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ON A GREEDY HEURISTIC FOR COMPLETE MATCHING*

EDWARD M. REINGOLD*+ aAnD ROBERT E. TARJAN:

Abstract. Finding a minimum weighted complete matching on a set of vertices in which the distances
satisfy the triangle inequality is of general interest and of particular importance when drawing graphs on a
mechanical plotter. The “greedy” heuristic of repeatedly matching the two closest unmatched points can be
implemented in worst-case time O(n? log n), a reasonable savings compared to the general minimum
weighted matching algorithm which requires time proportional to n> to find the minimum cost matching in a
weighted graph. We show that, for an even number n of vertices whose distances satisfy the triangle
inequality, the ratio of the cost of the matching produced by this greedy heuristic to the cost of the minimal
matching is at most ‘;n‘gi -1,1g 3~0.58496, and there are examples that achieve this bound. We conclude
that this greedy heuristic, although desirable because of its simplicity, would be a poor choice for this problem.

Key words. graph algorithms, matching, greedy heuristic, analysis of algorithms

Introduction. We begin with some motivation, the connection of which to our
central topic will become clear later.

The problem of drawing a graph G =(V, E) on a mechanical plotter with pre-
specified vertex locations arises in numerous applications [7]. For example, in the
solution of shock wave propagation problems by the finite element method [2] it is
necessary to plot meshes of thousands of nodes in order to check them visually. Other
applications include the drawing of maps, PERT charts, electrical networks, etc. To
draw the graph efficiently we must minimize wasted plotter-pen movement, i.e.,
movement with the pen off the paper so that no line is drawn. The wasted pen
movement can be significant; in [5] the use of a naive algorithm resulted in excessively
long plotting times.

If the graph G contains an Eulerian cycle or path, then it can be drawn with no
wasted pen movement. Moreover, since a graph contains an Eulerian cycle if and only if
it contains no vertices of odd degree and an Eulerian path if and only if it contains two
vertices of odd degree, it is easy to determine whether either case applies and if so then
to use a simple depth-first search algorithm to find the cycle or path [see [10, p. 399]).
If the graph does not contain an Eulerian cycle or path then it contains an even
number n >2 of vertices of odd degree. In this case, as a simple consequence of the
triangle inequality, the minimum wasted pen movement is achieved by finding a
minimum weighted complete matching of the n vertices of odd degree, and drawing the
graph by traversing the Eulerian cycle that exists when the edges of the minimum
matching are added to the original graph; these edges are traversed with the pen off the
paper during the drawing.

The currently known best algorithm for finding a minimum complete matching in a
weighted graph requires time proportional to n> [8]. For our application that is too
inefficient, since n can be fairly large in practice, and we do not want to sacrifice much
(relatively expensive) computer time to save (relatively inexpensive) plotter time.
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However, it would certainly be worthwhile to be able to economize somewhat on
plotter time if it could be done without an excessive amount of computer time.

Thus we arrive at the following problem: Can we find near minimum complete
matchings of n vertices in the Euclidean plane in, say, time O(n log n) or time O(nz) as
was done for the traveling salesman problem in [11]?

A greedy heuristic. An obvious heuristic is the following ‘“‘greedy’ algorithm:
Repeatedly match the two closest unmatched remaining vertices, resolving any ties in
an arbitrary fashion. For n vertices this can be done in worst-case time O(n” log n) by
sorting the n” distances. This time bound represents reasonable savings for the
moderately large values of n encountered in practice, but we must consider how far
from minimum the resulting matching will be. The average behavior of this heuristic has
been analyzed in [1].

In examining this question we quickly arrive at the sequence of examples in Fig. 1.
For 2' vertices (t=1), we have an example in which the minimum matching has cost
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F1G. 1. Examples in which the greedy heuristic produces matchings (shown in solid lines) costing 5n'%>—1
times as much as the minimal matching (shown in dotted lines) for n =2'. Comparable examples are easy to
construct for N even but not a power of 2.

27! while the cost of the solution produced by the greedy algorithm can be as bad as
23712 (the solution of the recurrence relation g; =1, g1 =2g,+2+3""). The
ratio of the cost of the matching found by the greedy algorithm to the cost of the
minimum matching is
2. t—l_2t—1 3 t—1 N
—32'"—‘= 2'(5) -1=5e) -1
This tells us that the ratio can be as bad as 3n 51 for n vertices (lg 3~(0.58496). We
now prove that it can be no worse.

THEOREM. Given an even number n of vertices, the distances between which satisfy
the triangle inequality, the ratio of the cost of the matching found by the greedy algorithm to
the cost of the minimum matching is at most

s 3¢
(Gn"2) iy L

where 6 = [lgn] —lgn.
Before proving this theorem we observe that the function 3°/(2°"'—1) is close

to 1 throughout the interval 0=6 <1. Its maxima occur at the endpoints § =0
and 6 =1 when it is exactly 1; its minimum of approximately 0.94650 occurs at 6 =1g
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logz 3—1=0.43803. The value of § = 0 corresponds precisely to the examples in Fig. 1,
where the number of vertices is a power of 2. For numbers of vertices that are even but
not a power of 2, the bound corresponds precisely to examples analogous to those in
Fig. 1. The bound of this theorem is thus tight for all even n.

