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THE PROBABILISTIC ANALYSIS OF MATCHING HEURISTICS™

CHRISTOS H. PAPADIMITRIOU
Center for Research on Computing Technology
Harvard University
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ABSTRACT

It can be shown that the total length of the optimum matching of a set
of n points uniformly distributed on the unit square--or any other Lebesgue
area of measure 1 --is, when divided by \f;, almost certainly equal to a 1
constant W2 .25, We analyze probabilistically several heuristics for the
matching problem and obtain upper bounds on the value of p. We show
that H £ .40106, and conjecture that K= . 35,

1. INTRODUCTION
2. THE SHORTE

We will state the rest
and uniform distribution, -
Introduction, -

Let P = (Pl,Pz..--)
sequences of points indepen
square. Let P" ={p,,,
of all the points in P“% o

Many combinatorial optimization problems call for the construction
of the shortest possible network of some kind, given the matrix of distances
among a set of n points. These problems include the traveling salesman
problem (TSP), the minimum spanning tree problem, Steiner's problem,
the matching problem, etc. (See [18] for definitions.) When the given
points are actually realized as points on the plane--and the distance matrix

is thus induced by the two-dimensional Fuclidean metric--we obtain the
Euclidean case of such a problem. Different problems, however, behave
differently under this restriction. The minimum spanning tree problem
becomes easier [12], but the TSP and Steiner's problem remain hard [5, 9].
There is no obvious advantage to the matching problem [1 1], and the com-
lexity of another problem is reduced from probably exponential to O(nlog n)

~ THEOREM 1 [2]. vV
exists and is equal to a cons

11].
The proof of Theorem

For these Euclidean cases of ''network design' problems a very strong TSP is shown to satisfy fou
robabilistic result is available [2]. In the case of the traveling salesman finite set of points in an are
problem this result essentially asserts that the value of the optimal tour of 1‘ Qis... »Qp,  is the correspt
n points drawn from a uniform distribution in the unit square is almost conditions:
certainly equal to a constant B times «/n. (See Theorem L of Section 2 for
a precise statement.) This result is surprisingly stable when the assump- )
tions are relaxed significantly. In particular, it holds for arbitrary measur- 1, T(Q)

able regions with arbitrary probability distributions, and can be generalized
to many dimensions. Furthermore, it is also valid for the minimum span-
ning tree problem, Steiner's problem, and, in fact, any network design-type
of problem as long as it satisfies four conditions stated in our Section 2. In
particular, it holds for the matching problem [3,8] (Corollary 2).

the result of [2] received some well-deserved attention from
nd was used as the main argument in the probabilistic
analysis of heuristics for the TSP [7] and other hard Euclidean problems
[10]. However, heuristics such as the ones in [7,10] are susceptible to
evaluation of the solution yielded only relative to the optimum solution, and
not in absolute terms (e.g., calculating the actual length of the derived
solution). Hence, no information about the magnitude of the constant B in
the theorem of [2] can be deduced by analyzing them. We also notice here
that in contrast to the TSP, the matching problem (Euclidean or otherwise)
can be solved exactly in O(n3) time by the algorithm of Edmonds [3] as
implemented by Gabow and Lawler [4,8]. The conceptual complexity of

this algorithm, however, renders it beyond any detailed probabilistic analysis,
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Monte Carlo experiments in [
ased on more elaborate experiments, D. Stein [1

The value of the corresponding constant for the matching problem, W,
is unknown as well. Since the optimum matching is at most a half of the
shortest tour, we notice immediately that LS .5B=< .46, We also show
that 2 .25, The last part of this paper concentrates on improving the .46
upper bound using techniques that are applicable to matching and not to the

TSP. For this purpose we analyze probabilistically certain matching

heuristics, most notably a three-phase extension of the "monotonic' heuristic.

