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In this paper we suggest new scaling algorithms for the assignment and minimum mean cycle problems. 
Our assignment algorithm is based on applying scaling to a hybrid version of the recent auction algorithm 
of Bertsekas and the successive shortest path algorithm. The algorithm proceeds by relaxing the optimality 
conditions, and the amount of relaxation is successively reduced to zero. On a network with 2n nodes, 
m arcs, and integer arc costs bounded by C, the algorithm runs in O(,/-n m log(nC)) time and uses very 
simple data structures. This time bound is comparable to the time taken by Gabow and Tarjan's scaling 
algorithm, and is better than all other time bounds under the similarity assumption, i.e., C = O(n k) for 
some k. We next consider the minimum mean cycle problem. The mean cost of a cycle is defined as the 
cost of the cycle divided by the number of arcs it contains. The minimum mean cycle problem is to identify 
a cycle whose mean cost is minimum. We show that by using ideas of the assignment algorithm in an 
approximate binary search procedure, the minimum mean cycle problem can also be solved in 
O(~/n m log nC) time. Under the similarity assumption, this is the best available time bound to solve 
the minimum mean cycle problem. 

Key words: Minimum cycle mean, minimum mean cycle, assignment problem, bipartite matching, shortest 
path problem, scaling. 

1. Introduction 

In  this  p a p e r  we  p r o p o s e  n e w  sca l ing  a l g o r i t h m s  fo r  t he  a s s i g n m e n t  p r o b l e m  a n d  
the  m i n i m u m  m e a n  cycle  p r o b l e m .  T h e  (linear) assignment  p r o b l e m  cons is t s  o f  a 
set NI  d e n o t i n g  pe r sons ,  a n o t h e r  set N2 d e n o t i n g  j o b s  fo r  w h i c h  INd = IN2[, a 
c o l l e c t i o n  o f  pa i r s  A_c N1 × N2 r e p r e s e n t i n g  pos s ib l e  p e r s o n  to j o b  a s s i g n m e n t s ,  
a n d  an integer cos t  c!j a s s o c i a t e d  wi th  e a c h  e l e m e n t  ( i , j )  in A. The  o b j e c t i v e  is to 
ass ign  each  p e r s o n  to exac t ly  o n e  j o b  a n d  m i n i m i z e  the  cost  o f  the  a s s ignmen t .  Th is  
p r o b l e m  can  be  s ta ted  as the  f o l l o w i n g  l i nea r  p r o g r a m :  

M i n i m i z e  )~ cqxii ( l a )  
(i,j)~A 

sub jec t  to ~ xq = 1 fo r  al l  i c N~,  ( l b )  
{.j: (i,j)~A} 

x q = l  fo r  a l l j  c N2,  ( l c )  
{i:(i,j)EA} 

x~jc{0,  1} fo r  all ( i , j ) c A .  ( l d )  

* Now at the Department of Industrial and Management Engineering, Indian Institute of Technology, 
Kanpur 208 016, India. 
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The assignment problem can be considered as a network optimization problem 
on the graph G = (N, A) consisting of the node set N =  N~u N2 and the arc set A. 
In the network context, this problem is also known as the weighted bipartite matching 
problem. We shall assume without any loss of generality that ci/~> 0 for all ( i , j )  c A,  
since a suitably large constant can be added to all arc costs without changing the 
optimum solution. Let C = max{cjj} + 1. We also assume that the assignment problem 
has a feasible solution. The infeasibility of the assignment problem can be detected 
in O(~/~ m) time by the bipartite cardinality matching algorithm of Hopcroft and 
Karp (1973), or by using the maximum flow algorithms of Even and Tarjan (1975) 
and Odin and Ahuja (1987). 

Instances of the assignment problem arise not only in practical settings, but also 
are encountered as a subproblem in algorithms for hard combinatorial optimization 
problems such as the quadratic assignment problem (Francis and White, 1974), the 
traveling salesman problem (Karp, 1977), crew scheduling and vehicle routing 
problems (Bodin et al., 1983). In view of these applications, the development of 
faster algorithms for the assignment problem deserves special attention. 

The literature devoted to the assignment problem is very rich. There exist a variety 
of algorithms to solve the assignment problem and we refer the reader to the paper 
of Ahuja et al. (1989) for a detailed survey of these algorithms. The successive 
shortest path algorithm is one of the more popular algorithms to solve the assignment 
problem. This algorithm solves the shortest path problem as a sequence of n shortest 
path problems each with nonnegative arc lengths. If we use Fredman and Tarjan's 
(1984) implementation of Dijkstra's algorithm to solve these shortest path problems, 
then this assignment algorithni runs in O(nm + n 2 log n) time. This is the best strongly 
polynomial bound to solve the assignment problem. (A time bound is called strongly 
polynomial if it is polynomial in the dimension of the problem, i.e., it is polynomial 
in n and m). The best (weakly) polynomial algorithm to solve the assignment is 
due to Gabow and Tarjan (1988) which runs in O(x/n m log(nC)) time. This 
algorithm uses a cost-scaling technique, based on the approach of Goldberg and 
Tarjan (1987) for the minimum cost flow problem. Under the similarity assumption, 
i.e., that C =O(n k) for some k, this algorithm runs in O(~/n m log n) time, and 
dominates the O ( n m  + n 2 log n) bound for all problem classes. Further, the scaling 
algorithm uses far simpler data structures. 

