

blossom.

Each' word is the vertexlor blossom of the

Hamilton Path. . N ~
: S hed G P £ 4
The simple vertices of blossom K. .
5
+

The length of the RK"h Hamilton path. -y

" - /
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$ COMPILE MAD, EXECUTE, PRINT OBJECT

MAD {06 JAN 1967 VERSION) PROGRAM LISTING aee eve ses
" - - . J

~
\

DIHENSlON A(36).C(36)¢T(72) M(72),HP(36%36), evt1 | LP(36
DIMENSION P(36), Q(36), B(72)
NORMAL MODE IS INTEGER >
Lo READ AND PRINT BATA
. E=1 \ =
H=2 )
CIN=3 r
oUT=4 ;
SCUT=5
NU=6 : . ' <
ST=DAYTIM. (0} e
LM=] ‘ 7 > ,.~' §
THROUGH L1y FOR I=141,1.G.2%N
T(1)=0 N
. i : M{I)=0 -
. : WHENEVER L.G.N, TRANSFER TO L1A ~
7 BlIN=] :
Cti)=€ ‘ —
3V(I)=LM
R LM=2%LM
L1 CONT INUE . .
WHENEVER CG.NE.l, TRANSFER TO LC1 y P
THROUGH LC2y FOR- I=1,1,1.G.N. /
. ALT)=.N.BV(I) s
Lc2 CONTINUE
ey C6=0 ) ’
THROUGH L2y FOR EX%1,1,EX,G.N
WHENEVER CUEX).E.E,TRANSFER TO L3
L2 CONTINUE \
N SP=DAYTIM,.(0)
DT=SP-ST
PRINT. COMMENT $ TIMES
PRINT RESULTS DT ;
THROUGH (524 FOR I=141,1.G.N )
LS2. PRINY RESULTS M{I)
_ TRANSFER .TO LO 2 8
LER. . B8(I)=0
BVII)=0 :
TRANSFER TO L1 . -~ : 8"
L3 RODT=EX 4 >
. CLEX)=0UT : ’ =
e ¢ THROUGH LS: FOR IV=1,1,1V.G.N » 2
WHENEVER™ C(IV).E.QUT, tnlussea TO L6
15 _CONTINUE ’ ) 2

\ %

“ 3\

) “TRANSFER T HUNG

Le THROUGH L8, FOR ‘JV=1,1yJV.G.N
WHENEVER A(IV).A.BVIJV).E.0,TRANSFER TO L8
WHENEVER Ci UV).E.E- :

" TRANSFER TO AUG o Mol 3

-OR_WHENEVER CUJV).EN g , Fixs L
TRANSFER TO GR é : \ . \\
__OR WHENEVER cbgr) -E.OUT.
TRANS FER TG

L~




=159- : ) Hy o

otHERulse NI
TRANSFER TO L8 =
END OF CONDITIONAL %
\ 8 - “CONT ENUE .
. CLIV)=SoUT :
: : TRANSFER TO L4
R * WHENEVER B(IV).E.B(JV), TRANSFER Mis "
; TRANSFER TO BLDSS
GROW AA=B(IV) _ L pgka s o A E
BB=B(JV). . :
CC=M(8B)
T(BB)=AA N
‘TICC)=BA :
C(BBI=IN
ciccr=our
TRANSFER TO LS ‘ K
HUNG * THROUGH 13, FOR hsly1l,1.G.N. -
E WHENEVER C(I).E.SOUT.OR. C(l).E‘lN' TRANSFER TO L1&
“L13 CONTINUE - ¥ - £ 7.
" : TRANSFER TO EXPAND
L14 C(I)=H &
" .- TRANSFER 70 L13 .
- AUG ctJv)=our . ‘ ) n
) 88=BL1V) .
AA=B(JV) 2
115 M{AA)=RB )
M{BB)=AA
WHENEVER BB.E. Roor. TRANSFER TO EXPAND
AA=T(BB) - - - A
BB=T0AA) |
TRANSFER TO L15
BLOSS THROUGH L16, FOR KK=N+1l,1,KK.G.2%N
WHENEVER B{KK).E.O,TRANSFER VO L17
tis CONT INUE
PRINT COMMENT.$ L16 ERRORS
TRANSFER TO LO > 5
L17 x K=N , >
4 1)=8(1V)
¢ 1= rnaoucn L18, FOR IP=1,%,P(IP)JE. ROOT _
Lie PUIP+1)=T(P(IP))
E QU11=81IY)
- . THROUGH LIS, FOR, I1Q=1,1,Q(IQ)%E. koor
L19 QUIQ+1)=TIQ¢t Id))
©22 WHENEVER TQ.E.1.0R.1IP.E.1, TRANSFER to L20
S [~ WHENEVER PLIP-1). NE. QI IQ-1),TRANSFER TO L .
2l L oap=1e-1 - , . i
10s1Q-1 \

