
Mathematical Programming 54 (1992) 41-56 41
North-Holland

New scaling algorithms for the assignment
and minimum mean cycle problems
James B. Orlin and Ravindra K. Ahuja*
Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 31 May 1988
Revised manuscript received July 1989

In this paper we suggest new scaling algorithms for the assignment and minimum mean cycle problems.
Our assignment algorithm is based on applying scaling to a hybrid version of the recent auction algorithm
of Bertsekas and the successive shortest path algorithm. The algorithm proceeds by relaxing the optimality
conditions, and the amount of relaxation is successively reduced to zero. On a network with 2n nodes,
m arcs, and integer arc costs bounded by C, the algorithm runs in O(,/-n m log(nC)) time and uses very
simple data structures. This time bound is comparable to the time taken by Gabow and Tarjan's scaling
algorithm, and is better than all other time bounds under the similarity assumption, i.e., C = O(n k) for
some k. We next consider the minimum mean cycle problem. The mean cost of a cycle is defined as the
cost of the cycle divided by the number of arcs it contains. The minimum mean cycle problem is to identify
a cycle whose mean cost is minimum. We show that by using ideas of the assignment algorithm in an
approximate binary search procedure, the minimum mean cycle problem can also be solved in
O(~/n m log nC) time. Under the similarity assumption, this is the best available time bound to solve
the minimum mean cycle problem.

Key words: Minimum cycle mean, minimum mean cycle, assignment problem, bipartite matching, shortest
path problem, scaling.

1. Introduction

In this p a p e r we p r o p o s e n e w sca l ing a l g o r i t h m s fo r t he a s s i g n m e n t p r o b l e m a n d
the m i n i m u m m e a n cycle p r o b l e m . T h e (linear) assignment p r o b l e m cons is t s o f a
set NI d e n o t i n g pe r sons , a n o t h e r set N2 d e n o t i n g j o b s fo r w h i c h INd = IN2[, a
c o l l e c t i o n o f pa i r s A_c N1 × N2 r e p r e s e n t i n g pos s ib l e p e r s o n to j o b a s s i g n m e n t s ,
a n d an integer cos t c!j a s s o c i a t e d wi th e a c h e l e m e n t (i , j) in A. The o b j e c t i v e is to
ass ign each p e r s o n to exac t ly o n e j o b a n d m i n i m i z e the cost o f the a s s ignmen t . Th is
p r o b l e m can be s ta ted as the f o l l o w i n g l i nea r p r o g r a m :

M i n i m i z e)~ cqxii (l a)
(i,j)~A

sub jec t to ~ xq = 1 fo r al l i c N~, (l b)
{.j: (i,j)~A}

x q = l fo r a l l j c N2, (l c)
{i:(i,j)EA}

x~jc{0, 1} fo r all (i , j) c A . (l d)

* Now at the Department of Industrial and Management Engineering, Indian Institute of Technology,
Kanpur 208 016, India.

42 J.B. Odin, R.K. Ahuja / The assignment and minimum mean cycle problems

The assignment problem can be considered as a network optimization problem
on the graph G = (N, A) consisting of the node set N = N~u N2 and the arc set A.
In the network context, this problem is also known as the weighted bipartite matching
problem. We shall assume without any loss of generality that ci/~> 0 for all (i , j) c A,
since a suitably large constant can be added to all arc costs without changing the
optimum solution. Let C = max{cjj} + 1. We also assume that the assignment problem
has a feasible solution. The infeasibility of the assignment problem can be detected
in O(~/~ m) time by the bipartite cardinality matching algorithm of Hopcroft and
Karp (1973), or by using the maximum flow algorithms of Even and Tarjan (1975)
and Odin and Ahuja (1987).

Instances of the assignment problem arise not only in practical settings, but also
are encountered as a subproblem in algorithms for hard combinatorial optimization
problems such as the quadratic assignment problem (Francis and White, 1974), the
traveling salesman problem (Karp, 1977), crew scheduling and vehicle routing
problems (Bodin et al., 1983). In view of these applications, the development of
faster algorithms for the assignment problem deserves special attention.

The literature devoted to the assignment problem is very rich. There exist a variety
of algorithms to solve the assignment problem and we refer the reader to the paper
of Ahuja et al. (1989) for a detailed survey of these algorithms. The successive
shortest path algorithm is one of the more popular algorithms to solve the assignment
problem. This algorithm solves the shortest path problem as a sequence of n shortest
path problems each with nonnegative arc lengths. If we use Fredman and Tarjan's
(1984) implementation of Dijkstra's algorithm to solve these shortest path problems,
then this assignment algorithni runs in O(nm + n 2 log n) time. This is the best strongly
polynomial bound to solve the assignment problem. (A time bound is called strongly
polynomial if it is polynomial in the dimension of the problem, i.e., it is polynomial
in n and m). The best (weakly) polynomial algorithm to solve the assignment is
due to Gabow and Tarjan (1988) which runs in O(x/n m log(nC)) time. This
algorithm uses a cost-scaling technique, based on the approach of Goldberg and
Tarjan (1987) for the minimum cost flow problem. Under the similarity assumption,
i.e., that C =O(n k) for some k, this algorithm runs in O(~/n m log n) time, and
dominates the O (n m + n 2 log n) bound for all problem classes. Further, the scaling
algorithm uses far simpler data structures.

Bertsekas (1979, 1987) developed a new approach for the assignment problem,
called the auction algorithm, which assigns jobs to persons using auction. The original
version of this algorithm (Bertsekas, 1979) ran in pseudo-polynomial time, but by
incorporating scaling in this method, Bertsekas and Eckstein (1988) obtained an
O (n m log(nC)) algorithm. Their computational results find the auction algorithm
to be substantially faster than the best other method for the assignment problem
for several classes of networks.

