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Abstract

Let G = ({, E, ¥) be a finite loopless graph, let
b = (bi: i e V) be a vector of positive integers. A
feasible matching is a vector X = (xj: j ¢ E) of nonnegative

integers such that for each node i of G, the sum of the
xj over the edges j of G incldent with {1 is no
greater than bi. The matching polyhedron P(G, b) is the
convex shull of the set of feasible matchings.

In Chapter 3 we describe a version of Edmonds' blossom
algorithm which solves the problem of maximizing ¢ * X
over P(G, b) where c¢ = (Cj: j € E) is an arbitrary real
vector. This algorithm proves a theorem of Edmonds which
gives a set of linear inequalities sufficient to define
P(G, b).

In Chapter 4 we prescribe the unique subset of these
inequalities which are necessary to define P(G, b), that
is, we characterize the facets of P(G, b). We also
characterize the vertices of P(G, b), thus describing the
structure possessed by the members of the minimal set X
of feasible matchings of € such that for any real vector
c = (cj: jJesB),c ~x 1s maximized over P(G, b) by a
member of X.

In Chapter 5 we present a generalization of the blossom
algorithm which solves the‘;roblem: maximizé ¢ = x over

a face F of P(G, b) for any real vector ¢ = (c

: ¢ E).
3 b

In other words, we find a feasible matching' x of G which
satisfies the constraints obtained by replacing an arbitrary

'
subset of the inequalities which define P(G, b) by




equations and which maximizes ¢ ° x subject to this
restriction. We also describe an application of this
algorithm to matghing problems having a hierarchy of objective
functions, so called "mulli-oplimization" problems.

In Chapter 6 we show how the blossom algorithm can be
combined with relatively simple initialization algorithms
to give an algorithm which solves the following pc\sl(\ptimdlity
problem. Given that we know a matching x0 e P(G, b) ‘which
maximizes ¢ * X over P(G, b), we wish to utilize xo to
find a feasible matching x' ¢ P(G, b") which maximizes
c + x over P(G, b'), where b' = (b;: i eV) is a
vector of positive integers and ¢ = (cj: j ¢ E) is an
arbitrary real vector.

In Chapter 7 we describe a computer implementation of

the blossom algoricthm described herein.
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Chapter 1

lnt(yductlnpringiﬁngngiging
1.1. Introduction

Let G = (V, E, ) be a finite loopless graph, where
v is the set of nodes of G, E is the set of edges of G
and ¥ is the incidence function of G which maps E into
the set of all two element subsets of V. For each i:¢' Vi
let b‘ be a positive integer. A feasible matching is a

vector x = (x,: j € E)' of nonnegative integers such that

i

for each node i of G, the sum of the Xx over. the edges

3
§ of G incident with i is no greater than b .. The

i
matching polyhedron P(G, b) is the bounded polyhedron containing
all feasible matchings of G and all of whose vertices are
feasible matchings of G. (In other words, P(G, b) is the
convex hull of the set of feasible matchings.) In ‘this
thesis we examine several different aspects of the faces of
P(G, b). ’ \

The later sections of Chapter 1 comsist of a summary
of the basic results from various fields of mathematics which
are assumed to be Known, we also introduce all our basic
notation and terminology.

In Chapter 2 we develop the general polyhedral theory
used in later chapters. This topic is developed from the
point of view of studying systefis of linear ipequallties.

The facets of a polyhedron are the faces of the polyhedron
which have dimension one less than the dimension of the
polyhedron itself. In characterizing the facets of matching

polyhedra in Chapter 4 we make extensive use of (3:2.1%),




which ‘states that a proper face F of a polyhedron P of
dimension d is a facet of P if and only if F ‘contains
d 41 affinely independent elements. In Theorems (2.3.25),
(2.3.30), (2.3:31), (2.3.32) and (2.3.34) we discuss the
connection between the facets of a polyhedron and a minimal
set of inequalities necessary to define the polyhedron.

We show in (2.3.32) that if P '1s a polyhedron of full
dimension, then, the facets of P determine, up to ’
multiplication by a positive constant, the minimal subset of
inequalities needed to define P. Since matching polyhedra
are of full dimension, this is the case in which we are
interested.

We discuss the vertices of polyhedra in the last
section of Chapter 2 and prove three fundamental results.
First (Theorem 2.4.1)), the vertices of a polyhedron P are
precisely those elements v € P for which there is some
linear objective function ¢ such that v is the unique
member of P maximizing ¢ * x over 39 Second (Theorem *
(2.4.5)), if P 1is a bounded polyhedron then for any linear
objectivé function ¢, there is a vertex v of P which
maximizes ¢ * x over P. Third- (Theorem (2.4.10)), any
nonempty bounded polyhedron is equal to the convex hull of
its vertices.

Chapter 2 is largely expository, however the point of
view taken in this chapter‘rs some;hat different from starddard
references on polyhedra (Griinbaum [Gl], Rockafellar [R1l] and
Stoer, Witzgall [S1]) and tends to emphasize the rela;ionlhip

between polyhedra and linear programming.




R 1.3
In Chapter 3 we describe a version of the so called %

blossom algorithm (Edmonds [E1), [E2], [E3], [E4)). kThis

algorithm finds -a matching xo e P(G, b) which maximizes

¢ * x over P(G, b). In fact the algorithm described

solves a somewhat more general problem, it maximizes ¢ * X

over a face F of P(G, b) obtained by requiring the sum
of the xJ on the edges- j dincident 'with node 1 to, be
exactly equal to bi for all nodes i belonging to some
subset W of V.

For any node i ¢ V we let §(i) denote the set of

edges of G incident with i. For any S eV we let vy(S)

denote the set of edges of G having both ends in S. For
any J < E we let x(J) denote g = and for any W ¢ V
jed
r we -let b(W) denote I bi' The feasible matchings of G
ieW
ate the integer solutions of the linear system .

(1.1.1) xj 2 0 for all: - j ¢ E,

(1.1.2) x(8(1)) s b1 for all 1i e V.

Clearly if we let P be the polyhedron defined by (1.1.1)

and (1.1.2) then P > P(G, b). In fact, if G 1is bipartite

or if b1 is even for all ieV then P = P(G, b). However
in general there are vertices of P which are not vertices

of* P(G, b) and thus have £!act10nal components. Consequently
there are generally some linear objective functionms which

when maximized over P, attain their maximum for a member x

of P having fractional components. It can be seen that if

x 1isia noninteger yertex of P then every component of X ) \




is either integer or half integer valued and the edges j§
for which xj are half integer valued form the edge sets
of node disjoint odd polygons.

The blossom algorithm proves a theorem of Edmonds, that

P(G, b) = {(x, eR : 3 € E): x satisfies (1.1.1) and

(1.1.2) and 1
(1.1.3) x(y(s)) = qg for all S ¢ Q)

where Q = {S € V: b(S)  is odd, |s| 2 3} and qg © 1/2(b(8)-1)

for all S € Q. It is not ‘difficult to see that every

feasible matching of G satisfies the constraints (1.1.3);

it is more difficult to see that this set of constraints is

sufficient to define P(G, b), that is, that all vertices of

the polyhedron defined by (1.1.1)-(1.1.3) are ipteger valued.
The blossom algorithm makes use of the weak duality

theorem of linear programming and the principle of complemeftary

slackness to prove the optimality of the matching ;hich 1t‘\

finds. For any linear objective functiom ¢ it produces

an 1nteg§r solution xo to the linear program: maximize

¢ * x subject to x satisfying (1.1.1)-(1.1.3). It also

produces a solution yo to the dual linear program and

shows that xo and yo satisfy the complementary slackness

éondl(ions for optimality. Thus, where d -is the objective

function of the dual 11neaf‘prograﬁ, (T xo = d - yo. By

the weak duality theorem of linear programming, any solution

x of (1.1.1)-(1.1.3) must satisfy c¢ * x <.d ° yo, therefore

xu is an optimal solution to-the limear program: maximize

[




¢ *+ x subject to (1.1.1)-(1.1.3). Since every feasible
matching x of G satisfies (1.1.1)-(1.1.3) it forlows
that x0 is the optimal matching we require.

From this ;( easily follows that P(G, b) is the
solution set of (1.1.1)-(1.1.3), for if v is any vertex
of the polyhedron defined by (1.1.1)-(1.1.3) then there is
some linear objective function maximized over that polyhedron
only by v. But. we have seen that every linear objecéive
function is maximized by an integer solution of (1.1.1)-(1.1.3),
hence all the vertices of this polyhedron.axe feasible
matchings.

The set of inequalities (1.1.3) is generally far
larger than is necessary to define P(G, b); as was mentioned
if G 4is bipartite then none of them are necessary. In
view of the structure of the vertices of P, the solution
set of (1.1.1) and (1.1.2), it has been surmised that all of
the constrainl; (1.1.3) which are really necessary are thosg
for which § . is the node set of an odd polygon. Unfortuna;Zly,
these are generally not enough; if we just add these
inequalities to our linear system (1.1.1)-(1.1.2) then we
usually introduce new fractional vertices having a more
codplex structure than those possessed by P. In Chapter 4
of this thesis, by considering the structure of € and the
value of b, we prescribe the minimal subset of the
inequalities (1.1.3) which :Ls[ be added to (1.1.1) and (X:1.2)
to oglain P(G, b).

Since P(G, b) is of full dimension there is a direct

correspondence between the facets of P(G, b) and the
1




inequalities necessary to define P(G, b), namely

{x ¢ P(G, b): ax = al is a facet of P(G, b) if aﬂd only
if the inequaligy ax s a (or a positive multiple of

ax < o) is necessary to define P(G, b). Thus in Chapter
4 when we characterize the facets of P(G, b) we are in
fact prescribing which of the inequalities (1.1.1)-(1.1.3)

are necessary to define P(G, b). We.prove

Theorem (4.1.2). For every 4 € E, (ij: j € E) ¢
P(G, b): X, = 0} 4is a facet of P(G, b).

In other words all the constraints (1.1.1) are essential for
defining P(G, b).

However, some of the constraints (1.1.2) are not
necessary. For any i eV we let N(i) be the set of
nodes of G adjacent to {i. 1f v, w are nodes of' G such
that N(v) = {w}, N(w) = {v} and b .= b then we call the

w v

connected component of G spanned by {v, w} a hglanced

edge.

Theorem (4.2.1). For any i e V, (ng: 4 € E) €

P(G, b): x(8(1)) = bi) is-a facet of P(G, b) if and only if

i 4is a node of a balanced edge

b(N(1)) > b‘ and if b(NE1)) = b1 + 1 then y(N(i)) = ¢.

“A salient feature of the blossom algorithm is the “shrinking"
process applied to certain subgraphs of G, effec(ibely
reducing the size of the problem under consideration. It is

f
fmplicit in the blossom algorithm that the set Q im (1+1.3)




can be replaced by the set Q {s c v: G[s] is shrinkable}
wvhere G[S] 4is the subgraph of G 4nduced by §, that is
G[s] (s, v(8), v|y(S)). We prove that all we need add

is a connectivity condition to the condition of shrinkability

and we have the essential inequalities of the sort (1.1.3).

Theorem (4.3.46). Fex any S < V_ such that - G[S]

is shrinkable, {x e P(G, b): x(y(S)) = g,} 1is a fadet of

P(G, b) if and only if G[S] contains no cutnode v for

The necessity of our conditions of both Theorem (4.2.1)

and Theorem (4.3.46) is proved by constructing |[E|

affinely
independent feasible matchings of G which belong to the
facet of P(G, b). We define 2 near perfect matching of*
G deficient at v ¢ V to be a matching x of G° which

satisfies

x(86(i)) = b, for all ie V - {v},

x(8(v)) = b - 1.
v

A feasible matching x of G will satisfy x(y(S)) = qg
if and only if x, the restriction of x to vy(S), is a
mear perfect matching of G[s]. Thys when constructing
feasible matchings of G _which satisfy x(y(8)) = qS' our
first step is to be able to comstruct a large number of near
perfect matchings of G[Sif

We say that 6 is b-critical if for every node v of
G there is a near perfect matching of € 'which is‘deficient

at v. These |V| near perfect matchings can be seen to be




1.8

linearly independent, but we usually require a much larger
set of linearly independent near perfect matchings. .However
we show that if a graph G 1is b-critical and contains no
cutnode ' v for ;hich bv = 1 then G has as
many linearly independent near perfect matchings as it has
edges. This we prove by showing (Theorem (4.4.2)) that a
graph G is b-critical if and omly if G is shrinkable.
We also.prove that these conditions ar; equivalent to ‘c
being connected, b(V) being odd and the empty set being the
only subset of V which violates Tutte's condition (3.10.34)
for the 'existence of a perfect matching.

Thus we obtain two more facet characterization theorens

(4.4.15), (4.4.17), In particular we have the following.

Theorem. For any S ¢ ¥ such that b(S) is odd

and |s| 23, F = {x € P(G, b): x(y(s)) = q.} 1is a facet

of P(G, b) if and only if

\

G[S] 1is b-critical and contains no cutnode v _ such N

that b = 1
—

F is a facet of the sort described in Theorem (4.2.1).

As a result of this theorem we can see very easily
that if G 'is bipartite then none of the inequalities (1.1.3)
need be added to define P(Q* b)Y, fer let S be any subset
of V. such that b(S) is odd and |s| 2 3. Then there

must be'a part T of G[S] for which b(T) < 1/2 b(S) .

Obviously we cannot construct a near perfect matching of




G[s) deficient at a node V belonging to T and consgquently
G[S) cannot be b-critical.

There is a close relationship between polyhedron theory
and min-max theorems; whenever we know a set of linear
inequalities sufficient to define a polyhedron, linear
programming duality immediately provides us with a min-max
theorem and we have already discussed how we use a min-max
theorem proved by the blossom algorithm to establish the
matching polyhedron. We discuss the min-max theorem proved
by the blossom algorithm in Section 3.10 and show how it
implies theorems of Berge [B2) and Tutte [T1], [r2], [T3].

When we know the facets of a polyhedron, we are able
to obtain a "best possible" min-max theorem. In Theorems
(4.4.20) we describe such a theorem. We also shgw how the
min-max theorems proved by the blossom algorithm can be
combined with our characterization of b-critical graphs to
obtain strengthenings of Tutte's theorems, in particular,
we derive, the following theorem concerning the existence
of perfect 1-matchings (matchings’' ¥ which satisfy

x(8(1)) = 1 for all 1 ¢ V).

Theorem (4.4.22) G = (V, E, ) has a perfect

l-matching if and only if for every X £ v such that

¢lv - X consists of l-criéjcal components, the number of

components of G[Vv - X] is no greater than X|.

In Theorem (4.5.3) we characterize the vertices of

P(G, P) and ‘'show that every matching produced by the blossom




algorithm is a vertex of P(G, b). Since the vertex set of
P(G, b) is the smallest subset X of P(G, b) such that
for any linear fwnction ¢, ¢ * x |{is maximized over P(G, b)
by a member of X, this shows that the blossom algorithm
makes use of as small a subset of P(G, b) as possible when
solving matching problems. As we saw in Chapter 2, every
member of a bounded polyhédron can be éxpressed as a comvex
combination of its vertices, in (4.5.21) we describe an
algorithm which will express any feasible matching of €
which is not a vertex of P(G, b) as a convex combination
of two other members of P(G, b). We also describe how this
algorithm can be used to express any X € P(G, b) as a
convex combination of a subset of the vertices of P(G, b).
In Chapter 5 we consider the problem of maximizing
¢ * x over any face F of P(G, b) where ¢ .= (cj: j € E)
is an arbitrary real vector. That is, we are given sets
JcE, WecV and N < Q and ve wish to maximize ¢ * X N

over all x = (xJ: j ¢ E) € P(G, b) which satisfy

(1.1.4) xj = 0 for all j ¢ J,

(1.1.5) x(8(1)) = b’ for all 1 ¢ W,

(1.1.6) x(vy(S)) = qg for all S € N.

For'any J < E, WecV and N € Q we let F({, W, N) =
((xJ:} ¢ E) ¢ P(G, b): x satisfies (1.1.4)-(1.1.6)}. The
algorithm proposed to solve this problem consists of two

parts. The first part described in Section 5.2 is a

preconditioning process which finds sets J's BVE Y




1.11
and N' € Q such that F(J, W, N) = FQJ', W', N') and
N' has the property that for any S, T ¢ N' such that “
S$nT= ¢, either ST or TcS,. (We call such a family
of sets a nested family of sets.) The second part of the
algorithm described in section 5.4, can then be used to
solve the equivalent problem. The algorithm is a generalization

of the blossom algorithm of Chapter
the amount
problem maximize ¢ * x over 23,
of the same order as the

blossom algorithm in solving ¢ * X

3 and an upper

w',

over

bound on

of work performed by this algorithm in solving a

N') c P(G, b) 1is

amount of work performed by the

P(G, b).

In Section 5.5 we describe how this problem of

maximizing ¢ * x over a face F of

to the problem of maximizing a

over P(G, b). This so called

theoretically, but in practice

digits in the components -of e’
rapidly and so

method.

"Big-M"

the number

P(G, b) can be reduced

new objective function c'

method is attractive

of significant

tends to increase rather

3

this method does have limitations as a practical

In Section 5.6 we discuss multi-optimization matching

problems, matching problems

€y cz,...,ck of objective functions
following problem. Let XG P(G, b)
i 8 12, 2,+0+.k) et
2. 2{x.¢c3 3 c‘x is maximized
i i-1°

-
We wish to find a matching x

€ xk.

in which we

have a sequence
and wish to solve the

and for each

over Xi—l)'

We show how ‘the face

optimization algorithm of this chapter can be used to solve
‘




1.12
this sort of problem and various generalizations of this :
problem.

In Chaper 6 we discuss a post optimality problem.
. h 0 5 :
We assume that we know a matching X e P(G, b) which
maximizes ¢ = X OVer P(G, b) and we wish to find a

* '

matching x € P(G, b") which mdXimizes ¢ * X over
P(G, b') where b' = (b‘i: ieV) is a vector of positive
integers. Since the parameters ¢ and c¢ of our original

probliem are unchanged in the new problem, wve would hope that
ve could make use of x0 so as to be able to solve the new
problem more quickly than by simply reapplying the blossom
algorithm.

In this chapter we describe a relatively simple
initialization procedure which can be combined with the
blossom algorithm when we know xo and an optimal dual
solution yo to the original problem, soO that an upper bound
on the amount of vork performed in finding x. de;ends \
upon the value of lb -b'| in essentially the same way as
the upper bound on the amount of 'work perf(vrmed by the
blossom algorithm depended on the value of b.

Finally, in Chapter 7, we discuss a computer implementation

of the blossom algorithm and describe some experimental

results.




1.2 Set Theory and General Notation

We use the symbol to indicate a definition and

reserve the symbol "=" for denoting the equality of twa
objects.
If X and Y are sets we denote the union and

intersection of X and Y by X u Y and X n Y respectively.

We let X - Y denote the set theoretic difference, tat is
X -Y=({xeX: x ¢ Y}

We denote the empty set by - ¢. Expressions involving v,

n, - should be evaluated from left to right, thus
XvYnzZ-~-V

should be taken to be

((X v Y)nzZ) -V

1f R 1is a set of sets, we will let

u(R) = v X -
XeR
and
n(R) = -n X.
XeR

We let |X| denote the cardinality of X.
We let R denote the set of real numbers. For any

X 5(\7\ we let

- max X = max x
: xeX =
and
min X = min x.




Where X = (x‘: i e 1) is an indexed set of members of N\,
we let
-
X I x
i
iel
For any x ¢ gr\\ s [x] denotes the largest integer no
greater than- x. [x] is sometimes called the flcor of x

or the integer part of X .

We use X € Y to denote "X is a subset of Y" and we
use X ¢ Y to denote | "X is a proper subset of Y"(thus
X =Y)

If ¢ is a function mapping a set X into a set Y,

then for any S © X we let §|S denote the restriction o

I

$ to S. That is ¥ = ¢|s is the function mapping S

into Y defined by

v(s) v(s) for all s e S.

We always use the words maximal and minimal in the senge
hY

of set inclusion. Thus if R is a Family of sets we say
that X is a maximal member of R if there is no Y € R
such that Y > X, Similarly X 'is a minimal member of R
if there is no Y ¢ R such that - Y < X.

We denote the cartesian product  of two sets X and Y
by X x Y. Thus

X x Y= {((x, y):'\g ¢ X, ye Y}

1.3 ‘_G_raph Theory.

Standard references on graph theory are Berge [B3],
Busacker and Saaty [B5) andi Harary [H2]). For our purpose a

[

graph G is an ordered triple (V, E, ¥) where V and E
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are finite sets and is a function mapp E info the
set of two element subsets of V. The members of V are
called nodes, the members of E are called edges, and v
is called the incidence function. We say that j ¢ E meets
veV or jJ and v are incident if v ¢ v(i) We say
that v, w'e V are adjacent if phere is j ¢ E such that
v(j) = {v, w}. 1f (v, w} = ¢(j) themn v and w aré
called the ends of j. 1f H 4is any graph we let V(H),
E(H) and wH denote the node set, edge set and incidence
function of H respectively.
(1.3.1) A track T in G = (V, E, ¥) from Yo
to__vn_ is a sequence
Vor 330 Yy P Voseweados vy for some n 2 0
such that
v, € Y gor 4 ¢ (0, 1, ,n},
3
j‘ ¢ R fox £ wm 1);-2, ,n},
W(Ji) = (v‘_l, vi) for 1 ¢ (1, 2, ,n}
We call n the length of ‘1, we say that t is odd or
even according as the length of T is even or odd. We let
E(t) denote (jit ie{(» 2,...,n}} and V(1) denote
(viz ie {0, 1,...,n})}. For any j‘ € E(t) we call j; an
even edge of T if 1 is even-mnd an odd edge of T if 41 is odd.

Edges“occurring mor

A track T

and- edges in E(71).

is the' first node i

v, cP) and v=uv

i s

induces an ordering om the nodes in

e than once in T may be both even and odd.

v(r)

Thus for any P ¢ V(1) we say that v

n AP if. s = min{i_c {0,1,2,.%s0)8

v(r)

We define last node and first and




last edge analogously.

(1.3.2) A path is a track v of length n for
which ‘.V(n); =n + 1. In other words, no node occurs

more than once.

A path is sadd to be maximal with a given property
if no other path having that propetrty has = as a
subsequence. (Obviously there is no Sl:lCl’! thing as a maximal
track.)

A graph 6 = (V, E, ¢) is said to be connected if for
every (v, w} € V there is a path (track) = im G
joining v to w.

A graph H is said to be a subgraph of G = (V, E, ¥)
if V(H) <V, E(H) ¢ E and ¥, = ¢|E(H). 1In this case we

say that G contains H. A maximal connected sybgraph of

G is called a component of G.

The distance between nodes v and W belonging to ‘the

. \
same component of G 1is defined to be the length of the
shortest path joining Vv and w.

Let G = (V, E, ¥) be any graph. For any § ¢V we

let 6C(S) denote the coboundary .of §, that is

(1.3.3) §.(s) = {§ ¢ Ex |8 n (3] = 1}.

