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ABSTRACT

This paper presents an efficient algorithm for solving
transportation problems. The improvement over the existing
algorithms of the "primal-dual" type [31, [8) consists in modi-
fying the "potential-raising" stages of the solution process
in such a way that negative-cost arcs are removed so that the
Dijkstra's algorithm may be applied. Especially, the algo-

rithm requires at most n® additions and comparisons when
applied to an n-by-n assignment problem, as compared with the

theoretical upper bound proportional to n4 for the number of
such operations required by currently available methods.
Furthermore, auxiliary techniques of simplifying the original
network by means of "reduction" and "induction" are also
introduced as useful tools to treat large-scale problems and
specially-structured problems with.

1. FORMULATION OF THE PROBLEM

Let A denote the set of directed arcs (i,3) ordered
pairs of nodes, of a transportation network N with n nodes:
1(source), 2, 3, ..., n-1, n(sink). We shall consider the
case where every arc (i,j)eA is assigned both a capacity
cij(zp)' which limits the amount of flow that can pass through

it, and a cost dij(zp, if cij>0) of shipping one unit of flow

along it. We are interested in the problem of shipping a
given total amount v of flow from the source to the sink with
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a least possible cost.

In precise terms, the problem is stated as follows:
To minimize

) A Lf (1)
i,9 J 1]

under the constraints

Zfij - iji ={ 0, i%1,n, (2)
j
-v, 1i=n,
fij'fji = 0, (3)
0< f,. < c.., (4)
— ij — 1ij

where cij's(capacities) and dij's(costs) are given nonnegative
constants and(fij's(flows) are nonnegative variables whose

totality is called a flow configuration in the network. If
all cij = 1 and v = 1, that is, if there is no essential arc-

capacity constraint, then the problem is reduced to one of
finding a shortest route from the source to the sink with d; .
as distances.

2. DEFINITIONS AND NOTATIONS
The modified network with respect to a flow configuration

in a network N is defined as the network N* of the same topo-
logical structure as the original network N but with modtified

capacities c*ij defined by
c,., - f£,.., if £,. =0,
ij ij ji
c* . = (5)
b lE. ., if £,. > 0,
ji ji

as well as with the modified costs d*

. defined by

1]
da.. if c,, > £f,, and £,, = O,
i) 1] 1) J1
a*, . = = if ¢*,, =0, i.e. c,, = £f._, (6)
ij ij ij ij
-d.. if £., > O.
ji ji
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We shall make use also of the relative costs a;j defined by

d.=d.,+q. -q,,
ij is v Y qj (7)

where qi's are appropriately defined potentials at nodes. The
. . . ~* ~
modified relative costs dij are defined from dij's in the
*
same way as dij's are defined from dij's. It is easy to verify

that
~ % *

= + -
dij dij q; qj (8)

3. SOLUTION ALGORITHM

The fundamental idea of our algorithm is to apply the
shortest-route algorithm of E. W. Dijkstra [1] (which is one
of the computationally most efficient algorithms now available
in the case of nonnegative arc lengths) by regarding the mod-
ified relative costs of the modified network as arc lengths.
(The Dijkstra's algorithm solves the shortest-route problem
on an n-node network with nonnegative arc lengths through
additions and comparisons of a number at most proportional to
n2, while the theoretical upper bound of the number of such
operations required by any known method applicable to networks
containing arcs of negative length is at least proportional
to n3 [2].) 1In fact, we shall see later that, unlike modified
costs, modified relative costs remain nonnegative during the
course of the solution process.

To find the shortest routes from the source to all the
other nodes i, we may resort to the method of labelling nodes.
Each node i will have a label of the form [pi, ri]. The first

element p; of the label indicates the potential with regard to
modified relative costs whereas the second element ri indicates

the node number of the node preceeding node i on the shortest
route from the source to node 1i. 1
Our algorithm may briefly be stated as follows: )

1) The essentially nonexistent arcs, i.e. the arcs with

d ij = may be ignored in the course of calculation (spe-

etfiecally, in (2) of STEP 2), but, for the sake of sim-
plicity of presentation, we state the following algorithm
as 1f all the arcs were essentially existent.
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STEP 0. Start with fij = 0 for all arcs (i,j), putting all

q; = 0.

s . ~F .
STEP 1. Regarding the modified relative costs dij (with re-
spect to qi's) as arc lengths, find the shortest routes
r, and the potentials P, (i.e. the shortest distances)

from the source to all the other nodes i according to the
Dijkstra algorithm slightly modified as follows:?2

(0) To begin with, put K = {1}, p, = O, r, =1and p, = 4
J J

*
* 13

"9 (= dlj) for all j ¢ K.