Bertsekas (1979, 1987) developed a new approach for the assignment problem, 
called the auction algorithm, which assigns jobs to persons using auction. The original 
version of this algorithm (Bertsekas, 1979) ran in pseudo-polynomial time, but by 
incorporating scaling in this method, Bertsekas and Eckstein (1988) obtained an 
O ( n m  log(nC)) algorithm. Their computational results find the auction algorithm 
to be substantially faster than the best other method for the assignment problem 
for several classes of networks. 

In this paper we suggest a hybrid version of the auction and successive shortest 
path algorithms running in time O(,fn m log(nC)) which substantially improves the 
running times obtained by using either technique alone. In fact, by combining these 
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two approaches in a rather natural way, we obtain a time bound that is comparable 
to the best available time bound. This algorithm is a cost scaling algorithm, and 
successively obtains assignments that are closer and closer to an optimum solution. 
The algorithm performs O(log(nC)) scaling phases, and computations within each 
phase can be decomposed into two parts: the first part applies the auction algorithm, 
and the second part applies the successive shortest path algorithm. The auction 
algorithm starts with a null assignment and assigns all but at most ~/~ nodes; these 
unassigned nodes are subsequently assigned by the scuccessive shortest path 
algorithm. We show that each of these parts takes O(,,/~ m) time and, consequently, 
this approach runs in O(~/-ff m Iog(nC)) time, which is comparable to the best other 
polynomial bound to solve the assignment problem under the assumption of 
similarity. 

We anticipate that the running time of our hybrid algorithm will be comparable 
in practice to the running time of the auction algorithm. The reason is relatively 
straightforward. The second phase of our algorithm "kicks in" at a point in which 
the auction algorithm is doing very poorly, and in particular it kicks in after O(-,/-ff) 
"bidding cycles". In recent testing on the auction on the auction algorithm (Bertsekas 
and Castanon, 1989) for dense large scale problems (with more than 20 000 nodes), 
over 99% of the nodes are assigned after only two "bidding cycles" of the auction 
algorithm. Although the percentage of unassigned nodes increases for sparse prob- 
lems, we anticipate that the almost all of  the nodes will be assigned within ~/~ 
"bidding cycles". Thus, the hybrid algorithm will perform essentially the same steps 
as the auction algorithm, except for possibly a few successive augmenting path 
iterations at the end. 

Hence the contribution of our paper is to develop an algorithm that obtains the 
best running time in theory and has an attractive empirical performance. Our hybrid 
algorithm is a cost-scaling algorithm, and in that sense is similar to the algorithm 
of Gabow and Tarjan (1988). Computationally, our algorithm is quite different, 
except possibly in the second phase of our algorithm. Gabow and Tarjan's algorithm 
uses a primal-dual approach within each scaling phase. Their algorithm is essentially 
an efficient implementation of a successive approximate shortest path computation. 
The second phase of our algorithm relies on a sequence of  successive approximate 
shortest path computations which is similar to Gabow and Tarjan's algorithm. 

We also use a variant of our assignment algorithm to solve the minimum mean 
cycle problem efficiently. The mean cost of  a directed cycle W is defined as 
Y,~i,j~ w eii/I WI. The minimum mean o, cle of a network is a directed cycle whose 
mean cost is minimum. (The minimum mean cycle problem is sometimes referred 
to as the minimum cycle mean problem, but we prefer the former name.) Some 
applications of the minimum mean cycle problem can be found in periodic optimiz- 
ation (Orlin, 1981), and in the minimum cost flow algorithm of Goldberg and Tarjan 
(1988). The minimum mean cycle problem can be solved in O ( n m )  time by the 
algorithm of Karp (1978), or in O ( n m  log n) time by the algorithm of Karp and 
Orlin (1981). The minimum mean cycle problem is a special case of the minimum 
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cost-to-time ratio cycle problem, and by using binary search can be solved as a 
sequence of O(log(nC))  shortest path problems with arbitrary arc lengths (see 
Lawler, 1976). Since any assignment algorithm can be used to solve the shortest 
path problem with arbitrary arc lengths (see, e.g., Ahuja et al., 1989), this approach 
gives an O(x/-ff m loge(nC)) algorithm for the minimum mean cycle problem. We 
show that the scaling algorithm for the assignment problem can be used in "approxi-  
mate binary search" to obtain an O(~/-n m log(nC))  algorithm for the minimum 
mean cycle problem, i.e., the same running time as for the assignment problem. The 
subroutine for the approximate binary search can be either our hybrid algorithm 
for the assignment problem, or the algorithm developed by Gabow and Tarjan (1988). 

The idea of approximate binary search is due to Zemel (1987). Typically, in the 
(exact) binary search algorithm one knows that the opt imum objective function 
value A lies in a search interval [L, U]. Also, for a given value x, there is a method 
P for determining whether A ~< x or A >~ x. In binary search, one guesses the value 
x = ~( U - L), applies method P and subsequently reduces the length of the interval 
[L, U] by a factor of 2. In the case of  the minimum mean cycle problem, the method 
P relies on the solution to an assignment problem and binary search consists of 
solving O(log(nC))  assignment problems. However, in the approximate binary 
search algorithm, we need a method P '  for determining whether A ~< x + e or A >/x - e. 
We show that an application of the cost scaling phase in the hybrid assignment 
algorithm constitutes the method P'.  We further show that if we use e = ¼( U -  L), 
then in each iteration we reduce the length of the search interval by 25%. Thus the 
number  of iterations increase by a constant factor over the exact binary search but 
the computational time within each iteration is improved by a factor of O(log(nC)) .  
Consequently, this approach obtains an improvement  of  O(log(nC))  in the running 
time over the exact binary search. 

