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Methods of Establishing the Shortest Running
Distances for Freights on Setting up
Transportation Systems

A. L. Lur’e

The volume of goods traffic required to meet all the needs of the national
economy depends to a large extent, once the location of industries has been
taken into account, on the way in which the actual transport links are estab-
lished between the areas and points of production and the areas and points
of consumption of the various products.

One of the most important requirements which arises when rational
schemes of transport links are being set up is the need to establish, all
other conditions being equal, the minimum overall running distance for
loads (the smallest number of ton-kilometres). Quite obviously setting up
transportation systems which satisfy this requirement is by no means the
same thing as devising a really rational transport plan which takes into
account every factor relevant to the general economy and general transport
situation. Nevertheless, the ability to solve this comparatively elementary
problem does make other more complicated problems connected with the
rationalisation of transport easier to solve.!

The methods of calculation proposed below may be applied also in cases
where it is possible to utilise data relating to transport costs over separate
sections of railway track. For this purpose the costs of conveying a unit of
load over the relevant sections must be entered in the diagrams and tables
appearing in this article in place of distances between stations.

The methods suggested for establishing systems of load-flow may also be
used without modification for establishing systems for routing empty waggons.
If this is done, points which have a surplus of empty waggons will take on the

1 Suggestions on ‘How to obtain minimum total mileage’ when setting up transporta-
tion systems were first put forward by the Soviet economist ToLstor (see the symposium
Planning of Transportation, Moscow, 1930; also A. N. ToLstol, Merhods of eliminating irra-
tional transportation in constructing operational plans, Moscow, 1941, and Z. N. PARIISKAYA,
A. N. ToLstor and A. B. Moxs, Planning Goods Traffic, Moscow, 1947),
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324 SHORTEST RUNNING DISTANCES

function of dispatch points, and points which have a deficit of these will take
on the function of arrival points. Thus the methods of calculation outlined in
this article will also offer guidance to reducing the running distances of
empty waggons, which is such an important saving in transport.

I. THE GRAPHIC METHOD

Rule 1. If the railway lines which connect the dispatch and arrival points
of any homogeneous load by the shortest routes do not form closed circuits,
it is a simple matter to establish a system of transportation which will secure
minimal overall running distances by a purely graphic method without re-
course to calculating distances. It is necessary only to make certain that

FiG. 1

there are no cross hauls (i.e. the same goods do not travel in opposite direc-
tions) when the dispatch and arrival points are being connected. The quan-
tity of goods dispatched from and arriving at each point is presumed to be
known.

A case of this sort is shown in Fig. 1. The figures inside the rectangles
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denote the number of units of load (in thousands of tons, trucks etc.) being
dispatched, and the figures inside the circles denote the number of units
received. Distances between points are also shown in the drawing. The line
AB, which forms part of the closed circuit ABDA, need not be taken into
consideration because the shortest routes from any dispatch point to any
arrival point do not pass through it.

It is easy to see that the system in Fig. 1 shown by the various dotted
lines which connect the dispatch points 4, B, C, D and E to the arrival points
a, b, c,d, e, fand g results in the same overall running distances as any other
system would, provided that no cross hauls were permitted, and that these
distances are minimal in the given conditions. In fact, if we were to link, say,
point g to 4 instead of C, and dispatch the three units of load now surplus
at C to e, while proportionately reducing the loads dispatched from 4 to e,
there would be no change in the overall running distance. As far as the point
of intersection of lines AD and Cg each unit of load travels the same route
as before; beyond that point, three units of load from 4 now travel to g
instead of e as formerly, but at the same time three units from C, previously
routed to g, now go to e. Losses exactly counterbalance gains. We should
arrive at the same result if we changed, either completely or in part, the
pattern of connexions between ¢, d and e and 4 and D, and satisfied part of
the demand at b or e with the two units now surplus at E, and so on.

An examination of all these cases confirms the accuracy of our original
formulation, and also permits us to draw the following conclusion:

Rule 2. If the travel routes of loads from any one of several dispatch
points (e.g. 4, C or E) to any one of several destinations (e.g. b, c, d, e or g)
pass through at least one common point, the overall running distance does
not depend on precisely which dispatch point is connected to which destina-
tion point.