The constant corresponding to the three-phase heuristic is shown to be less
than , 40106,

2. THE SHORTEST PAIRING OF MANY POINTS

We will state the result of [2]
and uniform distribution,
Introduction.

for two dimensions, the unit square
The possible extensions were sketched in the

Let P = (p; +P2:...) be a random variable with range infinite
sequences of points independently and uniformly distributed in the unit

square. Let PR = tP1s...,P,f, andlet T(P") denote the shortest tour
of all the points in P&,

THEOREM 1 [2]. With probability 1, the limit lim L T(PY.nl/2
exists and is equal to a constant B. m nTe

The proof of Theorem 1 essentially consists of two parts. First, the
TSP is shown to satisfy four simple combinatorial conditions. Let Q be a
finite set of points in an area A, andlet A,,... A be a partition of A,

Qrseniy Qn is the corresponding partition of Q. satisfies the following
conditions:

m
1. TQ < 3 (T(Qj)-*-éjj

b=) U

where 6ij is the diameter of AiUAJ- and 6m,m+1 = éml'

m
2, TQ) = 3 (TQ,)-2-]|34.])
i=1 J ]

where |5Aj[ is the length of the boundary of Aj'

3. There exists a constant o such that T(P?) < an .

4, There exists a constant Yy such that éa(T(Pn)) = y\/ﬁ .
The second part of the proof involves a dee

uses only properties (1-4) of the TSP. An eleme
the argument appears in [11]

P analytic argument which
ntary exposition of some of

Let P be as in Theorem 1. A matching of P® is a set of line

segments (p-k,pjk), k=1,...,[n/2] such that all i, j;, are distinct.
Let M(PR) b

e the shortest such matching.
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3. THE MONOTONIC HEURISTIC

The probabilistic analyses of this and the next section will fall into
the following framework. Let . be an algorithm which, given a set of
points on the plane, produces a feasible matching, Consider the algorithm
applied to sets of points on a £XE&  square drawn by a unit density Poisson

Process, Let Z,t.ll.ﬂ be the limit of the average length of a matched segment,

as £ =, Then it follows that I'-LJZ 2 W. (This is a major part of the
argument in [2], )
Our first algorithm is the monotonic W
heuristic (Fig. 1). In this algorithm we
divide the Square into vertical strips of
width w. In each strip we scan the /
points bottom -up, matching each free s
point that we meet with the one with the
next higher y-coordinate, The point that \
is possibly left unmatched in each strip
does not influence our calculations, since \
its contribution is asymptotically neglig-

ible (recall that £ o), \
This heuristic is essentially the P :1,/.

same as the one analyzed in [2], Lemma

10; following their analysis, we may

determine HM(W), the [ for the mono-

tonic algorithm with width™ », The least

value of p(w) is ., 46, attained for

wé = 3. Notice that the - 46 bound is the

same as that derived in the Introduction Figure 1

using an independent argument,

\

[2] resorts to numerical quadrature and special function calculations), We

4. THE THREE-PHASE ALGORITHM

The algorithm whose analysis will yield our upper bound for K is an
elaborate implementation of the monotonic heuristic. For the Purposes of
clarity we first Present the basic ideas in the algorithm and then describe
the modifications necessary in order to improve its effectiveness and
analytic tractability.

As in the monotonic heuristic, we divide the Square into strips of
width w. In the monotonic heuristic all points in a strip--except for
pPossibly one--are matched to points in the Same strip, Thus, Points that
are very close to each other but in different strips (the points p,q in
Fig. 1) cannot be matched together. To avoid such anomalies, our new
algorithm Processes the points in three pPhases. In the first phase, we
Process the points in the column of width 2d around the dividing line of
two adjacent strips (see Fig, 2). Fach free point in these columns is
Paired with the one having immediately higher y-coordinate (these are the
points marked 1 in Fig, 2). However, if this next point is more than a
vertical distance L away (as is the case of the points marked 2 in Fig, 2)
we leave this point unmatched and proceed to the next point, w, d and
L are Parameters,
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In the second phase, we match
the points in the columns that were L
left unmatched in the first phase. We w
match them with the point in the main

strip (in fact, in the corresponding /} 2
left and right halves of the two neigh- r f 2‘:
1

boring main strips) that has the next
greater y-coordinate, (These are the
points marked 2' in Fig. 2.) Finally,
in the third phase we match the remain-
ing points in the main strips (marked
3 in Fig. 2) in the monotonic fashion,

R
-
S

There are certain difficulties in 2‘/ 1I
the analysis of the algorithm as stated. L 3
We briefly discuss these, together 4 3 —ﬁ-&
with the modifications that result in an N 1
analytically tractable and effective N ‘ ‘
algorithm. 3

First, we would like the y
distance between the points of type 2 Figure 2
and their mates 2' to be exponentially
distributed. It is not, however. The reason is that two successive type-2
points in the same column may interact in a non-trivial way. It may be
that the mate 2' of the lowest is above the higher type-2 point. This means
that the higher type-2 point will not be matched with the next--in terms of y
coordinates--point in the main strip, but to the second next. The distribu-
tion is not Poisson.