In this paper we suggest a hybrid version of the auction and successive shortest
path algorithms running in time O(,fn m log(nC)) which substantially improves the
running times obtained by using either technique alone. In fact, by combining these

J.B. Orlin, R.K. Ahuja / The assignment and minimum mean cycle problems 43

two approaches in a rather natural way, we obtain a time bound that is comparable
to the best available time bound. This algorithm is a cost scaling algorithm, and
successively obtains assignments that are closer and closer to an optimum solution.
The algorithm performs O(log(nC)) scaling phases, and computations within each
phase can be decomposed into two parts: the first part applies the auction algorithm,
and the second part applies the successive shortest path algorithm. The auction
algorithm starts with a null assignment and assigns all but at most ~/~ nodes; these
unassigned nodes are subsequently assigned by the scuccessive shortest path
algorithm. We show that each of these parts takes O(,,/~ m) time and, consequently,
this approach runs in O(~/-ff m Iog(nC)) time, which is comparable to the best other
polynomial bound to solve the assignment problem under the assumption of
similarity.

We anticipate that the running time of our hybrid algorithm will be comparable
in practice to the running time of the auction algorithm. The reason is relatively
straightforward. The second phase of our algorithm "kicks in" at a point in which
the auction algorithm is doing very poorly, and in particular it kicks in after O(-,/-ff)
"bidding cycles". In recent testing on the auction on the auction algorithm (Bertsekas
and Castanon, 1989) for dense large scale problems (with more than 20 000 nodes),
over 99% of the nodes are assigned after only two "bidding cycles" of the auction
algorithm. Although the percentage of unassigned nodes increases for sparse prob-
lems, we anticipate that the almost all of the nodes will be assigned within ~/~
"bidding cycles". Thus, the hybrid algorithm will perform essentially the same steps
as the auction algorithm, except for possibly a few successive augmenting path
iterations at the end.

Hence the contribution of our paper is to develop an algorithm that obtains the
best running time in theory and has an attractive empirical performance. Our hybrid
algorithm is a cost-scaling algorithm, and in that sense is similar to the algorithm
of Gabow and Tarjan (1988). Computationally, our algorithm is quite different,
except possibly in the second phase of our algorithm. Gabow and Tarjan's algorithm
uses a primal-dual approach within each scaling phase. Their algorithm is essentially
an efficient implementation of a successive approximate shortest path computation.
The second phase of our algorithm relies on a sequence of successive approximate
shortest path computations which is similar to Gabow and Tarjan's algorithm.

We also use a variant of our assignment algorithm to solve the minimum mean
cycle problem efficiently. The mean cost of a directed cycle W is defined as
Y,~i,j~ w eii/I WI. The minimum mean o, cle of a network is a directed cycle whose
mean cost is minimum. (The minimum mean cycle problem is sometimes referred
to as the minimum cycle mean problem, but we prefer the former name.) Some
applications of the minimum mean cycle problem can be found in periodic optimiz-
ation (Orlin, 1981), and in the minimum cost flow algorithm of Goldberg and Tarjan
(1988). The minimum mean cycle problem can be solved in O (n m) time by the
algorithm of Karp (1978), or in O (n m log n) time by the algorithm of Karp and
Orlin (1981). The minimum mean cycle problem is a special case of the minimum

44 J.B. Orlin, R.K. Ahuja / The assignment and minimum mean cycle problems

cost-to-time ratio cycle problem, and by using binary search can be solved as a
sequence of O(log(nC)) shortest path problems with arbitrary arc lengths (see
Lawler, 1976). Since any assignment algorithm can be used to solve the shortest
path problem with arbitrary arc lengths (see, e.g., Ahuja et al., 1989), this approach
gives an O(x/-ff m loge(nC)) algorithm for the minimum mean cycle problem. We
show that the scaling algorithm for the assignment problem can be used in "approxi-
mate binary search" to obtain an O(~/-n m log(nC)) algorithm for the minimum
mean cycle problem, i.e., the same running time as for the assignment problem. The
subroutine for the approximate binary search can be either our hybrid algorithm
for the assignment problem, or the algorithm developed by Gabow and Tarjan (1988).

The idea of approximate binary search is due to Zemel (1987). Typically, in the
(exact) binary search algorithm one knows that the opt imum objective function
value A lies in a search interval [L, U]. Also, for a given value x, there is a method
P for determining whether A ~< x or A >~ x. In binary search, one guesses the value
x = ~(U - L), applies method P and subsequently reduces the length of the interval
[L, U] by a factor of 2. In the case of the minimum mean cycle problem, the method
P relies on the solution to an assignment problem and binary search consists of
solving O(log(nC)) assignment problems. However, in the approximate binary
search algorithm, we need a method P ' for determining whether A ~< x + e or A >/x - e.
We show that an application of the cost scaling phase in the hybrid assignment
algorithm constitutes the method P'. We further show that if we use e = ¼(U - L),
then in each iteration we reduce the length of the search interval by 25%. Thus the
number of iterations increase by a constant factor over the exact binary search but
the computational time within each iteration is improved by a factor of O(log(nC)) .
Consequently, this approach obtains an improvement of O(log(nC)) in the running
time over the exact binary search.

Although the ideas underlying the approximate binary search are quite general,
the success of approximate binary search relies on determining an approximate
method P ' which is asymptotically faster than the exact method P. In fact, our
primary contribution is to show that each iteration of our approximate binary search
method is asymptotically faster than that in the exact binary search. In general, one
cannot expect approximate binary search to be more than a constant times faster
than exact binary search, even when P relies on scaling. For example, it is still an
open question as to whether the minimum cost-to-time ratio cycle problem can be
solved faster than O(x/-ff m log2(nC)) time, even though it too can be solved using
binary search as a sequence of assignment problems.

