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ABSTRACT

The problem of finding near optimal perfect
matchings of an even number n of vertices is con-
sidered. When the distances between the vertices
satisfy the triangle inequality it is possible to
get within a constant multiplicative factor of the

optimal matching in time O(n2 log K) where K is the
ratio of the longest to the shortest distance be-
tween vertices. Other heuristics are analyzed as
well, including one that gets within a logarithmic

factor of the optimal matching in time O(n2 Tog n).

Finding an optimal weighted matching requires @(n3)
time by the fastest known algorithm, so these heu-
ristics are quite useful.

When the n vertices lie in the unit (Eucli-
dean) square, no heuristic can be guaranteed to

produce a matching of cost less than 75:: VN in the
12

worst case. We analyze various heuristics for this
case, including one that always produces a matching

costing at most ;7/5 . In addition, this heuris-

tic also finds a traveling_salesman tour of the n
vertices costing at most v2/n. A different one

of the heuristics analyzed produces asymptotically
optimal results. It is also shown that asymptoti-
cally optimal traveling salesman tours can be
found in O(n log n) time in the unit square.

INTRODUCTION

Consider the problem of finding a minimum
cost matching in a weighted complete undirected
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graph G whose edges satisfy the triangle inequali-
ty. Let n, even, be the number of vertices in G.
The most efficient algorithm known for the general

weighted matching problem requires @(n3) time, and
we would like to find good approximation algori-
thms for the special case of the triangle inequal-
ity and the special case of the vertices lying

in the unit (Euclidean) square. The former case
was first considered in Reingold and Tarjan [14]
and they analyzed the behavior of a greedy heuris-
tic; the latter case was first considered by Papa-
dimitriou [10] who was concerned with the expected
cost of a matching.

Motivation for studying this approximation
problem is threefold: First, as described in [14],
matching has direct applications to minimizing the
time required to draw networks on a mechanical

plotter; in such cases the ®(n3) optimizing algo-
rithm is unacceptable since n can be large. Se-
cond, a sufficiently close approximation to an op-
timal matching could be used to improve Christo-
fides' traveling salesman problem heuristic [3],
[4] without really harming the closeness of its
approximation. Finally, matching is an interest-
ing combinatorial problem in its own right and as
such its approximation is also of interest.

We will consider two similar, but not
identical, versions of the matching problem, each
of which corresponds to a physical situation.
First, we consider the general case of matching
when the weights satisfy the triangle inequality.
The results we obtain here are also applicable to
our more specialized second case, that of n points
in a bounded region of the Euclidean plane (typi-
cally the unit square). 1In the case of the bound-
ed reqgion (motivated by the plotter application
referred to above) we will analyze a heuristic's
behavior by bounding the absolute cost of the
matching found, irrespective of the cost of an op-
timal matching. 1In the case of the triangle in-
equality (that is, an unbounded region) the cost
of the matching can be unboundedly large for any
number of vertices and so we must consider a mea-
sure of how bad the heuristically found match is
compared to the optimal match, namely the ratio of
the two costs.

TRIANGLE INEQUALITY

Let G be a complete undirected graph with



n vertices and weighted edges satisfying the trian
gle inequality. Let OPT(G) denote the minimum
cost of a matching of G. Let M(G) be the cost of
a matching produced by algorithm M. Let RM(n) be

the worst case ratio M(G)/O0PT(G) as a function of
n, the number of vertices of G.

In [14], Reingold and Tarjan considered the
greedy heuristic (GR) that repeatedly matches the
two closest unmatched points. This can be imple-

mented in worst case time 0(n21ogn), a significant
improvement over the optimizing algorithm. The
closeness of the approximation, however, is not
very satisfactory. Reingold and Tarjan showed
that
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and that this bound is achievable for all n.

Papadimitriou [12] proposed an O(nz) heuris-
tic based on spanning trees (ST): Begin with
spanning tree on the vertices and convert it into
a matching by replacing "flowers" Xps Xgs evns Xps

v in the tree by matching vertices as indicated
by the wavy Tlines:

m even m odd

Then all vertices matched and all edges incident
on them are deleted from the tree and the process
is repeated. Papadimitriou showed that the ratio
of the cost of the matching thus found to that of

the optimal matching can be as bad an % and no

worse. MWe present an independently found proof
here.
That the g-ratio is asymptotically achieva-

ble follows from Papadimitriou's example

: e, :
€ €
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In this example, the optimal match obviously con-
sists of %5— 1 edges of length = and one edge of
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length 1 + ¢ with total cost 1 + ge, while the
heuristic produces a matching with %-edges of

Tength 1 for a total cost of %-. Thus
n
Rr(6) 2 - ﬁ
A

which approaches %-as e ~ 0.

To prove that RST(n) 5_%3 suppose we are

given a minimum spanning tree. We partition the
edges of the tree into two classes

Even = {e | removal of e results in two
subtrees each of which contains an
even number of vertices}

0dd = {e | removal of e results in two

subtrees each of which contains an
odd number of vertices}

(Recall that n, the number of vertices, is even.)
The desired result follows directly from three
claims.

Claim 1: ST(G) < =z cost(e)
ec0dd
Proof: Immediate from the triangle inequa-

1ity since by its nature the heuristic chooses
only edges of 0dd or edges whose cost is bounded
above by the sum of two edges of Odd. QED Claim 1

Claim 2: Let t be the maximum number of
odd edges on any path in the minimum spanning tree
Then,

£ cost(e) < t-OPT(G)
ee0dd

Proof: If an edge e of the optimal match-
ing is not in the minimum spanning tree, then add-
ing e to the tree causes a cycle in which each
edge has cost at most cost(e) (see [13]). If the

cycle has edges from 0dd of costs Cys Cos vevs Cp

then c; < cost{e) and summing this we get

¢4 < mecost(e). Summing this inequality over all

edges e of the optimal matching we get on the

right a value that is at most t-OPT(G) where t is

as defined above. On the left we get a value that

is at Teast I cost(e) (i.e., every odd edge ap-
ec0dd

pears on the Teft at least once) because every

vertex in each of the two sets of odd cardinality

is matched in the optimal match and at Teast one

must be matched to a vertex in the other set.

The claim follows. QED Claim 2

Claim 3: t j‘gu where t is as defined in
Claim 2.

Proof: Define a mapping from vertices to
edges of the tree as follows: Let the path con-
sist of vertices Vis Voo wees v (in order). For

2, 3, ...

i= » k (in that order) map to the edge



(Vi-1’ Vi) both v and all vertices that are dis-
connected from Vi by the removal of the edge
(vi_q» v;) and that have not been previously
mapped to some vj, j < i. This mapping maps some

of the n vertices to the edges of the path, and it
follows easily by induction and the nature of an
odd edge that each edge from Odd on the path is
the image of at Teast two different vertices.
Since there are only n vertices in the tree, it
follows that if the path has o edges from Odd then

20 <nando 5_%-as desired. QED Claim 3
Putting these claims together yields

ST(G) < 1 cost(e) < t-OPT(G) < 7+OPT(G),
ec0dd

n
so that RST(G) <7

We now present two heuristics, the hyper-
greedy (HG) heuristic and the factor of two (F2)
heuristic. We show that RHG(n5 x 2log3n and

RFz(n) < 8. A refinement of the factor of two

heuristic, the factor of two with sorting (F2S),
gives Rpog(n) < 7. To Tower bound the worst case

ratio, we have found graphs G with arbitrarily
many vertices such that HG(G)/OPT(G) = 21og3n.

As with the spanning tree heuristic, these graphs
are embedded in the circumference of the unit
circle. Also, we have found graphs with
arbitrarily many vertices demonstrating that
RFZ(n) >4 - ¢ and RFZS(n) > 3 - e. By slightly

simplifying the heuristics, we obtain the hyper-
greedy heuristic without bridges and the factor of
two heuristic without bridges. These have ratios
1og,(3/2)
at least as large as about n 3 z n‘369
logy(5/4) 395
n *n’ , respectively. The graphs
achieving these ratios can be embedded in a 1ine,
as with the bad examples for the greedy algorithm
in [14]. Therefore, the use of bridges is an es-
sential part of these heuristics. The hyper-

greedy heuristic runs in time 0(n21ogn). The fac-

tor of two heuristic runs in time O(nzlog K), where
K is the ratio of the largest to the smallest edge

weights in G, and is never worse than 0(n3). The
factor of two heuristic with sorting runs in time

2 .
0(n"(logn + TogK)) and is never worse than 0(n3).
The hyper-greedy heuristic without bridges runs in

time O(nz), and the factor of two heuristic with-
out bridges runs in time 0(n21og K), and is never

worse than 0(n3). If G is sparse, and weights os
missing edges are taken to be the length of the
shortest path between the endpoints, then the

hyper-greedy heuristic runs in time O(E 1ogzn)
where G has E edges. The factor of two heuristic
runs in time O(E logn log K) in this case. These
heuristics can be modified to solve the following
problem, for an arbitrary weighted graph G not
necessarily satisfying the triangle inequality:
Find a Tow cost subgraph G' of G such that every
node in G appears in G' and has odd deqree in G'.

and
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The heuristics have the same asymptotic running
time and performance bounds for this problem as
for the weighted matching problem.

The basic idea of the heuristics is to
collapse subsets of the nodes of G into "super-
nodes" to obtain a graph G]. The heuristic is

then applied recursively to G1 to obtain a sub-
graph G' of G]. Also, a spanning tree is con-

structed within each supernode of G], and the flo-

wer heuristic (see above) is applied to obtain

a matching of a subset of this spanning tree.

This is done so that these matchings, when com-
bined with G', yield a subgraph of G in which
every node has odd degree. This subgraph is then
converted to a matching by repeatedly applying the
triangle inequality.

It is necessary to distinguish "odd
vertices" of G and "even vertices" of G for this
to work. Supernodes of G] are constructed entire-

1y from odd vertices of G. A supernode having an
odd number of elements is called an odd supernode,
and one having an even number of elements is call-
ed an even supernode. Also, even vertices of G
are considered even supernodes of G]. The graph

G' is constructed so that odd supernodes have odd
degree and even supernodes have even degree. The
matchings within supernodes are constructed to
match nodes of even degree in G'. Note that each
supernode will have an even number of such ver-
tices. The final result is a subgraph of G in
which odd vertices have odd degree and even ver-
tices have even degree. To start the heuristics,
all vertices are considered odd vertices.