When S consists of a single element v, then we abbreviate
60((v)) by dc(v). For any v.e¢ V we call '|6G(v)| the

valence of v. For any S £ V we let YG (S) denote‘the set of

edges of G  having both ends in S, thus

= \

) (1.3.4) yG(S) = {3 e E: 9(3) ¢ S},




We abbreviate §G and by § and Y respectively.

(1.3.5) Let S c V. We let G[S] denote the
grdaph (S, v(S8),"%|y(8)). We call G[S]) the subgraph of

G induced by S.

(1.3.6) A polygon is a connected graph P  such
that ’6P(v)l = 2 for all v e V(P). If |E(P)| 1is even
then we say that P is an even polygon, otherwise we call

P an odd polygon.

(1.3.6a) Let P be a polygon and let w ¢ V(P).
Let T be a track in P from w to w such that V(t) =
V(P), E(1) = E(P) and the length of Tt is as small as
possible with this property. We call T a track from w

to .w induced by P. Intuitively, T is the track obtained

by travelling once around the polygon P, starting at w.

(1.3.7) A graph G = (V, E, ¥) is bipartite if

V can be partitioned into V, v V2 and E = 6(V1) = 6(V2)-

Any S ¢ V such that § (S) = E and Y(S) = ¢ s called a part of G.

(1.3.8) Theorem. (Kénig [K1] p. 170) G is

bipartite if and only if G contains no odd polygon.

(1.3.9) A cutnode v of G = (V, E, ¥) is a
node v € V such that G[V - {v}] has more components than
6. G 1is nonseparable if G is connected and has no cutnode.

A block is a maximal nonseparable subgraph of G. It is easily

seen that

' (1.3.10) every polygon of G 1is a subgraph of a




block of G,
that is, no polygon can have edges from different blocks.
An isthmus of G is an edge j ¢ E such that

(v, E - (3}, v|E - {3}) has more components than G.
J

(1.3.11) A forest is a-graph which contains no

polygons, a tree is a connected forest. A tree T is(said

to be trivial if |v(T)| = 1. The following results are

well known.

(1.3.12) Theorem.. Every nontrivial tree has at

least two nodes of valence 1.

(1.3.13) Theorem. 1f T 4is a tree then

|lect)] = Jv(m| - 1.

1.4 Linear Algebra.

Let J be a finite set. We let ‘{KJ ((xj;j e J):

)(j € ’\R for all j € J}. We let 0 denote the vector which

is zero in every component.

(1.4.1) A set X ¢ 4R’ 1s said tolbe linearly

.18

)
independent if whenver I ax =0 for some (Jx € 1\ x € X)

xeX

we have ..~ 0 for all x ¢ X Otherwise .X is linearly

dependent.

(1.4.2) Let X c/fR7. A basis of X 1is a maximal
linearly independent subset of X. The following result is

well known.




§4). 11 bases of

called the rank of

than AJJ L.

(1.4.4) If. x, y e R we let x * y

X ¢ R’ have the same cardin

(1.4.3) Theorem. (Birkhoff & MacLane [B4)], Ch. 7,

1ality

X, and the rank of X is no greater

or - xy
denote I{x, * y;: 3
b - M
D J

(1.4.5) The null space of X = [ is defined
to be (y ¢ TKJ: y * x =0 for all x € X}.  We define the
nullity of X to be the rank of the null space of X. The
following is a basic result.

(1.4.6)  Theorem. (Birkhoff & MacLane [B4), Ch.
VIII, Theorem 11). For any X ¢ ’;PzJ, the rank of X plus
the nullity of X equals |3].

(0.4.7) I1f =, ¥ :’TKJ, we say x sy if
5, '8 for all € J. We sa x <y 1if x, <y for
j Yy ] y y j Yy
all § ¢ J.

> IxJ
(1.4.8) Let I, J be finite sets. If A <K

is the matrix (a efR: 1 €I, § €6J) then for

ij
ve let Ag denote (a”: i eS8, § e¢Jy. Similarl
& - R 1 .
b= (by: 1 ¢I) e, ve demote (b,: 1 e:5) by

is a single element v we abbreviate A(v) by A

-

X = (xj: ) RJ we define the product Ax
vector y = (yiz 1 ¢1)N (\’\\I where PRk A‘ . x
1e¢l.

We define the transpose of A, denoted by AT

any S ¢ 1

y if

bs. £ 8

. 1f
v
to be the

for all

to be the
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1 , Ix1 ¥
matrix (a! € J, 1 € I) e 1\ where a'!, = .a for
o ji ji ij
all 1 ¢1, 3¢}
(1.4.9) By the rank of A and nullity of A
(written rank(A), nullity(A)) we mean the rank and nullity
respectively of (Ai: i € I} as defined in (1.4.3) and (1.4.5).
We call (A)'. i e 1} the rows of A; and {(aij: i e I):
J ¢ 3 the columns of A.
1.5 Lihear Programming
Let I, J be finite sets, let H c I and let K ¢ J.
Let A ¢ ’fr}\]“], b € “’\I and ¢ € \;‘\J. A (primal) linear
programming problem is
£1:5.1) maximize c * x 2
~ J
for x € ’;r’\ satisfying
(1.5.2) x, 20, "
£2:.5:3) xJ-K unrestricted in sign,
(1.5.4) AHx S bH'
(1.5.5) Al wx = bI-H
The dual linear program (Dantzig [D1] p. 126) is the
linear program
- (1.5.6) minimize b -+ y
" -
for y e 1 satisfying
N
' (1.5.7) y, 20, \
L
\
% B




unrestricted in sign,

T
1.5. y =
(1.5.10) AJ—K y € ok

Texts on linear programming génerally show how a problem
of the form (1.5.1)-(1.5,5) or (1.5.6)-(1.5.10) can b;
reduced to a problem in which K =J and H = ¢ or H = I.
(e.g. Dantzig [D1l] p. 85-89). The following theorems are
then usually proved for problems in these canonical forms.
These results can be easily extendéd to apply to linear
programs in the forms (1.5.1)-(1.5.5) or (1.5.6)-(1.5.10).

A vector x € Q\J satisfying (1.5.2)-(1.5.5) is called
a feasible solution to the primal problem. A vector' y ¢ ﬂll
which satisfies (1.5.7)-(1.5.10) is called a feasible dual
solution:

A feasible primal solution xo which maximizes ¢ * x

for all feasible priwal solutions is called an optimal primal

solution; an optimal dual solution is defined analagously.

The following is a fundamental theéorem of linear
N\

prégramming (See Dantzig [D1l] p. 120 .Theorem 1).

(1.5.11) Theorem. For any linear programming

problem exactly one of the 4&ollowing situatiqpns occurs.

i) There exists no feasible solution.

ii) For any a € ﬁ{ there is a feasible solution

x such that ¢ * x > a.

i11) There is an optimal feasible solution.




The following theorems give the relationship between
the values of ¢ * x and b vy for primal and dual

feasible solutiams.

(1.5.12) Weak L.P. Duality Theorem (Dantzig [D1]

p. 130)
If x 1is a feasible primal 'Solution and y is a
feasible dual solutiom them ¢ * x s b - y.
(1.5.13) Corbllary. If for any o e¢f there is a

feasible dual solution y such that b * vy < a then there

is no feasible primal solution.

(1.5.14) Strong L.P. Duality Theorem (Dantzig [D1]

p. 129 Theorem 1, p. 134, Theorems 2, 3).

If there is a feasible primal solution and an upper bound

c » X over for ‘all feasible primal solutions x then there

is an optimal primal solution xo and an optimal dual

N\
solution yo and ¢ ° x0 = b - yo.

(1.5.15) Corollary (Farkas' Lemma) (Dantzig (D1

p- 137, Theorem 6.)

Let A eR I, b e RY. There exists x e Ry such

I
that x 2 0 and Ax = b if and only if there is no y e R

such that ATy < 0 and b 'y > 0.

The following theorem 1§ used extensively"in later
:hapté}s. It is the tool used to prove optimality of the

solutions produced by the matching algorithms.




(1.5.16) Complementary Slackness

(Dantzig [D1] p. 135,136).

A femible sodution x% to (1.5.2)-(1.5.5) and a

feasible solution LO to (1.5.7)-(1.5.10) are optimal if

and o nly if

(1.3
j €K,

(1.5
i € H.

Proof. For any feasiblé solution x to (1.5.2)-(1.5.5)
and any feasible solution y to (1.5.7)-(1.5.10) wve define »
(1.5.19) £(x,y) =x + (ATy = ¢) +y + (b - Ax)
- X (AT - ) + (b - A_X)
KAy T Cx Ya'®n H

T
(A,y - ¢,) + X yi(bi-Aix)

(1.5.20) - I
i ieH

x
At b
by (1.5.5) and (1.5.10). By (1.5.2), (1.5.4), (1.5.7) and
(1.5.9) every term in (1.5.20) is the product of nonnegative
factors so

(1.5.21) f(x, y) 2 0.
Moreover,

(1.5.22) f(x, yl = 0 if and only if one factor

in each term of (1.5.20) is zero.

Simplifying (1.5.19) gives

€1.5:23) £(x,-9) =9 * ¥ =8 + W

(Note that (1.5.21) and (1.5.23) together prove (1..5.12)).

[



1f x0 and y satisfy (1.5.17) and (1.5.18) then
by (1.5.22) f(xo, y ) = 0. Therefore, by (1.5.21) and
(1.5.23) x and vy are optimal solutions.

ILf xo and yo are optimal solutions then by (1.5.13)
(Strong L.P. Duality) b * y = ¢ 7 x so by (1.5.23),
((xo, yo) = 0. Therefore by (1.5.22), * and yo musts/
satisfy (1.5.17) and (1.5.18).0

Notice that the sufficiency of (1.5.17) and (1.5.18)
vere easily proved, however we required the strong duality
theorem of linea™ programming to prove their necessity. In
the applications we make use of complementary slackness in
proving optimality of the matchings produced by the blossom
algofithm and the face optimization algorithm, all we require
is the sufficiency .of (1.5.17) and (1.5.18) for the algorithm
in fact produces solutions xo and y0 satisfying (1.5.17)

and (1.5.18). \

1.6 Integer Programming and Good Algorithms.

When studying algorithms it is often desirable to be
able to establish an upper bound on the amount of work
performed by the algorithm as a function of the size of the
problem. An elementary step of an algorithm {s any step
performed by the algorithm w§;ch does not depefid on ‘the size
of the problem, for example adding two numbers , comparing two
pumbers, seeing whether an edge of a graph meeéts a node of
a graph. Thus an algorithm will, in solving a problem,

i

perform a certain number of elementary steps. 1f there is




some constant K such that the number of these eleméentary

steps which can be-performed in solving a problem P whose

size is measured by the parameters rl, rz.....rn is no
greater than K * [(rl. rz,...,rn) where f is some
function of Ty rz,...,rn then we say that an upper bound

on the amount of work performed by the algorithm is of the
‘

order f(rl, rz....,rn).

In this thesis, when discussing bounds on algorithms,
we make a "fixed-word" assumption, namely that the time
required to perform arithmetic operations (addition,
subtraction, division by two) on two numbers 1is independent
of the number of digits i{n the numbers. This is the way in
which most large computers operate, the number of significant
digits to be considered becomes a constraint as to whether
or not a problem is solvable rather than a factor in the
time taken to solve the problem.

Following the terminology of Edmonds [El] we call
an algorithm "good" -if there is an upper bound on the amount
of work performed by the algorithm that is of the order
p(rL, rl,....rn) where p(rl, r2,...,rn) is & polynomial
function of Ty Tys +ovs ta’

Consider the problem (l.S.l)e(l.S.S) with the added

restriction

(1.6.1) xj is integer valued for all j € Je

Such a problem is called an integer programming problem.

Although it does not have a bolynonill bound, the famous

Simplex Algorithm of pDantzig, does provide a practicnl

method of solving reasgn.bly large linear programming problems.




CHAPTER 2

Basic Polyh edral Theo

In this chapter we define bolyhedra and develo some
F P

of their basic properties which are used in later chapters.

In particular we prove two theorems characterizing the

facets of a polyhedron which are used extensively in

Cchapter 4.

This treatment of the subject, suggested by J. Edmonds,

is most similar to that of Stoer, Witzgall [S1]. Other
standard references are Grinbaum [Gl) and Rockafellar [R1]. ,
is that

The advantage of our approach for present purposes

it tends to emphasize the relationship between polyhedral

theory and linear programming and it is in fact this

relationship which prompts our interest in special classes .
of polyhedra.
N
2.1 Polyhedra and their Faces
Let I and J be finite sets, let
IxJ 2 o 1
A-(a”:lsl,jc.!)uﬁ and let b=(b1:111)c'\¥{.
We call the set of linear inequalities - Ax < b. a linear
system and define a polyhedren to be the solution set of
any linear system. We define the polyhedron
2 J ;
- P(A, b) = {x € R : Ax s bl}.
We take A, b, I and J to be defined as above throuwghout
the rest of this chapter.
1f there is 1 ¢ I such that Ai = 0 then either X \

bi < 0 4in which case P(A, b) = ¢ or else bl 2 0 and




P(A, b) = P(A, ). Therefore we will henceforth
ol ¥
assume that A = 0 for all i €6 I (that is, the matrix

A has no zero rows).

If K is a finite set, A' ¢ RX*J  qna b' ¢ RE
then
P {x e R J: Ax b, A'x = b'
is the same set as
Q= {x e R”: Ax s b, A'x < b', (-A")x s -b'},

Since Q 1s a polyhedron, we have

o J
€2.1:1) any P c R which is the solution set

of a finite system of linear inequalities and linear

equations is a polyhedron.
For any I' ¢ I we define

(2.1.2) £(1') = {x ¢ P(A, b): AI'X - bl,).

By (2.1.1) f£(1') 1is a polyhedron and is called 2 face of
P(A, b). The fact that the faces of P(A, b) depend on
the pquhedron, not the linear system Ax < b 1is shown in
(2.1:5). The empty set is also taken to be a face of every
polyhedron.

It is clear that -

(2.1.3) every face of a face of a polyhedron_ P

is itself a face of P,

also,




the intersect

faces of a polyhedron P is its

1 c 1

kekK

for k K we have

There associated with
IC C

is ev

a unique maximal set I fo

(since for any t € I, either th

t

such that Alx < in which ¢

0

exists and t € I'). We call

b. We say that Il is the

is

It is easily seen that

linear inequalities which define

the faces of

itself and not upon the choice o

now prove by showing that

polyhedron F is a face of P

linear function ¢ which is max

the members of F.

(2.1.5) Theorenm. F

of P(A, b) 1if and only if

(2.1.6) there is e &

the maximal

there

the polyhedron depend only

a nonempty subset

P(A,

ion of any collection of

elf a f

f(lk)

ery linear systém Ax < b
£(1%)

b)

r which P(A, b)

t
ere exists x €

P(A,

t

ase no such x

I0

or

equality set F

subset of I

are many different sets of

the same polyhedron. However

ypon the polyhedron

f inequalities. This- we

F' of a

if and only if there is some

imized over P by precisely

b) is a nonempty face

/\KJ a ¢ R such that

and

cx = a for all x €¢ F and

< a for all x € P(A, b)-F.

Proof. First we

F be a nonempty face of P(A,

prove the necessity of (2.1.6),

b),

let

0

let I be the equality




Then for each x ¢ P(A, b) - F there is some
t(x) = Io such' that
2.1.7
( ) Al(x)x ¢ (x)
0 " ¢
If I = ¢ we take tj Q, for all j ¢ J, otherwise
K ¥ a o
take LJ "(aij' i 1) for all j € J
For any x F,
. g . 0 0
L(c -3 6 - 3 : | J = I t 1 ¢
(x:xj j J) (aijxj ie o -J & J) L(bi i 1)

since 10 is the equality set of F. For any x € P(A,b)-F

we have

= ) 0 i
L(cjxj. jeJd) = ~(axjxj. i e I'-{e(x)}, j € J) + “(at(x)jxj

tjed)

< I(b,: 1 ¢ 19) by (2.1.7).

Thus if we take a = Z(bi: ice 10), a and c so defined
satisfy (2.1.6).

We now prove the sufficiency. Let F be a nonempty
subset of P, let c and a be.as in (2.1.6). Then the

linear program

maximize ¢ * x

Ax £ b

-

has an upper bound. So by the strong linear programming
duality theorem (1.5.14) there is an optimal solutiap

y (y : 41 € I) to the dual linear program

4 minimize b - y &




By complementary slackn:ss (1
Ax s b maximizes cx if and
0 h
i 1 such that Yy = 0 . Thu
and the proof is complete.l
We obtain the following r

and (1.5.10).

Le

(2.1.8) Theorem.

5.16) a solution x to
only if Alx = b for all
us F = € I: y, = 0})
i
esult by combining (2.1.6)
J
t c ¢ R”, If there is o

such that ¢ * x € a for all ‘J,‘;_belUni,iA“_L,lU_i,_“,“jﬁm’[V
polyhedron P(A, b) then there is a face F of P(A, b)
such that x maximizes c X for x ¢ P(A, b) if and
only if xo c F.

Proof. Since P(A, b) # ¢ and since ¢ * x s @ for
all x ¢ P(A, b) it follows from (1.5.11) that there is
xo € P(A, b) such that c xo = max{c * x: x € P(A, b)}.
et P 2. ({x ¢ P({A;, D)2 ¢ * X @ ¢ ° xo). By (2.1.5) F
is a face of P(A, b).0

Let 10 be the equality set of Ax s b. We call
x € P(A, b) an interior point of P(A, b) if
A x <b

1—19 1-10
(2.1.9) Proposition. Every nonempty polyhedron

has_an interior point.

Proof. Suppose 10 is the equality set of Ax s b
and P(A, b) = . 1f Io - 1 then any x ¢ P(A, b) 4s
trivially an interior point. Otherwise for each t ¢ I -

there must be x[ ¢ P(A, b)

such that

1



2.6
A xl = b
)
I( IU
t
(2.1.10) A x < b
t t
A [xr <b ¢
I I
t 0 . 7 )
where I = I - I - {t} for otherwise t would be in the
equality set of P(A, b). Let
%8 8t v cx - 1N -0
1t follows immediately from (2.1.10) that
A X = b :
IO 10
A x <b
l—lo 1—10
so X is an interior point of P(A, b) as required.O
’ \

2.2 Dimension and a First Facet Characterization

Let Ax < b have equality set IO. If P(A, b) = ¢

then we define the dimension of P(A, b) to be -1

Otherwise we define the dimension of P(A, b) to be

|3] - rank (A 0) .

1
We show in (2.2.14) that dimemsion depends only on the

polyhedron not on the linear system which defines the polyhedron.
We denote the dimension of a polyhedron P by dim(P)T It
follows from (1.4.9) and (1.4.3) that if P = ¢ , dim(P) 2 0.

Cléarly every polyhedron) P' is a face of itself




called an improper face. All other faces including the
empty face, are called proper faces.

If dim(P(A, b)) |J], that is if P(A, b) = ¢

and rank(A O) = 0 where I0 is the equality set of Ax s b,
I

then we say that P(A, b) is of full dimension.
First wé show that the dimensien of every proper face

of a polyhedron P is less than dim(P).

{2.2.1) Proposition. Let F be a roper face of
Zropogicion. Ot & _PEQper :8co >

P(A, b). Then dim(F) < dim(P(A, b)) - 1.
Proof. Since P(A, b) has a proper face, P(A, b)
is nonempty. If F = ¢ then the result is trivial. Assume
0
P& ¢, et 1 be the equality set of Ax =< b, let ) 3

be the equality set of F. Then 10 ¢ I and

rank(A ) s rank(A ). Suppose

i I .
(2,2.2) rank(A ,) = rank(A )
10 1 3
Then a row basis of A 0 is a row basis of A hence for 5
‘ 1 & 3

any t e 1' - IO, A[ is a linear combination of rows of
A 0 1f b{ is not.equal to the same linear combination of

1
the components of b 0 then F = ¢, contradictory to our

I

assumption. Otherwise, for any x € W\J satisfying
A x.= b we also have A x = b @ ¢t € IO, contradictory

0 0 L m- ¢

1 I »
to the €hoice of t. Hence (2.2.2) must be false,

rank (A O) + 1 < rank(A )
'
1 I
and the iresult now follows from the definition of dimension.[ \
-




The

to linear in

(2

are affinely independent if and only if for any

dependence.

«2.4)

following proposition

Proposition.

relates affine independence

The vectors

~k
x

cTR.J: k e'K

h

€ the

k

vectors x

xh: " K-{h}

€

K,

are linearly independent.

2
2.8
, J k )
Let {x k K} ¢ R We say that x : k K AT €
affinely independent if for any (xk e R k € K) such that
: ko . p
“(xkx :t ke XK) =0
and
L(ak: k ¢ =0
we have T 0 for all k ¢ K. If xk: k ¢ K are not
affinely independent then we say that they are affinely
dependent.
Let (x k € K} ¢ R_J We say that x e RY 1is an
affine combination of {xk: k ¢ K} if there exist 1, € R
for k € K such that
.
X = I(ukx k ¢ K)
and
-
T s -
h(ak‘ k € K) 1
3\
The following is an immediate consequence of these definitions
k J
{(2.2.3) Proposition. The vectors x ¢ R”: kek
are affinely independent if ‘and only if ne xh for h ¢ K
is an affine combination of {xk: k ¢ K= {h}}.




independent and the pro

Npte that affine independence is

independence and affine dependence im

of is complete.

2.9
K , " .
P_r\')of. Suppose X @ k ¢ K are affinely independendt,
let h ¢ K and let k' = kK - {h} Let (‘k R k K')
be such that
'.(;k(x —xh): k K') =0
Then
~t(a,: k k*)x" + I(ax" s ke R =0
and
-] : & ) . e . -
‘(Jk,k e k') + b(nk. k ¢ K') 0
so since xk k e« K are affinely independent we must have
Sy 0 for all k €K and the vectors xk : ke K- (b}
are linedrly independent.
Conversely, suppose that for h e K the vectors
k h ' . "
2. = 2 stk ek 8 K - {h} are linearly independenk. Let
(a, ¢ R k € K) be such that .
. k
(2.2.5) L(akx kK e K) =0 Y
{2.2.6) X(Jk: kK € K) = 0.
Then by (2.2.6) g —Z(Jk: k ¢ k*) so (2.2.5) implies
«L(a xh k ek') + (e xk k ¢ K') = 0 or
k k
- h ' '
E(uk(x - x): ke K ) = 0. Since (" - % ): k e K are
linearly independent we have“uk = 0 for allsk € k' Hence,
by (2.2.6), @ = 0 and so X k ¢ K are affinely

0

implied by linear

dependence.

plies linear
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’ y J 2

For V c R we define the rank of V to be
the cardinality of a largest affinely independent subset of
v. In view of (Z.2.4) and (1.4.3),

2 ¢ ; ; qn J ¢
(2.2.7) the affine rank of VefR is no

greater than Pl o+ 1,

We now prove a theorem which relates the affine rank

of a polyhedron to its dimension and thus shows that the
dimension of a polyhedron is determined irrespective of the

linear systenm.