(1) Let p, = min {pj ;i j £ KY. If p, = @, then we assert

the nonexistence of a route of finite length from the
source to the sink. Otherwise, put K = KU{k} and 9

= + .
Q. *+ Py . i
(2) For every j K, if p. > 4, , + -q. (=4, + )
y3J£ K pj K3 G qJ K3 P
then put p, =4, . + - q., (=d, . + ) and r, = k.
P pJ K3 G qJ K3 P 3

(3) Repeat (1) and (2) alternately until all the nodes 1
through n are contained in K.3

STEP 2. Assign as much incremental flow as possible along the
shortest roudte chosen in STEP 1 from the source to the
sink, i.e. make the corresponding change in the flows
fij in the arcs (i,j) on the route as far as the new total

flow value does not exceed v. If the new total flow
value attains v, then stop. Otherwise, return to STEP 1.

4. VALIDITY OF THE ALGORITHM

From the general standpoint expounded in §23 of [5], the
algorithm in the preceeding section may be regarded as a
variant of ordinary primal-dual two terminal network algorithm
in which the "associated minimum-route problem" are solved by
the Dijkstra algorithm, so that the validity of our algorithm
for a restricted class of problems defined in section 1 with-
out resorting to the general discussion.

If, at the beginning of STEP 1 in every iteration in the
course of solving a problem according to our algoritbm, the
2) We compute é;;'s from dij’s, qi's and pi's as they are

needed, instead of computing them in advance.
3) It is more efficient to stop as soon as the sink n is con-
tained in K and then to put ;= 4; +p, for all j ¢ K.
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~ %
modified relative costs (which will be denoted by dij in the

remainder of this section) are nonnegative, then it is obvious
from the ordinary optimality argument in linear programming
that the algorithm works well until either the optimal flow
configuration is obtained or it is seen that no feasible flow
configuration exists. Therefore, it is sufficient to prove

~ k
that dij > 0 in every iteration, Since, at the outset, we
~ ok
have f., = 0 so that 4., = d.., > 0 for all i, j, the proof can
ij ij ij —
be made by induction on iteration number. Therefore, we assume
~3%
that we have nonnegative dij's with respect to a flow config-

uration and a set of potentials, and enter STEP 1. Then we
show that at the end of STEP 1, we have nonnegative modified

]
relative costs (which will be denoted by é?_ in the following)
1]
with respect to the new potentials a; obtained in STEP 1 and

that, at the end of STEP 2, we have also nonnegative modified
Al
relative costs (which will be denoted by dij in the following)

with respect to the new potentials q obtained in the preced-

ing STEP 1 and the new flow configuration obtained in STEP 2.
First, we observe that we have

= 0, if (i,j) is contained in the shortest route,

~ %
d.. + p, - p.
+J + ] >0, otherwise, (9
according to the Dijkstra algorithm in STEP 1. Since

1 i-pn i_pj for all i € K and j ¢ K, where K is the set of

nodes contained in the spanning tree obtained at the end of
STEP 1, we have from the assumption and (7), (8) and (9),

d + > 0 if i,jek
ij pi Pj > Y rJEX,
d,. + & > 0, if ieK, jgK
— > -
1 lj Pi Pn z lj pi p] 2> Y, 1T ek, JZK,
i3 ) 4+ F (10)
d,. + -p.>d,. +p, —p. > 0, if i¢gK, jeK
i3 15 PJ Z %45 pj p] 2 Y £K, JekK,
. +p -p =&.>0 if i,3¢K
i3 T Pn T Py ijg = 7' rIEE-

Jl
Thus it has been seen that all the dij's are nonnegative.
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Next, from (6), (8) and (10), and from the fact that the
incremental flow is assigned along the arcs (direction taken

~*
into account) with dij = 0, we have

* ! 1]
-d., (=0) if f,, = 0 and f.. > O
Jji Jji ji

or c,.. = f,, and ¢c,, > £..,
o Jji ji i, ji
d&.. =( »(>0) if ¢, > £, . =
i3 (>0) clj i3 and cij fij' (11)
L
d,. +d.., (>0) if f,., > 0 and f.. = o,
ij ji — ji ji
Jl
d,. (>0) otherwise,
ij —

where f,.'s are the new flows and fij's are the old ones. Thus,

all the a:j's have been shown to be nonnegative.