The Hyper-qreedy Method

The hyper-greedy method works in the fol-
lowing way: Suppose G = (V, E) is the given
undirected graph satisfying the triangle inequa-
lity. We construct a sequence GO, G], Gz,..., Gk

of graphs as follows: GO is G. Let G, be (w, Ei)
in general (thus Vi are the vertices of Gi and E;
are the edges). Also, Vi = Oddi U Even,, Oddi n
Even; = @, where Odd; are the "odd vertices" of G.
and Even, are the "even vertices" of Gj. We have
Odd0 =V and Even0 = 0. Let Pi be a set of paths
in Gi connecting odd vertices with odd vertices
of Gi‘ We choose Pi so that the sum of the
weights of the paths in Pi is as small as possible,
subject to the condition that each odd vertex of
G; is connected to one of its nearest odd neigh-
bors by a path in Pi' A "nearest odd neighbor"

of v is an odd node w which can be reached from
v by a path in Gi of minimal length. It will

turn out that G; need not satisfy the triangle

inequality for i > 1, so a path from v to w may
have length smaller than the length di(v, w) of

the edge between v and w 1in Gi' We will show be-
iow how Pi may be efficiently computed using a



“generalized Voronoi diagram".

Let Gi be the graph (Vi’ Ei) where Ei is
the set {{v, w}: there is a path in Pi having v
]
and w as endpoints}, It will turn out that Gi

sists of a disjoint collection of trees, plus
isolated vertices (the vert1ces in Even ). A

connected component of G having an odd number of

con-

vertices, at least 3 vert1ces, is called an odd
component of G;.
even number of vertices is called an even

component of G;. A connected component having a
single vertex is an element of Eve?i

A connected component having an

and is consi-
dered to be an even component of G

Note that every odd component of G w111
have at Teast 3 vertices. Hence |0dd1+]| < 3Ddd .
The sequence GO, G], v Gk stops when Oddk 2.
Since |0ddi[ is even for all i, k 5_1og3(3n/2).

An edge between V1 and V2 in Gi corresponds
to an edge between v1 and v2 in Gi—]’ for some
vl e V1 and v2 ¢ V2 such that d; ,(v1, v2) is
minimal. Similarly, an edge in Gi-] corresponds
to an edge in G o Continuing in this way, an
Also,
every edge in G corresponds to a path in G , and
therefore to a set of edges in G,
edges in G.

edge in G corresponds to an edge in G.

i» hence a set of
We keep track of these correspond-
ences between edges of G;, edges of Gi’ and edges
of G to construct a matching of G.

We obtain a matching by examining the
graphs Gk, Gk-]’ v G0 in order. We firstluse
e "flower heuristic" on all the trees of G, _,
to obtain matching of the odd vertices of G
(Recall that Oddk
Each tree edge in Gk-] corresponds to a path in

k-1°
=f so Gk has no odd vertices.)

Pg-1» hence to a path in G _;. The flower heuris-

tic matches vertices in a tree by edges or pairs
of edges from the tree. By applying the flower
heuristic, we obtain a set of paths in Gy_y match-
ing the odd vertices of Gk—]' The actual edges in
G are obtained from these edges in Gk-] as indi-

cated above. We then use the flower heuristic on
Gk-2’ passing over the nodes which are endpoints

of the paths in Gk-]' By the way paths are con-

structed, an even number of vertices will already
be matched in each even tree and an odd number of
vertices will be matched in each odd tree. Hence

each tree in Gk 2 will have an even number of ver-

tices remaining to be matched. Thus the flower
heuristic yields a match on Gk P and we interpret
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each edge of this matching as a set of edges of G
as before. We then proceed to Gk—3’ using the

flower heuristic but passing over vertices which
] ]
have been matched in Gk-] or Gy _,, and so on.

To analyze the worst case ratio,
the total length of the trees at level i.

let Ti be
Let Hi

be the total length of the match edges produced by
this heuristic at level i. Let Mi be the total

length of the optimal edges at level i. (We assign
levels to optimal edges by grouping them into
"paths" between vertices of Gi for various i.) We

have Ti 5-2Mi by a simple argument except that
vertices of Ti may have been matched at levels
higher than i. Therefore we have T, < 2M; +
2M1+] .+ 2Mk for all i. Summing over i,
noting that H. < T. for all i, we get that
Kelh, < 2k z‘M1
i=0 | i=0

k < 1093(1.5n) , we have a ratio bounded by

210g4(1.5n).
3

(Note that H = Mk 0.) Since

The Factor of 2 Method

The factor of 2 method is similar to the
hyper-greedy method except that paths of Pi are

included in a different manner. Let 2 be the
length of the shortest path between odd vertices
of Gi; then Pi includes all paths between odd ver-

tices of Gi whose length is in the interval

(2, 22). However, paths occurring in cycles are
deleted until Pi consists of a set of disjoint

trees. Other than this, the factor of 2 method is
identical to the hyper-greedy method. Note that
we cannot guarantee k < 1093 (1.5n) in this case.

Instead, k < TogoK.
The analysis is similar to that of the
hyper-greedy method, except that Ti 5_4M1 ignoring

vertices matched at a higher level. Including
these, and noting that edges at higher levels get
longer and Tonger, we have that T < 4M + 2M1+] +
Misg *

Ty < 8zM;
i i

Summing over i, we obta1n that
so the ratio is at most 8.

The factor of 2 heuristic with sorting dif-
fers in that paths with length in the range (2, 2¢)
are included in order of size, skipping over paths
that would form cycles with paths already included
in Pi' Thus we construct a set of "minimum span-

]

of the components of Gi‘
T, < 3M; except for vertices matched at a higher
level. Including these, we get T < 3M + 2M1+]
- S0 IT; 5-7§M1’ g1v1ng a ratio

ning trees" We now have

1
Miso ¥ Miss * ;

of at most 7.

The heuristics without bridges are the same

-



except Pi only includes paths of length 1 (that is,

single edges). In other words, we consider the

distance between odd vertices to be the length of
the edge connecting them.

Implementations
We construct the graphs Gi for the three

bridge heuristics using generalized Voronoi dia-
grams, as follows:

Given a graph G and a subset S of the ver-
tices of G, the generalized Voronoi diagram for G
relative to S is defined as a partition of the ver
tices of G according to which element of S they
are closest to. Associated with each vertex v of
S we have a Voronoi region consisting of all ver-
tices of G that are closer to v than to any other
element of S. (Ties may be broken arbitrarily.)
Also, with each vertex of G we keep the distance
to the closest element of S. Since G may fail to
satisfy the triangle inequality, this distance
is the length of the shortest path to an element
of S. It is not difficult to see that the general-

ized Voronoi diagram can be constructed in 0(n2)
time if G has n vertices. If G is sparse, the
Voronoi diagram can be constructed in O(E Tog n)
time.

We obtain G].+1 from Gi for the hyper-greedy

method using the generalized Voronoi diagram as
follows: Let VGi be the generalized Voronoi dia-

gram of Gi relative to Oddi. It turns out that if
Ve Oddi and w is the closest odd vertex of Gi to

v then the Voronoi regions of v and w will be ad-
jacent. That is, there will be an edge in Gi con-

necting a vertex in the Voronoi region of v with

a vertex in the Voronoi region of w. Therefore,

by examining all edges in G4 whose endpoints Tie

in different Voronoi regions, we can find the sets
]

Pi and Ei' This requires time proportional to the

number of edges of Gi' Finally, constructing

] ]
Gi+l = G;/E; given Gi and Ei requires time propor-
tional to the number of edges in Gi‘ Therefore

]
each step Gi > VGi > By > Gi/Ei takes O(nz) time

and the work per level is O(nz) for a total of
O(n2
suffices.

1og3n). For sparse graphs, O(E(logn)z)

The generalized Voronoi diagram also suf-
fices for the factor of 2 methods with and without
sorting, for the following reason: If v and w are
odd vertices of G; then the Voronoi regions of v
and w in VGi will be adjacent unless there 1is an
odd vertex x of Gi such that di(v, X) f.di(V, w)
and di(w, X) < di(v, w). To see this, consider
a shortest path between v and w in Gi' If some

vertex on this path is not in the Voronoi region
of v or w, then this vertex must be in the Voronoi
region of some vertex x as above. Therefore, if
v and w may be connected by a path of length 23
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or less, then v and x may be connected by such a
path, and x and w may be connected by such a path.
Hence v and w will still end up in the same com-

ponent of Gi if the Voronoi diagram is used to con-
struct the components.

The number of levels for the factor of two
heuristic is bounded by [1g K] since the edge

Tength doubles each time. However, the number of
levels may be much less than this, and will never
be larger than n. Hence the total work for the

" factor of two heuristic is O(nzlog K) and is never

more than 0(n3). Possibly this heuristic can be
implemented more efficiently than this. For
sparse graphs, 0(E logn logK) time suffices.

The factor of two heuristic with sorting
requires the sorting of edges and paths. Although
there may be many levels, whenever two edges or
paths must be compared it means that there will be
fewer odd vertices and paths in later levels. The

total sorting time is therefore 0(n21ogn). The
construction of minimum spanning trees can be done
using the UNION-FIND algorithm f13], which takes
negligibie time. Since there may be log K levels,
the work to construct generalized Voronoi diagrams

is 0(n21og K). The total work is therefore
O(nz(log n + log K)). For sparse graphs,
0(E Togn logK) suffices.

The hyper-greedy heuristic without bridges

runs in time 0(n2) since the number of odd vertices
is a decreasing geometric series. For the factor

of two heuristic without bridges, O(nzlog K) work
suffices since there are up to log K levels. It
would be interesting to know if better heuristics

exist that run in O(nz) time. Also, is there a
heuristic with a constant worst-case ratio that

runs in time O(nzlog n)?

BOUNDED EUCLIDEAN REGIONS

Here we will measure the performance of a
heuristic by the absolute cost of the matching
produced in the unit square. If we have n points
in the unit square then no heuristic can do bet-

] . .
ter than /R = .537V/N in the worst case, since
;:12
that is the cost of the optimal matching if n

points on a 1 by 1 hexagonal grid. In fact, we
will be able to come close to this bound.