(2.2.8) Lemma, If dim(P(A, b)) = k

_then
P(A, b) contains k + 1 affinely indcpeﬁgﬁ;ﬁgielgmsi.
Proof. 1f k = -1 then P(A, b) = ¢ and the result
is trivial. Otherwise k 20 and P(A, b) = ¢. Let I
be the equality set of Ax < b. By (2.19) P(A, b) has an

interior point x which satisfies

(2.2.9) A x =D ’

(2.2.10) A

If k = 0 then {x)} is the set of affinely independent
elements we require, Suppose k 2 1 Since dim(P(A, b)) = R,

rank(A ;) = |3] - k. Thereforé by (1.4.6) nullicy(A o) = ki
I I

Hence there are k linearly independent vectors

)'l. YZ----,yk € RJ such that
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£2.2.11) 120 for 1 25 k)
Let t ¢, {1 25 " 3 B In view of (2.2.10) there is
€ > 0 ‘such that
t
A O(X + o€y ) b 0
I-1 I-1
since A (x + ¢ yt) = A x 4+ ¢
s 0 d
-t t l—lo t
Then A zlx # yl) A x + A vt
€ - € y
I0 t 10 t IO
= b
10
1
by (2.2.9) and (2.2.11). Thus the vectors Xx, X + 65,
x + (2y2....,x + ':kyk all belong to P(A, b). Moreover,
» 1 2 k . .
since Y 2 ¥ seeeny are linearly independent and since
k
., > 0 .for all t e {1, 2,...,k}, <1y1, (2y2, y €LY are
1 \ k

linearly independent. Hence by (2.2.4) x, X'+ €y pesesX ¥ €Y

are affinely independent and the proof is complete.l

(2.2.12) ‘Lemma. I1f P(A; b) contains k + 1

Vaffinel\'giﬁniegendent members then dim(P(A, b)) 2 k.

Proof. If k < 0 the result is trivial, assume

k 2 1. Let xo, xl,...,xk be affinely indepéndent members

of .P(A, b). Then if I° 45 the equality se¢ of Ax <D

(2:2:23) A ;x.-» ) for 1.¢ {0, 1,.%.,k).
) § 1

By (2.2.4) the vectors xl o B W » xo,...,x - x




2.12

are linearly independent. Moreover by (2.2.13)
i 0
A O(xl -x ) = A o* A o*
1 I 1
= b - b =0
0 0
I
for { ¢ (1, PRI § = Hence nullity (A U) > k and so
i |
rank(A o) < |J] - k% Thus dim(F) = |J| - mank(A ) 2 k. T
1 I

We can now combine these two lemmas to obtain the

following 'theorem.

(2.2.14) Theorem. The dimension of P(A, b) is

one less than the affine rank of P(A, b).

We showed (2.1.5) that the faces of a polyhedron P
are -independent of the choice of inequalities used to
represent P. A consequence of (2.2.14)  1is that the dimension
of a polyhedron is also independent of the choice of'inequaliﬁ{es
since the affine rank does not depend on the set of inequalities
used to define the polyhedron.

1f F is a face of P(A, b) and dim(F) = dim(P(A,b))~-1
theny F is called a facet of P(A, b).

In Chapter &4 we make extensive use of the following

corollary of (2.2.14) «

-

(2.2.15) Corollary. 1f F _is a proper face of

E_golxhe@zyn P of dimension d then F is a facet of

p 4if and only if F_ contains_ d affinely iddependent

and only 1f F CO°-Z-"=—

elements.




Proof. The result is a combination of (2.2.1) and

2.3 Second Facet C!’\i{rac‘erl’zﬁ[i,oin

We prove in this section that the facets of a polyhedron
P are precisely the maximal proper faces of P. We also
show that the facets of P correspond in a certain sensé
to a minimal collection of inequalities required to define
P. We then discuss the specialization of this theorem to

the case in which P is of full dimension. as this is the

situation which we study in chapter 4.

.

{(2.3.1) Theorem. Let P P(A, b) be nonempty

and let Iguibe the equality set of Ax < b Let 1' ¢
Lét P° = P(AI_I,, bI-ILl' Then P = P' if and only if

0
1' v 1 contains the equality set of a monempty proper

face of P.

)
Proof. Clearly P < P', suppose there is some Yy € p' - P.
Then for some nonempty K € 1' we ‘have
(2.3.2) Apgy S by
and
(2.3.3) Apy > By

By (2.%.9) P has an interior point w, that is, w satisfies

(2.3.4) A w <b 0’

(2.3.3) A w =05 0 .
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Therefore we can choose » ¢ R satisfying O A 1
such that if we let z aw + (1 - M)y then for some
nonempty T ¢ K
2.3.6 z =
( 3.6) A,Iz b’l‘ ,
(2.3.7) A z < b .
I-lO»T I—IO4T
(2.3.8) A,OZ <b 0
I 1
(Take A max((A‘y - bi)/(Ai(y - w)): 4 € Kl and let T
be the set of i € K which attain this maximum).
By (2.3.6) - (2.3.8) z ¢ P so
(2.3.9) A, z=0bD
10 10
0 . 0
By (2.3.6) and (2.3.9) z ¢ £(I uT) and by (2.3.7), 1 v T .
is the equality set of this face. This proves the necessity
0 0 \
of our condition , since Io vTcl vKecI W 4. \
Conversely, suppose that I0 " contains the equality
set of a nonempty proper face F of P. Let K be the
equality set of F. Note that 1 cx < IO v I'. By (2.1.9)
F has an interior point y, that is, y satisfies
-
(2.3.10) Ay = bK
1 (2.3.11) A Y < bl—K .
Similarly P has an interior point w, that is an element

w satisfying

[

(2.3.12)
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(2.3.13) A W b
1-1° 1-1°
For any 0 1let z(e) (1 + €)y - ew Then
(2.3.14) A .z(€) = b for any € . by
0
1 1
(2.3.10) and (2.3.12).
£2:.3.%3) A z(e) = b + e(A y - A w)
h—IO K'IU A—IO K—IO
> b for any € > 0
K—Io
by (2.3.11) and (2.3.13). ; %
A z(e) = A y + € * A O(y - w)
I-K I-K K-1I

so in view of (2.3.11) if we choose € >0 sufficifently small

we will have

(2.3.16) Ao HEE) 8 by o o 3

Since K > 10, by (2.3.15) 2(¢) ¢ P. Since I'-Kec I - 1",

by (2.3.14) and (2.3.16) =z(€) € P' = P(A;_;4s by _14)-
That is P # P and the proof is complete.l
We are now in a positign to prove the following theorem

equating the facets of a polyhedron to its maximal proper

faces.

(2.3.17) Theorem. F = ¢ is a facet of P(A, b)

i1f and only if F 4is a maximal proper face of 'P(A, b).

Proof. Suppose F = ¢ is\ a maximal proper face of
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P(A, b). Then by (2.2.1) -
(2.3.18) dim(F) s dim(P(A, b)) - 1.
0 N2 '
Let I be the equality set of Ax £ b, let 1 be the
. . ' 0 e 9. ¢4
equality set of F. Let iel' -1 and let K I1'-1"=-{1}.
0 ' _r . .
If K u-1° (= I' = {i}) contained the equality set
of a proper face F' of P(A, b) then 'F F' contradicting
the maximality of F. Thus by (2.3.1),
P -
P(A, b) P(AI—K' bl—K)
0 o
and I is the equality set of AI—Kx < bI—K . The equality c
0

b ) is 1" y {1} so since

set of F -in P(AI-K’ I-K

rank (A ) s rank(A 0) + 1 we have

IOU(11 I

(2.3.19) dim(F) 2 dim(P(A, b)) - 1.

Combining (2.3.18) and (2.3.19) we see that F is a facet

of P(A, b).

Conversely, suppose that F = ¢ is a facet of P(A, b).

Then
(2.3.20) dim(F) = dim(P(A, b)) - 1.

Suppose that there is a face F' of P(A, b) such that

F c F' < P(A, b). By (2.2.1)

~ (2.3.21) dim(F') s dim(P(A, b)) - 1.

By (2.1.3) F dis a face of F' _ and since we assume . F ¢ F',

F 4is a proper face of F'. Thus by (2:2.1),

‘




(2.3.22) dim(F) < dim(F') - 1. .

Combining (2.3.21) and (2.3.22) we have
dim(F) s dim(P(A, b)) - 2

a contradiction to (2.3.20) which proves the theorem.[

It should be noted that the hypethesis F = ¢ is indeed

necessary in (2.3.17) as is shown by the following exampld.

o (1,2} .
Let P ((xl, xz) e R T oxy 4 xy = 1}. Then

dim(P) = 1 and ¢ 1is the only proper face of P. But

dim(¢) = -1 so ¢ is not a facet of P. This also ‘illustrates

that there do exist polyhedra having no facets.

(2.3.23) Corollary. Let P be a polyhedron, let

d = dim(P). Let F = ¢ be a face of P of dimension

k < d. Then there are faces Fk*l: Fk+2"""d—l of P
such that ;i
PocBy,y € Puyg S0Py, <P .

dim(Fjr) = 4§ for j € fk+1l, k+2,...,d-1}
Proof. We prove by induction on d - k. 1If 4 < k=1
then there is nothing to prove: Suppose ‘the result is true

when d - k <t 22 and assume d =k +t. Let Fd-‘ be a

1

maximal proper face of P containing F, that is

Then F, , * ¢ so by (2.3.17) dim(Fd) = d - 1. Since

. (d-1) - k <t .there are by our induction hypothesis faces

of F sdch that

o d-1

Frer® FrazrooooFa2

k+1l




and dtm(FJ.) =3j for j e {k+1, k +2, »d = 2}. "By
(2.1.3) Fj is a face of P for J ¢ E ¥ 1, k +.25 d - 2
so the result follows.[
Given the polyhedron P(A, b) we may wish to find a
* *
set I c I such that P(A a° b ‘) = P(A, b) and I is
I I
minimal with this property. The next theorem characterizes
such sets. First .we observe the following fact.
(2.3.2%) Proposition. Let F‘, F,L_ 'Fk be the
facets of P(A, b), let Io be the equality set of Ax < b
and let li be the equality-set of Fi for 41 ¢ (1, 2, .k}
i i 0 ' ( 3
Then I I = 1 for all distinct i, § ¢ (1, 2,...,k}
Proof. Let i, j be distinct members of {1, 2, %3
™ i 3j 0 .
and let K = I" n I, Then I" < K. Since F, = F and

i 3

since both are maximal proper faces (by (2.3.17)) there are

x, ¢ ¥, =7 and x, ¢ F, - F Then x x, € so

Sk’ S g ¢ vy T Ay ok P
P, » £(K) = Fj' f(x) > rl v P! so since F!

are maximal,

But and l"J

f(K) = P(A, b) so K = lo, completing

s

(2.3.25). Theorem. " Let F.: i ¢ K be the facets

let IO be the equality

i

of anonempty polyhedron P(A, b),

and let I‘

set of Ax < b be the equality set of F
*
for s & R Let 1 e X Then P(A, b) = P(A a2 b ') if
I I
and only if
2.3.26) rank (A 0 &) = rank(A Ol
Inl 1

Ll
E
o

the proof.[]
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* .
2.3.21) (1" a1ty - 1% 24 foran 1K
*
Proof. Supplse I satisfies (2.3.26) and (2.3.27).
Then the rows of A 0 %« are a basis of the rows of A 0
I nI I
0 *
Hence for any t el r '3, A[ must be a linear combination
of rows of A 0 _* and bl must b& .the same linear
I'nl
combination of the' rows of b 0 % OF ve would have
Inl
P(A, b) = 9. Thus if  x LGLJ satisfies A x =b
0 __* 0 . *
I nl 1 I
then it also satisfies A x = Db .. Hence
0 0
I I
(2.3.28) P(A ,, b ) = P(A 0 _%* b 0 a):
1 1 Ivl Ivl
* 0
By (2.3.27), (I - I ) v 1 cannot contain the equality set
of a facet of P(A, b) so by (2.3.17) and (2.3.1)
(2.3.29) P(A 0 _%* b 0 «) = P(A, b).
I vl Ivl

Combining (2.3.28) and (2.3.29) proves the sufficiency of
(2.3.26) and (2.3.27).
*
If 1 does not: satisfy (2.3.26) then dim(P(A ,, b )) 2
1 1
dim(P(A, b)) + 1 so by (2.2.14), P(A ., b ) # P(A, b).
I

I
* * 0
1f 1 does not satisfy (2.3.27) then (I - I ) vl contains

the equality set of a proper face of P(A, b) 8o by (2.3.1),

P(A, b) = P(A Tince P(A, b) <

).
* *
Ioul louI

P(A 0 _%* b ) S P(A ., b ) the result now followswi
Ivl Ivl I 1

0
If P(A, b) 1is a polyhedron of full dimension and I

is the e#uality set of Ax <.,b.' then rank(A 0) = 0 so since

I




2.20
0 '

we assume A has no zero rows, I = ¢. If I is the
equality set of a facet of P(A, b) then rank (A ) =1

'

1
so if we define for each iel

p(i) {t ¢ I: A[ = ]'\x' bl = ab, for some
a € /& 0

then we can easily see that all equality sets of facets are
sets of this kind. Moreover for any 1 ¢ I, for any t ¢ p(i)

we have f({t}) = f({p(1)}). Thus (2.3.25) specializes to

the following.

(2.3.30) Theorem. }L'LWP(A, b) be a Eolzhedron of

full dimension. Then for any £ 1. Pla, &) = PLAK b.) if

LSS S W 2K

and only if K n p(i) = for each & ¢ I such that fF({i))
and only if K o p(i) = ¢ ZOT S° - - —— ch that EX1%°7

is a -facet of P(A, b).

12.35.3%) Corollary. Let P(A, b) be of full

LA L2 P

dimensiom: ————

dimension. Then K ¢ I is a minimal set such that

‘
P(A, b) P(AK, bK) if and only if for each i ek, £C{1i})

ijs a distinct facet of P(A, b).
We also have the following result.

(2.3.32) Theorem. Let P(A, b) . be of full dimension,

Mot ST

let K c 1 be such that {£(4): 1/ek} 1s the set of facets

. n
of PCA. b). ‘Supposs P(A', b') S P(A ) whére A e

.
b ¢RI .and I' is a finite set, Then P(A, B) = P(A', b')

if and only if

‘ (2.3.33) for each 4 ¢ K there are 't ¢ 1' and

some real a > 0 such that Ay = a * Ay and b! = ab
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- o ¢ )y x J
Proof. Assume ) i 1 = ¢, define A ¢ V\(l ¥1)
and b ID\I'“I by A. = A, A, = A', b b, b z b'
n € y 1 ’ Sl ’ 1 » i
Suppose P(A, b) = P(A', b'). Then P(A, B) = P(A', b') and
{£¢i): 1 € K} is the set of facets of P(A, b). Hence by

(2.3.30) (taking A, b for A, b and ; 4 for K) we
see that (2.3.33) must hold.

Conversely, suppose (2.3.33) holds. By (2.3.30), °
P(A, b) = P(AK, bK). Since P(A', b') > P(A, b) = P(AK' bK)’
(2.3.33) clearly implies P(A', b') = P(AK‘ bK) = P(A, b)

and the proof is complete.l

(2.3.32) shows that the facets of a full dimensional
polyhedron P(A, b) determine up to a positive multiple the
minimal set of inequalities of which the pelyhedron is the
solution set. That is, any set of inequalities defining
P(A, b) must contain a positive multiple of Aix ES b‘ for
each i such that f£({1i)) 1is a facet of P(A, b). <{2.3.31)
shows that the converse also holds, if Ax < b 4is a minimal
set of inequalities defining a full dimensional polyhedron
P, then f£({i}) 1is @ facet of P for each 1 ¢ I.

This is one of the reasons for our interest in the facets
of matching polyhedra. These polyhedra (see section 3.4)
canr be defined for a graph G by a set of inequalities
vhich generally is far from Esing minimal. By characterizing
the facets of matching polyhedra we are charac;erizing the
mininal sets of inequalities necessary and sufficient _to
determine these polyhedra.

It, may happen (as is the case with matching polyhedra)

that .tj =0 oz -3 ,fer-all 1 <% and J 8 & Then we




~

and we simplify (2.3.30) as follows.

(2.3.34) Theorem. Let P,(A,',b) _be of f 1

I, e J.

dimension , suppose 3,, € {0, 1} fc

Then for any K ¢ 1, P(A, b) = P(A., by) If _and only if for

ch 41 € I “such that €({i}) is a facet of P(A, b) there

is t ¢ K such that A . = A and b . =b

RIS oot b §

2.4 Vertices of Polyhedra.

In this section we prove results about vertices of
polyhedra which indicate their importance to linear programming.
We also show that bounded polyhedra are convex combigations
of their vertices.

We say that x ¢ P is a vertex of the polyhedron p if

{x} 4is a face of - P and dim({x)W) = O.

(2.4.1) Theorem. x is a vertex of P(A_,__){(ig
J -
nd only if there is séme C € R such that X is the

and only if there 28 B%0° = ——=—

unique member of P maximizing cX for x ¢ P.
f_[n_oi. Any two distinct members of ’KJ are easily seen

to be affinely independent soO F c p(a, b) is a~face of

P(A, b) of dimension 0 if an? only if ¥ is & face -of

P(A, b), and lFl = 1. By (2.1.5) F is a nonempty. face of

P(A, b) if and only if there is _¢ ¢ TP\J such that ex is

maximized over P(A, b) by precisely the members - of F.
'

The result follows from these two facts.O
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We say that a polyhedron P TR

is bounded if there
exist L, u € IRJ such that L s x <u for all x ¢ P.

A bounded polyhedron is commonly called a Eolztwo}_c(seu

Grunbaum [Gl]).

¢
(2.4.2) Theorem. Let P(A, b) be a nonempty
bounded polyhedron. Then P(A, b)' has a vertex.

Proof. Let I' be the equality set of a nonempty face
F of P(A, b) of minimim dimension. 1f dim(F) = 0 then
F consists of a vertex and we are finished. Otherwise if
dim(F) > 0 then there are by (2.1.8) an interior point Xx
of F and by (2.2.8) an element y € F =~ {x}. For any

€ ¢ R let z(e¢) x+ €+ (y=-x). Then A z(e) = Db,
) § 1

for 411 "¢ e R .« ‘11 Al_I.(y - x) < 0 then z(g)eP(A,b)

for.all € ¢ R such that € 2 0 which contradicts P(A, b)

being bounded. Therefore there is iel~-1I' such that
b, - A .x
* i i 3
- > 0. A o= - 3 - I° d
Ai(y x) 0 Let min{Ai(y-x) iel I an

*
Ai(y - x) > 0}. Then 2(A ) ¢ F and there is 1 ¢ I - 1’

*
such that Aiz(A ) =b,. Since x e F - F(I' v {i}),

i
£(1' v {1)) 1is a proper face of F, since z(x.) e £(1' v {1}),
£(1' v (1)) =.9. By (2.2.1) dim(£(1' v {(i})) s dim(F) - 1

and by (2.1.3) £(1' v {4i)}) is -a face of P(A, b)

contradicting our choice of F. Bence dim(F) = 0 and

F consists of a vertex of PT}, b).0

Since any face of a bounded polyhedron is itself a

bounded polyhedron, we have the following corollary.

¢+ (2.4.3) Corollary. \Every nonempty face of a bounded

polyhedron contains a vertex.




Observe that by (2.1.5) 1if ¢ ¢ ﬁ\'l is such that cx
has an upper bound for x P(A, b), then this upper bound
is achieved by precisely,the members of some nonempty face
of P(A, b).

By combining this, (2.4.3), and the fact that for any

@
c € //1‘], ¢ * x has an upper bound over a bounded polyhedron

we obtain the following.

(2.4.5) Theorem. Let P be a nonempty bounded

J
polyhedron. Then for any ¢ e R ; there is a vertex v of

P _which maximizes ¢ * x over P.

Let K be a finite set, let (xk: k € K} ¢ mJ. We

say that x is a convex combination of {xk: k € K} it

there is (A : k ¢ K) ¢ '|RK such that
(2.4.6) A, 2 0 for all k ¢ K,

(2.4.7) IO : k e K) =1,

(2.4.8) X = L(Akx t R e K).

A set X ¢ TRJ is convex if every convex combination of

every finite subset . of X beldongs to X.

(2.4.9) Proposition. Polyhedra are convex.

Proof. Let P(A, b) be a polyhedron. If "P(A, b) = ¢

then the result is trivial. If" P(A, b) = ¢ 1let

k

X = {x :% € K} be a finite subset of P(A, b) and let x

be a convex combination of X. Then there is @) k € K) cﬂx

K
satisfying (2.4.6)-(2.4.8). Hence

i



Ax = I('kA x k € K)
< L) k ¢ K)b by (2.4.6)
= b by (2.4.7)
so x € P(A, b) and (2.4.9) follows.
J

If Ve R then the- convex hull eof v is defined to
be the set of all X € “{J which are conveéx combinations
of finite subsets of V.

(2.4.10) Theorem. If P(A, b) is a nxuanEi\
bounded polyhedron then P(A; b) is equal to the convex
hull of its set of vertices.

Proof. Let V = (vk: k ¢ K} be the set of vertices of
P(A, b). Let H(V) denote the convex hull of v It
follows from (2.4.9) that H(V) ¢ P(A, b).

Let x € P(A, b). Then x € H(V) if and only if there
exists A = (At k ¢ K) e RX satisfying (2.4.6), (2.4.7) and

Suppose no such A
there are y € R

(2.4.11)
- g (2.4.12)

Since P(A, b)

X = [(Akvk: k € K).

exists. Then by Farkas' Lemma (1.5.15)

and yo € 1R such that

y-;+y0>0.

is bounded , by (2.4.5)
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P *
there is + € IN such that y = max{y * x: X € P(A, b)!} and
there i8 h € K suclrithat y 4. Wy ® M By (2.4.11) 1.5 =Y,
so since x € P(A, D), ¥y * x a S =y, contradictory to
(2.4.12). This completes the proof .l

The number of vertices of a polyhdgdron is generally much
larger than ‘the dimension of the polyhedron. The following
theorem due to Carathéodory [Cl]) shows that if x belongs to

e J )
the convex hull of - S € /K then if r 1is the affine rank
of §, x can be expressed as a convex combination of at most

r members of S.

2.4.13) §_alrathéurdor!'LThoﬁ(Lrie'm‘. Let r be the

affine rank Of S ¢ A_JL

let x be a member of the convex

hull of S. Then there ia % % 3 such that |ly] s r and x

is a convex combination of the members of Y.

Proof. See Stoer Witzgall [s1] p. 35.

We combine (2.4.12) with (2.4.10) and (2.2.14) to obtain

(2.4.14) Theorem. Let P _be a bounded polyhedron of

dimension d 2 0. _Then any X € P can be exgressed as a convex

combination of a set of at mgst d + 1 vertices of P.




Chapter 3 “

The Matching Prc blem and the B lossom Algorithm

In this chapter we describe the matching problem
considered here and give a new version of the so-called blossom
algorithm for solving this problem. This algorithm, which
is used extensively in later chapters, is actually a cnmbi{nation
of several other versions of 'the blossom algorithm. The

relationship of this version to other available versions is

discussed later, when sufficient terminology has been developed.

3.1 The Matching Problem.

Let V and E be finite sets, let V u V be a
partition of V. Let ¢ = (c,: j ¢ E) be an arbitrary real
vector, let b = (bi: i ¢ V) be a vector of positive integers.