2. CLoseED CircUITS AND THE RULE oF CONTINUOUS LINES

If the railway lines linking dispatch and arrival points by the shortest
routes form a closed circuit or several closed circuits (let us call such circuits
‘circles’), the purely graphic method for setting up connexions becomes in-
adequate, and must be supplemented by calculations of the distances in-
volved.

Let us examine Fig. 2. Let point 4 be connected to b, Bto a and C to «
and c. A system of connexions such as the one shown in the Fig. 2 by a line
of dashes does not permit cross hauls yet nonetheless leads to excessive
running distances. One may be convinced of this either by comparing the
overall totals of ton- or truck-kilometres on this layout with the results
obtained by using other systems of connexions, or, less laboriously, by
employing the following arguments.

It follows from Rule 2 that if, still employing the same railway lines Ab
and Ba, we dispatch loads from A4 to a and from B to & the overall running
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distance will be the same as with the previous routing (the travel routes of
loads from 4 and B to a and b pass through a common point J). But if we
connect B to b it is obvious that loads from B must be sent not by the round-
about route BJb but by the direct route Bb.

Thus it clearly emerges.that although it was never intended to carry traffic
from B to b via J, the original system of connexions does in fact lead to

FiG. 2

exactly the same excessive mileage being covered as with any obviously
irrational plan. The correct routing is shown by a dotted line.

In order to formulate a general rule based on this example we shall intro-
duce here the following definition: we shall say that two points are joined in
any given direction by a continuous line of load-flow if consignments encoun-
tered at any intermediate point are travelling in the same direction. Thus in
the original system of connexions point B was joined by a continuous line of
load-flow both to a and to b (along the route BJb), but had no continuous
communication with point ¢, since although consignments were to be met
with on section aC the direction of their travel did not coincide with the
direction of load-flow on Ba and Cc. The example we have chosen illustrates
the ‘rule of continuous lines’ which follows.

Rule 3. If two points on a network are joined by a continuous line of
load-flow which is not the shortest route (in our example points B and b), a
system of connexions incorporating such a line will not yield the shortest
overall running distances.

In particular it follows from this that if two points are joined by continu-
ous lines of load-flow in two directions, excess mileage will almost always
occur. It is exceptional, in fact, for both routes to be equal in length, and as
soon as one ceases to be the ‘shortest route’ the system of connexions will no
longer yield the shortest overall running distances in accordance with Rule 3.

Numbers of defects in projected systems of transportation or routing of
empty waggons! are the result of ignorance of the scientific methods of estab-

1 Of course, in some cases this rule may be deliberately broken in the interests of some
local factor, e.g. limits imposed by carrying capacity. If Rule 3 is broken, however (and
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lishing connexions. The ‘rule of continuous lines’ often enables them to be
picked out at a glance.

In the majority of cases where closed circuits are involved neither the
absence of cross hauls nor the observance of the conditions following from
Rule 3 are sufficient to ensure that the shortest overall running distances
will be obtained. For example, the trans- '
portation system shown in Fig. 3 by a line
of dashes does not break any of the general
rules, but a comparison with the dotted line
system shows that the latter produces
shorter running distances.

Where the number of dispatch and
arrival points is considerable a direct com-
parison of all possible alternatives to
establish the shortest overall running dis-
tance is a process extremely laborious to
apply in practice and may even be impos-
sible if the number of alternatives is exceptionally great. A special method is
needed, therefore, which will make it possible to arrive at the most efficient
system of connexions by combining graphic representation with relatively
simple calculations. This will remove the need to establish total running
distances for each alternative. Such a graphico-analytical method is the
method of circle differences.t

FiG. 3

3. THE CIRCLE DIFFERENCES METHOD

If an analysis is made of the systems of connexions shown in Fig. 3 it is
easy to see that selection of the most efficient alternative may be made without
recourse to calculations of total ton- or truck-kilometres. It is sufficient to
compare ‘gains’ (+) and ‘losses’ (—), and these we obtain by changing the
direction of travel of any unit of load in relation to the original version of the
system. Any conclusion which is true for one unit of load (tons or trucks)
will also be true for all subsequent values.