We can avoid this difficulty by an easy modification of the algorithm.
Whenever the mate 2' of a type-2 point is further--with respect to y
coordinates--than the next point of the column, then we match the type-2
point at hand not to the 2' point, but to the next point in the column. It is
easy to see that this does not increase the expected value of the total match-
ing., This has the effect of ""decoupling'' successive type-2 points and
rendering the distribution of the y-lengths of matched segments of phase 2
exponential, Note that in order to implement this modification, phases 1
and 2 must be interleaved.

In phase 3 the algorithm matches monotonically the points that were
left unmatched in phases-1 and 2 (type 3 points). These points are, roughly
speaking, the sum of two Poisson processes: the original one of unit
density, and another process corresponding to the type-2 points. The latter
process is almost Poisson--with a ''dead' period of length L following
each event. The effect of this process is that each even in it cancels the
event of the original process that comes after it., An alternative formulation
would be via a simple marked process [14]. Unfortunately, the resulting
process of the surviving points is not Poisson. Quite to the contrary, the
interarrival interval distribution function Laplace-transforms to a compli-
cated irrational function, and it is not at all clear even how it could be
approximated by a Poisson process.

To overcome this difficulty, we modify phase 3 of our algorithm. For
each type-3 point--i.e., & point left unmatched by phases 1 and 2 --we scan
the entire strip by increasing y's. If a type-3 point is met before a type-2
point (Fig. 3a), then the two points are matched (dotted segment), However,
if a type-2 point is met first (Fig. 3b), the matching is changed as shown
in Fig. 3c. We call such points type-4, to distinguish from the type 3
points of case (2). The mate of the type-2 point is now considered as an
ordinary type-3 point (Fig. 3c). The result of this modification is that the
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Figure 3

distribution of the y distances between two matched type-3 points is now
exponential., Notice that this modification, unlike the previous one, has the
effect of worsening the average overall length of the matching produced;

its main purpose is to ease the analysis that follows.

5., ANALYSIS OF THE THREE-PHASE ALGORITHM

Let 2-p(w,d,L) be the average value of a matched segment for the
three-phase algorithm of the previous section. In this section we will
bound p(w,d,L) from above. The derivation is complicated and lengthy,
and due to space constraints, we will present here a sketch of the basic
ideas involved. The methodology is, generally, analytical using approxi-
mations and special functions, and the trade-off is between accuracy and
analytical tractability.

In order to estimate p,(w,d,L), we shall first calculate the densities
ry,rp,r3, r4 of the points of the different types, and the average matched
half-segments between points of the different types 1, ,H;.

5.1 Phase l

The process of scanning a column in phase 1 and marking its points 1
or 2 can be envisioned as a Markov process with the state diagram shown
in Fig. 4. State 2 corresponds to a type-2 point; state 1 corresponds to a
type-1 point that is the lower end of the
matched segment, and state 1' corresponds
to the rest of type-1 points. q' is the
probability that, given a point in the
column, the next point in this column will
be the next point in the corresponding half
of the strip. q' can be easily calculated
as q' =q-(l-4exp(-wL/2)d/w),

q = exp(-2dL). The analysis of the state
diagram of Fig. 4 gives:

_ 4d(1-q') _ _4d4q'
i w(Z-q") ° 2 T ?(Z%PT
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k
For the average length of a matched segment, we have 2 I
0

I2 = -2a ex
)
1 q" 12 k
B, = 5T [(l - )J + -—_] ,
1 2a q /1" q(l-q) _ -zf exilh
where 0
' 11 e
3, = a4f ff exp(-a2y)(x-x"2+ 2112 aydx' dx
000
11k
5, = at [ [ | expl-aplxex?4y?12 dqyaxiax < 22 (HG°
00 0 a