Let A = ( i€V, j e E) be a matrix of ,zeros and ones

aij:

which satisfies
(3.,1.1) I(a : 1 eV) =2 for all j ¢ B.

Then the matching problem.undeér consideration is the following
probleq.
Find,if one exists,a vector x = (Xj: j e E) ¢ {P\ ~

such that x is a nonnegative integer for all _j ¢ E,

3

JcB)SD for all 1 e¢ V,
£Ca, . x,: J € B) =D for all i e v,

and which/maximizes ¢ * x subjegt to these conditions.




I1f no such vector €3 then we wish to exhibit a structur
which will prove that no such vector exists.

The maté¢hing problem is, therefore, a special case of
the integer programming problem (see section 1.6), the
pxnuipal restriction being (3.1.1). However vhereas all
known algorithms for solving general jimteger programming
problems have bounds which are uxpunvnt;&l'in the size of the
input, the blossom algorithm is a method for solving matching
problems whose bound is a polynomxal function of the size of
the input. The description of the algorithm is facilitated

by interpreting the problem graphically in the following manner.

Let G be the graph (V, E, ¥) where ¥ is defined by

v(j) = {1 e V: aij-'l)fur all j ¢ E.

In view of (3.1.1), le(3)] = 2 for all J ¢ E. Thus G is
a graph without loops having edge set E and node set V.

Then the matching problem is

(3.1.2) maximize ¢ * X
where
(3.1.3) xy 2 0
for all j ¢ E
(3.1.4) xj integer valued
- (3:1.9) x(8(1)) s b, for all ¢ v
(3.1.6) x(§(1)) = b, for all. 1€ v

(See (1.3.3), (1.3.4) for the definitions of Y, 8)- That

is, we wish to assign a nonnegative integer x to each edge

3
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i of G so that the constraints (3.1.5) and (3.1.6) are
satisfied and so that e °-x is maximized.

Throughout the remainder of this chapter G = (V, E, V)
is a graph, b = (u‘: i e V) is a vector of positive integers
called _degxt-q constraints, ¢ = (cj: j € E) is an arbitrary
real vector e‘lnd vi oy v is a partition pof V.

‘
The purpose of this chapter is to describe an algorithm,

called the E_Q_s_ﬂ_a_lﬁcorilﬁn_\, for solving the problem
(3.1.2)-(3.1.6).

It is a version of Edmonds' blossom algorithm. In [El)
and [E3] are versions of the algorithm which solve the problem
of maximizing x(E) subject to X satisfying (3.1.3)-(3.1.5)
taking bi 1 for all i*e V and V = ¢.
Another version [E2) solves the more general
problem (3.1.2)-(3.1.5) where b1 g 1 for all i ¢V and

The description of the blossom algorithm in this chapter
is based upon a version of the algorithm [E4]
which solves the problem (3.1.2)-(3.1.6) taking v- =V and
allowing the bi to be arbitrary positive integers.

fhls algorithm has been generalized (Johnson [J1],
Edmonds, Johnson [E5] and [E6]) in other directions from
those. considered in this thesis. In ‘addition a computer
1Ip1emen}ation of a generalized algorithm is ava}lable (Edmonds,
Johnson, Lockhart [E7]). :

We call any x € ﬂ{z satisfying (3.1.3) and (3.1.4) a
-ltchlngn If x also satisfies (3.1.5) and (3.1.6) then x

is called a feasible b-matching or simply a feasible matching.




is a mat 1g such that x(6(i)) = b for all
> |

ic$ < \'J then we say that X is a perfect 7m7.|71c7i31;u_7uf7 S3

if § = V. then we hmay simply call x a perfect matching of
G. For any matct x and any node i we define the
deficiency of x at i to be b, - x(8(1)). If x has a
SSSSCASRNE.2E. = _S8- 2 i

positive deficiency at 1 then we say ¥hat x is deficient

at _i. If- x is deficient at i then sometimes we call i

a deficient node relative to x. Tnus x is a perfect

matching of S gV if S contains no deficient nodes

relative to x. In Chapter 4 we will study extensively

matchings having a deficiency of 1 at some node of G and ¥

having a deficiency of 0 every other node, the so-called

near perfect matchings.

1f bi = 1 for . all i €e V then if x 1is a felasible .

matching, M = {j ¢ E: x, = 1} 1is a set of edges of G meeting

3,

each node of G at most once and each node of V exactly
once. This special case has received a great deal of atteantion
and often 1s‘th(‘ starting point for studies of matching theory
(e.g. Berge [B2]), Edmonds [El), [E2],. [E3], Tuete [T2]).

We call this problem the l-matching problem and call such a

vector x a feasible l-matching. Several of our theorems of

chapter 4 are particularly interesting for the case of

l-matchings.

(3.1.7) Proposition. Let x be a matching of .C

which satisfies

(3.1.8) x(8(4)) s b, | for all 1 e V.
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Then for amy S c V_such that b -
(1.9 7 xGs) 5 M
.
Proof. By (3.1.8) I(x(8(i)): 1 € S) < b(S) and since

E(x(8(i)): 1 € §) = 2x(y(S)) + x(8(S)) it follows that

= 2x(y(S)) s b(S) = x(&(s)) 2 b(S)

Since x(y(S)) is integeér valued and b(S) is odd it follows
that

2x(y(8)) = b(S) -1

and (3.1.9) is immediate.[]

The sets S eV for which b(S) is odd play an
important role in matching theory where G is not bipartite.

For any such set § we define

(3.1.10) gy " (b(s) - 1)/2

The following are two basic results concerning graphs
of particularly simple structure. Notice that in both
(3.1.11) and (3.1.16) we neither postulate d nor|require

x 'to be integer valued or nopnegative.

(3.1.11) Proposition. For any tree T, for any

d = di: i € V(T)) ¢ {!)\V(T), for “any v € V(T) thére is a

unique x T (KE(T) such that

£3.3:12) ziéT(l)) = di for all 1 e V(T) = {v).

Prqgﬁ.' We prove by inductiom on {Vv(T)|. 1If

|v(T)| = 1 or 2 the result is trivial. Assume the result
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true for trees having fewer than k mnodes, for k 2 3 and
assume tV(])} = k. By (1.3.12) T has a node ¢t of valence
] different from Vv, let j} = ‘T(t). Clearly

(5=1.13) x(8,.(t)) = d {f and only if x, =d
T t ' j t

Let T' be the tree obtained from T by deleting ¥ and t,
" :
.

let w be the end of ] in T'. Define d' by

d gor. 1 € v(1') - {w!

Since v(Tr')| < k, by our {nduction hypothesis
y

'
(3.1.14) there {s a unique X' E 1KE(T ) such

that x'(éT,(i)) = d for all 1 ¢ v(r') - {(vl}.

'
i
Define x = (xh: h ¢ E(T)) by

' for h e E(T") = E(T) - {3},
(3.1.15) x, ‘&

By (3.1.13)—(].1.15), x is the unique member of {R\E(T)

satisfying (3.1.12).0

(3.1.16) ggpgositionA Let B be a connected graph

containing no even olygon and one odd polygon p. Then for

any d = (d‘: i ¢ V(B)) ¢ 1&V(DA there is a unique X € 4K‘E(B)

such that

(3.1.17)  x(8(1)) = d,_ for all 1 ¢ V(B).

_for ait ———t

[

proof. Let j € E(P), let 'B'- be the graph obtained from
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by removing j. Then B' is a tree and so is bipartite,
let u, v be the ends of IS let Vl be the part see
(1.3.7)0f B containing {u, v}, let V, be the other part.
Let d' = (d;: i ¢ V(B)) be defined by
di for i € V(B) - {u, w}
a'
i - N
d1 - l/Z(d(V}) - d(\'z)) for 1 ¢ {u, v}.

Then

(3.1.18) d'(Vl) = d'(V2)~

X '
By (3.1.11) there is a unique s’ & v\({E(B ) such that

x'(8,,(1)) = df for all 1 ¢ v(B) - {u}. By (3.1.18) we

i
1?\3(8) by

have x'(iB.(u)) B d; so if we define x

x; for h ¢ E(B') = E(B) - {j},

l/Z(d(Vl) - d(VZ)) for h = j

then x satisfies (3.1.17) as required.

Conversely, suppose X € ﬂ’\E(B) satisfies (3.1.17).
B' is bipartite so we have ;(65.(V1)) - ;(es,(vz)). Therefore
we must ‘have X, .= 1/2(d(V,) - d(V,)). Therefore x|E(B")

]
satisfies }(eB.(x)) = d} for all " 1 ¢ V(B) - {u} so

x|E(B') = x" by (3.1.11). Thereforg x = x proving the
uniqueness of x.0

The following six sections (3.2-3.7) are used to develop
the general framework required to describe the blossom
algorithm. The algorithm itself is presented in Section 3.8

and in Section 3.9 we compute a bound on the amount of work
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requried by the algorithm to solve a problem.
3.2
Let R be a set of distinct nonempty subsets of v.
We say that R is a “estﬁ.,f,‘iﬁ"]l}' if for any distinct S,
T ¢ R such that §nT=¢ we.have S c T or T ¢ S. An 4

important feature of nested families (of which we make use
in establishing upper bounds dn the amount of work required
by various algorithms) is that they are small compared to

the total number of subsets of V.

(3.2.1) Theorem. f R __i_sgainjsh[ed family of
subsets of a nonempty set V then Ir| s 2|v| - 1.
Proof. We prove by induction on |v]. 1£ |v] =1

then the result is obvious. Suppose the result is true

vhen |V]| < k for some k 2 2 and suppose |V| = k. Let

\
R be a nested family of subsets of V _ for which - |R| is as
large as possible. Since - S ¢ V for all S € R "we must

have V ¢ R or R WU {V)} . wvould be a larger nested family.

We must also have
¢3.2.2) {x) ¢c. R for eyeyy = € v,

for if there is x ¢ V such that {x)Y ¢\ R, them R U {x}
is easily sgen to be a larger nested family.
Let 'V VoseeeaVy be the maximal members of R - {v}.

since |v]| 2 2, since the members of R are distinct and

by €3.2.2),
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>
,t} let R(V,) R: 8§ ¢ V,}
t
Then R = R(V,) {v} and V= u V_, . By our induction
i i :
i=1
hypothesis k(\'11 < 2‘\"; -1 for i ¢ {1, 2, ,t
t
Since U R(V,) v {V} partitions R,
b !
i=1
= t
|IR| = I ;R(\")" +1
i=1
t
£ 2z tvl\ -t +1
i=1
< 2|v| -1
t
by (3.2.3) and since v V1 partictions V. The theorem now
i=1
follows by induction.
1f we prohibit singletons from our nested family then
we have the following bound.
(3..2.4) Theorem. Let R be a nested family of
subsets of V contaiming no singletoms. Then |R]| < jvl - 1.
Rroof. Let R' be the family R v v {v}. R' 1is
veV
easily seen to be a nested family, by (3.2.1) |r'| s 2|v]| - 1.
since |R'| = |R| + |V]| it follows That |IR| s [v] - 1.0

1f R is a nested family of subsets of V then for each

S ¢ R ‘we let

(3.2.5) RS = {T ¢ Rt T-1s a maximal proper subset

of S b;longing to R}
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(3.2.6) Vg = {ves:v g (R
(3.2.7) n(s) = |Rg| + |Vg|
Thus n(S) is the number of maximal "things" which are

combined to form S.

(3.2.8) Theorem. Let R be a nested family of

subsets of v for which =n(S) 2 3 for all S ¢ R. Then

Ir] < (Jv] - 1)/2.

Proof. Let S ¢ R. If \VS| > 2, then let S' ©be any
two members of VS. 1f |VS| < 1 then since n(S) 2 3,
lRS’ 2 2. In this case let S' be the union of any two

members of Rg. Let R' = Ru {S': S ¢ R}. Then |R'|.= 2|R]
Moreover R' is a nested family containing no singletons so
|R*| s |v] =1 by (3.2.4). Therefore |[R| = 1/2¢|v] - 1)

and the proof is complete.l

3.3 Bléssoms, Shrinking and Shrinkable Families

One feature of the blossom algorithm is the way it
“shrinks" certain subgraphs of a_grdph to effectiYely reduce
the size of the problem. In this section we define shrinking
and describé the sorts of subgraphs which will be shrunk ... We
also prove some fundamental results concerning shrinkable
graphs. The definitions and results of this section are also

used in Chapter 4 where we show the close relationship between




and facets of the matching polyhedron.

shrinkable graphs
The basic structure used in defining shrinkable graphs
is the blossom (the christening feature of the blossom algorithm)
which is defined as follows.
A blossom is a connected graph B containing no even
polygons, exactly one odd polygon P and for which the
degree constraints satisfy the following conditions. Let

v € V(P). By (3.1.16) there is a unique Xx ¢ ﬁkJ such that

3.3:.1) x(SB(i)) = bi for all i € V(B) - (v}

(3.3.2) x(éB(v)) = b ~-'1.
In order that B be a blossom we require

(3.3.3) x4 be a nonnegative integer for all

j e E(B), .

(3.3.4) xj > 1 for all § ¢ E(B) - E(P)

(3.3.5) xJ > 1 for each § ¢ E(P) such that

j 4is the first edge in the even length path in P from a

node 1 € V(P) - {v} to .v.

The choice of v . is in fact arbitrary, we will show im
(3.3.12) that if (3.3.1)-(3.3.5) hold for some V. € v(P)
then they also hold for any othe® choice of v € YW(P).

In ofder that (3.3.1)-(3.3.3) hold we require
(3.3.6) b(V(B)) is odd for any blossom B.

Since we obtain a tree if we delete any J:c E(P) from B,

we have using (1.3.13) that




(3.3.7) |lv(B)| = E(B) | for any blossom B.

The graph obtained from B by deleting all edges of P is

a forest, each v € V(P) belongs to a unique (possibly

trivial) tree TV of the forest. These trees are called the

J 5 i h 2 s E ’ Th
petals of the blossom, T - 1is the petal rooted at V. e

edges belonging to E(B) - E(P) are called the E_e{aliclgfﬁ"

of the blossom.

(3.3.8) 1f v € V(B) has valence 1, or has

valence 2 and belongs to V(P) then V is called a_terminal

node of B, g RN
®

deficient node

ae
>
o

o) S
A 3
L .
: Se g
@) o
| 7 / g
| e
\ / 2 g R petals
3 ~/ >
\ O M
—7 S&
terminal <7 /
nodes — \M S
Edge j- suen that )(j 21 AANNNS
Edge j such that Xy 20

Figure 3.1 Sample Blossom

(3.3.9) Proposition. Let B be a blossom, let

i ¢ V(B) be such that bi = 1. Then i 1is a terminal node.

[
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Proof. i € V(P) then by (3.3.1)-(3.3.5) we must.
have bl > 1 + 53(1) n E(Ti) . Hence bi = 1 implies
E(Ti) = ¢ and so 1 1is a terminal node. If 41 € V(B) - V(P)
then by (3.3.4) b, 2 ‘:B(i)l so f«‘B(i)‘ =1 and 1 1is
a terminal node.l

(3.3.10) Proposition. lf,»ki_:.l;,igf.fffll
i e V(B) then B 1is a blossom if and only if B is an
odd polygon.

Proof. First suppose that B is a blossom. By (3.3.9)
every node of B . is a terminal node, if any petal T
cortained an edge then v could not be a terminal node, a
contradiction. Hence all petals are single nodes and B 1is
an odd polygon.

If° B is an odd polygon let v € V(B) and let T Dbe .

a shortest odd length track in B from v to V. If we
define xJ = 0 for every odd edge of <t and xj = 1 for
every even edge of 1t then X satisfies (3.3.1)-(3.3.5)

so B is a blossom.[

1f B is a graph such that b(V(B)) is odd then clearly

B can hdve no perfect matching.

(3.3.11) We define a near perfect matching

(abbreviated by np matching) tg be a watching x of B

such that, for some v € V(B)
x(éB(i)) = bi for all i e v(B) - (v},

X(6B(v)) = b - 1.

v



(3.3.12) Proposition. Let B be a blossom
containing the odd polygon P. Then for any 1 ¢ V(B) there
is a np matching x' of B i, Moreover if
1 ¢ V(P) then x' satisfies (3.J3. (3.3.5) (with x'

substituted for x).

of

this proposition

actually

Proof. The proof
consists of an algorithm for obtaining such a2 matching,
starting with a np matching x deficient at v e V(P)
satisfying (3.3.1)-(3.3.5).
1f i=sv then x is the matching we require and we
are finished. Otherwise let Tt be the shortest track from
v to i having even length. Now define x' by
xJ +1 5% - 3 is an odd edpe of 71,
(3.3.13) x_; = xJ -1 1if 3J is an even edge of 1,
x if § € E(B) - E(1).

Clearly x' is integer valued, x'(éB(s)) = by for all

s € V(B) - {i} and x'(éB(i)) = b1 - 1. Moreover if

J ¢ E(P) is an even edge of T then is the first edge

in-an even length path in P from some w € v(p) - {v} to

v so by (3.3.5) Xy 21 and xi ¢ 0. If jJ ¢ E(B) - E(P)

is an even edge of t then by (2:3.L) xj 21 so x; 2 0.
E(B) which is not an even edge of { we have

For any J €

so x' 2 0 and hence is. a

Now suppose 1 e V(P) - {v}§
i

j € E(P)

First

is the first edge in exactly two paths from nodes

np matching deficient

observe that each




these

hen j

to i

n-an

(3.3.13) and

- E(P)

.15

be a graph

is the graph obtained

$).

of P to { and since P 1is an odd polygon, both
paths have the same parity. If E(P) E(t) t
is the first edge in an even path to 1 if and only if §
is an odd edge of so by (3.3.13) x; 2 1. If
§ ¢ E(P) - E(1) is the first edge in an even path
then it is easily seen that j is the first edge 1
even path to v so by (3.3.5)' x; = 3 2 1.
Since e V(P) implies E(t) ¢ E(P),
(3.3.4) ensure that x; xj 21 for all 3 E(B)
and the proof is complete.D
We now define shrinking. Let G = (V, E, v)
let- S € V. We say that 6 =(V, E, ¥)
from G by shrinkin g 4if
Vev-su(s),
E=E- v(5)
3 w(3) 1f 3 ¢ E - &(5)
v(3i)=
v(3) - S v (s} 1if J ¢ §(
In other words, G 4is the graph obtained from G

all edges of

resulting node

pseudonode of

constraint

G

"g

¢

which have hoth ends in S

We denote

(with respect

1

for any pseudonode

S

e

S

by

G).

(s}

G x

by contracting

and calling the

S

and ¢

all S a

We define the degree

S.

if

We also define




Let R be a nested family of subsets of v (see

Section 3.2). For any S € R we define
(3.3.15) R[s] {T ¢ R: T c S}.

| G g is the set of maximal members of R

then we let G x R denote
(3.3.15a) (...((G x Sl) X 8§,) X...) X S

It is easily seen that the ordering of the sets S S, pes238
has no effect on G x R.
We say that G = (v, E, ¥) is gﬁ[iﬁkable if there is a

possible empty nested family R of subsets of V such that

(3.3.16) for every § ¢ R, G[s] x R[S] is

spanned by a blossom BS'

(3.3.17) b(V(G x R)) = 1
It is easy to see that
(3.3.18) V ¢ R is equivalent to (3.3.17) . &£ R » §s

We call R a shrinking family of G. Note that im particular
any gragh spanned by a blossom is shrinkable. For any S ¢ V
we say -that S is shrinkable if  G[S] is shrinkable.

If - R= ¢ is a shrinking fifily of) G = (v, E, ¢) then
lv] =1, |E| = ¢ and Bb(V) = 1. We call such a g}aph

degenerate, all other shrinkable graphs are called nondegenerate.

(3.3.19) Proposition. 1§ G = (v, E, ¢) -is

shrinkable, .then b(V) is odd.




Proof. Le; R be a shrinking family of G, we prové
by induction on |R|. If |[R| = 0 then G is degenerate
and the result is trivial. Suppose (3.3.19) holds when

G has a shrinking family of fewer than k sets for some

k 21 and assume |R| = k. By (3.3.16) there is a blossom

BV spanning G x R[V] and by (3.3.6),

(3.3.19a) b(V(Bv\) is odd.

Let S be any maximal member of R[V] and hence a
pseudonode of G x R[V]. Then R[S] v (S} 1is a shrinking
family of - G[S] and since |R[S] v (S}] < |R| we 'have by

induction
(3.3.19b) b(S) 1is odd.
If W is the set of pseudonodes of G x R[V] then
b(V) = b(V(G x R[V])) + Z({b(S): S ¢ W} - 1)

so since V(G x R[V]) = V(Bv) we have by (3.3.19a) and

(3.3.19b) that b(V) is odd as asserted.[]

I1If R 4is a shrinking family of G then for ahy S ¢ R,
R[S] v {8} 4is a shrinking famjily of G[S]. Hence we have

the following corollary of (3.3.19).

(3.3.20) Corollary. If R is a shrinking family

for & thean b(S) is odd for all S ¢ R.

(3.3.21) Proposition. Let G = (V, E, ¢) be

shrinkable and let R be a shrxnking family of G. Then

for any v € V_ there is a_np matching x of G deficient
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and which satisfies

(3.3.22) x|y(S) is a np matching of G[S] for

all
Proof. We prove by induction on R 1f |[rR| = 0
then G is degenerate and the result is trivial. Assume
the result true for graphs having a shrinking family
consisting of fewer than k sets for k 2 1 and suppose
|R| = k. Let v be any node of G. Every maximal S € R[V]
is a pseudonode of ;the blossom Bv which spans G x R[V].
Let p v 3% ¥ V(Bv), let p =8 if v ¢ S for some
pseudonode S of BV. By (3.3.12) there is a np matching
X of Bv deficient at p. For every pseudonode T ¢ V(Bv)
there is at most one node of T dincident with some j e E(Bv)
.

for which xJ = 1 since bT - 1. 1f such a nmode w(T)
exists, let ;T be a np matching of GIT) deficient at
w(T) satisfying

(3.3.23) ;T|y(Z) is a np matching of G[Z]
for every 2 ¢ R[T],
which exists by our induction hypothesis. 1f no such w(T)

exists, then v € T and we let ;T be a np matching of

G[T) deficient at v which satisfies (3:3.23). Now define

x by -
;J for j ¢ E(Bv)
x, = 0 for 3j ¢ E(G x R[V]) - E(Bv)
‘ ;T for j'e y(T), for T ¢ R[V].




x is easily seen to be a np matching of G deficient at

v and satisfying (3.3.22), thereby completing the proof.0

We close this section by noting the following basic

property of matchings.

(3.3.24) Proposition. A matching X is a n9p

matching of ¢ = (V E y) if and only if x(E) = q (=1/2(b(‘V -1))
matching O °= = (v, B, 9) 211 eOC Tl ——= """ v

and x(8(i)) = Ex for all ile V

Y & ——

Proof. For any matching X of G,

2x(E) = b(V) - Z(b1 - x(8(i)): 1 ¢ V).