2. Exact and approximate optimality

A 0-1 solution x of (1) is called an assignment. I f x o = 1 then i is assigned t o j and
j is assigned to i. A 0 - I solution x for which ~j:~i,j)~A~ Xij ~< 1 for all i~ N1 and
~ :~ , /~A) X~J <~ 1 for all j c N~ is called a partial assignment. In other words, in a

J.B, Orlin, R.K. Ahuja / The assignment and minimum mean cycle problems 45

partial assignment, some nodes may be unassigned. Associated with any partial
assignment x is an index set X defined as X = {(i , j) ~ A: x~j = 1}. We associate the
dual variable ~(i) with the equat ion corresponding to node i in (lb) and the dual
variable -Tr (j) with the equation corresponding to node j in (lc). We subsequent ly
refer to the 2n-vector 7r as the vector o f node potentials. We define the reduced cost
of any arc (i , j) ~ A as g~j = c o - ~r(i) + ~r(j). It follows f rom the linear p rogramming
duality theory that a partial assignment assignment x is op t imum for (1) if there
exist node potentials ~- so that the following (exact) optimality conditions are
satisfied:

(C1) (Primalfeasibilio,) x is an assignment.
(C2) (Dual feasibility) (a) (~j = 0 for all (i , j) 6 X ; and

(b) gij~>0 for all (i , j) c A .
The concept o f approximate optimality as developed by Bertsekas (1979) and

Tardos (1985) is essential to our algorithms. This is a relaxation o f the exact
optimali ty condit ions given above. A partial assignment x is said to be e-optimal
for some e >i 0 if there exist node potentials ~- so that the following e-dual feasibility
conditions are satisfied:

(C3) (e-Dual feasibility) (a) g~ ~ e for all (i , j) ~ X; and
(b) O~i~>-e for all (i , j)~A .

We associate with each partial assignment x a residual network G(x). The residual
network G(x) has N as the node set, and the arc set consists o f A plus an arc (j, i)
of cost -cij for every arc (i,j) for which x~i--1. Observe that Og/=-~i whenever
both (i , j) and (j, i) are in the residual network.

The above condit ions can be slightly simplified if presented in terms of the residual
network. Observe that for all (i , j) c X, (j, i) is also in the residual network G(x) ,
and ggs <~ e is equivalent to ~i = - g0 >~ - e. Hence, with respect to the residual network,
the condi t ion (C3) is equivalent to the fol lowing condi t ion:

(C4) (e-Dual feasibility) g~i>~-e and for all (i , j) in G(x) .
Clearly, for e = 0, the condit ion (C4) reduces to (C2) and hence any e-opt imal

assignment is an op t imum assignment. In fact, when costs are integer, then e need
not necessarily be equal to 0 for (C4) to become equivalent to (C2) as proved by
Bertsekas (1979).

Lemma 1. Any assignment is e-optimal for e > C and any e-optimal assignment with
e < 1 / (2n) is an optimum assignment.

Proof. See Bertsekas and Eckstein (1988) or Ahuja et al. (1989). []

3. The assignment algorithm

Our algorithm for the assignment problem proceeds by obtaining e-optimal assign-
ments for successively smaller values of e. In other words, the algorithm obtains

46 J.B. Orlin, R.K, Ahuja / The assignment and minimum mean cycle problems

solutions that are closer and closer to being opt imum until s < 1/(2n), at which
point the solution is optimum. The algorithm performs a number of cost scaling
phases. In a cost scaling phase, the major subroutine of the algorithm is the
improve-approximation procedure, which starts with a ks-optimal assignment and
produces an s-optimal assignment. The parameter k is a constant and will typically
have values 2, 3 or 4. A high-level description of the scaling algorithm is given below.

algorithm assignment;
begin

set ~- := 0 and e := C;
L:= 2(k + 1) [,/-n]
while e ~ 1/(2n) do
begin

e := s/k;
improve-approximation(c, k, e, L, ~, x);

end;
the solution x is an opt imum assignment;

end;

procedure improve-approximation(c, k, e, L, rr, x);
begin

auction;
successive-shortest-path;

end ;

Clearly, the procedure improve-approximation is executed O(log(nC)) times
because initially e = C, finally e < 1/(2n), and in each scaling phase e decreases by
a factor of k, which is at least 2. The improve-approximation procedure consists of
two subprocedures: auction and successive-shortest-path. The procedure auction
starts with a ks-opt imum assignment. It first converts it into an e-optimum partial
assignment in which every node is unassigned. Then it uses a variation of the auction
algorithm by Bertsekas and Eckstein (1988) to assign the unassigned nodes while
throughout maintaining the e- optimality of the partial assignment. At the termination
of this method all but at most ~ nodes are unassigned. The procedure successive-
shortest-path converts this s -opt imum partial assignment into an s-opt imum assign-
ment. We shall show that each of these procedures runs in O(, /n m) time, which
would yield an overall running time of O (v ~ m log(nC)) for the assignment
algorithm.

We give in Section 3.1 an algorithmic description of the procedure auction. In
this procedure, an arc (i,j) is called admissible if - e ~< 6!j < 0. The procedure performs
assignments only on admissible arcs. A node that is relabeled L + k times during an
execution of the auction is not assigned anymore and is called ineligible. A node
that is not ineligible is called an eligible node. The procedure auction assigns all

J.B. Orlin, R.K. Ahuja / The assignment and minimum mean cycle problems 47

but (possibly) a small number o f nodes. Let x ° and 7r ° respectively denote the
partial assignment and the node potentials at the end o f the auction procedure. We
use the method described in Section 3.2 to assign the remaining unassigned nodes.