A\

o5 TRANSFER TO 122 ; 3 -

L20 L=l / ?

L20A uP(;.L)-P(rP) :

WHENEVER 1IP.E.1, TRANSFER TO Lzs i

L:L’l . 4 ¢ '

IP=1P-1 Yol .

TRANSFER TO L20A . : -

L23 © . I=0 v 2 ¥

L WHENEVER l.E.lO-l'TRANSFER TO L25.
tefel 3. : & BRE ety N
=1+l 5 o~ :

T HPAK,L1%Q(1) 5 o

TRANSFER TO L24 - TR

.
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L25 LP(K)=L
,BVIKK)=0
yiny . WHENEVER 'HP(K,1).E.ROOT, TRANSFER TO L32
AA=HP(K,1) ;
BB=T(AA) )
. M{KK)=BB
) - M{BB)=KK
. T TIKK)=BE
L33 _ BYKK)=KK :
THROUGH :L264FOR [rlyel,i.G.L
AA=HP (K, )
BLAA)=KK
"L 4 - M(AA)=0 - = |
L26 T(AA}I=0
THROUGH L27y FOR J=141,J.Ge2%N o
WHENEVER B(J).E.0, TRANSFER TO L27

WHENEVER
WHENEVER
WHENEVER

BUB(J)).E.KK, TRANSFER TO.128

T(J),E.0,

TR NSFER T0 L27

BAT(J)).NE.K

TRANSEER Tor27 4

TUJ) =KK
27 - *  CONTINUE »

' ) TRANSFER TO L8
32~ ROOT=KK :

» TRANSFER TO L33
L28 B(J)=KK . T
Fris BVIKK)=BV(KK ). V.BV(J)

WHENEVER J.G.N, TRANSFER TO L27

CtJ)=0uUT . °
TRANSFER TO L27... -~ = /
EXPAND THROUGH L34, FOR KK=N+1,1,KK.G.2%N g
: WHENEVER BIKK).E.KK, TRANSFER TO L38
L34 - CONTINUE .
IS . THROUGH 136, FOR T=1,1,1.G.N
WHENEVER CUI).E.E.OR.CUI).E.H, TRANSFER TO L36
Cl(1)=NU :
L36, CONTINUE '
THROUGH K37, FOR I=141,1.G.2%N
L37 T(1)=0
B TRANSFER TO L2 i i
L38 * K=KK=N_

HHENEVFR MIKK) s £.0y TRANSFER TO L39 )
THROUGH L40, FOR J=1,14J.G.N

L&2 X WHENEVER BUJ).E.KK, TRANSFER TO L&l

L40 CONTINUE . b -

R YT COMMENT $ L40 ERRORS = s ¥
TRANSFER TO LO

L4l WHENEVER A(J).A.BVIMIKK)).E. O' YRANSFER YO L&O
; . ; THROUGH L43, FOR L=lys1lsL.G.LPIK) L

L&4 BR=HP ( Ky}-) ; Lot

’ *WHENEVER BN (BB). A.BV(J! E.O, TRANSFER TO L4&3
M(BB)=M{KK) o 5

MIM(KK))=BB ; e : _
MEKK) =0. : R ,
TRANSFER TO L46 : ,
Le3 _ CONTINUE_ e s s A
: PRINT COMMENT § L43 eanoas ; B
TRANSFER TO L0 * . . R
L46 - BIKK)=0 A 4 >
B(BB) =8B :

X3 e i) B S P SRR

I=L % . ; .