Thus any np matching X of G satisfies x(E) = 1/2(b(V)-1)

(and trivially x(8(1)) = bi for all i e V). Conversely

qy and x(8(1)) s bi

for all { ¢ V must satisfy x(8(1)) = bi for all 1 € v-{v}

any matching X which satisfies x(E) =

and x(8(v))= bv—l for some V € V. Thus X is a  np ’ )

matching of G and the result follows.O

3.4 The Matching Polyhedron.

The matching Eolvhcdron P(G, b) is defined to be the bounded
E -5 X
polyhedron in ﬂ{ containing all matchings x of

¢ = (V, E, ¥) which satisfy

(3.4.1) x(8(1)) = bi for all i eV

and for which every vertex is such._a matching. (Bquivalently,
P(G, b) is the convex hull of the set of matchings of ©

'
which satisfy (3.4.1).)

Let Q = (s g V: |s|] 23 and B(S) is odd}. Edmonds [E3]




has shown

that

(3.4.2)
(3.4.3)
(3.4.4)
The proof is

to the version we

The algorithm shows that for any

maximized over all

satisfying

(3.4.1).

replaced in (3.4.4) by a subset

much smaller
Let QO
of V). (By
(3.
(3.
(3.
(3.
Proof.

which satisfies (3.4.1) belongs to

(3.4.2)-(3.4.4) by a matching of G

It is implicit

a consequence of

are developing

-
3.20
b) = (x ¢ RE:
xj 2 0 for all j £ E,
x(8(1)) = L‘ for all ieV
x(y(s)) € qg for all S Q}

a bléssom algorithm simillar
here in the following way.
c € \RE, c * X is

x (not necessarily integer valued)

which satisfies
can be

in the algorithm that Q

of itself which is generally

than Q.
={s cVv: |s| 23 and S Is a shrinkable subset
(3.3.19) b(S) is odd for each S ¢ Q).
4.5) Theorem.

P(G, b) = P = (x ¢ RE:
4.6) 51 > 0 for a¥l j ¢ E,
4.7) x(8(1)) = b‘ for all i"e V

0

4.8) x(y(S)) S 94 for every S e Q 3.
It is easily seen that any matching x of €

P, for it satisfies (3:6.6),

(3.4.7) by definition and it satisfies (3.4.8) by (3.1:7)

and (3.3.19)

We will show by means of the blossom algorithm that for
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. 0 - b
any c e 19\5, there is a matching X of G satisfying-
(3.4.1) which maximizes <c¢x over x € P. By (2.4.1) for

each vertex 'v of P there is a vector c € 'I&E such that
cx is maximized over x € P only by v. Hence all vertices
of P are matchings satisfying (3.4.1).

(We saw in (2.4.10) that every bounded polyhedron is the
convex hull of its set of vertices. Since - contains all
matchings of G satisfying (3.4.1) and since all vertices
of P are such matchings it follows that P is the convex

hull of the matchings of G which satisfy (3.4.1).)0

When we require matchings satisfying

(3.4.9) x(8(1)) = bi for i eV <V

then we are in fact considering a face F of P(G, b). Thus
the blossom algorithm presented in this chapter will find
(if one exists) a matching xo €e F c P(G, b) maximizing
e ° xo over F where F is a face of P(G, b) obtained by
requiring (3.4,9) hold. .(If V = ¢ then F = P(G, b)). In

chapter 5 we study the more general problem of maximizing

¢+x over any face F of P(G, b).

3.5 inear Programming Formulation

The following linear program is/equivalent to the problem
of maximizing cx for x € F.€ P where F is the face of

P (defined ip (3.4.5)) obtained by requiring (3.4.9) hold.

{3.5.1) Maximize ¢ * x

[

over x € ﬁ\E which satisfy
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.2) x, 2 0 for all j ¢ E,
.3) x(8¢4)) s b, for all 1 ¢ v av -V,
.4) x(8(1)) = b, for all 1 v,
a : 0
(3.5.5), x(v(8)) = q¢4 for all S ¢ Q
. 0,. . 0 . :
For any ‘jJ ¢ E let Q (j) = {8 e Q= J ¢ vy(S)}. The
dual linear program is
(3.5.6) minimize I(b, Yy : f ¢ V) + L(q.ye: S € QO)
%t g § o | = s’s

VuQO
over Yy € R which satisfy
(3.5.7) Vg > 0 for all S e Q,

(3.5.8) vy, 2 0 for all 1 eV

(3.5.9) y(v(3)) + y@%G) 2 ¢, for all j ¢k

By complementary slackness (1.5.16) xo satisfying
(3.5.2)-(3.5.5), and yo satisfying (3.5.7)-(3.5.9) are
optimal if and only if

0
(3.5.10) x° > 0 implies y (¥(§)) + Y @%)) = e

J
for any j ¢ E,

"

(3.5.11) y? > 0 implies xo(é(i))

< —-—

b for all

(3:5.12) - yg > 0 implies x%(y(s)) = g5 for all

The blossom algorithm will actually find a feasible
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7)=-(3.5.9)

matching x and a dual solution y satisfying (3
such that x and y satisfy (3.5.10)-(3.5.12) or else
will show that no feasible matching exists in a manner
described in section 3.7.

We call y a dual solu to the matching problem

(3.1.2)-(3.1.6) if y satisfies (3.5.7)-(3.5.9) and an

optimal dual solution if y minimizes :(biyj: ieV)

+ I(q S ¢ QO) over all dual solutions.

sVs’

3.6 Alternating Forests

During the course of the blossom algorithm we comstruct
forests having special properties with respect to a matching.
Let T be a tree contained in G = (V, E, ¢¥), let r g V(T)
be designated as the root of T. There is a unique path
n(i) in T from r to each i e v(T). We call i an even
bode or an odd node of T according as the length of w(i)
is even or odd. In particular, r is an even node of T.
We call j ¢ E(T) even or 0dd according as j 1is the last
edge of a path wn(i) im ¢T to an even or odd node of p 1
(or equivalently, according as j is an even edge or odd
edge of a;y path =(i) {n T from r to some node
i € V(T) -~ {r} such that jJ ¢ E(w(1))).

Let ‘x be a matching of G. .We call T -an alternating

tree with respect to x (see Figure 3.2) if
(3.6.1)  x(8(r)) < br'

(3.6.2) x(8(i)) = bi for all {1 e v(T) - (r)},
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(3.6.3) if xj , 0 and ¢(j) n V(T) = ¢ then
.4) xj > 0 for every even edge j of T.
1f we are considering l-matchings then (3.6.1)-(3.6.4)
imply that every even edge J of T ha% xj = 1 and every
odd edge j has xj = 0. !
Note that for amy 1 €V, {1} 1is the node set of an
alternating tree if x(8 (1)) = 0. We call a nonempty
collection of alternating trees -an alternating forest.
Let j . be an edge of a tree 'T with root r. 1f we
delete from T then the resulting graph will consist
of two trees, ome of which, T', will not contain r. We call
T' the portion of T above 1.
Let i be any node of T. 1f i = r then we say that
T 4is the portion of T above i. Otherwise let k be the
3

first edge of the path in T from i to r. and let T' be
the portion of T above k. We say that T' is the portion

of T above 1.

(3.6.5) Proposition. Let T be an alterpating
tree with respect to the matchipg x. Let T be the root

of ‘2. 3st I be the set of odd nodes of T 4nd let W_be

1 éanc - —

the set of even nodes of T. Then

b(W) - (br - x(8(xr))) = b(I)

Proof. By (3.6.1) and (3.6.2)

(3'6.6) bB(W) = I(x(8(1)): /1 e W) + b, = x(8(r)).




Since no edge of T can join two even nodes and by (3.6.3),
(3.6.7) I&x(8(1)): 1 € W) = x(8(W) n E(T)).
By (3.6.2)
(3.6.8) b(I) = I(x(8(i)): 1 € I).
Since no edge of 1 can join two odd nodes and by (3.6.3);
(3.6.9) ZI(x(8(i)): 1 € I) = x(8(I) n E(T))
But for any ' j € E(T), j € 6(I) and j € &8(W) so
(3.6.10) &(I) n E(T) = &8(W) n E(T).
By (3.6.10), (3.6.9) and (3.6.7) we have
E(x(6(i)): 41 e W) = E(x(8(i)): 1 € I).
Hence (3.6.6) and (3.6.8) combine to give the result.[]

(3.6.11) Corollary. Let F be an alternating

orest with respect to the matching x, let K be the set

2

of roots of the trees of: F. Let W and I .be the sets of

even nodes and odd nodes of F respectively.

Then

b(w) - L(br - x(8(r)): e 'K) = b(I).
Note that (3.6.1) implies therefore the following.

(3.6.12) Corollary. If "W and I are the sets

of even and odd nodes of an alternating forest F then
7

b(W) > b(1) .
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Hungarian Forests.
Let G = (v, E, ¥) be the graph obtained from
G = (V, E, ¥) by shrinking a (possibly empty) family R
of disjoint shrinkable subsets of V. We define
(3.7.1) V- = (V" n¥V) u (s eR:ScCc v}
Let F be an alternating forest contained in G with respeht
to a matching X of G which satisfies
(3.7.2) x(€5_(1)).< b, for all 1 ¢ V.
G
We call F Hungarian in G with respect to x if
(3.7.3) no edge of G joins two even nodes of F,
(3.7.4) no edge of G joins an even node of F
to a node not in F ,
(3.7.5) every odd node of F is a node of G, \

that is, not a pseudonode of E.

(3.7.6) if v.e V is an even node of F then

(3.7.7) for any 1 & V , if x(6_(1)) < by .
G
then 1 is the root of a tree in F,
Let x be any matching of G which satisfies

(3.7.8) x(8(1)) = b’ for all 1 ¢ V.

We define ¢
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(3.7.9) d(G, V7; x) = I(b, - x(8(4)): 1 ¢ vo).
If M is" the set of ald matchings of G which satisfy
(3,7.8) then we let
(3.7.10) D(G, V) min{d(G, V ; x): x ¢ M}.
Thus d(G, V=; x) is a measure of the amount’ by which x
fails to be a feasible matching of G and D(G, \'z) measures
how closely we can come to obtaining a feasible matching of
G. Clearly
(3.7.11) G has a feasible matching if and only
1f D(G, V') = O.
Later in this section we show the comnection between
Hungarian forests and the value of D(G, We also show
.
in (3.7.36) that knowledge of a Hungarian forest of © enables
us to characterize those matchings x of G for which . A

a(G, V°; x) = D(G, V).
First we prove the following basic result which also
indicates the importance of shrinkable set's in the blossom

algorithm,

(3.7.12) Proposition. Let R be a family of

disjoint shrinkable subsets of V and det G = (W "E v be

the graph obtained from € = (v, ET-,) by shrinking" the members

of R. Let V" be defined as in (3.7.1). Then any matching

x of ¢ satisfying (3.7.2) can be extended to a matching

x of G satisfying (3.7.8) such that

[

(3.7.13) d(G, V3 x) = d(G, V ; x).




Flrxlcf. For each S R we define a node i(s) as
follows. 1f there is some J € §_(8) such that x, =1
g b
then iet {1(S)} v(3) S. Otherwise if s - V= z ¢,
let i(S) be any member of S - v Otherwise let 1(s)
be any node of S. By (3.3.21) there is a np matching
xS of GI[S] deficient at i(s) for every S ¢ R. We
define x by
y %, for E,
J 3
x
] S
xj for § = v(s8) for all S ¢
x is easily seen to satisfy (3.7.8).
For any V € V - R we have 6_(v) = §(v) so
G
(3.7.34) &_ - x(8(v)) = b_ - %x(8 (v)) for all
v v ¢
vV € vV - R.
Let S €V nR. Them S¢S V- so
I(bj - %x(86(1)): 1°¢ 8)
= - 3 : - i } -
i(b1 x(8(4)): 1.¢ 8 {i(s)}) + bi(s)
S -
= + 8 - 8 S
0 (bi(S) x ( c[S](i(S)))) x( (_;( ))
=1 - x(5_(8)).
G
Therefore
(3.7.15) EI(b, - x(8(1)): 1 e S V") = bg-x(8
i S g
for all S € V" n R ‘
G
e e ba¥. 21 iR s ¥ - v" then

x(8(1(8)))

(s




If 4(S) € V- then there is j ¢ 8(i(S)) n &(S) such that

x, = 1. Therefore

b
I(b, - x(8(i)): 1 €S vT)
b xS (s (1(8))) - x
1(8) G[s) - j
=1-1=20
Hence
(3.7.16) I(b - x(8(4))+ 1 €S 0 V') = 0 for all
.

Senr =~V

Combining (3.7.14)-(3.7.16) gives (3.7.13).0

(3.7.17) Theorem. Let & = (V, E, ¥), G = (V, E,

¥)

R, V and V be as in (3.7.12). Let F be a Hungarian

forest in G with respect to a matching x. Let K < V_ be

the set of roots of trees of F. Then

(3.7.18) D(G, ¥°) = I(b - x(§ (4)): 1 ¢ K)
¢

Proof. By (3.7.6) and (3.7.7)

’

x) = I(b,. - X(5_(1)): 1 e K). By (3.7.12) X .can
G

be extended to a matching xo of G for which
d(c, V.; x) = d(G, i'; xo) 80
(3.7.19) D(G, V7)) s I(b, - x(§_(1)): 1 € K).
G

Now consdder the linear program
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(3.7.20) maximize 2x(y(VT)) + x(8(vT))
E
over X € R " satisfying
x 20, -
(3.7.21) x(8§(1)) = bi for all 1 eV,
x(y(8)) = qg for ®ll S ¢ QO.
By (3.1.7) any matching x of G satisfying (3.7.8) 1is
a feasible solution to this linear program
The dual 'linear program is
(3.7.22) minimize g(b,y,t 1 ¢ V) + E(q.¥¢t S ¢ Qo)
i1 §’S
VUQO
for Yy € ® satisfying
0
(3.7.23) Yy >0 for all 1 eV Q ,
0 B
(3.7.26) y(1)) + ¥y (1)) 2 [v@) o ¥ \
for all j ¢ E. ’ Y

We define -a vector y0 as follows. Let 1 .and W be

the sets of odd and even nodes of F respectively.

3. 28 1ieInV

0 1 if {el=-V orif
(3.7.25) y,= o
1 e V.= V(F) - u(R. N V(F)),

0 s
(3.7.26) yg =

'

Now we show that




(3.7.27) yo is dual feasible.

If neither end of is in F or is contained in a pseudonode
of F then

0 ) ) =

y (¥(3)) = |v(3) n Vv |

so (3.7.24) is satisfied.

(3.7.28) If exactly one end of j is in F or
is contained in a pseudonode of F then by (3.7.4) j must

meet an odd node of F so

y2(u(3)) = |e(g) n V7| + 1
and (3.7.24) is satisfied.

3 ¢ vE®) for some pseudonode S of F then
0,.0 | =
y (Q(3)) =2 = [¥()) nV |

since by (3.7.6) and (3.7.1), S evVv. Hence (3.7.24) is
satisfied.
If |9(3) n I| = |$(3) n W| = 1 then since by (3.7.6)

and (3.7.1) v(j) - I ¢V it follows that

vy (1)) = |e@) o v,

Thus (3.7.24) is satisfied.

(3.7.29) 4if |9(3) n 1| = 2 then

yo(w(j)) = [$(3) n V"] + 2 so (3.7.24) 1is satisfied.

By (3.7.3) this exhausts all cases, so since yo 20 we
have proved (3.7.27).

Now we eyaluate the dual objective function for yo.

w

~
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(3.7.30) i(biy?: ieV) + .(qSyS: S ¢ Qo)
= b(V" - V(F) - (R 0 V(F))) + b(1 = V)
+ 2b(I n V") + 2i(qq: S € R n W).
By (3.6.5),
(3.7.31) b(I.- V) + 2b(I a V") ’
= B(W) + b(I'n V) - I(b, - x(8_(1)): 1 € K).
[
By (3.1.10)
({3.7.32) 2E(qst S e RnW) = E(b(S): S € RN W) - b(R n W).
Substituting (3.7.31) and (3.7.32) into (3.7.30) and
simplifying we obtain
L(biygz i 2. 9).+¢ L(qsys: S ¢ QO) d
- b(v7) - I(b, - ;(66(“): ie K. ; .

It therefore follows from the weak L.P. duality theorem

(1.5.12) that
(3.7.33) 2x(y(VD)) + x(8(V7)) s
b(VT) -.I(b, - XG _(1)): 1 € K)
¢

for any feasible solution X to the primal linear program
(3.7.21). Since every matching of G which satisfies (3.7.8)

is such a feasible solution, and since

(3,7.34) I(b, - x(8(1))¢ 1 e vT) =

(V™) - (2x(Y(VT)) + x( (V)




it follows that

(3.7.35) D(G,"W") 2 (b, - x(8_(1)): 1 ¢ K).
¢

Combining (3.7.19) and (3.7.35) proves the theorem.0
By using the complementary slackness principle of linear

programming we obtain the following characterization of

matchings Xx which minimize d(G, V ; x).

(3.7.36) Theorem, Let G = (V, E, 9), 6 =(V, E, ¥),

R, V and V be as in (3.7.12). Then for any matching X

= =

of atisfying (3.7.8) we have D(G, V = d(G, V ; x)

G s g )_—

if and only if the following conditions a[g_j}tisfied.
(3.7.37) x(y(s)) = 9g. for all s ¢ Rn V(F).

x(8(1)) = b, __20F S N ———

{(3.7.38) x(8(1)) = b1 for every odd node i of

F and for every 4 & vy - V(F) - u(R n V(F)).

(3.7.39) 1f I ‘sénd W arve the sets of odd and

even nodes of F ' respectively, then xj_;_O for all
e v é() -8 (W
camad 1 i

Proof. In the proof of (3.7.17) we displayed a matching
xo satisfying (3.7.8) and a dual solution y0 such that
2x0(y (V™)) + x0(6(VT)) = T(b,y 1 1 g VY + 8(agyg: S € %
Thus yo is.an optimal solution to the dual linear ;rogran
(3.7.22)-(3.7.24) so every optimal solution x to the
primal linear program (3.7.20), (3.7.21) must satisfy the
co-plemen(aryAslackness conditions \(see (1.5.16)) with respect

to yo.
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Thus by (3.7.25) we must have (3.7.38); by (3.7.26)
we require (3.7.37); by (3.7.28) and (3.7.29) we require
(3.7.39). Since by (3.7.34) x maximizes
2x(y (V™)) + x(8(v7)) for x satisfyinmg (3.7.21) if and

only if x minimizes d(G, VvV ; x) for x satisfying (3.7.21)

and since we have exhibited a matching xo for which
a, v°; x%) = D(G, V') the result now follows.

1f we are considering a matching problem in which
v© o= ¢ then by (3.7.1) and (3.7.6) there could be no even
podes in a Hungarian forest F in a graph G obtained from
G = (V, E, ¥) by shrinking some disjoint shrinkable subsets
of V. But since every Hungarian forest contains at least
one tree rooted at an even node, this means that no Hungarian
forest can exists In other words, Hungarian forests are
structures which can arise only when dealing with matching
probléems in which Vo= é.

The following corollary of (3.7.17) is ‘a necessary

condition for a graph G to have a feasible matching.

(3.7.40) Corollary. If G has a feasible matching

then no graph € obtained from G by shrinking a collection

of disjoint 'shrinkable subsets of V_can contain a_Hungarian

forest.
Proof. 1f ¢ contains a Hungarian forest F with respect
to a matching X then if K is the‘}el of roots of trees

of F, we have

(b, - x(8 (4)): 1 € K) > O.
i G




Therefore by (3.7.17), D(G, V) > 0. herefore by (3.7.11)
G has no feasible matching.D

In fact, the converse of this corollary is true and
will be proved. by the blossom algorithm for it will always
terminate with either an optimum feasible matching or else

with a Hungarian forest.

3.8 The Blossom Algorithm

In this section we describe the blossom algorithm which
solves the problem (3.1.2)-(3.1.6). This algorithm is also
used in later chapters when we consider more general problems.
In Section 3,9 we derive a bound on the amount of work
performed by the blossom algorithm in solving a matching

problem.

At each stage of the algorithm we have the following

things.

(3.8.1) a matching x = (xj: J.¢ 8,

(3.8.2) a dual solution y = (yi: ievVu QO) which

satisfies (3.5.7)-(3.5.9).

Let G = (V, Eu, w’Eg) be the spanning subgraph of G
vhose edge“set consists of all those j ¢ E satisfying

(3.8.3) y(v(3)) + y@°()) = ¢

3

G~ 1is called the equality subgraph. The complementary

slackness condition (3.5.10) is satisfied by x and y, that

[

is



(3.8.4) xj > 0 only if j ¢ E

We also have a nested subfamily R of Q such that

(3.8.5) for each S ¢ R, H(S) ¢ [s) x R[S]

definition of G [S] * R[S].)

Moreover

(3.8.6) x|E(H(S)) is a mp matching of - H(S)
deficient at some 1(S) belonging to the odd polygon of

B(S) and

(3.8.7) xj = 0 for all j e E(H(S)) - E(B(S)) .

As a result of (3.3.24) a simple induction shows
(3.8.8) x(y(s)) = qg for all S ¢ R.

The dual solution y has the property that

(3.8.9) Vg >0 for S € Q0 only if S € R.

Thus x and y satisfy the complementary slackness condition

(3.5.12).‘

Let G = (v, E, ¥) be the graph G x R. The matching

x satisfies

(378.10) x(8(1)) s b, for all 1 ¢ V.

(Note that for amny 1 € v, 6(1) = §-(1).)
G

We deflnE subsets V- and V of V by

is spanned by a blossom B(S). (See (3.3.15), (3.3.15a)for the




(3.8.11) (v a¥) uiseV:scV ¥
(3.8.12) V° §-

The matching X also has the following property. Let

. = + < 1o
ct(x) = (V, E (x), VIE (x)) be the spanning subgraph of €

whose edges are all those edges of ¢ such that xj > 0.

<, 2 - \
Thus E (x) = {J ¢ E: x, > 0). Let H be any component of

3
G*(x). Then

(3.8.13) H contains no even polygon;
(3.8.14) H contains at most one odd polygon;

(3.8.15) if H contains an odd polygon then

x(8(1)) = bi for all 1i € V(H);

(3.8.16) if H contains no polygons then H

has at most one node i for which x(8(1)) < bi'

We also have an alternating forest F contained in G.

(3.8.17) Each 1 ¢ 7 such that x(8(i)) < by is

the root of a tree in F.

F is pattitioned into two subforests FO and F . F
consists of all those trees in F such that the root T
belongs to VS and Y ¥ 0 if re=V or ¥y, = 0 for some
ks %2 A% r € R. Fl consists of all other trees of F.

It will be seen in the description of the algorithm that as-
long as thliere are nodes in Fl, wve do not have the optimum

feasible matéhing we seek and as sgon as V(Fl) = ¢, we

implicitly have an optimal solution.




In order that x and y be the optimal solutions we
seek, all we need is that they satisfy £3.%.3), (3.5.4) and

(3.5.11) for as we showed in (3.1.7), this together with

the fact that x is a matching will ensure (3.5.5) is satisfied.