3.1. Procedure auction

procedure auction(c, k, e, L, 7r, x);
begin

X : = 0 ;
: r (j) := ~'(j)+ ke for all j c N2;
while there is an eligible unassigned node i in NI do

if there is an admissible arc (i , j) then
begin

7r(j) := 7r(j) + E;
if node j was already assigned to some node l then
begin

deassign node 1 from node j ;
X := X - {(/,j)};

end;
assign node i to node j ;
X : = X + { (i , j) } ;

end;
else 7r(i) := 7r(i) + e;

end ;

We first analyse the procedure auction. In the above description, we left out the
detail on how to identify an admissible arc (i , j) incident to the node i. We use the
fol lowing data structure to perform this operation. We maintain with each node
i c N1, a list A(i) of arcs emanat ing from it. Arcs in this list can be ar ranged
arbitrarily, but the order once decided remains unchanged throughout the algorithm.
Each node i has a current arc (i , j) which is the next candidate for assignment. To
determine an admissible arc emanat ing at node i, the algorithm examines this list
sequentially and whenever the current arc is found to be inadmissible, the next arc
in the arc list is made the current arc. When the arc list is completely examined,
the node potential is increased and the current arc is again the first arc in its arc
list. Note that if any arc (i , j) is found inadmissible during a scan of the arc list, it
remains inadmissible until ~r(i) is increased. This follows f rom the fact that all node
potentials are non-decreasing.

The procedure auction iteratively performs three basic operat ions: (i) assignment,
i.e., assigning a node i to a node j ; (ii) deassignment, i.e., deassigning a node 1 f rom
a node j ; and (iii) relabel, i.e., increasing a node potential by e units. We shall use
the fol lowing observation about the auction procedure.

48 J.B. Orlin, R.K, Ahuja / The assignment and minimum mean cycle problems

Observation 1. The potential of an unassigned node j c N2 never changes until it is
assigned (except at the beginning when it increases by ke units). Further, if node
j ~ N2 is assigned to a node in N~, then in all subsequent iterations of the auction
procedure it remains assigned to some node in N1.

We need the following lemmas to prove correctness of the algorithm and obtain
its complexity results.

Lemma 2. The partial assignment maintained by the auction procedure is always
e-optimal.

Proof. This result is shown by performing induction on the number of iterations.
At the beginning of the procedure, we have c o - rr(i) + rr(j) >~ - k e for all (i , j) ~ A.
Alternatively, c o - rr(i) + or(j) + ke >~ O, for all (i, j) ~ A. Hence when the potentials
of all nodes in N2 are increased by ke, then condition (C3)(b) is satisfied for all
arcs in A. The intial solution x is a null assignment and (C3)(a) is vacuously satisfied.
Thus this solution is e-optimal (in fact, it is 0-optimal).

Each iteration of the while loop either assigns some unassigned node i c N1 to a
node j c N2, or increases the node potential of node i. In the former case, - e ~< gij < 0
by the criteria of admissibility, and hence the arc satisfies (C3)(a). Then ~r(j) is
increased by e and we get 0 ~< 6a < e. If node j we already assigned to some node
I, then deassigning node I from node j does not affect the e-optimality of the partial
assignment. In the latter case, when the node potential of node i is increased, we
have ~j >~ 0 for all (i , j)~ A(i) before the increase, and hence c0 >~ - e for all (i , j) c
A(i) after the increase. It follows that each iteration of the procedure preserves
e-optimality of the partial assignment.

Lemma 3. The auction procedure runs in O((k+ L)m) time.

Proof. Each iteration of the procedure results in at least one of the following
outcomes: (i) assignment; (ii) deassignment; and (iii) relabel of a node in N~.
Clearly, the number of relabels of nodes in N1 is bounded by O((k + L)n). Initially,
no node is assigned and, finally, all nodes may be assigned. Thus the number of
assignments are bounded by n plus the number of deassignments. The deassignment
of node 1 from node j causes the current arc of node I to advance to the next arc.
After IA(I)[such advancements for node 1, a relabel operation takes place. Since
any node l c N l can be relabeled at most (k + L) times, we get a bound of
O(Yq~N, [A (l) l (k + L)) = O ((k + L) m) on the number of deassignments, and the
lemma follows. []

Lemma 4. At the termination of the auction procedure, at most 2n(k + 1) /L nodes in
NI are unassigned in the partial assignment x °.

Proof. Let x' denote some ke-optimal assignment. Let ~r (resp., ~r') and a~j (resp.,
~) denote the node potentials and reduced costs corresponding to x ° (resp., x').

J.B. Orlin, R.K. Ahuja / The assignment and minimum mean cycle problems 49

Let ioC Nl be an unassigned node in x °. We intend to show that there exists a
sequence of nodes io - j o - il - j~ i; - j ; such that j; 6 N2 and is unassigned in
x °. Further, this sequence satisfies the property that (io,jo), (i l , j O , . . . , (6,j;) are
in the assignment x ' and the arcs (il,jo), (i 2 , jO , . . . , (i t , j ; -O are in the
assignment x °.