By re-routing a unit of load from 4 to b instead of @ as in the original
version (shown by the line of dashes) we ‘gain’ 5 kilometres from A4 to g,
which the unit in question no longer has to cover, and ‘lose’ 25 kilometres,
which is the distance this unit must now be sent. But as point b will now be
receiving a unit of load from A, the unit previously sent from B to b becomes
superfluous, and this can (and must) be sent to a in exchange for the unit
which has changed direction. To do this will result in a ‘gain’ of 40 kilo-
metres (Bb) and a ‘loss’ of 15 kilometres (Ba). Adding, we obtain

indeed if any increase at all is made in the overall running distances), it should be for a
definite reason.

1 Tolstoi applies the term ‘graphico-analytical’ to the method outlined by us in Sec-
tion 1.
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+5—-254+40-15 = +5. The gain exceeds the loss by 5 kilometres, and
therefore our modification of the system has been advantageous.

In this way we have been able to show that the system represented by the
dotted line is the preferable one simply by comparing the distances between
A, B, a and b, without having had to calculate the total running distances
involved.

Calculation of the differences between ‘losses’ and ‘gains’ obtained by
changing the direction of travel of a unit of load also forms the basis of the
‘circle differences’ method.!

We shall demonstrate the application of this method with an actual
example (see Fig. 4).

FiG. 4

The work of setting up an efficient system of connexions is begun by
connecting dispatch points and arrival points in an arbitrary fashion, taking
care only that the elementary rules (concerning convergent routes and con-
tinuous lines) are not infringed. It is best to begin with the largest dispatch
or arrival point, e.g. point @. This we connect to the nearest dispatch points,

1 Both in its original form, as described in the work of Tolstoi, and in the version
outlined below. This same comparison of ‘losses’ and ‘gains’ also forms the basis of the
methods of Kantorovich and Gavurin (see the symposium Problems of raising transport
efficiency, USSR Academy of Sciences, 1949) as well as of a number of methods of resolving
‘the transportation problem’, in foreign literature.



CIRCLE DIFFERENCES METHOD 329

routing 30 units of load for a from 4 and 5 from B. The remaining 15 units
available at B must evidently be sent to b, otherwise we shall find ourselves
with converging load-flows. Continuing to connect all the dispatch and
arrival points one after the other in such a way as to prevent load-flows
converging, we arrive at the system indicated in Fig. 4 by the dotted lines.!

This system leaves certain details unsettled. It does not show whether
part of the traffic is sent from B to d, or whether d’s demands are entirely
satisfied by D and ¢’s by C. Such precision, however, is not needed for our
purposes, because Rule 2 shows that these factors would have no effect on
the total running distances anyway.?

Does the system we have obtained yield the best results by guaranteeing
the smallest amount of ton-kilometre work ? If not, how may it be modified
in order to do so?

Let us agree to term any change in the system of connexions an anti-
clockwise advance if it has the effect of reversing the direction of loads
originally travelling in a clockwise direction. Any change of the opposite
sort we shall term a clockwise advance. 1t is easily seen that the ‘advance’ of
any unit of load is inevitably accompanied by changes in the numbers of
consignments on all sections of the circle.

For example, suppose we re-route to b a unit of load originally travelling
from B to a (clockwise advance). It is obvious that this will make available
at C a unit of load which was previously sent to b. This will have to be sent
in a clockwise direction until it reaches the first point receiving consignments
from the opposite direction, i.e. to e. The unit which e used to receive from
E will now have to be sent to g, i.e. to the consumption point from which we
began the ‘advance’. On all the sections over which in the original version
of the system loads were travelling in a direction opposite to the advance (in
this case an anti-clockwise direction) the load-flow will be reduced by one
unit, and on all the remaining sections of the circle it will be increased by one
unit.

The example of advancement we have chosen leads us to the following
conclusion. The general ‘gain’ derived from advancing a unit of load (the
saving in ton- or truck-kilometres) is equal to the length of the sections over
which loads were travelling in the direction opposite to the advance in the
original system of connexions, while the ‘loss’ is equal to the length of the
remaining portions of the circle, i.e. to the length of those sections over which
loads were travelling in the same direction as the advance, and of those
sections over which no loads were travelling at all (‘free’ sections).