Although the ideas underlying the approximate binary search are quite general, 
the success of approximate binary search relies on determining an approximate 
method P '  which is asymptotically faster than the exact method P. In fact, our 
primary contribution is to show that each iteration of our approximate binary search 
method is asymptotically faster than that in the exact binary search. In general, one 
cannot expect approximate binary search to be more than a constant times faster 
than exact binary search, even when P relies on scaling. For example, it is still an 
open question as to whether the minimum cost-to-time ratio cycle problem can be 
solved faster than O(x/-ff m log2(nC)) time, even though it too can be solved using 
binary search as a sequence of  assignment problems. 

2. Exact and approximate optimality 

A 0-1 solution x of  (1) is called an assignment. I f  x o = 1 then i is assigned t o j  and 
j is assigned to i. A 0 - I  solution x for which ~j:~i,j)~A~ Xij ~< 1 for all i~ N1 and 
~ :~ , /~A)  X~J <~ 1 for all j c  N~ is called a partial assignment. In other words, in a 



J.B, Orlin, R.K. Ahuja / The assignment and minimum mean cycle problems 45 

partial assignment,  some nodes may  be unassigned. Associated with any partial 
assignment x is an index set X defined as X = {(i , j)  ~ A: x~j = 1}. We associate the 
dual variable ~( i )  with the equat ion corresponding to node  i in ( lb)  and the dual  
variable -Tr ( j )  with the equation corresponding to node  j in (lc).  We subsequent ly  
refer to the 2n-vector  7r as the vector o f  node potentials. We define the reduced cost 
of  any arc (i , j)  ~ A as g~j = c o - ~r(i) + ~r(j). It follows f rom the linear p rogramming  
duality theory that a partial assignment assignment x is op t imum for (1) if there 
exist node  potentials ~- so that the following (exact) optimality conditions are 
satisfied: 

(C1) (Primalfeasibilio,) x is an assignment. 
(C2) (Dual feasibility) (a) (~j = 0 for  all ( i , j )  6 X ;  and 

(b) gij~>0 for all ( i , j ) c A .  
The concept  o f  approximate optimality as developed by Bertsekas (1979) and 

Tardos (1985) is essential to our  algorithms. This is a relaxation o f  the exact 
optimali ty condit ions given above. A partial assignment  x is said to be e-optimal 
for some e >i 0 if there exist node  potentials ~- so that  the following e-dual feasibility 
conditions are satisfied: 

(C3) (e-Dual feasibility) (a) g~ ~ e for  all (i , j)  ~ X;  and 
(b) O~i~>-e for  all ( i , j )~A .  

We associate with each partial assignment x a residual network G(x).  The residual 
network G(x)  has N as the node  set, and the arc set consists o f  A plus an arc (j, i) 
of  cost -cij for  every arc (i,j) for which x~i--1. Observe that Og/=-~i whenever  
both ( i , j )  and (j, i) are in the residual network. 

The above condit ions can be slightly simplified if presented in terms of  the residual 
network. Observe that for  all ( i , j ) c  X, (j, i) is also in the residual network G(x) ,  
and ggs <~ e is equivalent to ~i = - g0 >~ - e. Hence,  with respect to the residual network,  
the condi t ion (C3) is equivalent to the fol lowing condi t ion:  

(C4) (e-Dual feasibility) g~i>~-e and for all (i , j)  in G(x) .  
Clearly, for e = 0, the condit ion (C4) reduces to (C2) and hence any e-opt imal  

assignment is an op t imum assignment. In fact, when costs are integer, then e need 
not necessarily be equal to 0 for  (C4) to become equivalent  to (C2) as proved by 
Bertsekas (1979). 

Lemma 1. Any assignment is e-optimal for e > C and any e-optimal assignment with 
e < 1 / (2n)  is an optimum assignment. 

Proof.  See Bertsekas and Eckstein (1988) or  Ahuja  et al. (1989). []  

3. The assignment algorithm 

Our algorithm for the assignment problem proceeds by obtaining e-optimal assign- 
ments for successively smaller values of e. In other words, the algorithm obtains 
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solutions that are closer and closer to being opt imum until s < 1/(2n), at which 
point the solution is optimum. The algorithm performs a number  of cost scaling 
phases. In a cost scaling phase, the major subroutine of the algorithm is the 
improve-approximation procedure, which starts with a ks-optimal assignment and 
produces an s-optimal assignment. The parameter  k is a constant and will typically 
have values 2, 3 or 4. A high-level description of the scaling algorithm is given below. 

algorithm assignment; 
begin 

set ~- := 0 and e := C; 
L:= 2(k + 1) [,/-n ] 
while e ~ 1/(2n) do 
begin 

e := s/k;  
improve-approximation(c, k, e, L, ~, x); 

end; 
the solution x is an opt imum assignment; 

end; 

procedure improve-approximation(c, k, e, L, rr, x); 
begin 

auction; 
successive-shortest-path; 

end ; 