Suppose that node ioc N~ is assigned to nodejo c N2 in x'. I f nodejo is unassigned
in x °, then we have discovered such a path; otherwise let node il c N~ be assigned
to the node Jo in x °. Observe that i~ ~ io. Now let node il be assigned to node j~ ~ N2
in x'. Observe that jl Cjo. I f node Jl is unassigned in x °, then we are done; else
repeating the same logic yields that eventually a sequence satisfying the above
properties would be discovered. Now observe that the path P consisting of the node
sequence i o - j o - i ~ - J l i t - j ; is in the residual network G(x °) and its reversal
/5 consisting of node sequence j; - i; j l - il - j o - io is in the residual network
G(x') . The e-optimality of the solution x ° yields that

Z gii = rr(jt) - ~r(io) +)~ cij >1 - l °s , (2)
(i,j)eP (i,j)cP

where l ° - -21+1 and represents the number of arcs in P. Further, f rom the
ks-optimali ty of the solution x ' it follows that

Z _ g , ' . /=rr ' (io)- r r ' (j ;)+ 2 co >~-kl°s. (3)
(i,J)~ P (i,j)cP

Note that ~r(j,) = rr'(j~) + ks, since the potential of node j~ increases by ks at the
beginning of the scaling phase and then remains unchanged. Also note that
Y.~.j)~p c~j = -}~ . j)~ , c~. Using these facts in (2) and (3), we get

rr(io) <~ ¢r'(io) + { k + (k + 1)l°}e. (4)
Finally, we use the fact that rr(io)=rr ' (io)+(L+k)s , i.e., the potential of each
unassigned node in Nl has been increased (L + k) times. This gives l°>~ L / (k + 1).
To summarize, we have shown that for every unassigned node io in N1 there exists
an unassigned node j; in N2, and a path P between these two nodes consisting of
at least L / (k + 1) nodes such that P is in the G(x °) and its reversal /5 is in G(x') .
The facts that x ' is an assignment and x ° is a partial assignment imply that these
paths corresponding to two different unassigned nodes in Nl are node disjoint.
Consequently, there are at most 2 n (k + 1) /L unassigned nodes in N~. []

Since in the auction procedure, we set L = 2(k + 1) f~/~], Lemmas 3 and 4 immedi-
ately yield the following result:

Lemma 5. For fixed value of k, the auction procedure terminates in O(x/-n m) time
and yields an s-optimal partial assignment in which at most fx/n] nodes are
unassigned. []

This lemma also shows the necessity of the two phase approach in the improve-
approximation procedure. By setting L = 2 (k + 1) f~/-n] in the auction procedure, we
obtain an assignment in which at most [x/-~] nodes are unassigned. I f we want all
nodes to be assigned then we shall have to set L = 2 (k + l) n + l . In this case, the

50 J.B. Odin, R.K. Ahuja / The assignment and minimum mean cycle problems

procedure would give an e-optimal assignment and would take O(nm) time. This
implies that if n = 10000, then the auction procedure would assign the first 99% of
the nodes in 1% in the overall running time, and would assign the remaining 1%
of the nodes in the remaining 99% of the running time. By using a successive shortest
path procedure described next we can improve the running time for assigning the
last 1% of the nodes by a factor of nearly 100 in the worst case.

3.2. Procedure successive-shortest-path

procedure successive-shortest-path;
begin

while there are unassigned nodes in N1 do
begin

let ~q be the reduced costs with respect to the potentials 7r°;
define dij := max{0, [~JeJ + 1};
select an unassigned node io in N1;
apply Dijkstra's algorithm with di; as arc lengths starting at node io until some

unassigned node j; in N2 is permanently labeled;
let w(i) denote the distance labels of nodes that are permanently labeled;
set ~-°(i) := ~-°(i) + e(w(jl) - w(i)) for all permanently labeled nodes i c N;
augment one unit of flow along the shortest path from node i0 to j; and update

X°;

end;
s e t x := x ° a n d 77"~ o

end;

We now analyse the complexity of the successive-shortest-path procedure. This
procedure solves a shortest path problem for every unassigned node in x °. We show
that each shortest path problem can be solved in O (m) time. As the partial assignment
x ° has at most [~/n] unassigned nodes, this would imply that this procedure too
would run in O(~/n m) time.

We can easily make the following observations about the procedure successive-
shortest-path:

Observation 2. d!/<~ (gi~/e) + 1.

Observation 3. The node potentials 7r ° are nondecreasing through the procedure.

Observation 4. The procedure does not change the potential of any unassigned node
in N 2 .

Observation 2 is immediate from the definition of dij. Observation 3 follows from
the fact that the distance labels made permanent by the algorithm are nondecreasing.
Observation 4 follows from the facts that the algorithm does not change the potential
of any temporarily labeled node and an unassigned node in N2 is never permanently
labeled.

J.B. Orlin, R.K. Ahuja / The assignment and minimum mean cycle problems 51

We now prove the correctness of the algorithm. It is easily seen that if the solution
x ° is e-optimal with respect to the node potentials ~.o then each dlj is nonnegative.
In the first iteration, x ° is e-optimal with respect to the potential ~.o (by Lemma
5), and we shall show later that the algorithm preserves this property in each
subsequent iteration. Hence each d,j is nonnegative throughout, and Dijkstra's
algorithm can be used to solve the shortest path problems. We now show that the
distance labels that are permanently labeled by Dijkstra's algorithm are small

We have already shown in the proof of Lemma 4 that in x ° for every unassigned
node i0~ N1 there exists an unassigned node jt ~ N2, and a path P of length 1 °
between these two nodes satisfying some properties. Let us consider the inequality
(3). Using the facts that (i) 7r°(i0)/> ~"(i0) (since potentials are nondecreasing in
both the auction and successive-shortest-path procedures), and (ii) ~-°(jt) -- ~"(jt) + ke
(since potentials of nodes in N2 increase by at the beginning of auction procedure
and then remain unchanged) in (3), we get

~-(j ,) -~-(i0)+ • c!j<~ke+kl°e. (5)
(i,j)~P

This yields that ~(i.j)~p gij/e <~ k + kl °. Using Observation 2 in this inequality we
get Y~,i)~p diJ <~ k + 1°+ kl ° = O(n). The fact that this path has a small length is used
to improve the complexity of Dijkstra's shortest path algorithm.