5. ILLUSTRATIVE EXAMPLE

As a numerical example illustrating our algorithm, let
us consider the network of Figure 1-1, where the pairs of
numbers (dij, Cij) beside the arrows of the arcs (i,3) indicate

the costs dij and the capacities cij'

(1,1) (1,1)

(1,1) (2,1)

(1,1

Fig. 1-1 Given Network

We shall obtain a minimum-cost flow configuration with
the maximum total flow value v on this network. We put q; = 0]

and set out the Dijkstra algorithm with K = {l}. Since node 2

and node 3 are the only neighboring nodes of the source 1 .and
* *
dyp = dyp = 1. 4y
to node 2 and [2,1] to node 3 and [»,1] to all the other nodes.

We find p, = min {1,2} = 1, and put a, =4, +p, =1, r, =1, and

= d13 = 2, we give the temporary label [1,1]
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K = {1, 2}, so that the label [1,1] becomes the permanent
label of node 2, and that arc (1,2) is known to belong to the
shortest route from the source.

Since the neighboring nodes of node 2 are nodes 3 and 4,

and
*

Py (= 2) §_d23 4, - a (= 1+1-0 = 2),

p4 (= o) > d24 + q2 - q4 (= 1+1-0 2),

we put [p4,r4] = [2,2] and leave [p3,r3] untouched.

Since P, is the smallest among the pi's for nodes not in K and
r3=l, dy = dy + p, = 2, make the label [2,1] for node 3 perma-
nent and enroll arc (1,3) as an arc in the shortest route.
Since the neighboring nodes of node 3 are nodes 4 and 5, and

*
b, (=2) < dy, * 93 — q, (= 1+2-0),

*

py (=) > dyg + 43 - gg (= 4+2-0),

we put [p5,r5] = [6,3] leaving [p4,r4] untouched. Continuing

similarly, we have in succession:

kK =1{1,2,3,4}
[P4: r4] = [2,2] made permanent

(2,4) enrolled in the shortest-route arcs
= + =

g =g ¥ By =2

py = m1n(p5, d45 + Q- q5) = min(6, 2+2-0) = 4
= 4

5

kK ={1,2,3,4,5}
[P5,r5] = [4,4] made permanent
(4,5) enrolled in the shortest-route arcs
Thus the computation of STEP 1 in the first iteration is com-

pleted. The shortest route thus obtained is drawn by bold
lines, and the permanent labels [pi, ri] are indicated by the

side of respective nodes in Figure 1-2, where the numbers over
the arrows and the numbers beside the nodes indicate the modi-
fied costs and the potentials q at the beginning of STEP 1.

The maximum amount Av of incremental flow along the
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* *

*
shortest route equals min(clz, 247 c45) = min(l1,1,2) = 1 and

the total cost equals q5x v = 4x1 = 4. The new fij's are in-

Cc

dicated under the respective arcs in Figure 1-2.

a,n o 1 1[2,2,] 0

2,10 0

Fig. 1-2 Modified network (AgxAv = 4)

Continuing this process, we have similarly Figure 1-3, Figure
1-4, and Figure 1-5.

U, 1 _1 o u,3)

Fig. 1-3
Modified network
(AgxAv = 5)
Fig. 1-4
Modified network
(AgxAv = 6)
Fig. 1-5

Optimal solution
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K
It should be noted that we always have dij > 0 during

the course of solution. Since we cannot increase the flow in
Figure 1-5, the optimal solution is given by it and the total
cost equals 4*1 + 51 + 6%1 = 15,

6. REDUCTION ALGORITHM

For a given network N and a given flow confiquration, let
us consider the modified network (which will be denoted by N
in the following) with the same graphical structure as N but
with the modified relative costs assigned to its arcs. Let us