Clearly, the procedure improve-approximation is executed O(log(nC)) times 
because initially e = C, finally e < 1/(2n),  and in each scaling phase e decreases by 
a factor of  k, which is at least 2. The improve-approximation procedure consists of 
two subprocedures: auction and successive-shortest-path. The procedure auction 
starts with a ks-opt imum assignment. It first converts it into an e-optimum partial 
assignment in which every node is unassigned. Then it uses a variation of the auction 
algorithm by Bertsekas and Eckstein (1988) to assign the unassigned nodes while 
throughout maintaining the e- optimality of  the partial assignment. At the termination 
of this method all but at most ~ nodes are unassigned. The procedure successive- 
shortest-path converts this s -opt imum partial assignment into an s-opt imum assign- 
ment. We shall show that each of these procedures runs in O( , /n  m) time, which 
would yield an overall running time of O ( v ~  m log(nC))  for the assignment 
algorithm. 

We give in Section 3.1 an algorithmic description of the procedure auction. In 
this procedure, an arc (i,j) is called admissible if - e  ~< 6!j < 0. The procedure performs 
assignments only on admissible arcs. A node that is relabeled L + k times during an 
execution of the auction is not assigned anymore and is called ineligible. A node 
that is not ineligible is called an eligible node. The procedure auction assigns all 
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but (possibly) a small number  o f  nodes. Let x ° and 7r ° respectively denote  the 
partial assignment and the node potentials at the end o f  the auction procedure.  We 
use the method  described in Section 3.2 to assign the remaining unassigned nodes.  

3.1. Procedure auction 

procedure auction(c, k, e, L, 7r, x); 
begin 

X : = 0 ;  
: r ( j )  := ~'( j)+ ke for all j c  N2; 
while there is an eligible unassigned node  i in NI do 

if there is an admissible arc (i , j)  then 
begin 

7r(j) := 7r(j) + E; 
if node  j was already assigned to some node  l then 
begin 

deassign node  1 from node  j ;  
X := X - {(/,j)}; 

end; 
assign node  i to node  j ;  
X : = X + { ( i , j ) } ;  

end; 
else 7r(i) := 7r(i) + e; 

end ; 

We first analyse the procedure  auction. In the above description, we left out  the 
detail on how to identify an admissible arc (i , j)  incident to the node i. We use the 
fol lowing data structure to perform this operation.  We maintain with each node  
i c  N1, a list A(i)  of  arcs emanat ing from it. Arcs in this list can be ar ranged 
arbitrarily, but the order  once decided remains unchanged  throughout  the algorithm. 
Each node i has a current arc (i , j)  which is the next candidate  for assignment. To 
determine an admissible arc emanat ing at node i, the algorithm examines this list 
sequentially and whenever  the current arc is found  to be inadmissible, the next arc 
in the arc list is made  the current arc. When the arc list is completely examined,  
the node  potential  is increased and the current arc is again the first arc in its arc 
list. Note  that  if any arc (i , j)  is found  inadmissible during a scan of  the arc list, it 
remains inadmissible until ~r(i) is increased. This follows f rom the fact that  all node  
potentials are non-decreasing.  

The procedure  auction iteratively performs three basic operat ions:  (i) assignment, 
i.e., assigning a node  i to a node j ;  (ii) deassignment, i.e., deassigning a node  1 f rom 
a node  j ;  and (iii) relabel, i.e., increasing a node  potential  by  e units. We shall use 
the fol lowing observation about  the auction procedure.  
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Observation 1. The potential of an unassigned node j c N2 never changes until it is 
assigned (except at the beginning when it increases by ke units). Further, if node 
j ~ N2 is assigned to a node in N~, then in all subsequent iterations of the auction 
procedure it remains assigned to some node in N1. 

We need the following lemmas to prove correctness of the algorithm and obtain 
its complexity results. 

Lemma 2. The partial assignment maintained by the auction procedure is always 
e-optimal. 

Proof. This result is shown by performing induction on the number of iterations. 
At the beginning of the procedure, we have c o - rr(i) + rr(j) >~ - k e  for all ( i , j)  ~ A. 
Alternatively, c o - rr(i) + or(j) + ke >~ O, for all (i, j )  ~ A. Hence when the potentials 
of all nodes in N2 are increased by ke, then condition (C3)(b) is satisfied for all 
arcs in A. The intial solution x is a null assignment and (C3)(a) is vacuously satisfied. 
Thus this solution is e-optimal (in fact, it is 0-optimal). 

Each iteration of the while loop either assigns some unassigned node i c N1 to a 
node j  c N2, or increases the node potential of node i. In the former case, - e  ~< gij < 0 
by the criteria of admissibility, and hence the arc satisfies (C3)(a). Then ~r(j) is 
increased by e and we get 0 ~< 6a < e. If node j we already assigned to some node 
I, then deassigning node I from node j does not affect the e-optimality of the partial 
assignment. In the latter case, when the node potential of node i is increased, we 
have ~j >~ 0 for all ( i , j )~  A( i )  before the increase, and hence c0 >~ - e  for all ( i , j ) c  
A( i )  after the increase. It follows that each iteration of the procedure preserves 
e-optimality of the partial assignment. 