We will show in the algorithm that if x and .y satisfy the
following analogues of (3.5.3), (3.5.4) and (3.5.11) then

the required x can be obtained in a straightforward fashion.‘
(3.8.18) =x(8(1)) s'b, for all i e v,

(3.8.19) x(8(1)) = b1 for all 1 ¢V,

(3.8.20) vy > 0 for any 1 e V n v implies

x(8(i)) = by,

(3.8.21) > 0 for all iesSnyV for any
Yy

S e Rn VS implies x(8(1)) = b,

We now define a measure of the amount by which (3.8.18);

(3.8.21) are violated. Let

(3.8.22) A(G; x, y) = (b, - x(8(i)): 1 € V" or
(1 ¢ VS nV and 7%~ 0) 'or (1 €6V  n R and y_ > 0 for

; <
all veEinv).

It follows from the definition of Fl that

(3.8.23) A(G; x, y) = E(by - x(8(1)): 1 is the root

of a tree of Fl).

Clearly A(G; x, y) 2 0 for any X satisfying (3.8.10)
and A(G; x,"y) =0 if and only if | x and ¥y satisfy

(3.8.18)—(].8.21). In general, one "Cycle"‘o( the blossom
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algorithm will involve finding a new x' and y and

possibly a new graph ' such that A(G'; x', y') s A(G; x, y) - 1
(3.8.24) Initially we may take xj 0 for all

j ¢ E, Yy c = 1/2 maxtcj: j. ¢ E} for i e V=, ¥y F max{0, c)

for 1 ¢ v® and R F ¢. Then it is easily seen that all

our conditions are satisfied. F will be the spanning forest

of G in which every tree consists of a single node.

We now describe the algorithm itself.

Step 1: Scan £ to find an edge j Jjoining an even

node vy of Fl to something other than an odd node of

1
F'. 1f no such edge exists go to step 8. Otherwise go to
Step 2.

Step 2: Let {vz) : 93> - (vl).

1f v, belongs to a component of C*(x) which is not

contained in F_ then go to Step 3.

1f v, is an even node of a tree in F which is different
from the tree containing vy then go to Step 4.

1f vy and v, belong to the same tree of F then go
to Step 5.

1f v, is an odd node of a component of Fo then go to
step 7.

—

This exhausts all possibilities for vy

Step 3: Gfow Forest F. Let K be the component of

c’(x) containing Vae 1f K contains a polygon then go to

Stép 3c.

Step 3a (see Figure 3.3): 1f K ' contains no polygon,
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that is, 1if K is a tree then we grow the alternating tree

T containing vy by attaching v, and K to v, by

means of the edge J. Since j becomes an odd edge of the
new forest F' thereby obtained and by (3.8.17) it is easily

seen that (3.6.1)-(3.6.4) are satisfied for F'.
Step 3b: Replace F by F' . and go to Step 1.

Step 3c (see Figure 3.4): K contains an odd polygon P.

Let w, be a node of P which is an odd distance from V,

in K and for which this distance is as short as possible.

Let w, be a node of P adjacent to W, in P which is no

closer to .V, in P then vy Let k be the edge of P
Let K' be the tree obtained from

joining W, and Wy

K by removing the edge Kk, Add K' to the forest by using
j as described in Step 3a, thereby obtaining a larger forest
. Edge k now joins two even nodes of some tree ip r'.

Replace V,, Vg» j and F by Wy ¥y k and PF' respectively

and go to Step 5.

Step 4: Au mentation (Two trees) (see Figure 3.5).

Augmentation 1°WO “-T-"~

At - —

Step b4a: Calculation of 0. Let r, be the root of the

tree Tl of F1 containing Vv, and let r, be the root

of the tree T of F containing. Vv

2 Let o4 5 nin(xk)

2°

wvhere k is an even edge of the path L in '1'1 from T,

to v, or let 9 = » 4f no such edge exists. Let” 9, and

v and r By (3.6.4),

2 3 i
4 o o % 3. Bt ¢ ¥ min(al, 9gs brl- x(é(rl)), b'z - X(G(rz)))-

n be analogously defined for T

By (3.6.1), o, 2 1.
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Step 4b: Augumentation. pefine x' by
X, - % if k is an even edge of LB or m,
" Xy, + o if k 1is an odd edge of LB or m,,
xy =
or if k = ]
X, for all k € E - (E("l) U E(ﬂz) v 4.
Now x' {s a matching satisfying (3.8.4), (3.8.6)-(3.8.8),
and (3.8.10) and A(G; x', y)' = A(G; x, y) - 1 since
'
br x (6(rl)) < br - x(6(r1)) 1.
1 2
Step 4c. Computation of new F. We obtain a new
alternating forest in the following way. If x'(é(rl)) = br
1
then we remove Tl from F. Similarly if x'(c(rz)) = br
2
1f k 4is an even edge of T,
-

then we remove T2 from F.

or T, for which xL = 0 then we remove k and the portion

of the tree above it from F. By our choice of o, at least

one of these things must occur. Thus at most one of vy

and v,  can be in the new forest F'. 1f neither are in F'

by x',F by F' -and go to Step 1. 1f one,

then replace X N

say V. belongs to  F then perform Step 3a to add the

component K of G*(x') containing V¥, to F" wusing the

edge j, let F" be the forest thereby obtained. Replace Xx

by x', F Dby F" and returnm to st€p 1.

Step 5t Augmentation (One tree (see Figure 3.6)
Step 2 Augm

¢ and Blossom Test. Let T

T of Fl containing vy and Vg

Step Sa: Calculation of

be the root of the tree

and let T, be

Let ¥ be the path in T from r to VvV,
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satisfying (

a(G; x', y)

We can see by our choice of

¢ that x' 1is a matching

3.8.4), (3.8.6)-(3.8.8),!(3.8.10) and

< A(E; x, ¥) - 2. since br

& the path im T fro r to v,. Let n be the common
position of " and Ty L is the path in T from T
to some node p, (0f course, p may equal r in which
case T is an empty sequence). Then E(’Tl) u E('z) v
{3} - E('s) are the edges of an odd polygon P containing
P (|ECP)| is odd because j joins two €ven nodes of T.)
L y, 3 Ix. 1 = h 2y (
et o, min‘xk k 4is an even edge of sl or let
Gp :.® if no such edge exists. Let
o, = min(xk: k 1is an even edge of 7, and k ¢ E(vs)). or
let 9, « 41f no such edge exists. Let 9, be defined
analogously for LPE By (3.6.4), 99 Oy 9, 2 1. Let
o min{[1/2 30]. ol.cz.[l/Z(br-x(f(r))]}
(where for any a € R, [a] 4is the largest integer no
greater than a). If o 21 then go to Step 5b where we
augment. Otherwise go to Step 6 where we shrink a portion of
G.
Step 5b: Augmentation. Define x' as follows.
X, = 20 ‘4f k 4s an even edge of LI
X, + 20 i % is an odd edge of ws,
xi & x, -0 if k .is an even edge of 1w, or W,
not belorging to 7,
xy +4 0 if k=3 or/if) k ' is an odd edge
of ", or W not belonging to L
x, for 421 ke B~ (E(nl) u E(nz) u. (3.

- x'(é(r))sbr-x(é(r))-z




and b, - x"(6(1)) = b, - x(6(i)) for all 1 e v - {r}.

Step Sc: Computation of new F. Each component H of

+
G (x') will satisfy (3.8.13), (3.8.14) and (3.8.16) but need

not satisfy (3.8.15). That is there may be a component of
G+(x') containing both a deficient node and an odd polygon.
We now analyze the various possibilities.

5 w'{ilx)) = BS then let F' be the forest obtained
from F by removing T. Since x'(8(1)) = b1 for all
{ ¢ v(T), each component H of G*(x') satisfies (3.8.15).
F' i{s an alternating forest. Replace Xx and F by x'
and F' respectively and go to Step 1.

1f x"(8(r)) < b, but there are 1L € E(ns) such that
xi = 0, let k Dbe the first such edge in w_. Let T' be
the portion of T above k. Remove 7' and k from F
thereby obtaining a new alternating forest F'._ Since
x'(8(1)) = bi for all 1 ¢ v(T'), each component H of
G+(x') satisfies (3.8.15). Replace x and F by x' and
F' and go to Step'l.

1f x'"(8(xr)) < br’ x; >0 for all & ¢ E(n!) but xL =
for some edge k of P, then we remove all such edges k

from F thereby obtaining a forest F'. If one end of J,

1’ ig in F' then the other end v, cannot be in 2.

say Vv

adjoin the ¢omponent H of G*(x') ‘fon(aining v, to F'
by means of 4~ thereby obtaining a new alternating f;rest
™. Each component H of G+(x') satisfies (3.8.15).
/Replace x and F by x' and F" - and go to Step l.
Finally, if x'(8(xr)) < br and 'xi > 0 for all

2 & E(ll) "] E(uz) v {3} then by our choice of o there is
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k of for which x'! =1 or x'(8(r)) =

edge & K

b - 1. Replace x by x' and go to Step 6. Note that

this is the one case in which there is a component H of

+
G (x') violating (3.8.15). This is handled in Step 6.

Step 6: Shrinking Step (see Figure 3.7). We now identify

a blossom in G. T 4is the tree .of Fl containing vy and

[
v2. ws is the path in T from its root r to the nearest node
P of P, the odd polygon formed by adding j to T. Let
w be the first even node of L such that the path =' in

T from w to p contains no even edge k for which X, = 1.

(Thus X, 2 2 for every even edge of n'.) The blossom B

'

consists of P, the subgraph of T induced by * and any

component H of ¢t such that V(H) n V(n') = ¢ or

}

V(H) n V(P) # ¢ except for the even edge of T 4incident\ with

w - if it exists. Let S be the set of all those nodes of

¢ which either belong to V(B) or are contained in pseudonodes of.g.

We see that x(6B(i)) = b1 for all 1 € V(B) - {w} and

X(GB(V)) «b, -1 Thus x|E(B) 4s a np matching of

G[v(B)) deficient at w. 1f w ¢ V(P) then we modify our
matching so that it will be deficient at a node of P, as

this simplifies later discussions. Define x"' by

Xy + 1 for every odd edge of =w
e

k -
x, = 1 for every even edge of v’
1f p 1is an even node of F then let i(S) = p. If p 1is-

an odd node, let 1(s) be an even node of P adjacent to

p. Where . ‘is the edge of B jofning 1(S) and 'p let




edge ] for which xj 2 2 0000000030

Figure 3.7 Shrinking Step

‘Figure 3.8 Pseudo Forest Growth




For all other edges k of G let X x, . Now replace

x by x'.

x|E(B) satisfies (3.3.1)-(3.3.5) taking Vv i(s).

Let B(S) = B. Now if we let R' Ru (S} we see that R'
so defined satisfies (3.8.5)-(3.8.7).

Let &' = G x R'. Let F' Bbe the forest 'in &' with
node set equal to V(F) n V(G') u {8} and edge set equal to

E(F) n E(G'). Them F' 4is an alternating forest in G

and
(3.8.25) ‘S 4is an even node of F'.

Let G'¥(x) be defined for G' 1in the same way that
G+(x) was defined for 8. It is easily seen that every
component H of G'*(x) satisfies (3.8.13)-(3.8.16)
since the only component of G*(x) which could have violated
these conditions was the one containing the polygon P and’
it has been shrunk away.

Note also that A(G'; x, y) s a(G; x, y). Replace G,

R and F by G', R' and F' respectively and .go to Step'1l.

Step 7. Grow forest Fl (Pseudo forest growth). (see

Figure 3.8.)

Edge j joins an even node Vv of a tree T in F

to an odd node vy of a tree T0 i Fo. Let T and T

be the roots of TO and Tl respectively. Let T be the

portion of T0 above Ve We adjoin T and the component
H of G*(x) containing x, to v, by means of the edge
1!

[
§ thereby obtaining a larger tree T . (H 4is a subgraph of

1 by (3.6.3).)
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11 1 1° i .
1If 1, ¢ v(T°%) then replace T by T in F
' -
thereby obtaining a larger forest F . Remove T, H and
any edge of T0 incident with a node of T or H from
0 T o'
T , thereby obtaining a smaller tree T and a smaller
' ' '
forest FO . Replace FO, F] by FO » Fl and go to Step 1.
1’ 0 0
1f ro e V(T ) then remove T from F,. let T denote
. {

Tl and perform the following step.

Step 7a. (Pseudo Augmentatien). Let 7 be the path
in T from Ty to r,. Observe that both L) and 1,
are even nodes of T. Let o0, E min{xj: § is an even edge
of =wl}. Let o = minf{o,, b - x(8(r,))}. Then o 2 1.

1 T, 1
Let x' be defined by
By . o if k 1is an even edge of n
2t & x. + 0. if k is an odd edge of
k k “
x, if k ¢ E(n).
N\
- . - - -

Since br1 x (é(rl)) brl x(d(rl)) ¢ and o 21 it

follows from (3.8.23) that A(G; x', y) s a(G; x, y) - 1.

1f x'(é(rl)) = br thén remove T from Fl thereby
1
1t
obtaining a new forest F . Reroot T at To

'
to FO thereby obtaining a new forest Fo . It is easily

and add T

checked that T rooted at Ty satisfies (3.6.1)-(3.6.4)

' -

with respect to X

1f x'(é(rl)) < br then by our choice of o we must
1
have xi = 0 for some even edge & of TP let k be the

first such edge of w. Let T be the portion of T above k.
'

Remove T and k from T thereby dbtaining a new forest

. -
Pl . Reroot T at To and add it to Fo thereby obtaining
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a new forest  F . . Again It is easily checked that T
rooted at T, satisfies (3.6.1)-(3.6.4) relative to. x'.

Replace x, Fo and Fl by x', FO' and Fl'
respectively and go to Step 1.

Step 8: Termination Test. We now decide whether or not
we are ready to go to the final stage of the algorithm. 1f ‘
v(F!) = ¢ then by (3.8.23) A(G; x, y) = 0 and
we go to Step 11, the termination step. Otherwise we go to
step 9 where we will attempt to make a change in the dual
variables which will enable further progress.

Step 9: Dual Variable Change.

Step 9a: Calculation of €. Let El {3 ¢ E: one
member of ;(j) is an even node of Fl and the other member
of ¥$(j) 4is not a node of Fl). 1f E, = ¢ then let .
€ = =, otherwise let K

€ = min(y(w(j)) + y(R(1)) - cj: j e El)' wvhere

R(j) = {5 ¢ R: § e v()}.

Let E2 f {j ¢ E: both members of E(j) are even nodes
of Fl}. 1f E2 = ¢ then let €, = otherwise let

€, E 1/2 min{y(¥(3)) + y(R(31)) - cj: %€ EZ).

Let P = (S ¢ R: S is an odd node of Fl). 1f } = ¢

then let €4 : =, otherwise let
2
€y = 1/2 mln(ys: S e P}.
'
et Y £ {1 ¢ v¥: 1 1is an even node of F1 or 1 c8¢ehk
- »
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and S 1s an even node of Flf. If Y = ¢ then let € -,
otherwise let

€ minayi: i e Y},
Let ¢ min{»’l, €)1 €q5 (4}‘ If € = = then go to Step
10 where we show that there exists no feasible matching. 1f
€ = 0 then no dual variable change is necessary so go to
Step 9c¢. Otherwise go to Step 9b where the dual variables are
changed.
Step 9b: Change of Dual Variables. Define a new dual
solution y' as follows. Let
+ € 1f 1 € V 1is an odd node of F1 or
belongs to an odd pseudonode of Fl,
yg E 1
Vg = ¢ if 4 € V 1is an even node of F or .
1
belongs to an even pseudonode of F ,
1 1 \
Yy if 4 eV - V(F") - u(R n V(F7)).
1
ys + 2¢ if S e R 1is an even node of F,
¢ g 1
yS yS - 2¢ if S ¢ R 1is an odd node of F,
Yg if S ¢ Qo - (R n V(Fl)).
Because of our choice of €, y' is a feasible dual

solution, that is, it satisfies (3.5°.7)-(3.5.9). y' “also

satisfies (3.3.9). Moreover

(3.8.26) y'(¥(3)) + y'(Qo(j)) = y(v(3)) + y(Qé3))

for all § ¢ E(CH) v E(F) v v y(8).
SeR




be the spanning subgraph of G whose edges are all
those j ¢ E such that y'(v(3)) + y'(Q0(1)) =€y Let

G' =6 x R. F 'is now an alternating forest in G'. By

(3.8.26) for each S ¢ R, H(S) = C K[S] x R[S] and B(S) is
a blossom spanning H(S) (where H(S) and B(S) are as

defined in (3.8.5)).

Step 9¢c: If ¢ ¢ ((l, (2) then there is an edge

j e E(G') - E(G) of the sort we sou ht in Step 1. Replace
8 P

Y G and G by Y » G' and G ®  respectively and go to

Step 1 and from there as directed.

Step 9d. If € = €, then let I be the set of nodes

ice VS such that y; = 0 and {1 is either an even node of

Fl or is coptaineéd in an even pseudonode of Pl. Since

€ 1 ® ¢. For each i eI let r(i) =1 1f 1 ¢ V(F),

jet r(i) = 8 1f 1 ¢ S eRn V(Fl).

For each iel such that r(i) is the root of a tree

‘1‘1 in Fl, remove Ti from Fl and add it to FO. 1f

any such 1 exists then we have by (3.8.23) that

A(G; x, ¥') S A(G; x, y) - X; replace vy, € and G Sy._ 7y,
G' and G© -: respectively and go to Step 1.

I1f there is no {1 € 1 such that r(i) is the root of a
tree in Fl, then choose any 10 e I, let L g 2(1), let" %
be the tree of Fl containing T and let Ty be the root
of T. Replace vy, ¢, ¢ by y', é', ¢ = tespectivély and
go to Step Ja.

Step 9e. If € = € 4 then we must expand an odd ps®udonode

s of F' for'which < 0. Since) B: = .1, by (3.6.,2) there

,
s s
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is an-edge J ¢ éFl(S) such that xj = 1. Let H(S) and
B(S) be as defined in (3.8.5). Let v be the node of
B(S) incident with j. By (3.8.6) we can apply the procedure
described in the proof of (3.3.12) to x|E(B(S)) and
thereby obtain a np matching x of B(S) deficient at wv.
Let R' = R - {S}. Since S 1is a maximal member of
-

R, (3.8.5) is satisfied by R'. Let G" = G x R'. B(S)

is a subgraph of G". Define x' by

x 1f k ¢ E(B(S)),

k
' &
x, =
X, if k € E ~ E(B(S)).
x' is easily seen to satisfy

x'"(8(4)) s b for all 41 e V(G").

i
Moreover A(G"; x', y') = 4(G; x, y). Replace J, é, ¢,

and R by y', G', G and R' respectively and go to

Step 9f where we determine a new forest F.

Step 9f: 2. 3 is an odd edge of F then since by
(3.8.4) we have x; > 0 for any even edge of F and since
bs = 1 4t follows that j .is the only edge of F incident
with S. Let F' be the subgraph of G obtained by
replacing the pseudonode S in F vith the component K
of G+({') containing v. Go to Step 9gx

If j is an even edge of F then let 2  be the tnique

odd edge of F incident with S. Since § is an odd node

of F and bs = 1 these are the only two edges of F

-

incident with S. Let w be the node of B(S) met by L

f
and let v be a track in B(S) from' v to w having even




length and for which this length is as small as possible.
Let .&(r) = .(V(r), E(r), W|E(r)). Let F' be the subgraph
of G obtained by replacing the pseudonode § im F with

- .
G(w) and any component of ¢ (x') which contains a node

of w.

Step 9g. If F' contains no polygoen then {t is easily
seen that  F' is an alternating forest in G; replace x
and F by x' and F' respectively and go to Step 1.

If F' contains a polygon P, then P is the odd
polygon of the blossom B(S). Let Vv be a node of P

1
which is an odd distance from W in B(S) and for which

this distance is as small as possible. Let v, be a node

of P adjacent to Vi in P and not belonging to the

path in P  joining W and vye Let j' be the edge of

P joining v, and v,. Remove j' from F', let F" be

the forest thereby obtained. Now j' joins two even nodes N

of F". Replace F and j by F" and §' respectively
and go to Step 5. At this point F fails to be an”alternating
forest because j violates (3.6.3) ‘and the component H of

+
G (x) containing v, may not satisfy (3.8.15). However

these situations are automatically corrected in Steps 5 and

6.

Step 10: Hungarian Forest. Sin€® € = = we observe the

following. €, = = is equivalent to F1 satisfying (3.7.4).

= » 4is equivalent to {3.7.3) forx Fl. = = is equivaleh:

-

= » is equivalent to (3.7.6) for

-
to (3.7.5) for Fl and €

'
Fl. Therefore Fl is a Hungarian forest so by (3.7.40),

4

G has no feasible matching. By (3.7.17) and (3.8.23),




D(G, v®) = a(G; x, y). If desired, perform Step 12 so as
to "correct" the matching, x for edges j € y(S) for
S ¢ R so that the resulting matching x' will satisfy

x'(8(1)) = b1 for all {f eV and d(G, \':; x') = D(G, V=).
We do not bother performing Step 12 in the applications

we make of this algorithm in later chapters.

(3.8.27) Finally note that if Fl is a Hungarian
forest, then for any € € 1R such that e 2 0 we have that

y' as defined in Step 9b is a feasible dual solution also

satisfying (3.8.26).

Step 11: Termination with Optimal Solution. Apply

step. 12 to "correct" the matching x ard then stop, the
resulting matching x 1is the optimal feasible matching we
seek and y is an optimum dual solution. Since Step 12
ensured that a(G; x, y) = 0 and x(8(i)) = bi for all

{ e V it follows that (3.5.3) and (3.5.4) and x and vy
satisfy (3.5.11).° Since x- is a matching satisfying (3.5.3)
and (3.5.4), we also have (3.5.2) and (3.5.5) satisfied.

By (3.8.8) and (3.8.9) we know that (3.5.12) is satisfied.

By (3.8.2) vy satisfies (3.5.7)-(3.5.9). Therefore x 1is

the optimal matching we require and y  1s an optimal dual

solution.

Step 12: “Pseudonode Matching Correction. Let D = ¢.

D is the set of members of R for which the matching has

been corrected.

Step 12a: If R =D then return to Step 10 or 11 from

whence we come.
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member of R - D and

Step 12b: Let S be a maximal
let D' = D u {S}). Let G! ¢ x (R - D'). Then B(S)

(as defined in (3.8.5)) is a blossom contained in G'. If

x(8(s)) = 0 then go to Step 12d.

Step 12c: Let j.c &8(S) be such that xj =1, let v

be the node of B(S) met by J {n- G'. Apply the procedure

described in the proof of (3.3.12) to obtain a np matching

x of B(S) deficient at V. Let x' be defined by

x for k ¢ E - E(B(S)),

(3.8.28)x, =
x for k ¢ E(B(S)).

Then we have
(3.8.29) x'(8(1)) s bl for all i e v(ec'),
(3.8.30) x'(y(T)) = Qr for all T ¢ R,
(3.8.31) 4A(G'; x', y) = 8(&; x, ¥).

Replace x, D and G by x', D' and G' .respectively.

Return to Step 12a.

Step 12d. Let v-e SN VS be such that Yy " 0 |if
such a node exists, otherwise go to step l2e. Let T =V

if v € V(B(S)), let r = T 4f v e T e K0 V(B(S)). "As

in Step 12c we apply the procedure de:;ribed in the pro®f

of (3.3.12) to obtain a np matching x of B(S) deficient
at' ¥: Let x' de defined as in (3.8.28). Again (3.8.29)
and (3.8.30) are immediate and since the only new deficiency

we created was at T and since y  * 0, (3.8.31) is satisfied.