K ~ % .
call an arc (i,j) in N with dij = 0, i.e. an arc which is not

saturated and has cost zero, a free arc.
A connected component Ml(Mr) is defined as a subnetwork

such that there is a route consisting of free arcs alone from
the source to all the other nodes in it (to the sink from all
the other nodes in it) and a comnected component M, (i # 1,r) |
is defined as a subnetwork such that it does not contain the |
source nor sink and that there is a route consisting of free |
arcs alone between every pair of nodes in it. !
For any network N, a reduced network ¢N is defined as a
network with the set of nodes Mi and with the set of arcs

(ﬁi, ﬁj), where each ﬂi corresponds to a connected component
Mi in N, and the arc (ﬁi, ﬂj) in ¢N is assigned the capacity

ckQ and the cost de of the arc (k,%) in N such that

d,, = min {dk'l'
k the sink of Mi' £ the source of Mj. The source 1 in N is

;i k' € M. L' e Mj}. Hereafter, we shall call

the source of Ml' and the sink n in N is the sink of Mr'

Obviously, the potential pj (with respect to the modi-

fied relative costs) at each node j in the connected component
Mi of the original network N equals the potential at the node

ﬂi of the reduced network <PI'\T'*.

In large-scale network problems, the reduction of an
original network N to ¢N such as above will reduce consid-
erably the computational labor in finding the shortest route.

7. INDUCTIVE ALGORITHM FOR MULTISOURCE-MULTISINK NETWORKS

In this section, we shall consider a multisocurce-multi-
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sink network N(m;n) with sources S1t Soe «eer S and sinks

m
tl' t2, caey tn’ along the lines of thought suggested by Iri
in §24.2.3 of [5]. Let a; > 0 denote the supply at the i-th

source and bj > 0 the demand at the j-th sink, where it is

m n
assumed that z a, = 2 b.. Let N(k;%) denote the subnet-
. 1 ! J
i=1 j=1
work with sources Sl’ ey sk (k < m) and sinks tl’ ey t2

(2 < n) as well as with all the nodes and arcs that are con-
tained in some routes of nonnull residual capacity from an
sS4 (i < k) to a tj (3 <.

Instead of treating the entire network N(m;n) from the
outset, we solve the problems for partial networks N(k;2)
with k < m and 2 < n. The partial network for which we seek
the solution is enlarged step by step by attaching a source
or sink, one at a time.

The inductive algorithm for a multisource-multisink net-
work may briefly be stated as follows:

STEP 0. Start with k =1, ¢ = 1, putting fij = 0 for all arcs

(i,3), q; = 0 for all nodes i, and u = O.

STEP 1. In the partial network N(k;%), ship a total amount

k L

Av = min (z a,; z b.) - u of incremental minimum-cost
i=1 j=1

flow from the source s, to the sink t, according to the

k 3
algorithm stated in section 3 (exactly speaking, we
should skip STEP O of that algorithm and start from STEP
1). If the new total flow value u attains v, then stop.
Otherwise, go to STEP 2.

STEP 2. k
(a) If the new total flow value u attains z ai, then increase
i=1

by 1 and consider the partial network N(k;%) thus aug-
mented. Put the potentials q at the node i of the new

partial network N(k;%), which were not contained in the

old partial network N(k-1;%), equal to one and the same

value gt = max (q. - dij), where g, 's are the potentials
i,3 3

at the nodes of the o0ld partial network N(k—l;l).4)

Otherwise do nothing. Then go to (b).
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L
(b) If the new total flow value u attains 2 b., then increase
3=1
by 1 and consider the partial network N(k;%) thus aug-
mented. Put the potentials qj at the node j of the new

partial network N(k;%), which were not contained in the
old partial network N(k;2%2-1), equal to one and the same
value ¢ = min (qi + dij), where qi's are the potentials
i,3
. 4
at the nodes of the old partial network N(k;2-1. )
Otherwise do nothing. Then return to STEP 1.