Lemma 3. The auction procedure runs in O((k+  L)m)  time. 

Proof. Each iteration of the procedure results in at least one of the following 
outcomes: (i) assignment; (ii) deassignment; and (iii) relabel of a node in N~. 
Clearly, the number of relabels of  nodes in N1 is bounded by O((k + L)n). Initially, 
no node is assigned and, finally, all nodes may be assigned. Thus the number of 
assignments are bounded by n plus the number of deassignments. The deassignment 
of node 1 from node j causes the current arc of node I to advance to the next arc. 
After IA(I)[ such advancements for node 1, a relabel operation takes place. Since 
any node l c N l  can be relabeled at most ( k + L )  times, we get a bound of 
O(Yq~N, [ A ( l ) l ( k + L ) ) = O ( ( k + L ) m )  on the number of  deassignments, and the 
lemma follows. [] 

Lemma 4. At  the termination of  the auction procedure, at most 2n( k + 1) /L  nodes in 
NI are unassigned in the partial assignment x °. 

Proof. Let x'  denote some ke-optimal assignment. Let ~r (resp., ~r') and a~j (resp., 
~ )  denote the node potentials and reduced costs corresponding to x ° (resp., x'). 
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Let ioC Nl be an unassigned node in x °. We intend to show that there exists a 
sequence of nodes io - j o -  il - j~ . . . . .  i; - j ;  such that j; 6 N2 and is unassigned in 
x °. Further, this sequence satisfies the property that (io,jo), ( i l , j O , . . . ,  (6,j;) are 
in the assignment x '  and the arcs (il,jo), ( i 2 , jO , . . . , ( i t , j ; -O  are in the 
assignment x °. 

Suppose that node ioc N~ is assigned to nodejo c N2 in x'. I f  nodejo is unassigned 
in x °, then we have discovered such a path; otherwise let node il c N~ be assigned 
to the node Jo in x °. Observe that i~ ~ io. Now let node il be assigned to node j~ ~ N2 
in x'. Observe that jl  Cjo. I f  node Jl is unassigned in x °, then we are done; else 
repeating the same logic yields that eventually a sequence satisfying the above 
properties would be discovered. Now observe that the path P consisting of the node 
sequence i o - j o - i ~ - J l  . . . .  i t - j ;  is in the residual network G(x  °) and its reversal 
/5 consisting of  node sequence j; - i; . . . . .  j l  - il - j o  - io is in the residual network 
G(x') .  The e-optimality of the solution x ° yields that 

Z gii = rr(jt) - ~r(io) + )~ cij >1 - l °s ,  (2) 
(i,j)eP (i,j)cP 

where l ° - -21+1 and represents the number  of  arcs in P. Further, f rom the 
ks-optimali ty of  the solution x '  it follows that 

Z _ g , ' . /=rr ' ( io)- r r ' ( j ; )+  2 co >~-kl°s. (3) 
(i,J)~ P (i,j)cP 

Note that ~r(j,) = rr'(j~) + ks, since the potential of  node j~ increases by ks at the 
beginning of  the scaling phase and then remains unchanged. Also note that 
Y.~.j)~p c~j = -}~ . j )~ ,  c~. Using these facts in (2) and (3), we get 

rr(io) <~ ¢r'(io) + { k +  ( k +  1)l°}e. (4) 
Finally, we use the fact that rr( io)=rr ' ( io)+(L+k)s ,  i.e., the potential of  each 
unassigned node in Nl has been increased ( L + k )  times. This gives l°>~ L / ( k +  1). 
To summarize, we have shown that for every unassigned node io in N1 there exists 
an unassigned node j; in N2, and a path P between these two nodes consisting of 
at least L / ( k +  1) nodes such that P is in the G(x  °) and its reversal /5 is in G(x') .  
The facts that x '  is an assignment and x ° is a partial assignment imply that these 
paths corresponding to two different unassigned nodes in Nl are node disjoint. 
Consequently, there are at most 2 n ( k +  1) /L  unassigned nodes in N~. [] 

Since in the auction procedure, we set L = 2(k + 1) f~/~ ], Lemmas 3 and 4 immedi- 
ately yield the following result: 

Lemma 5. For fixed value of  k, the auction procedure terminates in O(x/-n m) time 
and yields an s-optimal partial assignment in which at most fx/n] nodes are 
unassigned. [] 

This lemma also shows the necessity of  the two phase approach in the improve- 
approximation procedure. By setting L = 2 ( k +  1) f~/-n ] in the auction procedure,  we 
obtain an assignment in which at most [x/-~ ] nodes are unassigned. I f  we want all 
nodes to be assigned then we shall have to set L = 2 ( k + l ) n + l .  In this case, the 



50 J.B. Odin, R.K. Ahuja / The assignment and minimum mean cycle problems 

procedure would give an e-optimal assignment and would take O(nm) time. This 
implies that if n = 10000, then the auction procedure would assign the first 99% of 
the nodes in 1% in the overall running time, and would assign the remaining 1% 
of the nodes in the remaining 99% of the running time. By using a successive shortest 
path procedure described next we can improve the running time for assigning the 
last 1% of the nodes by a factor of nearly 100 in the worst case. 