Replace x, D and G by x', D' and G' respectively.
Return to Step l1l2a.

Step 12e: (This step can only be performed if we
terminated in Step 10.) In this case S ¢ V" since S must

have been an even node or contained in an even pseudonode of

the Hungarian fores
to S contributes

of B(S) at which

t

Fl. Therefore the term corresponding
1 to 'a(G; x, y)- Let v be the node

x|E(B(S)) 1is deficient. If we let

x' x then (3.8.29) and (3.8.30) are satisfied and since

the term corresponding to Vv contributes 1 to A(G'; x', y)

ve have (3.8.31) satisfied. Go to Step 1l2a.

3.9 Efficiency of the Blossom Algorithm.

In this section
of work done by the
problem. We make a
of work required to

division by two) on

we derive an upper bound on the amount
blossom algorithm in solving a matching
fixed word assumption, that the amount
perform arithmetic (addition, subtraction,

any numbers encountered in the algorithm

is independent of the number of significant digits. Since

this is the way in which most large scale computers operate

(for reasonably sized numbers) this is a realistic assumption.

(3.9.1) Theorem. An upper bound on the amount of

work required by the blossom algori[ﬁ? to solve a matching

problem is of the order

wvhere xo and y0

A(G; xo. 0) . v . E

are the starting natchidﬁ and dual solution.




Proof. First we establish an upper bound on the amount
of work that can be done by the algorithm without decreasing

a(G; x, y)- Steps 4, 5, 72 and 9d all decrease A(G; x, y)

by at least one.

In Steps 3 and 7 we grow the forest Fl. Since V(Fl)

decreases only after performing one of Steps 4, 5, 7a or 94,
it follows that Steps 3 and 7 can be performed at most |v]|
times without a decrease in a(G; x, y).

In Step 6 we shrink. By (3.8.5) n(S) 2 3 for every
S ¢e R (where n(S) is as defined in (3.2.7)). Thus by
(3.2.8) we must have |r| s 1/2(¢|v| - 1) at any point in
the algorithm. By (3.8.25) any new S added to R becomes
an even node of Fl. We only expand odd nodes of Fl (in
step 9e). Thus Step 6 can be performed at most 1/2¢|v] =1)
times without a decrease in A(é; X, ¥).

In Steps 9¢-9g we expand an odd pseudonode of Fl. This

pseudonode must have been in Fl following the previous
augmentation since any pseudonode formed since is an even
node of Fl. Hence Steps 9e-9g can be performed at most
1/2(|Vi - 1) times without making a change in A(E; X, ¥)-

Steps 10, 11, 12 are performed only once in_the course
of the algorithm. A bound on the amount of work required
by these steps is of the order v = |E|;

Steps 1, 2, 8, 9a, 9b, 9c are perf}rmed at most once
for each perfor;ance of steps 3, 4, 5, 6, 7. 28, 23, A% A
bound on the amount of work performed by each of these can

be seen to be of the order IE\. The only ones of these steps

'
for which this bound is not obvious are 9a, 9b. However if
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we preserve the value of y(v(j)) + V(Qo(j)/ - Cj for each
§ ¢ E at all times, then it can be seen that this bound
is satisfied for these steps.

Finally a bound on the amount of work required for each
of Steps 4, 5, 7a or 9d is of the order lE"

Thus a bound on the amount of -work that cam be done p
without decreasing &((_}; x, y) by at least one is of the
order |E| + |V| and the theorem follows.[

(3.9.2) Corollary. I1f we start with the matching described

in (3.8.24) then an upper bound on the amount of work done

in solving a matching problem is of the order

b(v) - |v| - |E| .

Proof. This follows from the fact that if x and 'y

are as defined in (3.8.24) them A(G; x, y) s b(V).O

3.10 Min-Max Theorems and Discreteness of the Dual Solution >

Whenever we know a set of linear inequalities sufficient
to define a polyhedron -P, linear programming duality gives us
a min-max tHeorem concerning any subset of P _that cohtains
the vertices. Conversely, ‘we used the blossom algorithm to

prove the following min-max theorem which established Theorem (3.4.5).

-

(3.10,1) Theorem. Let G = (V, E, ¢) be a graph,

let b = (b, v 1 € V) be a vector of positive integers and

S0 ¢ @ jgj: 4 € E) be an arbitrary real vector. Then the

maximum value of ¢ * x for any matching x of G which

satisfies




(3.10.2) x(8(i)) = @1 for all i eV

is equal to the minimum vglue of

(3.10.3) I(b.y.: 1 e V) + i(qsvhr S ¢ QO)

for real (vi: i V) and (vS; S ¢ Qo) satisfying

(3.10.4) ¥y 2 0 for all iecV,

(3.10.5) XS 20 for all S €6 Q

(3.10.6) y(w(i)) + v(QO(j)) > - for all 4§ € E.

If the objective function ¢ satisfies certain discreteness
properties, then we are able to require certain discreteness

properties of the dual variables.

(3.10.7) Theorem. If cj is integer valued for

0
all 4§ ¢ E then there is an optimal feasible solution y

to the problem of minimizing (3.10.3) subject -to (3.10.4)-

£3.10.6) which satisfies

(3.10.8) 2 is congruent with 0 (mod 1/2) for

all s S

(3.16.9) is congruent with O (mod 1) for all
Xg B

0
s Q.

P

Proof. The problem of minimizing T3.10.3) subject tb
(3.10.4)-(3.10.6) is the dual linear program to the matching

problem maximize ¢x for x e P(G, b). We will show that

(3.10.10) if the starting dual solution used by
i

the blossom algorithm is integer valued, them at any point
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in the solution of this matching problem the dual solution
y will satisfy (3.10), (3.10.9). This we prove by showing

that at any point of LheAalgorithm.

(3.10.11) the values of ¥y for i e V belonging

1
to F or contained in a pseudonode of F1 will be congruent

modulo 1.

If the initial dual solution is integer valued, (3.10.8),
(3.10.9) and (3.10.11) are obviously satisfied. Now
observe that at mo point of the algorithm do we add a new
tree to Fl. Moreover at any time we grow a tree in FI, all
new edges j must belong to the equality subgraph so since

c is integer valued for all such j, (3.10.8) and (3.10.9)

3

ensure that (3.10.11) will continue to hold.
When computing € so as to make a change of dual variables,

(3.10.8), (3.10.9) and (3.10.11) ensure that any of €19 €5

€ which are finite will be congruent with O(mod 1/2).

(3.

Since V' o= ¢ , we cannot obtain a Hungarian forest se €

4

is finite and congruent with O(mod 1/2). Hence y' as

defined in Step 9b also satisfies (3:10.8), (3.10.9) and
(3.10.11). Thus (3.10.10) is proved and the theorem follows.[

The following is obtained by cbmbining (3.10.1) and (3.10.7).

(3.20.12) Theorem. 1f - & is integer valued, then

=

the maximum value of c¢x for any matching x of G

satisfying (3.10.2) is equal to the minimum of (3.10.3)

subject to (3.10.4)-(3.10.6) and an optimal y can be chosen

so as to satisfy (3.10.8), (3.10.9).

w

~




In the case that c is further restricted to being

0, 1 valued, we can obtain the following result.

for all

(3.10.13) Theorem. If CjQ,

jekE then there ‘f_i"_.&&‘,‘,"}il _f_erasii)vili_siliuﬁtivn \'0 to

the grobl(‘m of minimizing (3.10.3) subject to (3.10.4)-(3.10.6)

which satisfies

(3.10.14) Yia Vg e {0, 1} for all i e V, for all

- ==

S €6 Q .

Proof. Let € = (V, E, ¥) be a graph for which (3.10.13)
fails for some b and such that |v v E|]  is minimum.
Clearly |V| 2 3, and we must have o R 1 for all j ¢ E

since the graph obtained by deleting any edge k for which

Sy = 0 would still violate (3.10.13).

Suppose G has a perfect matching xo. Then the maximum
value of ¢ * x over matchings Xx of G satisfying (3.10.2)

is equal to 1/2b(V). Choose v ¢ V and define b' by
by -
i

Then the maxihum of ¢ * x over matchings x of G satisfying
(3.10.2) 1is still 1/2b(V). Suppose- that y0 is an optimal
dual solution relative to b' which satisfies
(3.10.14). Them I(bjyj: 1 € V) + eyl s Q) =

. . . e? ’y‘. qsys4
1/2b(V).
Hence yo is an optimum dual solution felative to b but

yo satisfies (3.10.14), a contradiction. Hence no optimum




solution relative to b' can satisfy (3.10.14) and since G

can have no perfect b' -mgtching, we assume

(3.10.15) b is chosen so that G has no perfect

b-matching .

Let y0 be an optimum solution relative to .b satisfying
(3.10.8), (3.10.9). Clearly we have y(i) e {0, 1/2, 1}
for all 1 € V and yg e {0, 1} \for all S ¢ Qo . Let
W= {1ieV: yg = 1/2}). 1f W = ¢ then yo satisfies (3.10.14)

and we are finished. If W =V then L(biy?: ieV}+

[(qSYg: S ¢ Qo) > 1/2b(v) 1implying G has a perfect matching,

contradictory to (3.10.15). Thus we have
(3.10.16) $ = WecV.,

(3.10.17) For any J € §(W) we must have either

ys « 1 where (v} = ¥(j) - W or j ¢ y(s) for some S ¢ QO
N

such that yg = 1.

Otherwise we could have yo(w(J)) + yO(Qo(j)) = 1/2

eontradictory to (3.10.6).

By our mihimality assumption for G and (3.10.16) there

is an optimal solution y1 satisfying (3.10.14) to the problem

v . - . al
minimize ‘(biyl' i e W) + ELaSyS. g'e Qw)

subject to Yy 20 for all 1 e W

Vg > 0 for all _S € QH
y(v(3)) + y(Qg(J)) > 1 for all j ¢ E(GIW])

QS : (s ¢ Q°: § ¢ W} and QS(]) z (S ¢ 02: 3 ¢ v(s)}

where




for all j e J. 1f we define y by

yo for. 1 e V- W,
* i
Yy 1
for i e W3
of
2 yg for S ¢ QO - QS.
y z
S 1 0

Yg for S ¢ QH

* *

then y satisfies (3.10.14) and by (3.10.12), ¥y is a
feasible solution to the problem of minimizing (3.10.3) subject
to (3.10.4)-(3.10.6). . Since

| T 1 0
E(hiyi: i e W) + _(qSyS: S € QN)

n

0 0 .
[(biyi: i e W) + X(qSyS: S € Q)

*
and since y0 was optimal it follows that y is optimal.

This contradicts the choice of G and completes the proof.0

Combining (3.10.13) and (3.10.1), we obtain the following.

(3.10.18) Theorem: If c, € {0, 1} then the

j 2 4

saximum value of cx for any matching x of G satisfying

(3.10.2) is equal to the minimum of (3.10.3) subject to

(3.10.4)-(3.10.6) and a - minimum y can be chosen-.-so as to

satisfy (3.10.14).

Theorem (3.10.18)can be specialized in the following
manner. Let G = (V, E, ¢¥) be a graph and let b = (bi: ieV)

be a vector of positive integers. For any X € V we define

'

(3.10.19) c(x) = {s eV - X: G[S] is a component

of G[V - X]}.
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We partition c(X) as follows.

(3.10.20) cu(x> {s € c(x): |s| = 1}
(3.10.21) ¢, (X) = {sec(x): |s|] >1 and b(s) is odd}

(3.10.22) C,(X) = {s e c(X): |s] > 1 and b(S) 1is evenl.

°

(]‘10.23) Theorem. ﬂﬂ“.fx}lﬁ): x is a matching ‘;f,<q
satisfying }3‘10.2)j = 1/2(b(V) * min{b(X) - e (X)]| -
b( MCO(X\)): X ¢V). Moreover p

.
(3.10.23a) there is a set, X <V which minimizes
b(X) - (x)| - by (C (x))) over X < v and satisfies

|
@) - 1, () - bCy (€ (X))

* * 0
EZ(X ) = & and cl(x S £8 .
Proof. ‘Let X be any matching of G which satisfies

(3.10.2). Let X ¢ V, Then for any S ¢ cl(x) we have

x(y(8)) s 1/2(b(S) - 1) (by (3.1.7)). Therefore

(3.10.24)  b(u(C (X)) - le,x)| 2 2c{x(y(8)):

S € CI(X)}.

Let J = &(X) n (5(U(C0(X) v cl(x))). Then we have

(3.10.25) Db(X) + b(U(CZ(X))) 2 2x(y(X v u(Cz(X))))

+ x(J).
We also have
(3.10.26) b(x) 2 x(J).
Summing (3.10.2&)—(3‘10.26) we obtain
[b(x) + b(u(C,(X))) + b(u(C2(X)))] + b(X) - lCl(X)I 2 2x(E)

or
‘

b(V) - b(u(Co(X))) - lcl(x)] + b(x) 2 2x(E)




Therefore

(3.10.27) max{x(Ey: x 1is a matching of G
satisfying (3.10.2)]} = 1/2b(v) + 1/2min{b(X) - 1c1(x)‘ -

B(u(Cy(X))): X € V).

We now show that equality holds.
By (3.10.13) there is a y satisfying (3.10.14) vhich

minimizes (3.10.3) subject to (3.10.4)—(3.10.&) taking

cj =1 for all j € E. Let yo be such a solution for
0

which the cardinality of 2 = {s ¢ Q = 1} is as small

s
as possible. Suppose ‘S, T € Zz are such that s nT=4é.

If b(S n T) 2 2 then if we define y' by

y? if {f eV~-(s5uvuT
y; &
0
yy *+ 1/2 if 1 e S u T
yo if R ¢ QC - {8, T}
R
'
Yp ~
0.1t n¢c {8, T}
it is easily seen that y' is a feasible solution to

(3.10.4)—(3.10.6) for which (3.10.3) attains a smaller value
than for yo. a contradiction to our choice of yo. 1f
b(s n T) = 1, and hence |s n T| = 1, then S v T ¢ Qo and

if wve define ¥y by -

s &
y; ® vy for all 1 e V
4¢ ReQ - (83T, SV T)

z 1 if R=SuT

0o if R e (s, T}




then y' is a feasible solution to (3.10.4)-(3.10.6)

satisfying (3.10.14) for which the value of (3.10.3) is no
0 1¢ 0 '

greater than that obtained for y . But |[{R e Q¢ yp = 1}

|z, contradictory to our choice of y . Hence
(3.10.28) the members of Z are pairwise disjoint.

Suppose ye = 1 for some v € S € Z. Then if we define
y by

yg +1/2 4if 41 eV - (v}

v':
g |

y?-l if 4 =V

yg if cho—(s)
R 0 if R =8

y 1is a feasible solution to (3.10.4)-(3.10.6) which causes
(3.10.3) to assume a smaller value than for yo, a

contradiction. Hence
A 0 Y. 4
(3.10.29) yy - 0 for all 1 ¢ S e Z.
Let X & {1 ¢ V: y? = 1}. Because of (3.10.29), in
order for y0 to be feasible we require
§(8) < 6¢(Xx) for every S e Z,
§(1) = &6(X) for every‘.i e V - u(2)

such that yg = 0, Hence co(x) = {{1i} e v - V(2): yg = 0},

(3.10.30) Cl(X) -3

(3.10.31) CZ(X) - 9.
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. Q.. " 0, 0
(3.10.32) ;(biyi.lrv)¢~(q5\s.SLQ)

= b(X) + I(1/2(b(S). - 1) :8 € C (X)) + 1/2b(u(C,(X)))
= 1/2b(X) -+ l/Zb(~(C](X))> + 1/2b(u(C,(X))) +
1/2b(X) - 1/2ic1(x)

= 1/2b(V) + 1/2b(X) - 4C1(x)! - b(u(cy(x)))).

Since by (3.10.18) and our choice of yo,

max{x(E): x 4is a matching of G satisfying (3.10.2)}

0 5 9
= E(biy“ ieV)+ ~(qsys. S € Q)

it follows from (3.10.30) ehat equality holds inm (3.10.27).
since z < @, (3.10.30) and (3.10.31) imply (3.10.23a)

completing the proof.O . 4
Theorem (3.10.23) (excluding (3.10.23a)) reduces to a

theorem of Berge [B2] when it is further specialized to l-matchings.

G has a perfect matching if and only if » max{x(E): x

{s a matching of G satisfying (3.10.2)} = 1/2b(V). Therefore,

by (3.10.23), G has a perfect matching if and only if

min{b(X) - [C (X)| - b(u(C(X))): X ¢ v} =0

Thus we obtain the fundamental theorem of Tutte.

(3.10.33) Theorem (Tutte [T3]). G = (v, E, #) has

a perfect matching if and omly if for each X c V,

‘

(3.10.34) b(X) 2 cl(x)[ + b(u(Co(x))).




In the case of l-matchings this reduces to the well

known theorem

(3.10.35) Theorem (Tutte [T1]). G = (V, E, ¥)

has a perfect l—ma_LLjr\ln_&kifiia_n_g_nnly if for any X cV the

.70

number . of components of G[v - X] having /@n odd number of

nodes is no greater than |X].

The importance of (3.10.23a) to these theorems is

discussed in Section 4.4 (see Theorems (4.4.21) and (4.4.22)).




Chapter 4

Facets and Vertices of Matching Polyhedra

Throughout this chaptexr we consider a graph G = (V, E, %)
and we take b = (b1: i eV) to be a vector of positive
integers. Since isolated nodes, that is nodes v for which
§(v) = ¢, are of little interest in matching theory we
assume G has no isolated nodes. In section 3.4 we defined

the matching polyhedron P(G, b) and proved the theorem

of Edmonds that

P(G, b) = {x ¢ ﬂkE:

(4.0.1) xj 2 0 for all j ¢ E,

(4.0.2) x(8(1)) = b1 for all ieV,

(4.0.3) x(y(s)) = 9 for all S € Q 1},

where Qo : (8 cV: G[s] is shrinkable}, and g = /2(b(S)-1)
for any set s such that b(S) is odd. We now characterize
the facets and vertices of P(G, b) relating them to the
structure of G and the value of b. In particular, for

any G and b we prescribe a unique minimal subset of the
inequalities X4.0.1)-(4.0.3) of which P(G, b) is the solution
set.

The material presented in this chapter -does rely to an
extent upon the material of Chapter 37" Sections 3.3 an#@l 3.4
are used in cha;acterizing the facets of P(G, b), some of
the material of Sections 3.6 and 3.7 is used in showing the
equivalence of shrinkable graphs and h-critical graphs.

'
The proof of the vertex characterization is related to the




algorithm itself; in proving the theorem we also show that
every matching obtained by the blossom algorithm is a
vertex of P(G, b). However we give an additional proof
of this portion of the vertex characterization which is

developed from basic properties of graph theory and polyhedra

theory.

4.1. Dimension of P(G, b) and Nonnegativity Facets

In order to characterize the facets of P(G, b), we

first determine its dimemsion.

(4.1.1) Proposition. P(G, b) is of full dimension.

Proof. Since P(G, b) < TKE it follows that

dim(P(G, b)) < |E|. We show that dim(P(G, b)) = |E|] by

exhibiting |E\ 4+ 1 affinely independent matchings belonging

to P(G, b). The result will then follow from (2.2.12).

N\
For each j ¢ E we define a matching xj by
B AR P,
Xj -
k
1 1f % = 3.
Since b, 21 for all 4 ¢ V, we have xj (6¢1)) s by for

all 1 eV, for all j ¢ E. Let 0 be the zero vector in
RE  Then (xj: j ¢ Blu {0} < P(G, b). The set of vectors
{xj' 4 ¢ E}lv {0} is easily seen to be ‘affinely independént
and the result foilovs.[-]
Let a c’\RE, a eR . We say that the linear inequality
ax s o gives a facet of P(G, b) 1if {x ¢ P(G, b): ax = al}
f

is a facet of P(G, b). In characterizing which of the




4.3
inequalities (4.041)—(~i.0.3,‘ give facets of P(G, b) we use
mainly the teclinique of showing that ax < a gives a facet
of P(G, b) by displaying (E| affinely independent members
x of P(G, b) which satisfy ax = a and then appealing
to (4.1.1) and (2.2.15).

(4.1.2) Theorem. For every e E ’{j 2 0 gives a
facet of P(G, b).

Proof. For any j ¢ E let PJ, be the solution set of

(4.0.2), (4.0.3) and

x. 20 for all k ¢ E - {3}).

We define xj by

Then for each j ¢ E, xj € PJ - P(G, b). Therefore by

(2.3.30), x]

0 gives a facet of p(G¢, b).0

The techniques used in this proof, showing that an
inequality gives a facet by showing that if it is omitted we
obtain a largeY polyhedron, could possibly be used in proving
the other facet characterizations of this. chapter (theorems
(4.2.1) and (4.3.49)). However we find it easier to show
that ax s a gives a facet of P(G, by" by exhibiting 1El
affinely indepen;ent members of P(G, b). Theorem (4.1.2)
is also easily proved by exhibiting iEl affinely independent
matchings of G, each such x satisfying xj = 0. (Take
the matchings OZ x*: k ¢ E - {j} defined in the proof




of (4.1.1).)

We call {x ¢ P(G, b): », = 0} a ﬂ:‘iﬂfga‘i,"“l L‘icf'l

J
of P(G,b) for any J e"E.
4.2 Degree Constraint Facets.

In this section we characterize which of the inequalities /

x(86(1)) = bi for { ¢ V are facets of P(G, b). For each

i eV we let N(i) be the set of nodes of G adjacent to

{. Let v and w be nodes of G .such that N(v) = {w},
N(w) = {v} and b_ = L Then {v, w)} is the node set of
a component H of G containing at least one edge. We

call H a balanced edge. '

(4.2.1) Theorem. For any 1 € V, x(S(i)l;?i gives

a facet of P(G b) if and only if

a tacet OF "~ \7» £ =

(4.2.2) i is .a node of a balanced edge

or

(4.2.3) b(N(4)) > b, and if b(N(1)) = b, +1
then y(N(i)) = ¢.

Proof. We first show the necessity of (4.2.2) and
(4.2.3). Let i be a node violating (4.2.2) and (4.2.3).

We will show.that there are inequalities (4.0.1)—(14.0.3)

which imply L
(4.2.4) x(8(1)) = b1
and which are d%stinct from (4.2.4). Thus we can remove

all copies of (4.2.4) from (4.0.1)-(4.0.3) without changing

the solution set and the result follows from (2.3.30) and (4.1.1).
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4 Suppose b(N(i)) hi' Summing the inequalities (4.0.2)
for v € N(i) we obtain
x( v §(v)) s b(N(1))
veN(i)
and since §(i) < 1] 5(v), it follows that (4.0.1) implies
veN(1i)

x(6(1)) < b(N(L)) s bi.

Moreover if there were v ¢ N(1) such that x(8(v)) s bv
and (4.2.4) were the same inequality them &(v) = &6(i) and
b, = bi so since we do not allow isolated nodes we would
have i and v being the nodes of a balanced edge, contradictory
to i wviolating (4.2.2). Hence (4.2.4) is not a facet of
P(G, b).