N

NN
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TRANSFER TO L&7’

39 BB=HPIK, 1)
: - » L=1 -
p T TRANSFER TO 146
L7 WHENEVER [LE.LP(K), TRANSFER TO LSS5
. 149 . I=1+1
" A ; WHENEVER I.E.ly 1T raAusrea TO LS9
. ‘ I AR=HPIK,I) = "<
WHENEVER I.E.LP{K)y TRANSFER TO L50 '
T3 SRR S 5 1 Dok 3
. e BB=HP(K,I) =~ .~ . o >
M{AA)=BB E
MIBB)=AA - . B
BUIAA)=AA i
B(BB)=88
; , TRANSFER TO L47T : _
A ; ; LS5 1=0 N ~
: ¢ T TRANSFER to 49 S g
L50 1=0 e £ 7
. ST TO ST
“L59 THROUGA L564 FOR I=1,1,1.G.2%N
WHENEVER B{T1.E.KK, TRANSFER TO L??‘
7 LS6 CONTINUE - »
‘ T TRANSFER YO EXPAND BN
LS7 ~ THROUGH L58, FOR L=1,1,L6.LP(K)

WHENEVER BV(T).A.BVIHP(K,L)}.E.O, TRANSFER TO ISI
BUI)=HP(K,L) >
' TRANSFER TO 156 7
L58 CONTINUE - f
PRINT COMMENTY $ LS7 ERRORS |
TRANSFER TO LO
END OF PROGRAM

THE FOLLOWING NAPFS HAVE OCCURRED ONLY ONCE IN tHlS‘FIDGlIN
COMPILATION WILL CONTINUE.

.

]

L21 ¥ . %099 : %

L31 *116 .
135 - *140
L42 - ®156 : !
- *162 )
<\ AT
.
= v
5 . 8 <
" i \
> } B o
5 - Y ; \ 3
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APPENDIX C
e J A .
M ' REDUCING PATHS AND MINIMUM COVERINGS
; i

The Berge [3] Theorem 2.1 involviﬁg augmenting paths provided
thé basis for. Edmonds' maximum cardinality matching'Flgorithm [7]1 _This
notion is.easily generalized to weighted augmenting faths, and Theorem

2.5 uSes this concept to characperize'gpx;ﬁum matchingq. ?ugmenting

-

paths are always simple. M

A similar result exists forminimum coverings, but redyjcifig

—

"paths are more complex, &nd lead to diverse structures. The complications
arise when either the.initial or terminal vertices of the path, are coin-
cident with intermediate vertices of the path.> The mihimum.éovering

algorithm of Chapter III does.not use reducing paths.

Define a reducing path P relative to a covering. C in a-

/
graph " G as a path such that:

1) E&ges_are alternately in C, and not 14 B

2) ‘C' =.CeP 1is a covering 'in G.

-

3)- "The weigﬁts of the edges in- P "are such that : i
w(PNCT) - w(PNC) < 0. : : -

Hence C' 1is 'a smaller weight covering than <.
4) P is minimal with respect ‘to 1), -2), and 3).
. - - A ‘ 2 \ =

»

The follouing’théorem;gs.adapted'fran‘a presentation by

Edmonds in .[6]. . : AL T : A : ; ‘i .
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Theorem C.1

If C 1is_not a:minjmum covering in a weighted graph G, then

\ . 3 ’ '

there exists a reducing path P in: G. J
. e \ ] ;

a

'Proof

mhroughout the proof we shall .be making repeated reference to

RS

conditions (l), (2),43), and (%) in the definition .of reducing Path
Since w(C)- is - not minimum over all possible coverings, there

ex!sts a covering’ K of smaller weight. ‘Among tﬁgfe‘éoVerings K,

choose one for which .