Avis [ 2] has analyzed the greedy heuristic
on the unit square. He has shown that a matching

thus found will have cost at most 7‘%—]_2_/5' * 1.07v/n,

although the worst known case has cost
77%ﬂ;x473 .806vn . This performance is poor,
especially considering that the algorithm requires

time proportional to n21ogn. In the results below
we will improve dramatically on both the cost of
the matching and the time required.



Partition Algorithms

Here we present a class of O(n log n) time
algorithms, each of which operates by partitioning
the region into subregions and recursively solving
the smaller matching problems thus obtained. If a
subregion contains an odd number of points, then
all but one are matched and the odd point is then
matched with an odd point in another subregion
(there must be another since there is an even num-
ber of points in total).

The first of these algorithms we consider

is the rectangle heuristic, which works as follows.

The unit square is imagined to be enclosed in a

V2 by 1 rectangle. If n > 2 then this rectangle
is split into two equal-sized subrectangles, each
having a to 1 ratio between the Tong and the
short sides. The algorithm is performed recur-
sively on each of the two subrectangles. In
general, when called on a rectangle R, the algori-
thm does the following:

if R contains > 2 input points,
then 1. split R into two rectangles

R, and R, each having a vZ to

1 ratio between the Tong and
short sides
2. perform the algorithm on R1
3. perform the algorithm on R2
if R] and R, each contain an

odd number of input points
then .
put the edge (p], p2) in

the matching, where Py is
the input point in R‘ which

was not matched in step 2,
and Py is that of R2 not

matched in step 3.

As an example, in the figure below n = 4:

-
e

// 1

o

——

1
Z

The first split was on the heavy solid line. The
left half was then split along the dotted line.
The matching produced is in jagged line.

There is one more detail of the algorithm:
the level of recursion is not allowed to go be-

yond fign .. More precisely, define a rectangle
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to be either the main vZ by 1 rectangular

region, or one of two_ rectangular subregions with
sides having ratio to 1 into which a rectangle
may be split. Also, let R(P) denote the subset
of P contained in rectangle R. Furthermore, if
R is a rectangle, then let

0, if R is the main vZ by 1
rectangle

level(R') + 1, otherwise,
where R' is a rectangle
which splits into R and
some other rectangle

level(R) =

The algorithm now is:

if Tevel(R) < [1gn1
then do as described above

else arbitrarily match up the input
points in R until 0 or 1 is left

The reason for this restriction on the depth of
recursion is that it enables the algorithm to run
in time 0(nlogn). The time is dominated by the
partitioning of the points. Now for each rectangle
R, for each input point p ¢ R(P), we can decide
with a single comparison which half of R p lies in.
Also, for each input point p, we make at most 1 of
these comparisons on each level of recursion, and
hence at most [1gn1 such comparisons in total.
Hence the time is 0(n log n).

In order to analyze the performance, that
is the worst case cost of the matching produced
by the algorithm, we first find that worst cost
for arbitrary sets of points in the /2 by 1 rectan-
gle. Later, we will use this result to upper bound
the cost for_a set of points all in a 1 by 1 square
within the /Z by 1 rectangle.

If P is a set of points in the /Z by 1
rectangle, then let rcost(P) denote the sum of the
lengths of the edges in the matching produced by
the rectangle algorithm on P. For all n > 0, let
Cn = sup{rcost(P): P is a set of n points}. By

"set of points" we mean, here and throughout this
section, a set of points in the vZ by 1 rectangle.
Note that we are not primarily interested in Cn for

odd n; they are defined so as to heip analyze Cn

for even n. Our first lemma shows that the res-

triction to [Ign7] levels of recursion does not af-
fect the Cn.

Lemma 1: Let n > 0, P a set of n points.
Then (¥ set of points Q)[[Q|= n and rcost(Q) >
rcost(P) and no level [1gnl + 1 rectangle contains
> 2 points of Q].

Proof: First, we introduce some notation
used throughout the analysis. If P' is a set of

points, and R a rectangle, then let R(P') denote
the set of points of P' within R.

Now if (V level [1gn] + 1 rectangle R)
[[R(P)| < 1], then we have nothing to prove. So
let R1 be a Tevel [1gn] + 1 rectangle such that

[R1(P)] > 2. Then Ry(P) is empty for some level
[1gn] rectangle R,, for otherwise |P| 3_2r19n1 + ]



> n (since there are 2r1gn] level fign] rectan-
gles). Our strategy now is to show that the
points of P can be rearranged to produce a set Q
of n points such that rcost(Q) > rcost(P) and
[Ry(Q)] = [Ry(P)| - 2 and [R,(Q}]| = 2, but other-
wise Q is just 1ike P. Let Pys Py e R1(P) such
that P is matched to Py by the algorithm.
Q to be just like p except that Pys Py £ Qand Q
has points p1' and pz' in opposite corners of R

Thus:

R](P):

(there °
may be
other P
points
also)

Define

9

R, (Q):
(there
may be
other
points,
but not
Pys Po)

Ry(Q):

P

Now it is easily proved by induction on
i that the dimensions of a level i rectangle are

/?‘. by 1
(v2)’ (v

diagonal in a level i rectangle is

the length of a long

V3
)
.3
(/g)FlgnT

V3
(/5)[1gn1+1

= d(p1‘, Po') .

dpys py) <

This "moving" of the two points into R2 does not

affect the algorithm's matching of the other
points. rcost(Q) > rcost(P). In this manner

we continue to rearrange P until no level [ign] + 1
rectangle has > 2 points in it. QED Lemma 1.

. From here on, we analyze the algorithm
as if there were no restriction on the depth of

recursion. Lemma 1 implies that this assumption
does not affect the worst case costs, that is, the
C.

n

Our strategy is to define a class of
input sets and then show that these sets are the
worst case for the algorithm. Specifically, we
say that a set of points P is balanced if for all
rectangle R such that |R(P)| > 2, R splits into
rectangles R], R2 such that
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if 4 divides [R(P)| then |R,(P)]

= LRPIL -4 and [Ry(p)| = LRI 4y

(ii) if 4 does not divide |R(P)| then

IR, (P)] = [}Béflij . IRy (P)| = [15§Ell].

If |R(P)| is even then the point P

stranded (i.e. left unmatched) by the
call on R] and the point Py stranded

(ii1)

by R2 are in opposite corners of R.

Note that we do not require |P| to be
even; we define balanced sets of odd cardinality
in order to help analyze those of even cardinality.
In other words, for a balanced set, each rectangle
R with an even non-zero number of points splits
odd-odd, with the two subrectangles having almost
the same number of points, and the edge produced
at the end of the call on R is along one of R's
diagonals. Intuitively, one might expect such a
set P to be a worst case for the algorithm. This
is indeed the case, as is proved in the next two
Temmas.

Lemma 2: Let n > 0 be even, and P a

set of n points. Then (3 set of points Q)[|Q] = n
and rcost(Q) > rcost(P) and (¥ rectangle R such
that [R(Q)| > 1

[t. |R(Q)| even = R splits into R], R
such that |Ri(Q)], |Ry(Q)]| are
odd, and R] and R2 strand points

2

of .Q in opposite corners of R,

2. |R(Q)1 odd = R strands a point of
Q 1n one of its own corners,

3. |R(Q)] > 2 = the two subrectangles
of R each contain at least 1
point of Q]].

(When we say a rectangle R' "strands” an input
point p we mean that p is within R' and is not
matched by the algorithm to another point in R').

Proof: We will rearrange P (in the manner of
lemma 1) so as to satisfy the desired property.
and then will let Q be this new P.

First we consider all rectangles R such
that |R(P)L = 1. Let R be such a rectangle, and
let Py be the point in R(P). Since n 1is even,

the algorithm must match Py to some other point
Py € P outside of R. If p] is already in a corner

of R, then define P' to be 1ike P except that in-
stead of having p,, P' has point p1' in the corner

of R which is farthest from Py Thus,



RP): | oy | enp | R D"’Z

P]I

Hence d(pys py) < d(py's Py). Since this "moving"
of P to p]' affects no other matches made by the

algorithm on P, we have rcost(P) < rcost(P'), and
[P'| = |P] = n. Thus, we let P be P' and continue
with the rearranging.

Having so rearranged, if necessary, all
rectangles containing exactly 1 point of P, we now
consider those containing 2 points. Let R be such
a rectangle, R(P) = {P1s> Ppl- Since |R(P)| is

even, the arrangement of the points of P within_R
does not affect the matching of any points outside
of R. Therefore if Pys Py are not in opposite

corners of R, then "move" them there by letting P’
be like P except that instead of having P and Py,

P' has p]' and p2' in opposite corners of R, thus

? '
R(P): *p, R(P'): b2
.p.l
—
P1
Since d(p1, p2) < d(pl', pz'), we have rcost(P)
< rcost(P'), |P'| = |P|, which is what we want;
so let P = P!

Now assume we have rearranged all rec-
tangles R such that |R(P)| < k for some integer
k > 2. We will now rearrange each rectangle R
such that |R(P)| = k+1. Let R be such a rectangle

Case 1: k + 1 is odd. Then R splits into rec-
tangles Ry, R, such that IR](P)i is odd and

]RZ(P)I is even.

Case 1.1: IRZ(P)I = 0. Then [R](P)|3_3. .. R
splits into some rectangles S], 52 such that
|S1(P)| > 2. Let P1s Py be two points in S]

matched to each other by the algorithm (such
points must exist since S] strands at most one

point and if S, strands one point then IS{(P}] =

3). Now define P' to be exactly like P except
that P' has points p1' and p2' in opposite corners

of R2, and no point at py or Py- Thus,

R(P'):
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Moving P and Py out of S] does not affect the
matching of the other points in R]. Also,
dlpys py) < d{py's py'). rcost(P) < rcost(P')

and |P| = &P'[, so let P = P' and continue to
rearrange That is, |R](P)| is now < k+1.

rearrange R], and then rearrange R, using

case 1.2 below. (This procedure terminates since
IR, (P)] < [R(P)]).

Case 1.2: |R2(P)] > 0. Then |R](P)|, ]RZ(P)] <
k+1 and hence both R] and R2 have already been
rearranged. In particular, R] strands a point P
in a corner of R]. The algorithm matches Py to
some point Py outside of R. If P is already in

a corner of R, then we have nothing to rearrange.
So assume P is not in a corner of R. Thus, e.g.