Suppose b(N(i)) = b, + 1 and there is some j € Y(N(1)).
Let v-e ¢(j) and for each u ¢ N(i) let k(u) be an edge
of G such that ¢(k(u)) = {1, u}. Let J = {k(u): u ¢ N(i)}
and let the graph B be defined to be (N(i) v {4}, J v {3},
v|J v {j}). We show that B -is a blossom. Clearly B is

connected, has no even polygons and exactly one odd polygon.

Moreover if we define a matching x of B by

- = & X
“k(u) bu for all u e N(1i) {v},
xk(v) : bv—l 8
x =0

3

we see that x is a matching of B satisfying (3.3.1)—(3.3.5,

so that B is a blossom. Hence G[N(i) v {i}] 1s shrinkable

so N(i) v {1} leO. The inequality (4.0.3) for N(i) v {1}




(4.2.5) x(y(N(i) v i})) s

so since &8(1) < y(N(1) {i}) - {3} , we see that (4.2.5)

and (4.0.1) imply (4.2.4). Moreover (4.2.5) is different

from (4.2.4). Hence ‘(4.2.4) is not a faceg of P(G, b).
Now we prove the sufficiency of (4.2.2) or (4.2.3).

Suppose that 1 is a node of a balanced edge H. For each

h e §(i) we define a matching xh by

5, &F k=N

Let j € 6(i). For each h ¢ E - 6(1) we define a matching

xh by

0 i1f k ¢ E - {n, 3}.

Clearly the set (xh: h ¢ E} is linearly independent and
xh(é(i)) = b1 for all h ¢ E. Since {x ¢ P(G, b):
x(8(1)) = bi) is a proper face of P(G, b) it follows from
(2.2.15) that (4.2.4)-gives a facet of P(G, b)s

Now suppose (4.2.3) is satisfied -for ie¢ V. Let K

be a minimal subset of N(1) for which p(K) > b, . For

each v € N(1) 1let j(v) be an edge joining -~ 1 and v,

let E, = {j(v): v € K}. For every G EK' let

(v(§)} = ¥(3) n K. Let B '(51= j ¢ E) be defined by
Ej z bv(j) forlall 3.9 EK' For each k € EK we défine
dk = (dk: 4 ¢ K) O

K




dk K
3
b{K) - b1 if 3 k.

Then 0 < d S b for all k ¢ EK by our choice of K.
For each k ¢ EK' let ;k = b - dk. Since 5dk: k € EK) is
linearly independent, (2.2.4) implies {x k € EK‘ is
affinely independent. Each vector ;k can be extended to

k . 8
a matching X of G by letting xj = 0 for all J € E

Then
k
(4.2.6) {x : k e E }

Moreover,

(4.2.7) x*(8(v) s by
(4.2.8) x(8(1)) = by
s0 xk ¢ P(G, b) for each k €

For each j € §(1) - EK

follows. .Let {v} = {i}.

v(3) -

be chosen such that x;(v) >0

x: if L ¢ E

xi 0 if L = 3(

. x;(v) if L =-

1f v ¢ K 1let k be any member
be such that x: > 0. Let xj

is affinely

Eg.

we define a matching X

1f v ek

3

and let X

-3, 3N}
v)

gi
of EK

and let h €

independent.

3

as
then let Kk €

be defined by

§(1)

be defined by

K
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xk‘ 4f ¢ ¢ E - {3, h},
L
x: -1 if L =h,
1 4f L= 3.
either case, )(j is easily seen to satisfy (4.2.7) and
(4.2.8) for every ¥ € §(i) -.K. Since for each j € §(1) - Ey
xJ is the unique matching x 8O far defined for which
xj # 0, (4.2.6) implies
(4.2.9) {xj: joe &§(1)} 1is affinely independent.
Finally, for each e §(1) we define a matching
xj as follows.
S .
x: &1
3
xi =0 for h e E - (8(1) v {iH
x% is defined for h € §(i) to be sufficiently
large that (4.2.7), (4.2.8) are satisfied. This is possible
for if Db(N(1)) = bi + 1 then by (4.2.3) at most omne end
of 3§ is in N(i). Therefore defining xi = 1 restricts
3
Xy to taking on a value one less than bv(k) for at most
one edge k € 6§(i). Hence xJ can be defined as asserted.
If b(N(1i)) 2 b1 4+ 2 then it is easily=seen that after
defining xi = 1 “we can still assign values xi for k & &8(1)
as required.
For any Jj ¢ E - §(1), xj is the only matching X
defined for which' xj = 0. This together with (4.2.9) implies
that (xJ: § ¢ E} 1is affinely independent. Thus we have
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defined El affinely independent members of P(G, b)
each of which satisfies (4.2,8). Moreover F {x ¢ P(G, b):
x(8(1)) = b13 is a proper face of P(G, b) since
0 ¢ P(G, b) - F. Therefore by (2.2.15) it follows that
(4.2.4) gives a facet of .P(G, b) completing the prouf.j
We call {x ¢ P(G, b): x(8(1)) =-b } a rﬁgnegdtiviﬁtrv facet

i

for each 1 ¢V satisfying (4.2.2) or (4.2.3).
In the case of l-matchings, (442.1) specializes to the

following

(4.2.10) Theorem. x(8(4)) s by gives a facet of

P(G, 1) if and only if

(4.2.21) % _1is a node of a balanced edge

(4.2.12) Ngi)\ > 1 and if |N!i)1 = 2- then

lgngx)) = ¢.

4.3. Blossom Facets.

In this section we give a first characterization
of the inegualities x(y(8)) = .4g for S € Qo which are facets
of P(G, b). In fact: for each S € Q0 we give the dimension

of

i Fs = {x ¢ P(G, b): x(y(8)) = qs).

These results are obtained by studying shrinkable graphs (as
defined in section 3.3).
In Section-4.4 we give two characterizations of shrinkable

graphs and hence two more characterizations of the facets of




this sort.
Recall that a  np matching (near perfect) matching of
¢ deficient at v ¢ V is a matching x of G which

satisfies

x(8(v)) = b - 1.

x(6(i)) = b for all ieV - (v}

The following lemma is useful when proving the independence

of matchings.

(4.3.1) Lemma. Let X be a set of np matchings

of G and let x0 e X. 1f there exist J(xo) c E and

d(xo) ¢ R . such that xOQJ(xo)) < d(xo) but x(J(xO))- d(xo)

for all x € X - ‘xo} then xo is not a iimear combination
of X - (xo}
s i (0
Proof. Suppose that there are a_ e®R for x ¢ X' = X-{x"}

such that
(4.3.2) =" = E(axx: x ¢ X').

By (3.3.24), x(E) = 1/2(b(v) - 1) for all x € X. Therefore
by (4.3.2) ’

xO(E) = I(axx(E): x € X')
and hence

(4.3.3) I(ax: x e X')=1.

Therefore L(axx(J(xo)): x¢cX') = I(axd(xo): z ¢ X') = d(xo)
by (4.3.3). Hemée (4.3.2) implies that L) = ax?,

a contradiction which proves the lemma.[
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(4.3.4) We call v e V a strong cut node of
¢ = (V, E, ¢) relative to b if v is a cutnode of G
(see (1.3.9)) and bv = 1. A !‘_(‘Jlk_,t’,li(k, of G relative
to b is a maximal connected subgraph H of G such that
bv > 1 for any cutnode Vv of H. Thus a weak block consists
of one or more blocks of G joined by cutnodes v for
which bv > 1. Notice that
(4.3.5) the edge sets of the weak blocks of G
partition the edges of G.
(4.3.6) We let g(G) denote the number of weak
blocks of G.
In the case of l-matchings, strong cutnodes and weak blocks
are simply cutnodes and blocks respectively.
(4.3.7) Proposition. G  is shrinkable if and
oniy if G 1is connected*and every weak block of G 1is
shrinkable.

Proof. First suppose that G 1is connected and each
weak block of G 1is shrinkable. We prove that G is
shrinkable by induction on B(G). if B8(G) = 1 then the
résult is trivial. Suppose g(Gg) > 1 and -assume the result

is true for graphs having fewer than PB(G). weak blocks.

Let D be a weak block of G, let RD be a shrinking family

for D. Each weak block of G' = G v(p) 4is isomorphic
to a weak block of G and so is shrinkable. Moreover G'

'
is connected. Since G is connected, ' B(G') = g(c) - 1




so by our induction hypothesis G¢' is shrinkable; let R'
be a shrinking family of G'. For each S ¢ R' we define

a set z(S) V as follows.

s 4if V(D) ¢ S,
z(S)

s - {v(D)} v V(D) if ~N(D) € §

Let R {g(S): 8 € R'} Rpe Then , R is easily seen to
be a shrinking family of G. The sufficiency now follows
by induction.
Conversely, suppose that G is shrinkable. Let R be
a shrinking family of G. Trivially G 'is connected. We
prove that every weak block of G is shrinkable by induction
on |R]. 1f |[R| = 0, then G consists of a single node v
and the result is trivial. Suppose that |[R| 2 1 and that
the result is true for graphs having shrinking families of
fewer than |R| seéts. Let § be a minimal member of R.
By (3.3.16) G[S] is spanned by a blossom B. By (3.3.9)
only terminal nodes ,of B can be strong cutnodes so B is
a subgraph of some weak block D of G. Let , G' = G x S.
For any T ¢ R - {8} define «T) =T 4f S n T = ¢, define
T(T) = T-- § v {S} 4f° S c T and let R' = {g(T): T ¢ R - {S}}.
R' 4is a shrinking family of G' and" |[R'| = |IR| = 1 so
by our induction hypothesis every weak blofk of G' is
shrinkable. he{ce every weak block of“C different frén D
is shrinkable.. Moreover every weak block-of D x § is
shrinkable so as we have already seen, D x § is shrinkable.
Let Rb be a shsinking family of D x{S. and for any T.€ Ré
let O(T) =T 41f S ¢ T, let ®(T) =T - (S} vus if § e T.
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Then (S} u B (T): T ¢ Rb' is a shrinking family of D
and the proof now follows by induction.U
(4.3.8) Proposition. If 2 1is the set of weak
blocks of a connected graph G.= (V, E, ¥) cthen
(4.3.9) b(V) -1 = T(b(V(D)) - 1:/D ¢ 2).
Proof. We prove by induction on lz]. If |z] =1 the

result is trivial. Suppose XZ' >\1 and (4.3.9) holds for
all graphs having fewer than |z] weak blocks. If every
weak block of G contained two or more strong cutnodes then
it is easily seen that G would contain a polygon having
edges in more than one block, contrary to (1.3.10). Let B
be a weak block of —G containing exactly one strong cutnode
v. Let G' = G[Vv -(v(B) - (v})]. Then G' is connected
and Z - {B} 1is the set of weak blocks of G'. Therefore
by induction

B(V(G')) - 1 = Z(b(V(D)) - 1: D e Z - {B}).

Since b(V) = b(V(G')) + b(V(B) - {v}) = b(V(G')) + b(V(B)) - 1,

(4.3.9) holds and the result follows by induction.O

(4.3.10) Proposition. Let G = (V, E. %) be a

shrinkable.greph and suppose X € P(G, b) satisfies

x(E) = 1/2(b(V) - 1). Then for any weak bYock) D of G,

x(E(D)) = 1/2(b(Y(D)) - 1). (Note that x need not be

integer valued.)

Proof. Let Z be the set of weak blocks of G. By

‘

(4.3.7) each D e Z 1is shrinkable so since x ¢ P(G, b),



x satisfies

(4.3.11) x(E(D)) i/2(b(v(D)) - 1) for all D 'e Z.

Therefore, summing for all D e Z we obtain

(4.3.12) x( v E(D)) s 1/2 & (b(V(D)) - 1).

DeZ DeZ
By (4.3.5) E = v E(D) so using (4.3.8) we obtain
DeZ
(4.3.13) x(E) s 1/72(b(V) - 1). v

But by hypothesis equality holds in (4.3.13) so equality

must hold in (4.3.12) and (4.3.11) which proves the result.

(4.3.14) Corollary. I1f x is a np matching of

a shrinkable graph G then for any weak block D of G,

x|E(D) is a np matching of "D.

zlpof‘ The result follows from combining (4.3.10) and

(3.3.24).0

Now we prove a main result used in characterizing the

facets of P(G, b) given by constrainte (4.0.3).

(4.3.15) Theorem. 1f G = (V, B, ¥) is-shrinkable

then G has JE| - (B(G) - 1) 1linearly independent . np
matchings.

Proof. Let E be a shrinking family of G; we prove by
induction on |R|. If |R| = 0 thean G is degenerate,
|E|] = 0, B(G) =1 and the result is trivial. Suppose |R| 21
and the theorem holde for graphs having a shrinking family

consisting of fewer than |R| sets.



Let B be a blossom

by (3.3.16). We partition vV(B)

v

1 V(B) n V

v
2

B

and V(B) n

set of real nodes of and VZ

of B.

Let -C = E(G % R[V)) - E(B)

obtained from G by deleting all

i{s a shrinking family of G' so

there is a np matching x' of

which satisfies

(4.3.16)

For each v ¢ V we define a

deficient at v by

17) x. =

4.3.
(4.3 j

X (=¥

Let 1

- vV €

Vl}.

a np matching of G[s]

(4.3.14) that

(4.3.18) x|E(D) {is a

every weak block D of Gc(s)

x € Xl.

sV

2
n(s) = '|y(s)|. - (8(els)) - 1)
s,1, 38,2

For each

matchings (X

spanning

R.

Y (y(5)) = 1/2(b(s) - 1) for all

1 np

Since by (4.3.16) each

for'each

for every

linearly independent

e BB Riy

G x R[V] which exists

into Vl v \'2 where

That is, Vl is the

i{s the set of pseudonodes

and let G'-. be the graph

the edges in C. Then R

by (3.3.21) for each v ¢ Vl

G' deficient at v and

S €

matching x' of G

x ¢ X 1is

S eV it

2° follows from

np matching of D 'for

v

5.V, for every

there are by induction

ap

of (s}

R[S] v

G[s) since
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the edge

4
is a shrinking family of G[S) and R[S] v (S} <
IR = {v}]| < |R|]. By (4.3.14),
-S,1 .
(4.3.19) x"'"|E(D) is a np matching of D for
every weak block D of G[S]) for every i ¢ {1, 2,...,n(S8)}.
We extend each to a np matching of G as follows.
Let ;S be the np matching of G deficient at 'S which
exists by (3.3.12). For each T ¢ V2 - {8} let j(T) be
of 5 (T) n E(B) such that ;Sj“_) 1, let {v(T)}
$(J(T)) n T and let 352% 1o a np matching of G[T)
deficient at v(T). By (4.3.14),
=T,8,,
(4.3.20) «x |E(D) is a np matching of D for
every weak block D of G[T].
s,1
Now we define x for a11 1 ¢ (1, 2, ,n(8)} by
;?’1 for j € v(S),
$,i_ %> .for '§ € E(B),
(4.3.21) =,°"s 4
3.
0 for ;) c C,
;}'S for § ¢ y(T), fex T%'c V2 - {8}
Let X, = {xs'i: $ ¢ 12: 8, ,n(8)), 8¢ Vz) By (4.3.19)
and (4.3.20), o
(4.3.22) " x|E(D) 4is a np matching of D for
every weak block D. of G[T] for every T ¢ VZ for every

X € XZ.
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Now we show
(4.3.23) X X, 1is linearly independent.
Suppose that a, € R vV € ‘\1 and XS_‘ e R
1 ¢{(1, 2,.+.,0(8)}, S v, are such that
(4.3.24) E(a_x': v e V,) ‘
5 L(a x eV,
i . " .
+ I(a, $* 4 ¢ {1, 2,...,n(8)1}, S ¢ VZ) = 0.
If we let x' ® xv\E(B) for each v ¢ V we have
T(a xV: v e V,) + I(8.%°: S eV,) =0 )
v i Ry 3 & % Vg
where
ES I(ag 4: 1 ¢ {1, 2,...,0(8)}) for S e V,.
’
For each v ¢ V(B), x' 1is a np matching of B deficient
at v so if we let J(x°) = &(v) n E(B) and a(x’) = b,
for all v ¢ V(B) then by (4.3.1), {(x¥: v ¢ V(B)} 4is_ linearly
independent so
(4.3.25) a_ =0 for all v ¢ Vl,
(4.3.26) Gg. " 0 for all S.e¢ 12.
Now let 'S € V,, let Vj =V, - {sl. "By (4.3.21), (4.3.24)
and (4.3.25) we have
I(a ;S'i: 1. ¢ {1, 2,.:.,0(000)
s,1i
- -S,T, SR
+ I(?Tx R Vz) 0

so by (4.3.26),
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1 e {1, 2, ,n(s)}) =0
-S,1 3 ¢
But the matchings {x : 41 ¢ (1, 2,...,n(S)}} are by
hypothesis linearly independent so
(4.3.27) By 4 = 0 for all i ® 1, 2,0 o om(B)]
Sy

This together with (4.3.25) proves (4.3.23).

Let k e C. We define a np matching xk as follows
Let v and w be the nodes of B met by k, let x' be
the np matching of B deficient at v. There must be some

edge L ¢ E(B) n &§(w) such that ;: = 1, we define a np

matching ;k of G x R[V] by

“k
4.3.28 =
( ) x4

Let T ¢ Vz. If ;k(é(T)) = 0 we let ;T be any np
matching of G[T]. If‘there is & € 8(T) such that ;t = 1

then let {v} = (&) n T- and let %7 be a np matching of

G[T) deficient at v. Now define xk by

x;‘ for § ¢ E(G x R[V]),

k
4.3.29 =
( )xj L,

T

f
xj for j € y(T) feoxr X .8 V2.
Let X, = {x: k ¢ C}. Every x ¢ X; 1s a np matching of
G and for any 8§ ¢ VZ, xly(S) is a np matching of G[s].

Therefore by (4.3.14),



(4.3.30) x|E(D) is a np matching of every

weak block D of c[s]) for every s ¢ Vv, for every X € X
Moreover, by (4.3.17), (4.3.21), (4.3.28) and (4.3.29) for

each k ¢ C, xk is the unique member of Xl v X, XJ such

that x, * 0, so by (4:3.23),

(4.3.31) X1 v X2 v X3 is linearly independent.

Now let D be a weak block of G[S] such that D |is

not a weak block of, G for some S € v First observe

2°
that since bS =1 by (3.3%9) § must be a terminal node

of B and consequently }58(5){ < 2. As before we let

¢' = (v, E~C, ¢|E - C). We distinguish two main cases.

Case 1. D is not a weak block of G'
Case la. An edge h of 53(5) is incident with a

node w € V(D) for which b 2 2. (See Figure 4.1).
hode ¥ & A/l ——

o

Since b" 2 2, w is not a stromg cutnode of G[S] and -so

every edge of G[S]) -incident with w is an edge of D. Let

xs be a np matching of S deficient at Ww. Since bw 2 2

there is some 1L € E(D) n &(w) such that xi = 1, vlet

{t} = ¢(h) - {8} and let u be the node of V(B) - {Ss} met

by h. If. v ¢ Vl, then u = t, if wu'e€ V2 then t € u.

Let X be the np matching of B deficient.at u.

-

(4.3.32) For each T eV, - {u} let 3(T) be
the unique edge ] of 6B(T) such that ;j = 1 and let
!T be a np matching of G[T] deficient at v(T), where

(v(T))} = ¥(3(M) 'n T,

2 3°

.19
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1f uweV

(4.3.

deficient at t.

then

u

33) let x be a np matching of G[ul

¢ D
We now define a  np matching X of G by

xj for § € y(S) - {4}
S
x, - 1 if 3 = %,

x for j e y(T) for T ¢ V2 - {8}.

It can be seen that

(4.3.34) xD|E(A) is a np matching of each weak

block A of G[T] for T ¢ V2 unless A = D and

(4.3.35) XD(E(D))

Case 1b.

b(V(D)) - 3
2

b, =1 for every node i e V(D) met. by an

edge of B.

i

(see Figure 4.2) Then by our case 1 hypothesis

there must be distinct v, W € § incident with edges h,

k e 6B(S) respectively and every path inG[S] from v to

w must contain an edge of . D. Since D is a weak block of

G[S]) there is
node of D in

strong cutnode

a unique node p € V(D) which is the first

any FUCh path. 1If p = vi{ then p 1is a

of G[S] and hence is not a cutnode of D.



1f then

- v

P

cannot be a cut

of G[S

{p}]

H G[V(H) v

just the single

V(H) V(K) = {

weak blocks of
shrinkable. Mo

Let x be a

p * w, there is
a
S,
be
Since iéB(S) |
S must belong

the first edge

{pll,

b by our Case 1b hypothesis so

node of D. Thus there is a component i

such: that V(D) - {p!} V(H). Let

let K G[s - vV(H)]. (K may consist of

node ' p.) Then V(H) V(K) = S and

pl. Clearly the weak blocks of G[S] are the

H and | 4 so by (4.3.7), H and K are

reover, v € V(K), w & V(H) and z w.

P

np matching of H deficient at w.

some & ¢ E(D) n such that

§(p)

np matching of K deficient at v. Let

let u be the node of V(B) - {S} met by

the np matching of B deficient at u.

« 2 and since S 1is a terminal node of B,

to the odd polygon of B. Therefore h 1is

in a path of length two from a node in the

polygon to u. Therefore by (3.3.12) and £3.3.5) ;h = 1
and ;k = 0. For each, K T ¢ VZ - {u} define xT as in
(4.3.32) and if u € V2 then define x* as in (4.3.33).
Now-define xn by
x? for § ¢ E(H) - (&}
0 for j e {2} v C,
xx for j € E(K) ™
D I b
xj E X
x,: fex 3§ v B(B) - {k}
J
1 for j =k
' T
xj for j ¢ y(T) for T ¢ Vz - {8).




D . . .
It can now be seen that Xx is a np matching of G

satisfying (4.3.34) and (4.3.35).

,CE;‘;L.:' D7ﬂx_:.iii_‘urekx'p”l«lii}: of (See Figure 4.3).

Let W be the set of nodes of S incident with edges of B.

There must be a node p ¢ v(D) which is the first node of

D in any path in G[S]) from a node in W to 'a node in D, *
otherwise D would not be a weak block of G'. p 1is a ‘

strong cutnode of G[S] wunless W = {p}. Since D is not

a weak block of G, there is some edge e e Cn §(S) such

that where {q} = y(e) n S, there is a path in G[S] from
q to a node of B - which does not contain p. Let H be -
the component of G[S - {p}] which contains g, let

H = G[V(H) v {p}), let K = G[Ss - V(i)]. (1f W = {p} then

K may simply consist of p.) Let u be the node of

V(B) - {S} met by e and let X be the np matching of B

deficient at ™. Let xH be a np matching of H deficient

at q. There must be L ¢ B(D) n &(p) such that x? =1,
Let xK be a np matching of K deficient at the node
w ¢ W met by an edge h ¢ E(B) for which ;h = 1., For each
T e V2 - {u} -define xT as in- (4.3.32). If wu e V2 then
let {t} v(e) - 8§ and define x" as in (4.3.33). Now

define xD as follows.

xl; for 3§ ¢ E(H) - {2)5
0 -for J ¢ fr)y v C - {e},
xK for j ¢ E(K),

D b |

*y ;j for J ¢ E(B),
1 for j = e,

x for j € y(T) ‘for T e V, = (s}