'}a[(c;x)U(x-C)J i minimums e - o "6

s

Later this will be shown to be an extremely judicious choice, leading to

- a covering K which differs from. C only in a single reduc1ng path

Since K, C  are not 1dentlcal'¥over1ngs, the set (C- K)l}(KéC)
is non-empty. Thus an alternating path P satisfying condition (1)  of.
the definition of redueing path can be constructed. ' ' \

. Also wé ‘can show by a Venn set diagram that relative to some
path P satisfying (L), the foslow1ng conditions are also satls?led
(cnp)c(c K) and (cnp)c(x-c),
also cn® =Knp {and ThP = KNP

Among such paths'described_aoove, choose one P withia. -
maximum number of edges. We first.sho;'that '3 satisfies (2), i.e., .
_Athat . ' : pe b g :

_C'-= é@P
formed from P actually is a covering. Th%f*uouid gnarentee that so-e' ‘
. : Fopl

edge of C' 1is incident to -every node of graph ‘G"'*k'

ek . ‘ -, T7R8




3/

Nt

¢ 9

Figure C.1 Vern Diagram for C,K,AP.'
' \ ) At - /

\ . y
Consider a partition of the vertices of G relative to the

path P as follows:

Case i: Vertices rot in path P : 3

)

X v =
Those vertices not in P .are covered by edges in CAPCC’,

hence are covered by C'- 3 )

Case ii: Intermediate vertices relatiVve to path P-

>

From the def@ition of a reducing path, each intermediate 5 -

| 24 . Nl A #
vertex' v 1is incident to an edge in (CnP)cC', hepce are cover®d by
T— v s

A, | paV ' ity

_Case iii: . Initial and terminal vertices of P . . s

: 4 \

Since both. C and . K are coverings, we can idgkt_ify :X'ee'

»

cases which exhaust all possiblejvays( in _\qhich an initial (or terminal)
vertex v, .can be incident to edges of € -\afnd K. . All edges mentioned . - e

-
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below are ‘incident to vy (see Figure C.1).
a) There exists elecﬂ'};.

In this case e;eC', ‘therefore wv;- is covered by C'.

3/

“b) TheI:e Aces. Bt kit e,€CNP, but there exist[é e>eCnP,.
: £ and e3eKnP. . | ) )'
, In this case e e{KAP)cC', tmi§ vl‘\ is covered by ¢'.
¢) There does not -exist e, €C NP, but thgré exists . eeechP;
. there doe;s fxof e:xis; §3e1(n X buf‘,thex}e exists eheléﬂ%n P.
In this case (e, can be added to P i;omiing a larger
;- : reducing,‘péth, an. thus violating ;che_ assumed’m&(imality‘

-

of P. Thus this case can nct occur.

Thus C' ''is indeed a covering. Similarly; we/ca.n show that
s TR B

= (KNP) U(KNP) 1is a covering. .
If we suppose.that condition 3) is Et true, i.é.,

w(KNP) = w(CAP) < w(KNP) = w(CNP), -

then K' as well as K would be a smaller weighted sum covering than

)

Ce- " To shéw this, expand. - ; )

= (xn?)’u (K/)P).‘

But (KnP) = (CQ)P), and since this is'a disjoint union (see Figux;e“c 1),»

"w(K') = w(xnp) +w(cnp). : £ -
Using the' supposition,‘ ' ey Rl : Ao
w(CnP) < w(KnP), we get g e '

\ - \

w(K') < u(xnp) + w(KﬂP) = w(K) < w(C)

But this u1ll cojntx:.adict our ortginal usmnption \m

w[(c-X) U(x-C)] 'is minimal-over all ~E°581ble<coveri.nga of 'veight less ‘ &




than w(C).