R(P): P *p,

Now let P' be like P except that the points in R

has been rotated and perhaps swapped with those
in R2 so that P is now in an extreme corner from

Py- Thus

1

R R

1 2

R(P'): °p;

\ J
Py

This rotating and swapping has no effect on the
cost of the matching of the points in R(P) other

than p,. rcost(P) < rcost(P'), and since
[P'| = |P|, Tet P = P' and continue with the
rearranging.

Case 2: k + 1 is even. Let R], R2 be the sub-
rectangles of R, and assume, without loss of
generality, that ]R](P)| > ]RZ(P)I.

Case 2.1: [Ry(P)| = 0.
in Case 1.1.

Then proceed exactly as

Case 2.2: [Ry(P)| > 0. Then [Ry(P)]s [Ry(P)] <

k+1. .°. R] and R2 have already been rearranged.
Since |R(P)| = [Ry(P)| + [Ry(P)] is even, we have
two cases:

Case 2.2.1: [Ry(P)]|, |Ry(P)| are both even. This

is the most interesting of all the cases, since it
is the only one which depends on the shape of our
rectangles. Since R], R2 already satisfy the de-

sired properties, we have the following situation:



That is, R is a rectangle of size a/Z by a, for
some a > 0. R1, a subrectangle of R, matches

points Py and Py in opposite corners of R1. R2
similarly matches P3 and Py in its opposite cor-
ners.
tangle of R] which strands Py- S] is the odd
subrectangle of the subrectangle of R2 which

52 is the even subrectangle of the subrec-

strands P3.
[R'(P)| is even, otherwise it is odd).

(We say a rectangle R' is even if

Now let P' be like P except that the
points in S] have been swapped with those in 52:

Ry Ry
[ [
S P2 Py
R(P'}: a PV R D
p3 s
2
[ ]
P

Hence, rcost(P) = d(pq, P,) + d(pgs Py) + c for
some ¢ > 0, and rcost(P') = d(p;, py) + d(pys P3')
+c. Now d(py, pp) = d(Pgs Py) =

2
lof o o

Also, d(py, py) =
a/3, and d(pys pP3') =
a3

>

a3y3
2

rcost(P').

Hence, since |P'| = |P], we have what we want, so
let P = P' and continue to rearrange.

a6 + ¢ <

+c

Ha

22 4 ¢ =

Case 2.2.2: IR](P)|, |R2(P)| are both odd. Since
IR](P)|, |R2(P)[ < k+1, we already have that Ry
strands a point P in one of its corners, and R2
If Pq
and p, are not in opposite corners of R, then the

strands a point Py in one of its corners.

appropriate rotations of R](P) and R2(P) will pro-
duce a set P' of cost greater than that of P.

Thus, we continue to rearrange P, until we have
rearranged the main, level 0, rectangle. Then let
Q be this final arrangement. Q satisfies the
properties stated in the lemma. QED Lemma 2
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The set Q constructed from P in Lemma 1 has
some of the properties of a balanced set, but not
all. The next lemma rearranges this Q so as to be
balanced, without changing rcost(Q). This com-
pletes the claim that balanced sets constitute a
worst case for the algorithm.

Lemma 3: Let n > 0 be even, P a set of
n points. ~Then (3 set of points Q])[|Q]| = n and

rcost(Q]) > rcost(P) and Q] is balanced].
Proof: Let Q be a set satisfying the

properties stated in Lemma 2. We will rearrange
Q to a new set o such that (V rectangle R) [if Rys

R, are the 2 subrectangles of R then ]IR](01)| -
IR, (Qq) 1] < 2]. Furthermore, Q; will still have

the property of Lemma 2 that even, non-empty rec-
tangles split odd-odd stranding points in opposite
corners. Together, these properties imply that Q]

is balanced.

First, note that all rectangles R such
that |R(Q)}| = 1 or 2 are already balanced, and
hence need no rearranging.

Assume we have balanced all rectangles R
such that |R(Q)] < k for some integer k. Let R be
a rectangle such that |R(Q)| = k+1. Let R], R2 be
the subrectangles of R, and S1, T] the subrectan-
gles of Ri’ and 52’ T2 the subrectangles of R,.

Say that a rectangle R' is even if |[R'(Q)| is even,
otherwise R' is odd.

Case 1: R is even. Then R1, R2 are odd, by our
choice about Q. Assume WLOG that T], 52 are odd,

thus

R(Q): 4 S,

Then swap S](Q) with TZ(Q)’ to get, in the notation
of Lemma 2,

Ry Ry
®
R(Q):| Ty Sy
- - ==~ — = ==
o N 51
Since ’R](Q)|, |R2(Q)[ < k, we have that R1, R2

were balanced before this swap. Therefore, letting
S < ls](Q)ls Sp = |52(Q)|, t] = IT](Q)[s

t, = [T,(Q)], we have that |s; - t;]| = 1 and

Iso = ty} = 1.

1R (@) ] - [Ry(Q")]] =



}(t] + t2) - (s + sz)] < 2, which is what
Now this swapping of S (Q) with T (Q)
may have made R] or R2 (or both) unbalanced
we now rearrange R] and R, (this procedure
terminates since [Ry(@") [, [R (Q')] < |R(Q"Y]).

Thus R is now balanced, so we let Q = Q' and con-
tinue to rearrange other rectangles.

we want.

Case 2: R is odd. Assume, WLOG, R1 is even and
R2 is odd. Define sy, sy, t1, t2 as in Case 1.

By the choice of Q, [R](Q)] > 0 and hence lRl(Q)I,
|R2(0)| < k. 15 t1 are odd. Assume WLOG,
S, 1s odd and Sy > ty, thus

Ry R,
R(Q): 5 Ty
I Sp

Case 2.1: Sy 3}t2. Then since R2 is balanced, we
have Sy =ty t 1. Then swap S](Q) with SZ(Q) to
get Q', thus
Ry Ry
* s T
2 2
R(Q'): |~ = =~ ——
L

Note that we also may need to rotate SZ(Q) so that
its stranded point is opposite that of T1. Since
0 <8y -ty <2, we have ]]R‘(Q')] - [R(Q") ]

= 1(sp + ) = (54 )] = [lsy = 1)) + (8 - 59|
= [T+ (ty = sq)| <1, which is what we want.
Case 2.2: Sy < t2. Then S, = t2 - 1. Swap T](Q)

with 52(0) to get @', thus (after possibly rotat-
ing)

R, R,
[ ]
R(Q"): 31 T,
S T
[ N N
Now [[R1(Q)] = [Ry(Q') ]| = [(s7 *5,) = (tg + t)]
= sy = ty) * sy -t = -1+ (sy - )] <1,
as desired.

Thus let Q = Q', and after re-balancing R1 and R2
if necessary, continue to rearrange other rectan-

~T A~
[N

u

Finally, after balancing the main, level
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0, rectangle, let Q] be this new Q, and we are

done. Note that the rearrangement can change nei-
ther the cost of the set, nor the assumed proper-
ties of Q. QED Lemma 3

Thus the balanced sets constitute the
worst case for the algorithm; that is, for all even

n >0, C = rcost(P), where [P| = n and P is
balanced. We now analyze the Cn.
c,.=¢6 =0,C,=V3 C,= 73 A balanced
0~ M 2 R I

set of 4n points splits into two balanced sets-
one with 2n + 1 points, and one with 2n - 1
points ~ and matches 2 points in its opposite
corners.

Thus yn > 1, C + /3. The

_ 1
n = 7% (Conny * Cony)
factor 9? is to scale down the cost from the vZ

by 1 region to the 1 by %F region.
1y, the length of a longest edge on level i + 1 is
B3 By
Ay

edge on level 1).

More precise-

— (the length of a longest

Similarly, ¥n > 1

]
Can+1 =77 (Con + 1+ Cp)s
and ¥n > 0,
9
Can + 2= 77 (Con 4 1 % Con 1) * 735

O
Can+3 77 (Con a2 Cop v q) -

For notational convenience, let o = ;7 , and
D = 9§-C ¥n > 0. Then it can be shown by induc-
t1on on i that for all i > 1, Dy - Dy,

_eEn

We were not able to solve for each Cn

exactly. We can however, put a rather tight upper
bound on the C Qur strategy is to define a spe-

cial class of n and then solve (to within an 0(;r4
term) for Cn for n in this class. Then we will
show that this function of n uppers bounds Cn for
all n.
Given an integer r > 0, we say that a set
P is full to level r if
(1)
(i)

P is balanced
(¥ rectangle R)
[1. Tevel (R)

<r R(P)| >0, and
2. level (R) > r

=>|R(P|<1]

Note that this definition implies that every level
r rectangle has 0 or 1 points of P in it, and
every level r - 1 rectangle has 1 or 2 points of P
in it.



We say that an integer n is full to level
r if there exists a set P such that [P| = nand P
is full to level r. We now show that (Vr > 0)
{in > 0) [n, n + 1 are both full to Tevel r]. Now
let r > 0 and assume that n and n + 1 are both
full to level r. Then 3 sets P , Pt such that

[Pyl = ms P4yl =n+1andP and P ., are both

full to Tevel r. Now we construct two sets both
full to Tevel r + 1:

Case 1: n is even. Then iet P2n + 1 be the set

consisting of Pn in its left subrectangle, and

'Pn+1 in its right subrectang1e:A

Pn Pn+'l

Also, let P2n +2 be the set consisting of Pn+1
as its left subrectangle and Pn+] as its right
subrectangle. Then both P and P are

2n + 1 2n + 2
full to level r + 1.

Case 2: n is odd. Then let P2n be the set with
subrectangles consisting of Pn and Pn. Also, Tet
P2n + be the set with subrectangles consisting
of Pn and Pn+].
full to level r + 1.

Then PZn’ P2n 4+ are both

Thus 0, 1 are full to level 0, and if ,
¢+ 1 are full to level r then ¢ even = 24 + 1,
2% + 2 are full to level r + 1, and 2 odd = 22,
2% + 1 are full to level r + 1. Thus the sequence
(0,1, 1,2, 2,3, 5,6, 10,11, 21,22, ...) consists
of numbers full to some level. In fact, it is
easily proved by induction that this sequence con-
tains all numbers full to some level. Call the
sequence the full numbers. Incidentally, it is
also easy to show that if P is a balanced set,
then (P is full to some level)«= (y rectangle R
such that [R(P)}| > 0)[4 does not divide [R(P)[].