3.2. Procedure successive-shortest-path 

procedure successive-shortest-path; 
begin 

while there are unassigned nodes in N1 do 
begin 

let ~q be the reduced costs with respect to the potentials 7r°; 
define dij := max{0, [~JeJ + 1}; 
select an unassigned node io in N1; 
apply Dijkstra's algorithm with di; as arc lengths starting at node io until some 

unassigned node j; in N2 is permanently labeled; 
let w(i) denote the distance labels of nodes that are permanently labeled; 
set ~-°(i) := ~-°(i) + e(w(jl) - w(i)) for all permanently labeled nodes i c N;  
augment one unit of  flow along the shortest path from node i0 to j; and update 

X°; 

end; 
s e t  x := x ° a n d  77"~ o 

end; 

We now analyse the complexity of the successive-shortest-path procedure. This 
procedure solves a shortest path problem for every unassigned node in x °. We show 
that each shortest path problem can be solved in O (m) time. As the partial assignment 
x ° has at most [~/n] unassigned nodes, this would imply that this procedure too 
would run in O(~/n m) time. 

We can easily make the following observations about the procedure successive- 
shortest-path: 

Observation 2. d!/<~ (gi~/e) + 1. 

Observation 3. The node potentials 7r ° are nondecreasing through the procedure. 

Observation 4. The procedure does not change the potential of any unassigned node 
in N 2 . 

Observation 2 is immediate from the definition of dij. Observation 3 follows from 
the fact that the distance labels made permanent by the algorithm are nondecreasing. 
Observation 4 follows from the facts that the algorithm does not change the potential 
of any temporarily labeled node and an unassigned node in N2 is never permanently 
labeled. 
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We now prove the correctness of  the algorithm. It is easily seen that if the solution 
x ° is e-optimal with respect to the node potentials ~.o then each dlj is nonnegative. 
In the first iteration, x ° is e-optimal with respect to the potential ~.o (by Lemma 
5), and we shall show later that the algorithm preserves this property in each 
subsequent iteration. Hence each d,j is nonnegative throughout, and Dijkstra's 
algorithm can be used to solve the shortest path problems. We now show that the 
distance labels that are permanently labeled by Dijkstra's algorithm are small  

We have already shown in the proof  of  Lemma 4 that in x ° for every unassigned 
node i0~ N1 there exists an unassigned node jt ~ N2, and a path P of length 1 ° 
between these two nodes satisfying some properties. Let us consider the inequality 
(3). Using the facts that (i) 7r°(i0)/> ~"(i0) (since potentials are nondecreasing in 
both the auction and successive-shortest-path procedures),  and (ii) ~-°(jt) -- ~"(jt) + ke 
(since potentials of  nodes in N2 increase by at the beginning of auction procedure 
and then remain unchanged) in (3), we get 

~-( j , ) -~-( i0)+ • c!j<~ke+kl°e. (5) 
(i,j)~P 

This yields that ~(i.j)~p gij/e <~ k +  kl °. Using Observation 2 in this inequality we 
get Y~,i)~p diJ <~ k + 1°+ kl ° = O( n ). The fact that this path has a small length is used 
to improve the complexity of  Dijkstra's shortest path algorithm. 

We use Dial's implementation of Dijkstra's algorithm (see Dial et al., 1979, or 
Ahuja et al., 1989) to solve the shortest path problems. Dial 's implementation takes 
O(m + p )  time to solve a shortest path problem where p is the largest distance label 
made permanent  by the implementation. For our shortest path problems, p = O(n) 
because there exists a path of  length O(n) between node i0 and some unassigned 
node jr in N~. Hence each iteration of the procedure would take O(m) time. As 
there are at most [~/~ ] such iterations, the successive-shortest-path procedure would 
take O(~/~ m) time to terminate. 

We now show that at the end of each iteration the partial assignment x ° is 
e-optimal with respect to the node potentials ~v °. We assume inductively that the 
solution satisfies condition (C4) at the begining of each iteration. Let S denote the 
set of  nodes permanently labeled by Dijkstra's algorithm and S = N -  S. Since the 
algorithm increases the potentials of  nodes in S only, it follows that (i) the reduced 
cost of any arc (i , j)  for which i c g  and j ~ g  remains unchanged, and (ii) the 
reduced cost of any arc (i , j)  for which i ~ S a n d j  e S does not decrease. Hence for 
these two categories of  arcs (C4) remains satisfied. We next consider arcs ( i , j )  such 
that i c S. We use the following observation about Dijkstra's algorithm. 

Observation 5. For every node i c S, Dijkstra's algorithm satisfies w(j )  <~ w(i)  + dij 
for all ( i , j )  c A( i ) .  