We use Dial's implementation of Dijkstra's algorithm (see Dial et al., 1979, or
Ahuja et al., 1989) to solve the shortest path problems. Dial 's implementation takes
O(m + p) time to solve a shortest path problem where p is the largest distance label
made permanent by the implementation. For our shortest path problems, p = O(n)
because there exists a path of length O(n) between node i0 and some unassigned
node jr in N~. Hence each iteration of the procedure would take O(m) time. As
there are at most [~/~] such iterations, the successive-shortest-path procedure would
take O(~/~ m) time to terminate.

We now show that at the end of each iteration the partial assignment x ° is
e-optimal with respect to the node potentials ~v °. We assume inductively that the
solution satisfies condition (C4) at the begining of each iteration. Let S denote the
set of nodes permanently labeled by Dijkstra's algorithm and S = N - S. Since the
algorithm increases the potentials of nodes in S only, it follows that (i) the reduced
cost of any arc (i , j) for which i c g and j ~ g remains unchanged, and (ii) the
reduced cost of any arc (i , j) for which i ~ S a n d j e S does not decrease. Hence for
these two categories of arcs (C4) remains satisfied. We next consider arcs (i , j) such
that i c S. We use the following observation about Dijkstra's algorithm.

Observation 5. For every node i c S, Dijkstra's algorithm satisfies w(j) <~ w(i) + dij
for all (i , j) c A(i) .

This observation can easily be shown by performing induction on the number of
permanently labeled nodes. We arrange the preceding inequality as -w(i)<~
- w (j) + d!j and add w(jt) to both the sides to obtain w(jl) - w(i) <~ w(j/) - w(j) + d~i.

52 J.B. Orlin, R.K. Ahuja / The assignment and minimum mean cycle problems

Then using Observation 2 we get

w(jt) - w(i) <~ w(j,) - w(j) + (g0/e) + 1, (6)

which can be arranged as

ci: - { ~-°(i) + e(w(j ,) - w(i))} + {~.o(j) + e (w(j t) - w(j))} ~> e. (7)

This establishes that the arc (i , j) satisfies the condition g~ ~>-e with respect to
the new node potentials. We have thus shown the following result:

Lemma 6. The procedure successive-shortest-path obtains an e-optimal assignment
in O(x/-n m) time. []

Combining Lemma 5 and Lemma 6, we get the following theorem:

Theorem 1. The procedure improve-approximation runs in O(~-n m) time. The scaling
algorithm obtains an optimum assignment in O(x/-n m log(nC)) time. []

4. The minimum mean cycle problem

In this section we develop scaling algorithms for the minimum mean cycle problem.
Recall that the mean cost of a directed cycle W is defined as ~(i,i)~w coil Wt and
the minimum mean cycle problem is to identify a cycle of minimum mean cost. The
minimum mean cycle problem is a special case of the minimum cost-to-time ratio
cycle problem (see Lawler, 1976) and we use its special structure to develop more
efficient algorithms.

We consider the network G = (N , A) where a (possibly negative) integer c o
represents the cost of each arc (i , j) e A . Let n = l N] and m=lA] . Let C =
1 +max(lc~j[:(i,j) c A). We assume that the network contains at least one cycle;
otherwise there is no feasible solution. Acyclicity of a network can be determined
in O(m) time (see, for example, Aho et al., 1974). We have already indicated in
Section 1 that the minimum mean cycle problem can be solved in O(,]n m log2(nC))
time by using using binary search and solving a shortest path problem at each search
point. We now describe how the minimum mean cycle problem can be solved in
O(x/-n m log(nC)) time by using approximate binary search, as per Zemel (1987).

Our algorithm is based on a well known transformation using node splitting. We
split each node i c N into two nodes i and i', and replace each arc (i , j) in the
original network by the arc (i , j ') . The cost of the arc (i , j ') is same as that of arc
(i , j) . We also add arcs (i, i') of cost 3 for each i e N in the transformed network.
This gives us an assignment problem with N1 = {1, 2 , . . . , n} and N2 = {1', 2 ' , . . . , n'}.
We treat 6 as a parameter in the transformation. We represent the cost vector of
the assignment problem by C(6) and refer to the problem as ASSIGN(6) . An
opt imum solution of ASSIGN(~) either consists solely of the arcs (i, i') for all i, or
does not contain (i, i') for some i. In the former case, the assignment is called a

J.B. Orlin, R.K. Ahuja / The assignment and minimum mean cycle problems 53

uniform assignment, and in the latter case it is called a non-uniform assignment. We
represent the minimum mean cost in the network by/x*. Our algorithm is based on
the following result:

Lemma 7. (a) I f an e-optimal assignment X of ASSIGN(~) is uniform, then
~ - 2 e ~</x*.

(b) I f an e-optimal assignment X of ASSIGN(6) is non-uniform, then Ix* <~ 8 + 2e.