Now let r > 0 and P a set full to level
r, such that |P| = n is even. We wish to relate
nand r. Forall i >0, letE; = |{rectangle R:

level (R) = i and [R(P)| is even and > 2}|. Sim-
ilarly, let 0, = [{rectangle R: 1level (R} = i and
|R(P)] is odd}|. Since n is even, we have that

E0 =1, 00 = 0. Since P is balanced, we have that

each non-empty even rectangle splits odd-odd, and
(of course} each odd rectangle splits odd-even.
Thus;

Y1<ic<r-1, Oi = 01_]
By = 05
Also, since P is full to level r, we have Ei =0

Viir.AnomthtVOiiir-1,%+Ei=

MR

2' since there are a total of 2° level i rectangles.
The solution to this recurrance is 0, = %(21-(—1)1)
for0<i<r-1, and

20, for 0 < i < red

m
]
o w/Lrv

, for i >r.

Now since P is balanced, we can associate with
each even, non-empty rectangle R a pair {p],pz} cP

such that P and p, are in opposite corners of R
and are matched to each other by the algorithm.
These g-pairs form a partition of P.

r-1 r-1 : ;
n= t2E =2[z %(2"1-(-1)"1)]
i=0 i=0
M o e
=5 +3-0

Pl
Define, for all r > 0, b, = =3

&),
Then, as just shown, the sequence (bo’bl’bZ"") =

(0,2,2,6,10,22,42,...
numbers. Also for all r > 0, Tet w, =
The sequence (wo,w],wz,...) = (0,1,2,5,10,21,...)

arises in connection with merge insertion {Knuth

[ 8], p. 187) and with an algorithm for finding the

greatest common divisor of two integers (Knuth [ 7],
exercise 4.5.2 - 2.7). Knuth points out that it is

curious that this sequence arises in such different

) consists of all even full
r+l |

settings. We now add to this list of curiosities
by observing that

R .

—3——-§—br, if r even

w =
r or+l 1

T'§=br-]’ if r odd.
Thus, W, is the smalier of the two numbers full to
level r.

Now fix some r > 0, and some P full to
level r such that |P| is even (i.e., |P| =n=b).

We analyze rcost(P), that is Cb .

r
r-1
rcost(P) = X Ei-(length of a long diagonal of a
i=0
level i rectangle)
T S IR PLC I
S~ 3 j
i=0 (/57
SR/ R RY S B 5
» Z 2= 2 - ST
r+1
Now n = 23 + %_(_1)r+1_

r = 1g(%ﬂ) + 0(%) {Using the Taylor expansion.
/ot = srla(an) + o) =J?%Z )

B von-{F o



3n 1
7]2_)]9(’2‘) + O(H) - 0(715-)

rcost(P) = (1 +h) Vi + /T - /& + 0(-).

Mso, (79" = (-

C =
n

Thus we know (up to an 0(5%9 term) Cn for

an infinite class of even n. Now we consider the
other even values of n. Fix some t > 0. We wish

2
to upper bound C2t' Recall D2t =77 C2t. Let 2m

be the largest integer such that 2m < 2t and
2m = by for some k > 0. Then we can write Dyy as
Dzm + 120d§Di+] - D,I_-I) .
2m+1<i<2t-1
Recall that this imp]iesz
= +

3.
[1g(3i)1
DZt DZm o 4 .

iodd
2m+1 <i<2t-1
Now as formulas (17) and (18) of Knuth [ 8],

. . 3. _
p. 187, imply that (Vwk < i 5_wk+])[flg(14)] = k].

in particular, [19(%1)] =k V odd i such

that w, < 2m < 2m+l < i < 2t-1 < 2t < Wy

3
> ang(zn)] = (t -
i odd
2m+1<i<2t-1
Next we express K in terms of m.
even = w, is even.

m)uk.

Note that k is
if k is even then

2k+1
W, = 2m = =—— - = and hence k = 1g(3m + 1).
k 33 k+1
If k is odd then W = 2m-1 = 2 3 §-and hence
k = 1g(3m - 1). Thus
- k _ 1,k
Dyy = Dy + (t-m)a™ = D, + (t-m)(75)

< Dy + (t-m) (1903

1 t-
= 73 Con * 73T
= L1+ J /B + /T - /B4 0(H)]
P |
m—

=7]3-(./2'+1)/m_+1—/2'+0(7]ﬁ-) +7§T;TTT'

Lemma 4: 713»(/?+])/n7+1-/§+0(7]n14 +7§I;—TT
5_;%¢1 + /T + 1 - /T + O(Vka.

Proof: Let d = x{/Z+1). Since 2m < 2t < by,

< 4mt+1, we have that 0(7%9 = 0(;59. we need
show only that d/m + 7§%gT < d/T, i.e. that

&/t - dvim + 7%%?T > 0. Let 2r be the least even

full number > 2t. m<t<r. Define the

409

=M

function f: [m, r] - R by f(y) = dvy - dvm - A==

2
Then f'(y) = 0=y = 9 (ir—] . Furthermore
f'(y) <0 ¥mn<y<r. .
range [m, r] at m or at r.
of mand r, t = met = r,
- _ _omem

[f(y) > f(m) dvin - dv/im 7T 0].
4

By Lemma 4, 02t57]3'(] +/ZWE+T1 - /T H 0(7]1-).

An argument similar to the above (but using
k = 1g(3m + 1) instead of 1g(3m - 1) shows that

c2t1(72%2--%+2f2')/?f+/?- VB - o(1) =

1.68/2t - .717 - o(1). We state the upper bound
as

f is minimized in the
Now by the definitions
oM<y <r)

QED Lemma

Theorem 1: Let n > O be even, and P be a set of n
points in the vZ2 by 1 rectangle. Then rcost(P)

<1+ g/ /T /B4 0 = LIOTA - 71T +

0(;%9. Furthermore, this bound is asymptotically

achiegab]e (in particular, when n = bk for some
k>0

So far we have considered the performance
of the rectangle algorithm on points in the vZ by
1 rectangle. However, the fixed region matching
problem is usually considered on the 1 by 1 square.
Therefore we now adapt the rectangle algorithm
to the unit square as follows. Given a set of n
points P in the unit square (i.e. for all (x, y)eP,
0 <x<1,0<y<1), we perform the rectangle
algorithm treating P as a set in the rectangle
defined by [0, /7] x [0, 1], as shown below:

p—

The unit square is shown in solid line; the /7 by

1 rectangle is in dotted. We now upper bound
rcost(P).

For the analysis, choose some even integer
k> 0. Let r be the Teast integer such that

reok 2l Lets - = /2K, Note that

|~,~

et

1

/?k
» since k is even (the

each Tevel k rectangle has vertical length

2 =2

and horizontal length

_ /2
proof is a simple induction on k). Therefore the

unit square, and hence P, lies within the leftmost
set of r-s level k rectangles:



VZ
f o \
-="
1
]
1
]
]
\
Set =1 ‘
VK !
]
]
.
\ J
r -—K%% > 1

Qur strategy is to upper bound

let d =1r - jg% .

the cost of the rectangle algorithm on an arbitrary

set in the d by 1 rectangle. Since d > 1, this
bound will also upper bound rcost(P).

So let Q be a set of points in the d by
k-1
region, n = |Q|. Let rcostk(Q) = rcost(Q) - =
i=0
(sum of lengths of all edges produced at the
1£D~1eve1 of recursion by the algorithm on Q).
Since there are 2' level i rectangles, and since

the length of an edge produced at the 1'En level

is at most =2~ , we have that rcostk(Q) > rcost(Q)
k-1 .

-z 2'. Jé%—= rcost(Q) - 0(/§k).
i=0 VZ

rcost(Q) i_rcostk(Q) + 0(/§k). We now upper
bound rcostk(Q), which is the sum of the lengths

of the edges produced at levels > k. There are
rs level k rectangles which compose the d by 1
region containing Q. Call these rectangles Rj,

1<j<rs. Lett=rs. Foralll<j<t, let
nj=MﬂML By theorem 1, for all 1 <j < t,
the sum of the lengths of the edges produced

Co . . 1 1 1
ithin R; < C = 1+ mVn, + /3
v 8= /ER n, /§E L 720

-6+ 0( ] )]. (The factor 1_is to scale the
Vﬁ 7

cost down to level k).

rcostk(Q) 5-;%?
+ 0(Am)]
1 1 %
S U By o

;L te t;:)
/My - |n- Zn;
/2*3'13Jj=1~"

+0(t).

I

|_.
=
+
\L
[T V|
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Define the function f : R~ ' - R by
t-1 t-
f(x], Xgs wves Xt-l) = jfl/yg -n - jfl j -
Taking partial derivatives shows that f is maxi-
t-1
1 = = = = - = —rl
mized at X = Xy = . Xp1 n jE]Xj s

(1 + V‘Z)t‘[%_+ 0(t)

(1 + Jp) /S /7 + 0(rs)

a +7‘7)\|97“§-k-«2* 7+ 0(24)

= 7‘%_.(1 + ;}?)/F+ 0(2%) .

rcost(Q) < rcostk(Q) + 0(/§'k) = 7‘%_5+ O(Zk).

rcostk(Q) <

S Ak Ak

By the definition of d, we have that d ~ 1 as
k + », Thus, for all ¢ > 0, we have

rcost(Q) < (1 + 5)712._(1 + )/ + 0(1)

* (1 + ¢)1.436/0 + 0(1).
For example, we can take k = 10 and hence r = 23,

2342‘:

s=32,d= e

1.016, and therefore

23

reost(Q) <45, (1+ 7]?-)/n_+ 0(1)

= 1.447VW + 0{1).
In order to show the tightness of this

bound, we again choose some even k > 0, but this
time Tet r be the greatest integer such that

r--‘%—il. Then'le’cd-—’/gk—zl,ands=/2'k
/2 /A
as before. Construct a set Q' in the d by 1 re-

gion, so that each of the rs level k rectangles in
that region contains a balanced %%—point set. We

choose n = |Q'| so that %% = b, for some i, thus
. : n -
making CJL asymptotic to (1 + 7?)' ve - A similar
rs

igg]ysis to the above shows that rcost(Q') >

d 1 k

(1 + ) /T - 0(2%). Hence (Ve > 0}(3 set Q'
7%? vz

in the unit square)[rcost(Q') > (1 - ¢) 7%::.