! Besides distances, figures showing traffic density are also entered on the diagram in
brackets interrupting the dotted lines (e.g. 30 on section 4a, 5 on Ba, etc.). The significance
of the line of dashes and zigzag line will be explained below.

2 Once the general outline of the system is established, the suitability of connexions
which are not going to have any bearing on the overall running distance can be decided

on other considerations, such as the principle of concentrating connexions, which facilitates
a wide application of dispatch routing.
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If the sections over which loads travel in a clockwise direction are longer
than those over which they travel in the opposite direction (as in our example),
we call the clockwise direction predominant. In the converse case the anti-
clockwise direction will be predominant.

From all that has been said above it is possible to deduce the following
rule for connecting dispatch and arrival points which are situated on the
same closed circuit (‘circle’):

Rule 4, 1f the load travel routes are on a closed circuit, and the difference
between the length of the sections carrying loads in one direction and the
length of the sections carrying loads in the opposite direction is less than the
length of the ‘free’ sections; or, in other words, if the length of the sections
carrying loads in the predominant direction is less than the length of the rest
of the circle, then the corresponding system of connexions will yield the
shortest overall running distance. If this condition is not present, an advance
must be made in the direction opposite to the predominant direction.

In our example the length of the sections carrying loads in a clockwise
direction is equal to 105 kilometres; in the opposite direction, 70 kilometres;
and not carrying loads at all, 25 kilometres. Since 105 is greater than 70+ 25
it follows that it is expedient to make an advance in an anti-clockwise
direction.

But if it is expedient to advance one unit of load in an anti-clockwise
direction, it seems reasonable by the same token to move two or more. How
many units, then, should we advance ? Evidently the expediency of advancing
units will not be called in doubt while the original balance of losses and gains
continues to hold good.

The losses and gains in our example will be the same for units 2, 3, 4 and
5; but by the time unit 6 is reached the balance of pluses and minuses will
have altered, since all the loads which had been travelling previously from
point C in a clockwise direction (5 units) will now prove to be travelling in
the opposite direction, and section CD will have become free.

A general rule to establish the quantity of loads which should be advanced
may be stated in the following terms:

Rule 5. The number of units of load which should be advanced on the
basis of Rule 4 is equal to the lowest density of traffic on any section carrying
traffic in the predominant direction of the original system.

This ‘limiting’ section may be at once identified as CD in our drawing.

Once the direction and extent of the advance needed are ascertained, it
only remains to put it into effect, i.e. to plot on the scheme the new system
of connexions resulting from the relevant modifications of the original system.
The solution of this problem presents no difficulties. One can begin at any
dispatch or arrival point. Let us take point a, say. If we advance 5 units in
an anti-clockwise direction, this will means that we must send 10 units from
B to a instead of 5.' It follows that out of the 30 units previously received

1 The new density figures are set out in Fig. 4 beside the old.
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by a from A, 5 are now travelling in an anti-clockwise direction to the nearest
point which had been receiving loads in the predominant direction (opposite
to the advance), i.e. to point d. The release of 5 units, which had previously
been coming to d from the direction of C (whether directly from C or D is
immaterial), makes it possible to send 5 units from C to b in exchange for the
ones which we sent from B to a instead of b.

The new transportation system is represented in Fig. 4 in the following
manner: sections which were free in the original version but which are now
carrying traffic, are denoted by a line of dashes; dotted lines are retained for
sections over which traffic has not changed direction, and the new indices of
density are marked; and for sections where it has been possible to reduce
traffic the dotted lines are cancelled by a zigzag line.

When checking the new system of connexions, we obtain the following
results: the length of sections carrying loads in a clockwise direction is
80 kilometres, and in the reverse direction 95 kilometres, while the length of
free sections comes to 25 kilometres. The system we have obtained guarantees
minimum overall running distances in accordance with Rule 4.

It is possible to simplify the testing of the new system. For this purpose
one must take double the length of the free sections resulting from the ad-
vance, and compare this figure with the result calculated for the original
version, since this is exactly the amount by which the difference between the
sections of the predominant direction and the remainder of the circle will
have changed.

In our example this section is CD. Twice its length is equal to 50 kilo-
metres, and the difference between the length of the sections carrying traffic
in the predominant direction and the remainder of the circle was
105—70—25 = 10 kilometres. It is clear that this difference will cease to
be positive in the new system of connexions (since 50 is greater than 10) and
that the condition of Rule 4 will be satisfied as a consequence.