This observation can easily be shown by performing induction on the number  of  
permanently labeled nodes. We arrange the preceding inequality as -w( i )<~ 
- w ( j )  + d!j and add w(jt) to both the sides to obtain w(jl)  - w( i) <~ w(j/) - w( j )  + d~i. 
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Then using Observation 2 we get 

w(jt) - w( i) <~ w(j,) - w( j )  + (g0/e) + 1, (6) 

which can be arranged as 

ci: - { ~-°(i) + e(w(j , )  - w(i))}  + {~.o(j) + e (w(j t)  - w(j))} ~> e. (7) 

This establishes that the arc ( i , j )  satisfies the condition g~ ~>-e with respect to 
the new node potentials. We have thus shown the following result: 

Lemma 6. The procedure successive-shortest-path obtains an e-optimal assignment 
in O(x/-n m) time. [] 

Combining Lemma 5 and Lemma 6, we get the following theorem: 

Theorem 1. The procedure improve-approximation runs in O(~-n m) time. The scaling 
algorithm obtains an optimum assignment in O(x/-n m log(nC))  time. [] 

4. The minimum mean cycle problem 

In this section we develop scaling algorithms for the minimum mean cycle problem. 
Recall that the mean cost of a directed cycle W is defined as ~(i,i)~w coil Wt and 
the minimum mean cycle problem is to identify a cycle of minimum mean cost. The 
minimum mean cycle problem is a special case of  the minimum cost-to-time ratio 
cycle problem (see Lawler, 1976) and we use its special structure to develop more 
efficient algorithms. 

We consider the network G = ( N , A )  where a (possibly negative) integer c o 
represents the cost of each arc ( i , j ) e A .  Let n = l N ]  and m=lA] .  Let C =  
1 +max(lc~j[:(i,j) c A). We assume that the network contains at least one cycle; 
otherwise there is no feasible solution. Acyclicity of  a network can be determined 
in O(m) time (see, for example, Aho et al., 1974). We have already indicated in 
Section 1 that the minimum mean cycle problem can be solved in O(,]n m log2(nC)) 
time by using using binary search and solving a shortest path problem at each search 
point. We now describe how the minimum mean cycle problem can be solved in 
O(x/-n m log(nC))  time by using approximate binary search, as per Zemel (1987). 

Our algorithm is based on a well known transformation using node splitting. We 
split each node i c N into two nodes i and i', and replace each arc (i , j)  in the 
original network by the arc (i , j ') .  The cost of  the arc (i , j ' )  is same as that of  arc 
( i , j ) .  We also add arcs (i, i') of  cost 3 for each i e N in the transformed network. 
This gives us an assignment problem with N1 = {1, 2 , . . . ,  n} and N2 = {1', 2 ' , . . . ,  n'}. 
We treat 6 as a parameter  in the transformation. We represent the cost vector of 
the assignment problem by C(6)  and refer to the problem as ASSIGN(6) .  An 
opt imum solution of ASSIGN(~)  either consists solely of  the arcs (i, i') for all i, or 
does not contain (i, i') for some i. In the former case, the assignment is called a 
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uniform assignment, and in the latter case it is called a non-uniform assignment. We 
represent the minimum mean cost in the network by/x*.  Our algorithm is based on 
the following result: 

Lemma 7. (a) I f  an e-optimal assignment X of  ASSIGN(~) is uniform, then 
~ - 2 e  ~</x*. 

(b) I f  an e-optimal assignment X of  ASSIGN(6)  is non-uniform, then Ix* <~ 8 + 2e. 

Proof. (a) Let ~ be the node potentials corresponding to the e-optimal assignment 
X. Suppose the cycle W* in G consisting of the node sequence i / - / 2  - /3  . . . . .  ir - -  i l  

is a minimum mean cycle of cost/z*. Let I* = {(il, i;), (/2, i ; ) , . . . ,  (/r-l, i'r), (it, i~)}. 
It follows from condition (C3)(b) that 

i i" 

eij=rt z * -  2 7r(i)+ • ¢r(i)>~-re. (8) 
( i , j ) ~ l *  i= i  t i=i~ 

Let I = {(i~, i'D, (i2, iX) , . . . ,  (it, i'~)}. As I is part of the e-optimal assignment X, it 
follows from condition (C3)(a) that 

i i i 
c u = r S -  2 7r(i)+ E 7r(i)<~re. (9) 

( i , . j )El  i ~ i  t i= i  i 

Combining (8) and (9) we get 

6 - 2 e  ~< u*. (10) 

(b) Since the assignment X is non-uniform there exists a node j l  C N 1 that is 
assigned to a node j~c N2 where j~ ¢j2.  Suppose that node J2 is assigned to some 
node j ; .  Note that J2 ~J3- Extending this logic further indicates that eventually we 
would discover a node jr C N~ which is assigned to the node j'~ ~ N2. The node 
sequence j ~ - j 2 - J 3  . . . . .  j r - - j ~  defines a directed cycle in G and we denote it by 
W. Let ix be the mean cost of W. Then/x* ~</x. Let I = {(j, , j ; ) ,  (J2,j_~), • • •, (j~-~ ,j'r), 
(j~,J'0} and J={(j~, j 'D,  ( j 2 , j ; ) , . - - ,  (jr,j'r)}. It follows from (C3)(b) and (C3)(a), 
respectively, that 

i, J; 
2 ?ij=r8 - Y] rr(j)+ }] rr(j)>~-re (11) 

( i , j ) e J  J--Jl  J=J[ 

and 
Jr Jt ~ 

glj=rl x -  • 7r(j)+ 2 7r(J) <-re. (12) 
( i , j )  ~ ! J --Jl J --.Jl 

Combining (11) and (12) we get 

tz * <~ /x <~ ~ + 2 e. [] 