2
(1 + é%;vﬁ'_ 0(1) = (1 - &) 1.436vn - 0(1)].

The reader may wonder why we did not simply
choose some k such that the 1 by 1 square can be
exactly tessellated by level k rectangles (i.e.
we would have d = 1). Unfortunately, as is easily
shown, no such k exists.

1 1
In summary, 1.436 = (1 + o)
2 7:25 V7
= inf{x: for all n-point sets P in the unit square,
rcost(P) < x/n + 0(/n)1, where inf denotes the
greatest lower bound.



A square can be partitioned into two 45 -
45" - 90" triangles. Alsc, a 45" - 45" - ¢
triangle can be partitioned into two 45° - 45° -
90° subtriangles of equal size. This suggests a
second partition algorithm, which we call the
triangle algorithm: given a set P of n points in
the unit square, do exactly as the rectangle algo-
rithm, except that when a region is split, it is
split into two equal sized 45° - 45° - 90° trian-
gles. An example in which n = 4 is shown below.

Here the first split is along the main diagonal;
the second split is shown in dotted line. The
matching produced is in jagged line.

In analogy to the(p;evious section, define
a triangle to be either (i) one of the two main
45% = 45° - 90° triangles with hypoteneuse V2,
into which the square is split, or (ii) one of the
two 45° -~ 45° - 90° subtriangles into which a
triangle may be split. Furthermore, if T is a
triangle, then let

0, if T is a main triangle
{of hypoteneuse length v2)

level (T') + 1, otherwise,
where T' is the triangle
which splits into T and
some other triangle.

level(T) =

Note that the level of a triangle is 1 less
than the level of recursion on which the triangle
Ties (in contrast to the level of a rectangle in
the previous section, which equals the level of
recursion on which it Ties). We define Tevel in
this way because our strategy is to analyze the
worst case cost of points in a main triangle, and
then use that result to analyze the worst case
cost for points in the unit square.

If P is a set of points in the unit square,
then Tet tcost(P) = the sum of the lengths of the
edges in the matching produced by the triangle
algorithm on P. For all n > 0, let En

sup{tcost(P): P is a set of n p01nts 1n a main tri-
angle of the unit square}, and Tet F

sup{tcost(P): P is a set of n po1nts in the unit
square}. As mentioned above, we will first
analyze the En and then use that result to analyze

the Fn'

First note that we can restrict the levels
of recursion to at most [1gn] and so enable the
algorithm to run in time O?n log n), as for the
rectangle algorithm. This restriction does not
affect the worst case cost, as can be proved by
an argument just 1ike lemma 1.

From here *- the end of the analysis of the

E , let "set of pornts" denote a set of points in

n’
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a main triangle (i.e. of hypoteneuse length V2) .
If T is a triangle, P a set of points, then Tet
T(P) denote the set of points of P contained in T.
Define the property balanced exactly as in rectan-
gle algorithm's analysis, except substituting the
word "triangle” for “rectangle", and understanding
the "opposite corners" of a triangle to mean its
two 45° corners. In analogy to the rectangle re-
sults, we now show the balanced sets to be the
worst case for the triangle algorithm.

Lemma 2': Let n> 0 be even, and P a set of n
points. Then (3 set of points Q)[}Q] = n and
tcost(Q) > tcsot(P) and (v triangle T such that
7(Q) > 1) o
[1. |T(Q)| even = T splits into T], T2
such that |T,(Q)[, |T,(Q)] are odd, and
T] and T, each strand a point of Q in a

45° corner of T,

2. |T(Q)| odd = T strands a point of Q in
one of its own 45° corners,

3. |T(Q)] » 2 = the two subtriangles of
T each contain at least 1 point of Q]]

Proof: Another rearranging argument, very similar
to that of lemma 2. Say a triangle T is even if
P)| is even otherwise T is odd. The rearrang-
1ng argument for triangles is s]1ght1y more com-
plicated than that for rectangles, since the
farthest part of an odd triangle from some point
may be a 90° corner rather than a 45° corner. To
handle this situation, we make use of the following
terms: if a triangle T splits into subtriangles
T] and TZ’ then we say that T is the father of T1

and T2, and that T] and T2 are brothers.

First we rearrange all triangles T such
that [T(P)| = 1. Let T be such a triangle, and
P the point in 7. Let Tb be the brother of T,

and Tf the father (Tb and Tf must exist since n

Let p, be the point match-
ed to Py by the algorithm. Let A denote the corner
of T which is farthest from Py

is even and T is odd).

Case 1: A is a 45° corner of T. Then simply
"move" py to A, without decreasing the cost:

T(P): T(P'):

(We will not explicitly define P' in this proof
as we did in the proof of lcmma 2. It should be
clear by now how we "move" points.)



Case 2: A is a 90° corner of T. Then the farthest
part of Tf from Py must be some 45° corner B of

Te.

Thus move p] to a 45° corner of T and then swap T
with Tb. This does not affect any other matches
since Tb is even.

For triangles T such that |T(P)| = 2, merely

note that the arrangement ji

gives the greatest cost.

Now assume we have rearranged all triangles
T such that |T(P)| < K for some K> 2. Let T be a

triangle such that JT(P)| = K + 1.7 Let T,, T, be
the subtriangles of T, Tb the brother of T, and

Tf the father of T.

Case 1: K+ 1 is odd. Assume WLOG that T1 is
odd, T2 even.

Case 1.1: |T2(P)] = 0. Handle this just as in the

proof of Lemma 2; namely, move 2 points out of the
corners of T]'s even subtriangle into Tz's cor-

ers.

Case 1.2: |T2(P)| > 0. T strands some point Py

which is matched to some point p, outside of T.
Let A be the corner of T which ig farthest from Py-

Since |T1(P)[ < K, Py is already in a 45° corner

of T1.

Case 1.2.1: A is a 45° corner of T. Then if Py
is not already in A, then rotate T] and then swap
T1 with T2 (if necessary) to put Py in A, e.q.

T(P):
T] .pz
A P
T
Py . ®
T(P'): Py
Ty
A <R
LA
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Case 1.2.2: A is a 90° corner of T. Then the
farthest part of Tf from P, is some 45° corner B

of Tf.

Tf(P): *

Th

Note that B is also a 45° corner of Tb' Therefore
swap Tb with T and rearrange T using Case 1.2.1.

(This affects no matchings of points other than
Py and Pps since Ty is even. We know that Tb

is even since Py ¢ Tb(P), which we know since the
farthest corner from any point in Tb must be a
45° corner of T).

Case 2: K+ 1 is even. Assume WLOG that IT](P)i
> TH(P) .

Case 2.1: ng(P)l = 0. Then proceed as in Case
1.1.
Case 2.2: |T2(P)[ >0. Then both T] and T2 both

have already been rearranged.

Case 2.2.1: |T4(P)], |T,(P)| both even. Thus,

T(P):

Py

7

That is, T is a triangle of hypoteneuse length h
for some h > 0. T] matches points P and Py in

its opposite corners. T2 matches points P3 and Py
in its opposite corners. 52 is the even subtrian-
gle of T1 which strands Py S1 is the odd sub-

triangle of the subtriangle of T2 which strands P3-

Now let P' be like P except that the points
in S] have been swapped with those in SZ:

T(P'):




Hence tcost(P) = d(p1, pz) + d(ps, P4) + ¢ for
some ¢ > 0, and tcost(P') = d(p], p4) +d(p,, P3')
+ C.

h
Now d(p]s p2) = d(p3a p4) = 7o d(p]a P4) = h,

d(pys P3') = %—. tcost(P) = h/Z + ¢ < %h +c
= tcost(P'), as desired; so let P = P', and
continue.

Case 2.2.2: |T,(P)[,|T,(P)| both odd. Then T
strands a point P in one of its 45° corners, and
T2 strands a point Py in one of its 45° corners.
If P and p, are not both in 45° corners of T,
then rotate T] or T2 or both to put them there.

Finally, let Q be this rearranged version of P.
Q satisfies the properties stated in the Lemma.

QED Lemma 2'

Lemma 3': Let n > 0 be even, P a set of n points.
Then (3 set of points Q)[|Q] = n and tcost(Q) >

tcost(P) and Q is balanced]. The proof is identi-
cal to that for Lemma 3, substituting "triangle"
for "rectangle".

Thus (Y even n 3_0)[En = tcost(P), where P
is a balanced n point sséj. he 13;9th of a level
i hypoteneuse is — = =

/z

:
7 (-
7

diagonal in a level i rectangle). for all

%cni%[u +7]2-)/rT+ /3I-/F

W(]ength of a

even n > 0, En =

+0(J)1. Note that for all odd n > 0, E, < E ;.
To see this, let P be a set of points, |P| = n be
odd. Then there is some P e P such that py is

not matched to any other point by the algorithm.
Then tcost(P) = tcost(P - {py}), and Dgpce

2
En < Epoqe for all n > 0, E, 5373(1 +
+0(1).

TV

Now we analyze the Fn, which are our pri-

mary interest. Let P be a set of points in the
unit square. The square is split into two main
triangles, one with m points and one with n-m
points, for some 0 < m < n. teost(P) <

- V7, 1
max {E_+ E 1} + /2 < max {-m(1 + ;@ﬁ-
Ocmeri M n-m O<m<n 73

(vim+ v/nm)} + 0(1).

Treating /il + /n-m as a real function of m and
differentiating shows that vim + /h-m is maximized

atm=%. tcost(P)i%(1+7]29 2g+
0(1) = Fe (1 + J/+ 0(1). Thus for all n 0,

2 1 .
Focar (0 +7?)/H+ 0(1) > 1.97/n + 0(1). This
bound is asymptotically achievable, since if
n=2b, for some r > 0, then we can construct a

set P such that the unit square splits into T,,
T2 such that T1(P) and T2(P) are both balance& br

point sets. as shown in the previous section,
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C
b
since ;Eg;<+ (1 +-§§9 as r - =, we have that
r

ESQ%ELEL > é% (1 + 929 as N > .