If a test of the second version of the plan showed the necessity for a new
advance, it would be necessary to construct a third version, and once again
to test its suitability by means of the same simple calculation. If we adopt
this procedure we shall eventually arrive at a system of connexions which
will ensure that the shortest overall running distance is obtained, wherever
the dispatch and arrival points happen to be situated on the closed circuit.

4. GENERAL APPLICATION OF THE GRAPHICO-ANALYTICAL
METHOD

The method of circle differences permits a system to be constructed which
will link dispatch and arrival points in such a way as to ensure that minimal
total running distances are obtained whatever the layout and the situation
of the dispatch and arrival points.

The normal procedure for establishing such a system is as follows. First

UME Z
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we take those sections of the transport network for which the system of
connexions can be set up by making use of the graphic method (Rules 1 and
2). Once these have been disposed of we can set about establishing prelimin-
ary links between the dispatch and arrival points which lie on closed circuits
(circles).

These preliminary links can be established by rule of thumb; travel lines
must not be permitted to converge, of course, and the rule of continuous line
must be observed. Then all the closed circuits must be tested and corrected
one after the other by the circle differences method. In the course of this it
may happen that changes made at a later stage impair the efficiency of
systems of connexions adopted for other circuits which have already been

FiG. 5
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tested and corrected. In this event, these systems will have to be re-tested.
We proceed in this way until every circle satisfies the conditions of Rule 4.

Let us take an example to show the successive steps needed in the normal
application of the methods described above in setting up a system of con-
nexions (see Fig. 5).

We note first of all that the extreme right-hand line mg does not form
part of a closed circuit because the shortest routes for goods from any dis-
patch to any arrival point do not pass through it. Therefore we apply the
graphic method, not only to stations p and H, but also to r and ¢, and to points
0, M, nand m. Consequently we can plot the load-flows shown in the drawing
by dotted lines, without any calculations.

For example, it is obviously necessary to dispatch from A 10 units of
load to 0, 5 to n, and 10 to m. The remaining 10 units at M will be dispatched
to other points, and these will have to pass through B (we have already
established that there would be no point in using the section mg with the
present arrangement of dispatch and arrival points). The distance loads must
run from M to B does not depend on what stations beyond B are connected




334 SHORTEST RUNNING DISTANCES

to M. In all subsequent calculations, therefore, we may ignore line MB and
regard the junction B as the source of 10 units of load.

Similarly point ¢ will be regarded henceforth as a junction receiving the
20 units of load which are in practice intended for r and ¢, and point a as an
arrival point for 17 units, since apart from the 10 units needed to satisfy a’s
own requirements, 7 units for p must also inevitably pass through this point.
Thus we can substitute junctions for those parts of the network to which
the graphic method is applicable.

Subsequent steps in developing the system of connexions are shown in
Fig. 6. B, ¢ and a are shown as dispatch or arrival points for calculated
quantities of load (10, 20 and 17 units respectively) in accordance with our
substitution of these junctions for the three groups of stations o, M, n and
m, ¥ and g, and p and H respectively. Those stations of the network which
did not form parts of closed circuits have been omitted entirely.

We make a first draft of the system at random. Let us say, for example,
that, having begun with the major dispatch points 4, F and G, we have
arrived at the system represented in the diagram by a dotted line We set
about testing the circles.