Proof. Observe that the union of any two matchings is a collection of disjoint
cycles, the edges of which alternate between the two matchings. (An edge that is in both
matchings forms a “‘double edge” in the union, that is, a cycle of length two.) Consider
the collection of such cycles that results from taking the union of the minimum matching
and the matching produced by the greedy algorithm for an arbitrary set of n =2k
vertices. Let these cycles be Cy, Cs, - - -, C,,, and let M; be the sum of the lengths of
the edges from the minimum matching in C; and G; be the corresponding sum of the
edges in C; from the matching produced by the greedy algorithm. Clearly M; is the cost
of a minimum matching on vertices of C; and G; is the cost of the matching resulting
from applying the greedy algorithm to the vertices of C;. We want to bound

G1+G2+"‘+Gm_ M, _q_l+ M, _q_z_
M1+M2+"'+Mm M1+M2+"’+Mm M1 M1+M2+"'+Mm M2

+eeet My Gm
My +M,+- - +M, M,

G, G, G,
= —+a —-+...+a —_—
"M, M, "

where

MM AMy+ -+ M,
@;>0,% a;=1. Thus

G1+Gz+‘ M ‘+Gm
Mi+M;+- -+ M,

is a weighted average of G,/ M, G,/M,, - - -, G,/ M,, and hence less than the largest
G,/ M, 1t therefore suffices to consider the ratio of the two costs when the union of the
two matchings is a single cycle.

Consider the cycle shown in Fig. 2, in which the edge AD is the last edge added
by the greedy algorithm and the edge BC is the penultimate. Linearly scale the edge
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F1G. 2. Proof of the theorem.

lengths so that the sum of the lengths of the edges along the path AtoBtoCtoD is 1.
Now, define f(#n) to be the smallest fraction of this unit length that can consist of edges of
the minimum matching of the n vertices, for any set of n vertices with the property that
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the union of the optimal match and the greedy match is a single cycle. Before continuing
with an analysis of f(n), observe that the ratio of the matching produced by the greedy
algorithm to the minimal matching is bounded above by

length of AD +(1—f(n))

f(n)
Since the length of AD is at most 1 by the triangle inequality, this ratio is at most
2
(1) ——1.
f(n)

We get a lower bound on f(n) by developing and solving a recurrence relation. Let
a be the (scaled) length of the sum of the edges from A to B and let 8 be the (scaled)
length of the sum of the edges from C to D. Thus the edge BC has length 1 —a — 8. For
the greedy algorithm to choose BC in preference to AB or CD as the penultimate edge
selected, we must have «a =1 —-a — B and B8 =1 —«a — B, respectively. Since the vertices
B and C are distinct, we also have that 1 —a —8 > 0. Letting ¢ = 2/ be the number of
vertices along the path from A to B and n —t the number along the path from C to D,
we have

(2) f(n)= _min {af(t)+Bf(n —1)}
aé?i:igio
B=1-a-B>0
and, obviously,
f2)=1.

Since the extremum of a linear function on a polyhedron must occur at a vertex of
the polyhedron [3, p. 154], (2) reduces to

f(rn)=min {f(2), f(4), - -, f(n =2),

3
3 FQR)+3f(n—2),5f @) +3f(n—4), -+, 3f(n —2)+3f2)},

because the vertices of the polyhedron definedbya=1-a—-B=0andB=z1-a—-B=
0 are (0, 1), (3, 3), and (1, 0). We now show by induction that the solution to (3) with
f2)=1Iis

ko1
(4) f(2k)=1—z 3—”g—”—.

i=2

This is clearly true for k = 1. Suppose (4) holds for all k <t Using (4) for k <t¢, we find
the minimum occurs at

£20) ={ ), teven,
S+ 1) +5f(=1), t odd.
We consider only the case when ¢ is even; the case of ¢ odd is similar. Let t =2u. From
(4) we have
u 1 ) _ 1 2 u 1

2 2 2
@0 =301 = 312w =3(1- %, ) =133 X, 5rm
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Substituting the identity

%=%,§23f‘1g"1+§+ 3“1g”’
we get
=1- gz 3r11gi1
=1 —éz 3r11gi1’
as claimed.

Forn=2'-2x,2"%>x =0, (4) becomes

20-1 x

1
fim=1-'8, gt 5

2371 X
-(3) 5

and it follows that if 8 = [Ig n] —1g n then

2°-3
39—1

2
n'ss,

f(n)=

From (1) the ratio of interest is at most
4 .2\ 3°
(S"lgz) iy b

Conclusions. Together with the examples of Fig. 1, the theorem tells us that the
performance of this greedy heuristic is disappointing. Since a similar greedy heuristic
for the traveling salesman problem results in tours costing at most twice the cost of the
optimal tour when the triangle inequality holds [11], we might have hoped for
comparable results for this matching problem. Considering results in [13], we conclude
that this greedy heuristic would in general be a poor choice for the matching problem.

It would be interesting to investigate other heuristics. For example, it may be useful
to construct the Voronoi diagram in O(n log n) time and restrict our attention to its
straight line dual; Drysdale [4] has shown that this approach will not guarantee an
optimal matching, but perhaps it results in a near optimal one. It may also be possible
to develop partition algorithms in the style of [6] or [9] that have good average-case
behavior. Related results can be found in [1] and [13].

as desired.

Acknowledgments. We are grateful to Klaus Ecker for pointing out a flaw in an
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