Our third partitioning method, the
Square-Rectangle Alqorithm, works just like the
rectangle or triangle heuristics, except that
the regions are partitioned as follows. We start
off with n points in the unit square. The square

is split vertically into two 1 by %-rectang]es.
These rectangles are then each split into two %
by %-squares. (As in the last two algorithms, we
do this splitting only if the region has > 2

points in it and is at or below the flgn]ih Tevel
of recursion, counting the unit square as level
0.) In general, each square is split vertically
into two rectangles of ratio 2 to 1 between the
vertical and horizontal sides; and each rectangle
is split into two squares.

We do not yet know how to put a tight upper
bound on the cost of the matching produced by this
algorithm. A very crude upper bound can be derived
by assuming that each region (square or rectangular)
matches two points in its opposite corners, thus

cost < % 2! -—'/3—1- + b> 21'-—/15?,-
O<i<igntl  vZ'  O<i<ign+l /2
i even i odd

(V20 + V/B)/m + 0(1) = 7.30/n + 0(1).

Certainly the least upper bound is much lower than
this; we merely wanted to show the cost to be
bounded by 0(v/n). Below we construct an example

in which the cost is asymptotic to %v?f.

fa

Let P be a set of points in the unit square
such that each even square splits into two even
rectangles, and each even rectangle R splits into
odd squares S], 52 such that S] and 52 strands

points in opposite corners of R. A region is even
if it contains an even number of points of P,
otherwise it is odd. Assume P is full to some
level 2r+1 in the sense that each level 2(r-1) + 1

rectangle has exactly 1 or 2 points in it. We can
so construct P using the technique used to con-
struct full sets for the rectangle algorithm (see
above). Thus if R is a rectangle of level i for
some 1 < i < 2(r-1) + 1, then

level i level i+1] Tevel i+2

R even e 00p2
non-zero odd Z d
#of [— — ol
, 0| e
points odd dlv
L¥é e
n




Note that if a level i rectangle R is odd then R
splits into three even and one odd level i + 2
rectangles. If R is even then it splits into two
even and two odd level i + 2 rectangles. For all

0 <1 <r-1, let E; = the number of even rectangles

of level 2i+1, Oi = the number of odd rectangles
of level 2i+1. (Note that a level K consists of

rectangles <K is odd). Then
EO = 2, 0O = 0.
Vicdor- 1, By = 26,5 430, ,
05 = 2By * iy
_ i
E; +0; = 2.4

The soTution to these equations is Ei = g41 +

4 i _4,0 4, oG . _
-1 0, =34 - EHN LV 0 i <l
Let n = [P|. Then
r-1
n= 2.E, = % 4" + %{-1)r'1, and hence
i=0 !

r = 1094(gn) + 0(1). Since the length of a level

2i+1 diagonal is —ig; , we have
o1 1

cost(P) = 4 /5 3

ZE o geT 22 - 0.

We conjecture that the asymptotic worst case cost
for this algorithm is very close to %Jﬁ.

The last partitioning method we consider,
the Four-Square Algorithm, works as follows. Each
square S (initially the unit square) which has > 2
input points in it is split into 4 equal sub-
squares. The algorithm is applied recursively to
each of these subsquares. Then the best matching
of the < 4 stranded points is made (the best match-
ing of 3 points is the closest pair). In analogy
to the other partitioning algorithms, if a square

S contain > 2 points and is on the ([log,n] + 1)2-5—E
level of recursion, then arbitrarily matéh up the
points in S until O or 1 is left. Thus this algo-
rithm also runs in time G(n log n).

As for the square-rectangle heuristic, we
have no tight upper bound for this algorithm, but
know it to be &(v/n). As for a lower bound, we

construct an examplie below of cost §§(1 + %z)/' -
0(1) =~ 1.39/m - 0(1).
Construct a set P of points in the unit

square such that each even square S splits into
S], 52’ 33, S4 such that S], S3 odd, 52, 54 even,

and S1 and 53 strand points in opposite corners of

S. Also, each odd square S splits into odd squares
S], 52, 53, and even square S4 such that each of
the 3 points stranded by S], 52’ 53 is in a dif-
ferent corner of S. Thus at level i, each even

square contributes an edge of Tength Z%, and each
2

414

odd square contributes an edge of length j? . Make
2

P such that for some integer r, each level r-1

square has either 1 or 2 points of P in it. For

all 0 < i < r-1, let E; = the number of even
level i squares and Oi = the number of odd level i
squares. Then E0 =1, 0g = 0, and (Y1 < 1 < r-1)

[E; = 2B;y *+04q0 05 = 2654 + 30, 4, E; 40,
_ i - _igi, 2 _2,0 2
= 4], The solution is E1 = 34 + 3 01 = §4 3
Let n = |P|. Note that n =0, + 2E. ; (since

each level r-2 square has 5 or 6 points, each
level r-1 square has 1 or 2 points, and each level

r+1 square has 0 or 1 point). .°. n = %4r - %~,
r-1
and hence r = 1094(3n +2). . cost(P) = =
i=0
-2
z," 1 _ T 1 )
E1°?+1§OO1'?—73—(]+72-)/F+/2- 2 +

0(;%ﬁ %= 1.397 - 0(1). Incidentally, this expres-

sion is exactly the same as that found to upper
bound the cost of the triangle algorithm on n
points in a main triangle. We have no geometric
explanation for this coincidence.

Comparing these results (see summary)
we conclude that the best (in terms of worst case
performance) partition method is either the rec-
tangle or the four-square. If indeed the four-
square is superior, then the rectangle is a close
second.

The Strip Algorithm

This algorithm is a modification of one
?naﬁyzed for expected performance in Papadimitriou
10].

Let r = [égi. The unit square is divided
into r vertical strips, each of width %. Then a
traveling salesman tour T] is constructed by

starting at the Towest input point in the leftmost
strip, going up that strip in the path which in-
cludes all input points of that strip, then down
the next strip, up the next, etc., and finally
returning to the starting point, as shown:

‘o




Here T] is shown in jagged line. For ease

of drawinag, not all of the input points are pic-
tured here (since in order to have r = 5 strips
there must be 50 <« n < 72 input points).

Then, a second traveling salesman tour T2
is constructed in the same way, except that here
the strip boundaries have been shifted by %—- %
to the right. The strip boundaries for T] are
shown below as solid lines, those for T2 in dashed:

!
I
|
|
|
|
!
L

l
1 1
Thus there are r + 1 strips used in constructing
T2, each of width %u Note that the leftmost of

these strips contains no input points in its left
half. Similarly the rightmost strip contains no
input points in its right half.

|
I
I
I
|
|
)
}
!

Thus we have two traveling salesman tours
T] and T2. Since n is even, each tour contains

exactly two matchings. The algorithm outputs the
shortest of these four matchings.

To upper bound the cost of the matching
produced, consider paths P] and P2 defined as fol-

lows: P] starts at the bottom, on the median of
the leftmost of the strips used in constructing Tl'
P1 follows the median of the strip up to the top,

then down the median of the next strip, up the
next, etc. For each strip, for each point in that
strip, the path P] Jjuts out to that point and then

back to the median, moving at right angles, as

illustrated: (P1 is in jagged)

ey

]

S ? T ot

The path P2 is defined like P]’ except
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that P2 follows the medians of the strips used to
construct TZ'

It follows from the triangle inequality
that length (T ) < length (P ) and length (TZ) <
length (Pz) Our strategy is to upper bound
length (P1) + length (PZ)‘

Consider some input point q. q must lie

in some strip (shown below between solid lines)
used for T1 and P], and in some strip (between

dashed lines) used for T, and P,:

nN
[at]
— 1'_1

'
|
|
[
!
[
|
l
i
f
!
—

is shown in heavy solid 1ine, and
It should be

clear that the total amount of horizontal line of
P1 or P2 which juts out to q and back is

A segment of P1
a segment of P2 in jagged line.

1 1, _1
27 -9 =y -
total of E'units of horizontal line in P] and P2

together which jut out to points and back. Also,
Pphasr.1=r units of vertical Tine (i.e., r

strips of length 1). P, has r + 1 strips and

hence r + 1 units of vertical line. P] has 1 - %

Since q was arbitrary, there is a

units of horizontal line which run from the end

of one strip to the start of the next. P2 has 1
unit of such line. Finally, P] and P2 each have a

segment of length less than v/Z which joins the end
of the last strip back to the starting position.

Thus, in total,
F~+ r+(r+1) + (]-—) +1 + 2+ VT

Tength (T )+ 1ength(T2)

%+2r+3+2/_
n

=I“77;]+2r72-1+3+2/'
<22+ 5+ 27
= 2v2v/n + 0(1).

Thus, min{length(T 1) Tength(T,)}
< 2/ + 0(1) .



Therefore the cost of the matching produced
is 5,%—min{]ength(T]), 1ength(T2)}

<o AT+ 0(1) = 07V + 0(1).

This bound is asymptotically achievable, as
shown by the following example:

| o I < 1
' _W," 'l, ‘}' 1 e > 0
| |k 32 ot ez | !
|l qqf, ~e !
l l l l !() ‘
| | P!
I }
1! RIS
| | ! i
| il
l BN
| | | il

T] is shown in jagged line. T, is not shown, but
looks almost like T] shifted by %F to the right.

The points are arranged so that halfway between
each solid vertical line and either of its two
neighboring dotted vertical lines, there is a ver-
tical string of 0(vn) points. Intuitively, these
points are placed so that T] and T2 must zigzig and

hence look very much Tike P1 and PZ, respectively.
This attains the maximum amount (neglecting Tower
order terms) of horizontal line for T, and T,.
There is a point at the bottom of each strip, so
as to attain the maximum vertical length. A sim-
ple computation shows 1ength(T]), 1ength(T2) =
/2/n + 0(1), and also that the cost of the
matching is ;%rfﬁ'+ 0(1).

The algorithm can be implemented in time
0(n log n) using sorting. Note that the strip

algorithm can be used to obtain a traveling sales-
man tour (i.e., the shorter of {T1, TZ}) in the

unit square, of length at most v2/m + 0(1). These
results generalize easily to a 1 by x region giv-

ing a matching whose cost is at most@/ﬁ +0(1)
and a traveling salesman tour whose cost is at

most vZ2x /n + 0(1).