8. VALIDITY OF THE INDUCTIVE ALGORITHM

The proof of the validity of the inductive algorithm can
be done by mathematical induction on iteration number as
follows: %

Since, at the outset, we have dij = dij > 0 for all i, j,

~ Kk
we assume that we have nonnegative dij's of the arcs (i,j) in

N(k;2) with respect to a flow configuration and a set of po-

tentials at the beginning of STEP 1. Then we continue to
~ Kk
have nonnegative dij's during the course of the solution pro-

cess in Step 1 by our algorithm stated in section 3. Therefore,
it is sufficient to prove that at the end of STEP 2, we have

~ %
nonnegative d,j's of those arcs (i,j) of the new partial net-
i

work, which were not contained in the old partial network, with
respect to the new potentials obtained in STEP 2.

There is one thing to be noted. The flows are not assign-
ed along the arcs of the new partial network, which were not
contained in the old partial network.

Therefore, in the case where the new total flow value u

k
attains Z a s since in the augmented partial network N(k;Q2)
i=1
there is no arc (i,j) of finite length such that i & N(k-1;2)
and j £ N(k-1;2%), we have the following modified relative costs
of arcs (i,3j) in N(k;%) but not in N(k-1:;2):

4) Without loss of validity of our algorithm, we can replace q+
by a number larger than q' and can replace q by a number
smaller than q . Specifically, if we replace q* by q* =
max {0, g*} during the course of the solution process, we
can always replace q by zero.
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-+
d, .+ - q.=d,.-q, ~d, . j -1;
q a4=d; 479 +1f§1a>'<(qJ dlj) (>0), 1f jeN(k-1;R),

~ % 1] i,]

4357)a, . +q" - qt=d.. (>0), if 5 ¢ N(k-1:2

1 (4474 q=d;y 200, 1 J £ -1;2) .

Similarly, in the case where the new total flow value u
2

attains z b., since in the augmented partial network N(k;Z%)
j=1

there is no arc (i,j) of finite length such that i ¢ N(k;%-1)
and j € N(k;%2-1), we have the following modified relative
costs of arcs (i,j) in N(k;2%) but not in N{(k;%2-1):

+q.-q =d. .+qg, -mi + > if i -
. dij 9,74 dij 9 mln(qi dij) (>0), if ieN(k;2-1),

a. .= - - C e
ij dij+q -q —dij(zp), if 1 £ N(k;2-1).

~ %
Thus, all the dij's of N(k;%) at the end of STEP 2 have been

shown to be nonnegative.
9. EXAMPLE FOR TECHNIQUES OF REDUCTION AND INDUCTION

As a numerical example of illustrating the usefulness of
techniques of reduction and induction stated in the foregoing
sections, consider the network in Figure 2-1, where the pairs
of numbers (dij, cij) beside the arrows indicate the costs

and the capacities of the arcs.

(3,8) () (2,\5)

h sources:

Dog =1 (9,10)

1 o

] sz‘zl

! s,=> ! ——. -

:--_3.__-: ! sinks ,
; t1= E
D=9 !
]
: t3=10:
' ]
H )

Fig. 2-1 Given network
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Now we are interested in finding a maximum flow with a
minimum cost in the given network. It is easily seen that
this network is equivalent to the multisource-multisink net-
work whose total amount of supplies and total amount of de-
mands equal 39. The initial partial network is shown in
Figure 2-2. Hereafter, the numbers over the forward arrows
and under the backward arrows of the directed arcs (i,j) in-,
dicate the relative costs dij and the modified capacities C.sv

respectively, the numbers over the lines incident to the
sources or sinks indicate the supplies or demands to be aug-
mented, respectively, the numbers beside the nodes indicate
the potentials qa; the bold line arcs indicate the shortest
route at the respective stage, and the cancelled arrows
indicate the saturated arcs. Furthermore, a part encircled
by a dotted line indicates a connected component in the modi-
fied network (i.e. a node of a reduced network) and the numbers
attached to connected components indicate the potentials of the
corresponding nodes in the reduced network.

Continuing the solution process, we have the following
networks shown in Figures 2-2 through 2-15.

15 /"‘0 A 10

.-5
"\ 3/ 2 4 K
rll, L (B (B

\

Fig. 2-2 ﬁ* ( 1;1) (AgxAv=5 x 5 = 25)
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Fig. 2-4 ﬁ, (

~
Fig. 2-6 N (2 ; 2 )} (Agxdv =5 x 2 = 10)
FTTN e e e e e e e ee e O__\
’ 0 v 6 16 N
]
o ‘ p . S 5
M" NN T T

~
Fig. 2-7 N ( 2

-t - e e e e = -

i 2) (Agxbv = 8 x 1
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Fig. 2-8 N (2 ; 2 ) (Agxbv = 10 x 1 = 10)

Fig. 2-9 ﬁf (2 ; 2) (MAgxhv =12 x 2 = 24)

~F
Fig. 2-11 N ( 2 ; 3 ) (Agxhv = 13 x 5 = 65)
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12

39)

(AgxAv = 13 x 3

)

3

irinlfd

2.