Here we let a =2d and k =L/a, We calculate JZ first. Here H _,H, are Struve fu

! k E1 is the exponential integr
2
J, = 2a f (l-u)f exp(-azy)[u2+y2]1/2 dudy
0 0

J, £ 2kq (Ln (14

ViZ 2 2.3/2
= Zaz[%- q(H—k X zn(1+\/1+k2 ) k)T

3

2
" 4—29: El
2 3 a
k™ 4nk k
- —2 + T)jl+ll+12
1 k/u
I1 = Zazf U.f exp(-a.zt.:.z)z/:(1+zz)1/2 dz du
0 0
1 k/u
_ 2 2 2,-1/2 By ¢(x) we denote the func
= _— _ + Y
z 0 b 0 du lexp(-a™uz)(1+27) ] dzdu values of ¢ calculated from
1 k
- ma ] S 2] estatonid) e * :
0 (u tk"™) 0
1 k/a d(x) || -.206689 |-.
- zf f exp(-a’uz) dzdu
00 (1422)1/2

J can now be calculated f

< -qu[ﬂn(1+ 1+k2)- .@nk] N . / (H,(t)-Y 5 (1)) dt
a 0 re(a
J = et
2 1 .2
- 2E,(a%K)

5.2 Phase 2

Let H,,(H,,) be the
21722 .

that the two mates are in th

Fig. 6b). They can be estir
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k 1
I2 = _za’ f exp(-azy)y_[ u(u2+y2)-l/2 dudy
0 0
k

= 2 [ expl-aly)z(1+y?)/2
0

-1/2
- (1+y8)712) 4y
k
- 2a° f y eXP(-aZy) dy
0

2 4
2—; (Hl(a2)+Y1(a2))+I3 + ——q—4'24“ a
a

Here H_,H, are Struve functions, YO’YI are Bessel-2 functions and
E. is the exponential integral. Then

1
2
3, = qu(zn(l+\ll+k2)—1n k) + —”’Z(# - ZEl(aZk)
a

2 4 2 2
pdo2qk” Za?-[%_q[\/ﬂ_ + K (zn(HVlJrkz)- tnk)

2
a

- 3 (it k3)”

By ¢(x) we denote the function f; (Ho(t)-YO(t))dt-Z(Hl(x)-Yl(x));
values of ¢ calculated from [1] are tabulated belox

X 2 2.5 3 3,5 4

?(x) -. 206689 | -. 006253 | . 144263 |, 264366 |. 364285

J, can now be calculated from J, with k- ®, q = exp(-a.zk).

1 2
;o-meah) 4, Lt
2 4 3

a a

5,2 Phase 2

Let “'21(“22) be the expected length of a phase-2 segment, given
that the two mates are in the same strip (Fig. 5a) (resp. different strips,
Fig. 6b). They can be estimated by
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c d
wi o« L f f (x-!—x')'Z dx'dx + < f e:xp(-ch))f2 dy
21 0 0 2 0

4cd
_eratoctoat
48dc 2
8c
c d ®
2 1 . c 2
“22 < Icd f f (xtx'+d) dx dx+~2-f exp(-2y)y~ dy
00 0
2dto)* - eat-@iotra* . 1
48dc 2 !
8¢
- : -1
where ¢ =(w/2)-d. Finally, By =3 (H21+H22).
5.3 Phase 3 2‘
An unmatched point during phase-3 /‘ L2,
a type-3 or type-4 point depending on whether < .,/ 2-
the next (in increasing y's) unmatched point 2 2

comes before a type-2 point. Since both
events have exponentially distributed times of
first occurrence, it follows that

Figure 5

B _ ZC . "
ry S loryoT s Ty T T T
where ]
1h - d !
q J—Z_q. .

1 1 e
3
2 2
by = 252 £ M exp(-4e2y)[(x-x") +y

this is identical to the integral Iy of 5. 1. Hence

me(2a)®) 2, (o)

2(2c) (2c)5 6

2]1/2 dx'dxdy

Finally, each type-4 point increases the estimate of U, of 5.2 from

By =By tHzp) to ph=R(y,tup3), where
c d ®

2 1 2 c 2
[T < Tcd f£ (xtx'td+c) dx'dx+z_£ exp(-2cy)y dy

0

4

(zd+20)% - (2d+ o)t - (et )t (ctq)
48cd

376

1

b —

8c2‘

5.4 Computation

For values of the Str
exponential integral we use¢

1

X ex]

E ) =

For w=2.6, d=.55 a
.4010552,

Monte Carlo experin
ly distributed on the unit s
shown below.