Decomposition Algorithm

This last matching algorithm is a hybrid

between Edmond's 0(n3) time optimizing algorithm,
and any of the 0{n log n) time heuristics. The
resulting algorithm has the best properties of
both: an O(n log n) time bound and a cost bound
which is the same, neglecting lower order terms,
as that for the optimizing. In the following pre-
sentation of the algorithm, we happen to choose
the strip heuris%}g as our O(n log n) heuristic:
n

1. ¢+« ﬂ/TEH
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2. Partition the unit square into c2
subsquares of equal size.

3. For each of these subsquares, perform
the optimizing algorithm iteratively
on sets of K input points chosen arbi-
trarily from that subsquare, where K
is the largest even integer

< min {4 -F%{], number of input points
c

still unmatched in the
subsquarel,
until the subsquare is left with 0 or
1 point in it.
4. Perform the strip heuristic on the re-
majning < c2 points.
5. Output the union of the matchings found
in steps 3 and 4, and halt.

In order to analyze the algorithm's perfor-
mance, let

o = inf {x: x /A + o(vn) upper bounds the
worst case cost of the optimizing
algorithm}.

1
We know that o exists and that .537 = 2/75- <a
1 .

/n + 0(1) is the cost of
vz ot °
the optimal matching of n points on a 1 by 1 hexa-
gonal grid, and since ! vn + 0(1) is the upper

vZ
bound for the strip algorithm.

1 . .
< ;qrv~.707, since

(We suspect that

a 1s close to ;7%i=, but have been unable to prove
it). We will show that the decomposition algori-
thm produces a matching of cost < avn + o(/ﬁ%.

Thus, in an asymptotic sense, the decomposition
algorithm's performance is as good as possible.

Let b =[i%?1. Number the subsquares from
c

1 to c2. For all 1 < i < c2, let Bi denote the

set of input points originally in the 1'Eﬁ

square and let b, = !Bi‘ mod 4b. Thus

B.} - b,
L—llzgﬂ—l + 1 > the number of calls to the opti-

sub-

mizing algorithm on the ith subsquare. Finally,
c? |B.| - b,
p3} 1 1 .
i=1 4b
number of calls to the optimizing algorithm.

let t = Thus t + c2 > the total

Note

C2
21 Z b,
that t = ap\" " i=1 1)

Now for all r > 1, the cost of the matching
produced by the optimizing algorithm on r points

in a %-by %-square is at most % (a/F + o(/F)).

The % factor scales down the cost from the unit
square to the %
the costs of all calls to the optimizing algorithm

is at most

by %-square. Thus the sum of



2
L(t(aB + o/B)) + §

i=]

(@/B; + o/B;)))

1

2 2
/li + o(c“b)), since

2

= %(tm/leJ- + aié

—

b, < 4b for all i, 1 <1 <c”, and since t < 2

The matching produced in step 4 by the strip algo-
rithm on at most c2 points in the unit square has
cost 5~}7.ﬁr+ 0(1). Therefore, the total cost of
the matching is at most

(1) %(t /Bb +

2
c
We now show that t /@b + X is maxi-
i=1
mized when b] = b2 = ... =b 2 = b. Let f
c
CZ
&~ - R be defined by
2
_ c
f(b], b2, e bcz) =t /456 + 121 /E;

2
c 1 2 -
=(n- Z bs) - + b.. Then
o1 1 7:49) 5
. . 2 af _ 1 1 _
fora1]1,]i1§c,§—i—m+m—0®b—
2
bi’ and %f < 0.
3°b,
i
Thus f is maximized at b] = b2 = ... = bC2 = b.
Note that by = b, = ... =b , = b implies n > bcZ,
1 2 C2 =
which implies n = bc2 (since b = [1%] and hence
c
bc2 > n). This i?plies
g b 2
n- . .
_ i1 i _ n-¢’b _
t-= 75 = b = 0. Thus
expression (1) is maximized when t = 0 and
by =b, =... =b, = b; hence
1 2 CZ
CZ
o 2 C
costic(i>=31/5'+o(c/5') + o

= qcvb + o(cvb) +-ﬁz

Note that VB = |5) <« [ +1 < |-+ =
”czl ’cz 'Cg

A,
c
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. costia/rT+0(/rl—)+(a+7]2-)C

M

Tiie

= @/ + o(/) + (ot ) -
wn e vz Tgn

= o/h + 0(\/5.),
as we claimed.

Next we show that the algorithm runs in
time O{nlogn). Step 2, the partitioning of the
points, can be performed in time 0(n) as follows:
for each input point p, we determine, by a few
simple arithmetic operations, which subsquare con-
tains p. We can do this since the subsquares form
a grid. More precisely, we associate each sub-
square with the grid point (xo, yo) at its lower

left. Thus for each input point p = (x, y), com-
pute
X 1 :
X « T ifx#1
c
-1 Larxs,
y0+l:¥~J-%,ify¢1
<
1 ap -
1 - c , ify=1.

Then put p in the 1list of input points found to be
in the subsquare whose lower left corner is

(xo, yo). Since there are c2 < n subsquares, the

whole partitioning can be performed in time O(n).
In step 3, there are at most t + c2 calls

on the cubic time optimizing algorithm, each call

having < 4b points. Thus the time for step 3 is
2
c

n- LIb.
(t+c?) ()3 = (—p=L 7 + c2)(ap)3

|A

< (G + )y = onb? + %)
= 0(n (/T2 + (e )21 ) = 0(nTogn)
Tgn

2)

Step 4 requires time 0(c21g c

- 0((AEmy? ]
= 0(77=)"18(7g) = 0ln Tog ).

Thus the total running time is O(n Tog n).

Decomposition Algorithm for TSP

A decomposition algorithm similar to the
above can be used, with similar results, for the
traveling salesman problem in the unit square.
Recall that the strip algorithm gives a traveling
salesman tour of length at most /2vn + 0(1). Also,
the optimal tour of n points on a 1 by 1 hexagonal



grid has length 2= /i + 0(1). Therefore there
Nz

2
= <8
N2 ~

exists some real g such that 1.07 =

< V2= 1.41 and

8 = inf {x: x/n + o{/n) upper bounds the
worst case cost of the optimizing
TSP algorithm in the unit squarel.

We will present a hybrid between an exhaustive op-
timizing algorithm and the strip heuristic. Ana-
logously to our matching results, this hybrid has
worst case cost bounded by gv/n + o(v/n), and runs
in time O(n log n). This is particularly remarka-
ble in that the Euclidean TSP is known to be NP-
hard [6], [9].

Input: a set V of n points in the unit square.
Output: a traveling saiesman tour of V.
Method: 22

0. ifnc< 22 = 65,536

then exhaustively search all n! permu-
tations to find the shortest tour;
halt.

[This step is to ensure below that
191giglgn is defined and > 1].

o [t |

2. partition the unit square into ¢
subsquares of equal size.

2

3. For each of these subsquares,

a) exhaustively find the shortest tour
of K input points chosen arbitra-
rily from that subsquare, where

K=min {4. [1%] , number of input

c
points in the subsquare not

yet chosen}.

Iterate this step until all input points
of the subsquare have been chosen.

b) if the subsquare originally has at
least one input point in it then
distinguish one of those points

4, Perform the strip heuristic to find a
tour of the < c2 distinguished points.

5. T' <« the union of the edges in the
tours found in steps 3 and 4. [Note
that T' is a connected graph whose
nodes are the set V. Also, T' contains
an Eulerian circuit. Therefore one can
convert T' into a tour T of V using the
method in [3], so that, by the triangle
inequality,
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Tength(T) < X
eeT’
gutput T constructed in this way, and
alt.

Tength (e)].

. The analysis of the worst-case cost is
identical to that for the matching decomposition
algorithm, yielding

cost < gc vb + o(cvB) + vZ ¢ (where b =f31)

2
C

Now B« [T r1 e ey -h oy,

C2 2 c
c
/o (gH/D) Al
gvh + (8 (;151515755)
gvn + o(vn), as claimed.

. cost < + o(/n)

Note that this result is merely of theore-
tical interest, since one of the “lower order

. /n . .

"

terms" is 3T91gTon which, for practical purposes
is not negligible.

As for the time required, step 2 takes 0(n)
time, as shown above.

For step 3, an exhaustive search for the
shortest tour of r points can be performed in

time r! = 0(r"). Therefore the total time requir-
ed for the calls on the optimizing algorithm is at
most 9

- b'
" i L+ 2)(ap)%
= 0((z5 + <A (a0)™) = o(cP(ab)*°)

w0

(since é%-= 0(c2)).

b 4
b < (2P)8(s)% < (P)8(22 )

oL(191g1gn)8(191gn)8]
{since b < 1glglglign + 1)
0(1gn).

Now (4b)4b .

i

the time needed for step 3 is

0(c219n) = 0(nlogn}.

Step 4 can be performed in time
0(c2 1g c2) = C(nlogn).
- Step 5 takes time 0(n), using the method of

Thus, as claimed, the total time is
O(nlogn).



SUMMARY

The following tables summarize known re-
sults for matching (in both the bounded and un-
bounded regions) and the traveling salesman pro-

blem. Lower order terms are omitted.
Algorithm Order of Worst case |
running time _|performance ratiu .
Optimizing n3 1
I
Greedy nzlog n jian
Spanning Tree nzlog n %
T
Hypergreedy 2 Tog,2
without bridges n-log n a(n7°3°)
Hyper-Greedy n21og n 2 logsn
5
Factor of 2 2 gt
without bridges n"log n aln =)
Factor of 2 nz'log K 8
F f 2
ek sorting n"(log n + log K) ’
Table 1 Summary of known results for matching

n vertices whose distances satisfy the trian-
gle inequality, where K is the ratio of the
longest to the shortest edge.

Algori thm mg;?sg ct){m_e, Worst known | Upper boundﬁg_gi_
Optimizing nd 537/ ? i
Greedy n%10g n 806/ 1.07/7
Triangle nlogn 1.97/m 1.97/n
Rectangle nlog n 1.44/0 1.44/n
4 Square n log n 1.39/n ?
e | e | ren ?
Strip n log n .707/m 707/
Decomposition nlog n same as for optimizing

Table 2 Summary of known results for matching
n vertices in the Euclidean unit square.

Mgoritm | oSeE Yine |evampie cort |uoper cound o
Optimizing exponential 1.07/7 ?

Strip n log n 1.41/A .41/
Decomposition nlog n same as for optimizing

Table 3 Summary of known results for the tra-
veling salesman problem on n cities in the
Euclidean unit square.
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