To show thls is 8 contradictlon, recall K' is & covering,
(KAP)U(CAP), and form, using Figure C.l,
o : ’

(oK )AU(K'-é) {lc - (xnP)u(cnr)lul(kaP)u(cnPr) - cl}!

[G-K-P] U [K-C-P]. v . )

Now consider

w[ (C-K') U (K' )] = w[C-K>P} U [K-C-P]}.
3] = wiC -

But since the union is over disjo}nt sets, and we assume positive edge

N

7

weights; S ) v oy B i . ~
wl(Cc-K') U(K'<C)] = w[C-K-P] + w[K-C-P]
< w(C-K) + w(K-C). S
\ i, et = : - y4
We have arrived at & contradiction of the way inwHich K was

selected! Thus condition (3) must hold.
Condlt;on (4) follows fram the requireméent that cpvering K

be-such that w[(C-K) U(K-C)J is minimum. -However, this can more

easily be seen from_the corollary to follow. ) ", QED.

)

-

In the above- theorem, é} was only. assumed that (CAP)<(C-K), with the , '~

implication .that given C, and our. choice of K, that there mightein

P—

general be more paths available than just P. We onld like to ask if
_ for the Judicious chéice of K whlch was made, R I e., Y

{Choose K a covering such that wiK) < v(C),

and w{(C- K)U(K C)]}as small as poss}ole, : : \

is there only one such path P sa.tist}ring the conditions of meoPm :

i . s , . . s .
’ . . gy S
~ . R D a0 2 3 .
: p e s . Rk A ’
“ i
<
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" €.12 The following corollgry answérs‘this question in the affirmative,

i

~

and shows that in the proof. of the theorem, it was really not necessary

to choose "the path with the gredtest number of nodes". In reality there
iy . y p e :

=R ;
existed only one.
- l

Corollarx

- Given a covering C in a weighted grgph G, which is_not

-
AN

minimum. - Find a covering K Such that
w(K) < w(C) "and w[Kg—KSW)(K-C)] ig,miﬁgmum.
Form a reducing path P as in Theorem C.1; then (CNP) = (C-K).

7 'Relative to the ‘Venn dtagramiiﬁ'Figure C.1, thie impINies:that

the path P elements of C "fill up" or occupy all of set (C-K). .

Proof : :

s 4
We know initially only that (CNP)c(C-K) wund (KNP)c(K-C)
are valid by the construction of the reduéing ﬁath P. .

Since. C' = (CNF) U(KANP) .was shown in the.proof of Theorem
¥
C.1 to be a covering, form

]

»

(c-c) U (e -0) = {fe = (cnF) U(kaR) VL (FaF)u(KnP) - cl}

. ='[cAPJUKAP]. |
'But by our select{pn of the covering - K (instead of £'), ) i -
i ! ey oLy
wl(c-c') u(c'-c)] > w[(c-K) V(k-C)]. -

By expanding on respectively disjaint sets from Figure €.1,

' w(an) + w(KnP) ?_‘v(c‘-x-) .é»‘w(?(-c). 4

\

But since all edge veighté‘are'assu;ed posi*i;e, 3 = :
& ,.(‘Cﬂ_P).'C@C‘K),.--(KnP)'G(K-C): S _
2 ; S5 X P \ = Aag ot P ;
we have w(CAP) < w(C-K), w(KAOP) < w(K-C). - g _ 5
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™ By combarison of these inequalities, together with the

assumption of no zero weights on any edges, equality must hold every-

\
where, -and specifically we get: ]
™ » ‘. E d
' (cnP) = (c-K), {kNP) = (K-C) QED.
N \\ . <
» £ 7
L3
5 ~
\ - /£
{ -
\ z
-
- . N 7
» ‘ \
R : \
& )
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