We use this result in our algorithm for the minimum mean cycle problem. The 
algorithm maintains an interval [LB, UB] containing the minimum mean cycle value 
/x* and in one application of the improve-approximation procedure with carefully 
selected values of 8 and e reduces the interval length by a constant factor. A formal 
description of this algorithm is given below followed by its justification. 
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algorithm minimum-mean-cycle; 
begin 

set LB := - C and UB := C;  
set ~r(i):=-C/2 for all icNz  and 7r(i ' ) := 0 for all i 'cN2; 
let x be the uniform assignment;  
while ( U B - L B ) > ~  1/n 2 do 
begin 

8 := ½(UB+ LB); 
e := I (UB - LB); 
k : = 3 ;  
improve-approximation(c(8), k, e, L, 7r, x); 
if x is a uni form assignment then LB:=  8 - 2 e  
else U B : =  8 + 2 e  and x* :=  x; 

end; 
use the non-un i form assignment x* to construct  the min imum mean cycle o f  cost 

/x* in the interval [LB, UB];  
end; 

Notice that - C < /x*  < C since the absolute values o f  all arc costs are strictly less 
than C Furthermore,  if the mean  cycle costs of  two cycles are unequal,  then they 
must differ by at least 1/n 2. This can be seen as follows. Let W~ and W2 be two 
distinct cycles and Lk =~(~,jl~wk cii and rk = I Wk] for each k = 1, 2. Then 

I L~_L_~2 = l r2L'-r2L2 ~0. 
rl r2 rl r2 

The numerator  m the above expression is at least l and the denominator  is at 
most  n 2, thereby proving our  claim. This observation shows that the algori thm 
terminates with a min imum mean cycle. 

Theorem 2. The minimum mean cycle algorithm correctly determines a minimum mean 
cycle in O(~/n m l og (nC) )  time. [] 

Proof.  The algorithm always maintains an interval [LB, UB] containing the 
min imum mean  cost. I f  the execution o f  improve-approximation procedure yields a 
uniform assignment x, then the new lower bound  is 8 - 2e = ¼(UB + 3LB); otherwise, 
the new upper  bound  is 8 + 2 e  = ~ ( 3 U B + L B ) .  In either case, the interval length 
( U B - L B )  decreases by 25%. Since, initially U B - L B = 2 C ,  after at most  1+ 
[log4/3 nZC ] = O(log(nC) )  iterations, UB - LB < 1 /n  2 and the algorithm terminates. 
Each execution of  the improve-approximation procedure  takes O( , /~  m) time and 
the algorithm runs in O(x/n m log(nC) )  time. 

To show the correctness of  the algorithm, we need to show that the solution x is 
3e-opt imal  with respect to the costs C(8) before calling improve-approximation 

1 procedure.  Initially, x is the uniform assignment 8 = 0 and e = ~C. Hence for each 
arc (i, i') in the uniform assignment ~ir = ½C <~ 3C, thereby satisfying (C3)(a). Further, 
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for each arc (i,j') in ASSIGN(6) ,  we have ~j,=cij,+½C~-C+½C= _~C>~1 -~C,3 
which is consistent with (C3)(a). 

Now consider any general step. Let the assignment x be an e-optimal solution 
for ASSIGN(6)  and let ~ denote the reduced costs of  arcs at this point. Further, 
let UB', LB', ~', e' and 01j be the corresponding values in the next iteration just 
before calling the procedure improve-approximation. We need to show that the 
solution x is 3e ' -opt imal  for ASSIGN(6 ' ) .  We consider the case when 6 ' >  6, The 
case when 6 ' <  6 can be proved similarly. We showed earlier that the interval length 
decreases by 25% at every iteration. Therefore, ' 3 e =~e. Further, observe that the 
case 6 ' > 6  occurs when the lower bound increases. Hence, 6 ' =½(UB'+LB')= 
½ (UB+4~(UB+3LB))=6+e. Since arc costs do not decrease in ASSIGN(6 ' ) ,  all 
arcs keep satisfying (C3)(b). For an arc (i,j')~ X, we have Oii,<~ 6~,+ e because the 
costs increase by at most e units. We then use the fact that ~ i ,~e  to obtain 
0ij,~< 2e ~< 3e', which is consistent with (C3)(a). The theorem now follows. [~ 

The minimum mean cycle algorithm can possibly be sped up in practice by using 
a better estimate of  the upper  bound UB. Whenever an application of the improve- 
approximation procedure yields a non-uniform assignment x, then a cycle is located 
in the original network using the assignment x and the upper  bound UB is set to 
the mean cost of  this cycle. Further, if it is desirable to perform all computat ions 
in integers, then we can multiply all arc costs by n 2, initially set UB = k I~°~k~n2c~l, 
and terminate the algorithm when e < 1. The accuracy of this modified version can 
be easily established. 

We close this paper  by making a curious observation. The best known time to 
detect a negative cost cycle in a network is the same as the time to determine the 
minimum mean cycle of  a network. However, this latter problem is more general 
because the minimum mean cycle value is negative if and only if there is a negative 
cost cycle. In addition, the minimum mean cycle problem seems as though it should 
be more difficult to solve. The best time bound for both problems under the similarity 
assumption is O(~/n m log(nC)).  Under the assumption that C is exponentially 
large, the best time bound for each of these problems is O(nm). Determining a 
better time bound for the problem of detecting a negative cost cycle is both of 
theoretical and practical importance. 
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