2-14

Fig.
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~F
Fig. 2=-15 N (Aq = =)

The optimal flow configuration is given in Figure 2-16,

and the total cost equals z Ag x Av = 429, where Ag is the
potential difference between source and sink, and Av is the
incremental flow value along the shortest route.

Fig. 2-16 Optimal flow configuration

10. HITCHCOCK-TYPE TRANSPORTATION PROBLEMS

Since the network for a Hitchcock-type transportation
problem is a bipartite graph and is regarded as a multisource-
multisink network, a tramsportation problem of the Hitchcock
type, an assignment problem and a matching problem can be




190 TOMIZAWA

solved by using the tableaux of simple form incorporating the
techniques of reduction and induction proposed in the preceding
sections.

In particular, in the case of an assignment problem or a
matching problem, the shortest-route problem for a partial
network with 2r nodes is reduced to that for a network with r
nodes by shortcircuiting the arcs contained in the current
partial assignment or matching.

The solution of a shortest-route problem with r nodes re-~
quires r2 additions and 2r2 comparisons [2]. Accordingly, a
total number of about %—n3 additions and %-n3 comparisons are
sufficient during the whole solution process for an n-by-n
assignment or matching problem. Hence, our algorithm requires
elementary operations proportional in number to at most nS3.
This theoretical upperbound is better than the well-known
standard methods according to which the bound is proportiocnal
to n? [31, [5].

Let us give an example which shows how our algorithm with
reduction and induction techniques behaves itself for the
Hitchcock-type problems using matrix notation and terminology.

A transportation problem of the Hitchcock type is describ-
ed as the problem of finding an m-by-n nonnegative matrix f
that satisfies the row sum constraints

Zf..=a.(>0),i=l,2...,m (12)
;1] i'—

and the column sum constraints

[f;; =b;0, 3 =1,2, ..., n, (13)
and minimizes

z d..f. . (a.. >0, (14)

> i3 1] ij —

1,3

where Ea Zb
i
If, for all 1, j, we set ai =1, bj = 1 and m = n, then we

have the matrix representation of an assignment problem;
furthermore, if, for all i, j, we set dij = 0 or 1, then we

have a matching problem.

As a numerical example for the Hitchcock-type problems,
for simplicity, let us consider the assignment problem given
in Tableau 1-1.
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N 3 7 8 9 10
1 3 1 6 i o]
2 5 6 2 6 0
3 ) 1 1 3 2
4 3 2 0 5 2
5 2 3 2 0 4

Tableau 1-1

The initial tableau corresponding to the initial partial
network is shown in Tableau 1-2. Hereafter, each tableau
corresponds to a partial network N(k;%), its entries indicate

N* ~
the modified relative costs dij (= dij)' the entries in the
last row and the last column indicate the potentials at the

nodes of ﬁ#(k;R), and the entry at the lower right corner
indicates the total cost of the partial assignment. Further-
more, the encircled row number and t@s*encircled column number
indicate the source and the sink of ¢N (k;%), respectively,
and the encircled elements indicate the current partial
assignment (they may be regarded also as the nodes of ¢N (k;%)
in the shortest-route problem). The numbers beside*the
circiles indicate the potentials with respect to 31j's, and

the elements marked with O indicate the arcs contained in the
shortest route from the source to the sink in«pﬁ*(k;l). The
potential q marked with asterisk indicates

g* = max {0, max (q, - di.)} .
i,3 )
Continuing the solution process, we have the following
tableaux shown in Tableaux 1-2 through 1-6.

3

Tableau 1-2

o
- 1@




TOMIZAWA

192

1-3

Tableau
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Tableau 1-4
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Tableau 1-5
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IS
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| o
\
N
1
N

Tableau 1-6
Thus we have an optimal solution shown in Tableau 1-7.

Tableau 1-7
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