M(P™/Ja |. 38955 |, 3

A greedy algorithm
follows: process the point
point with the closest free
ered w or less. (w is a
much harder. There is a
ings, and it appears that tl
greedy algorithm is by ass
bound thus achieved is . 67
tional probabilities on the
regions--a bound of .49 i
were able to prove about tl
for other algorithms, this
applied to random instance

Improved upper bour
left open here. For the T!
. 92 upper bound appears t
to notice that the gap betw
upper bound appears to be
problem. For the spannin
[6]; for matching--certait
tree problem--we pointed
difficult TSP, the obscure
certainly due to the algori
are the only ones availabls

All known lower bou
Euclidean network design
tive as the one in the proo
require totally different te




5.4 Computation

For values of the Struve and Bessel-2 functions we used [1], For the
exponential integral we used

1 x°+2, 3347x +. 2506

x exp(x) 2.3 3306x+1.6815

E )

For w=2,6, d=.55 and L =2,31, the value of p(w,d,L) is found
. 4010552,

6. REMARKS

Monte Carlo experiments on problems of size up to 200 points uniform-
ly distributed on the unit square suggest that L= , 35, The results are
shown below.

n 20 40 40 60 80 100 118 194

M(P™)/Jn |.38955 [, 319232 |. 3407 |, 3808 |. 3878 |. 3702 |. 37882 . 36177

Table 2

A greedy algorithm can be devised to solve the matching problem as
follows: process the points in order of increasing y's. Match each free
point with the closest free point that has an x-distance from the one consid-
ered w or less. (w is a parameter.) The analysis of this algorithm is
much harder. There is a non-trivial interaction between subsequent match-
ings, and it appears that the only way to estimate the performace of the
greedy algorithm is by assuming the worst possible such interaction. The
bound thus achieved is . 675, By a more elaborate analysis--using condi-
tional probabilities on the existence of previously matched points in certain
regions--a bound of .49 is achieved. Despite the fact that the bounds we
were able to prove about the greedy algorithm are inferior to the ones proved
for other algorithms, this heuristic appears to perform much better when
applied to random instances.

Improved upper bounds for matching is a problem that is certainly
left open here. For the TSP, improving on the monotonic heuristic and the
.92 upper bound appears to be extremely hard. Incidently, one cannot fail
to notice that the gap between the conjectured constant and the best known
upper bound appears to be increasing with the algorithmic complexity of the
problem, For the spanning tree problem, this gap is just from .68 to . 707
[6]; for matching--certainly a problem harder than the minimum spanning
tree problem--we pointed out a , 35 to .40l gap; finally, for the notoriously
difficult TSP, the obscure area spans .765 to .92. Naturally, this is
certainly due to the algorithmic techniques for proving upper bounds that
are the only ones available to us now.

All known lower bounds for the constant of the TSP and other

Euclidean network design problems are all derived by arguments as primi-
tive as the one in the proof of Corollary 2. Improved lower bounds may
require totally different techniques.
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Abstract  SIMPLE-SPLIT and LPT
are analyzed in terms of their
relative errors are shown to be
the problem size. The results
Also an e-approximation algorit

(0] (e_z) is presented.

Consider the two-partition

A set S = {sl,sz, P

Partition S into P and Q

This problem is NP-hard [1,7] a

polynomial time algorithm to so.

solve the problem efficiently b

Let A be an approximation :

solution and the solution by A,

measured in terms of either the

E(CA/C*)-I, the expected relati

First, two simple heuristis

lyzed. It can be shown that th

Graham showed that for the LPT :

In this paper the expected relai

n—3/2 and n_z, respectively, un

distribution of the sample spac¢

given, and seem to confirm the :

is presented. It is shown that

the time and space complexity O
fying CE/C* < l4e.

SIMPI

A heuristic algorithm SIMI

1. Sort S in monincreasir

where n = 4mtk and 0<k

2. Partition S into PS ar

Ps = {sl,s3, eeaSyn

Qg = {85,850+ 585,
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