Proof. (a) Let ~ be the node potentials corresponding to the e-optimal assignment
X. Suppose the cycle W* in G consisting of the node sequence i / - / 2 - /3 ir - - i l

is a minimum mean cycle of cost/z*. Let I* = {(il, i;), (/2, i ;) , . . . , (/r-l, i'r), (it, i~)}.
It follows from condition (C3)(b) that

i i"

eij=rt z * - 2 7r(i)+ • ¢r(i)>~-re. (8)
(i , j) ~ l * i= i t i=i~

Let I = {(i~, i'D, (i2, iX) , . . . , (it, i'~)}. As I is part of the e-optimal assignment X, it
follows from condition (C3)(a) that

i i i
c u = r S - 2 7r(i)+ E 7r(i)<~re. (9)

(i , . j)El i ~ i t i= i i

Combining (8) and (9) we get

6 - 2 e ~< u*. (10)

(b) Since the assignment X is non-uniform there exists a node j l C N 1 that is
assigned to a node j~c N2 where j~ ¢j2. Suppose that node J2 is assigned to some
node j ; . Note that J2 ~J3- Extending this logic further indicates that eventually we
would discover a node jr C N~ which is assigned to the node j'~ ~ N2. The node
sequence j ~ - j 2 - J 3 j r - - j ~ defines a directed cycle in G and we denote it by
W. Let ix be the mean cost of W. Then/x* ~</x. Let I = {(j, , j ;) , (J2,j_~), • • •, (j~-~ ,j'r),
(j~,J'0} and J={(j~, j 'D, (j 2 , j ;) , . - - , (jr,j'r)}. It follows from (C3)(b) and (C3)(a),
respectively, that

i, J;
2 ?ij=r8 - Y] rr(j)+ }] rr(j)>~-re (11)

(i , j) e J J--Jl J=J[

and
Jr Jt ~

glj=rl x - • 7r(j)+ 2 7r(J) <-re. (12)
(i , j) ~ ! J --Jl J --.Jl

Combining (11) and (12) we get

tz * <~ /x <~ ~ + 2 e. []

We use this result in our algorithm for the minimum mean cycle problem. The
algorithm maintains an interval [LB, UB] containing the minimum mean cycle value
/x* and in one application of the improve-approximation procedure with carefully
selected values of 8 and e reduces the interval length by a constant factor. A formal
description of this algorithm is given below followed by its justification.

54 J.B. Odin, R.K. Ahuja / The assignment and minimum mean cycle problems

algorithm minimum-mean-cycle;
begin

set LB := - C and UB := C;
set ~r(i):=-C/2 for all icNz and 7r(i ') := 0 for all i 'cN2;
let x be the uniform assignment;
while (U B - L B) > ~ 1/n 2 do
begin

8 := ½(UB+ LB);
e := I (UB - LB);
k : = 3 ;
improve-approximation(c(8), k, e, L, 7r, x);
if x is a uni form assignment then LB:= 8 - 2 e
else U B : = 8 + 2 e and x* := x;

end;
use the non-un i form assignment x* to construct the min imum mean cycle o f cost

/x* in the interval [LB, UB];
end;

Notice that - C < /x* < C since the absolute values o f all arc costs are strictly less
than C Furthermore, if the mean cycle costs of two cycles are unequal, then they
must differ by at least 1/n 2. This can be seen as follows. Let W~ and W2 be two
distinct cycles and Lk =~(~,jl~wk cii and rk = I Wk] for each k = 1, 2. Then

I L~_L_~2 = l r2L'-r2L2 ~0.
rl r2 rl r2

The numerator m the above expression is at least l and the denominator is at
most n 2, thereby proving our claim. This observation shows that the algori thm
terminates with a min imum mean cycle.

Theorem 2. The minimum mean cycle algorithm correctly determines a minimum mean
cycle in O(~/n m l og (nC)) time. []

Proof. The algorithm always maintains an interval [LB, UB] containing the
min imum mean cost. I f the execution o f improve-approximation procedure yields a
uniform assignment x, then the new lower bound is 8 - 2e = ¼(UB + 3LB); otherwise,
the new upper bound is 8 + 2 e = ~ (3 U B + L B) . In either case, the interval length
(U B - L B) decreases by 25%. Since, initially U B - L B = 2 C , after at most 1+
[log4/3 nZC] = O(log(nC)) iterations, UB - LB < 1 /n 2 and the algorithm terminates.
Each execution of the improve-approximation procedure takes O(, /~ m) time and
the algorithm runs in O(x/n m log(nC)) time.

To show the correctness of the algorithm, we need to show that the solution x is
3e-opt imal with respect to the costs C(8) before calling improve-approximation

1 procedure. Initially, x is the uniform assignment 8 = 0 and e = ~C. Hence for each
arc (i, i') in the uniform assignment ~ir = ½C <~ 3C, thereby satisfying (C3)(a). Further,

J.B. Odin, R.K. Ahuja / The assignment and minimum mean cycle problems 55

for each arc (i,j') in ASSIGN(6) , we have ~j,=cij,+½C~-C+½C= _~C>~1 -~C,3
which is consistent with (C3)(a).

Now consider any general step. Let the assignment x be an e-optimal solution
for ASSIGN(6) and let ~ denote the reduced costs of arcs at this point. Further,
let UB', LB', ~', e' and 01j be the corresponding values in the next iteration just
before calling the procedure improve-approximation. We need to show that the
solution x is 3e ' -opt imal for ASSIGN(6 ') . We consider the case when 6 ' > 6, The
case when 6 ' < 6 can be proved similarly. We showed earlier that the interval length
decreases by 25% at every iteration. Therefore, ' 3 e =~e. Further, observe that the
case 6 ' > 6 occurs when the lower bound increases. Hence, 6 ' =½(UB'+LB')=
½ (UB+4~(UB+3LB))=6+e. Since arc costs do not decrease in ASSIGN(6 ') , all
arcs keep satisfying (C3)(b). For an arc (i,j')~ X, we have Oii,<~ 6~,+ e because the
costs increase by at most e units. We then use the fact that ~ i ,~e to obtain
0ij,~< 2e ~< 3e', which is consistent with (C3)(a). The theorem now follows. [~

The minimum mean cycle algorithm can possibly be sped up in practice by using
a better estimate of the upper bound UB. Whenever an application of the improve-
approximation procedure yields a non-uniform assignment x, then a cycle is located
in the original network using the assignment x and the upper bound UB is set to
the mean cost of this cycle. Further, if it is desirable to perform all computat ions
in integers, then we can multiply all arc costs by n 2, initially set UB = k I~°~k~n2c~l,
and terminate the algorithm when e < 1. The accuracy of this modified version can
be easily established.

We close this paper by making a curious observation. The best known time to
detect a negative cost cycle in a network is the same as the time to determine the
minimum mean cycle of a network. However, this latter problem is more general
because the minimum mean cycle value is negative if and only if there is a negative
cost cycle. In addition, the minimum mean cycle problem seems as though it should
be more difficult to solve. The best time bound for both problems under the similarity
assumption is O(~/n m log(nC)). Under the assumption that C is exponentially
large, the best time bound for each of these problems is O(nm). Determining a
better time bound for the problem of detecting a negative cost cycle is both of
theoretical and practical importance.

Acknowledgements

We thank Michel Goemans and Hershel Safer for a careful reading of the paper
and many useful suggestions. We also thank the referees for their insightful com-
ments. This research was supported in part by the Presidential Young Investigator
Grant 8451517-ECS of the National Science Foundation, by Grant AFOSR-88-0088
from the Air Force Office of Scientific Research, and by Grants from Analog Devices,
Apple Computer, Inc., and Prime Computer.

56 J.B. Orlin, R.K. Ahuja / The assignment and minimum mean cycle problems

References

A.V. Aho, J.E. Hopcroft and J.B. Ullman, The Design and Analysis of Computer Algorithms (Addison-
Wesley, Reading, MA, 1974).

R.K. Ahuja, T.L. Magnanti and J.B. Odin, "Network flows," in: Handbooks in Operations Research and
Management Science. Vol. I: Optimization (North-Holland, Amsterdam, 1989).

D.P. Bertsekas, "A distributed algorithm for the assignment problem," Working Paper, Laboratory for
Information and Decision Systems, MIT (Cambridge, MA, 1979).

D.P. Bertsekas, "The auction algorithm: a distributed relaxation method for the assignment problem,"
Technical Report LIDS-P-1653, MIT (Cambridge, MA, 1987).

D.P. Bertsekas and J. Eckstein, "Dual coordinate step methods for linear network flow problems,"
Mathematical Programming 42 (1988) 203-243.

D.P. Bertsekas and D.A. Castanon, "The auction algorithm for the minimum cost network flow problem,"
LIDS Technical Report, MIT (Cambridge, MA, 1989).

L.D. Bodin, B.L. Golden, A.A. Assad and M.O. Ball, "Routing and scheduling of vehicles and crews,"
Computers and Operations Research 10 (1983) 65-211.

R. Dial, "Algorithm 360: shortest path forest with topological ordering," Communications of the ACM
12 (1969) 632-633.

E. Dijkstra, "A note on two problems in connexion with graphs," Numerische Mathematik l (1959)
269-271.

E.A. Dinic, "Algorithm for solution of a problem of maximum flow in networks with power estimation,"
Soviet Mathematics Doklady 11 (1970) 1277-1280.

S. Even and R.E. Tarjan, "Network flow and testing graph connectivity," SIAM Journal of Computing
4 (1975) 507-518.

R.L. Francis and J.A. White, Facility Location and Layout: An Analytical Approach (Prentice-Hall,
Englewood Cliffs, N J, 1974).

M.L. Fredman and R.E. Tarjan, "Fibonacci heaps and their uses in network optimization algorithms,"
Proceedings 25th Annual IEEE Symposium on Foundation of Computer Science (1984) pp. 338-346.

H.N. Gabow and R.E. Tarjan, "Almost-optimum speed-ups of algorithms for bipartite matchings and
related problems," Proceedings of the 20th Annual AC M Symposium on Theory of Computing (1988)
pp. 514-527.

A.V. Goldberg and R.E. Tarjan, "Solving minimum cost flow problem by successive approximation,"
Proceedings of the 19th A C M Symposium on the Theory of Computing (1987) pp 136-146.

A.V. Goldberg and R.E. Tarjan, "Finding minimum-cost circulations by canceling negative cycles,"
Proceedings of the 20th A CM Symposium on Theory of Computing (1988) pp. 388-397.

J.E. Hopcroft and R.M. Karp, "An n 5/2 algorithm for maximum matching in bipartite graphs," SIAM
Journal of Computing 2 (1973) 225-231.

R.M. Karp, "Probabilistic analysis of partitioning algorithms for the traveling salesman problem in the
plane," Mathematics Operations Research 2 (1977) 209-224.

R.M. Karp, "A characterization of the minimum cycle mean in a digraph," Discrete Mathematiccs 23
(1977) 309-311.

R.M. Karp and J.B. Orlin, "Parametric shortest path algorithms with an application to cyclic staffing,"
Discrete Applied Mathematics 3 (1981) 37-45.

E.L. Lawler, Combinatorial Optimization: Networks and Matroids (Holt, Rinehart and Winston, NY, 1976).
J.B. Orlin, "The complexity of dynamic languages and dynamic optimization problems," Proceedings of

the 13th Annual A C M Symposium on the Theory of Computing (1981) pp. 218-227.
J.B. Orlin and R.K. Ahuja, "New distance-directed algorithms for maximum flow and parametric

maximum flow problems," Sloan, W.P. No. 1908-87, Sloan School of Management, M1T (Cambridge,
MA, 1987).

E. Tardos, "A strongly polynomial minimum cost circulation algorithm," Combinatorica 5 (1985) 247-255.
E. Zemel, "A linear time randomizing algorithm for searching ranked functions," Algorithmica 2 (1987)

81-90.