To do this let us regard the points where the circuit we are testing inter-
sects with the other circles as dispatch points or arrival points depending on
whether loads, departing from these points or approaching them from other
parts of the network, enter sections of the circle being tested, or whether on
the other hand loads arriving at these points from the circle being tested are
either unloaded there or depart to neighbouring sections of other circuits.
Thus, for example, in the given system of connexions L will be, for the
‘large’ circuit ALcBCDA, a dispatch point for the 25 units of load travelling
to it from F, whereas for the circle ALjA the same point L will be a point of
arrival for 8 units, since through it 8 units leave for the neighbouring section
Lb. We can refer to the circuits we are testing in a briefer manner by putting
in brackets the numbers of the segments which each encompasses. Thus, for
example, the large circle ALcBCDA may be denoted by (1, 2, 3, 4), the circle
ALjA mentioned above by (1), the circle ALcBjA by (1, 2), etc. We begin our
test with (1, 2, 3, 4). The total length of sections carrying traffic in a clock-
wise direction (let us call such sections positive) adds up to 10 kilometres
(section Lb), and the total length of sections carrying traffic in the opposite
direction (let us call these negative) adds up to 130 kilometres. The length of
the free sections is 75 kilometres. The length of the negative sections exceeds
the rest of the circle by 45 kilometres. A clockwise advance is therefore
necessary (Rule 4). 10 units of load should be advanced, according to Rule 5
(the limiting section is De). The results of this on the circuit (1, 2, 3, 4) are
shown in the diagram thus: where the direction of traffic has not changed,
the dotted line has been left and the new load densities inserted, e.g. (15)
instead of (25) on Ag, (10) instead of (20) on cd, etc.; traffic on previously
free sections is denoted by a line of dashes (4a, bc, Ce, and Df); and where
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traffic has ceased (on section De) the dotted line is cancelled by a zigzag line.

Testing the new system we obtain the following lengths: positive sections,
85 kilometres; negative sections, 110 kilometres; free sections (only De in
fact), 20 kilometres. Since 110 is greater than 85+20, a further advance is
necessary.

If we advance another 7 units of load in the same direction (the limiting
section is now La) we obtain a system of connexions which differs from the
second version in having traffic (7 units) on eD and none on La. This system
is shown by dotted lines in Fig. 7.

On being tested a third time the circle (1, 2, 3, 4) is seen to satisfy Rule 4,
since twice the length of the now free section La (10 kilometres) is greater
than the difference found in the previous test (5 kilometres).

The system shown by dotted lines in the Fig. 7 can be arrived at by an
even shorter method, and for this it is necessary to modify Rule 5 in such a
way as to ensure that no more than one advance is needed on any closed
circuit to obtain a system of connexions which will satisfy Rule 4. Such a
modification of Rule 5 is quite feasible. As we have seen, the difference
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between the length of the sections carrying traffic in the predominant direc-
tion and the rest of the circuit, which shows a gain when a unit of load is
advanced, is reduced every time one of the sections carrying traffic in the
predominant direction (i.e. the section where traffic is least dense) becomes
free, and reduced, moreover, by twice the length of that section. We shall
therefore find it useful to proceed in accordance with this rule:

Rule 5a. To establish how many units of load should be advanced, twice
the length of the section carrying the least traffic in the predominant direction
must be subtracted from the difference between the length of the sections
carrying traffic in the predominant direction and the rest of the circuit. If
this difference is greater than zero, we subtract from it twice the length of
the section carrying the next least volume of traffic in the predominant
direction, and we proceed in this way until our subtraction results in a
difference less than zero. The number of units of load which should be
advanced is equal to the density of traffic on the last section which we have
to treat in this way,

Making use of this rule, we calculate the difference between the lengths
of negative sections and the remainder of the circuit (1, 2, 3, 4) as 45 kilo-
metres (see p. 334), and proceed as follows: We subtract twice the length of
the section carrying the least volume of traffic in the anti-clockwise direction
(i.e. De, see Fig. 6) from 45. Since 45—40 = 5 > 0, we subtract from 5
twice the length of section La, which is next in order of traffic density, and
we obtain 5—10 = —5 < 0. We therefore conclude that 17 units of load,
equal to the traffic density on La should be advanced. We may now put into
effect a clockwise advance of 17 units, commencing, let us say, by re-routing
to @ 17 of the 20 units which went from 4 to f in the original version. The
resulting system is shown in Fig. 7.

It will be found that Rule 5a considerably reduces the work involved,
since it obviates the necessity of producing intermediate versions of the
system of connexions.

Let us now test circuit (1). Calculations of the lengths of positive, nega-
tive and free sections give respectively +45, —30, 20, and so no advance is
necessary. We reach the same conclusion for circle (2): +70, —55, 35. A
test of (3) gives +25, —70, 40, and since the length of the negative sections
exceeds the sum of the lengths of the positive and free sections by 5
(70—40—25), a clockwise advance is called for. The number of units to be
advanced is 3, namely the traffic density on CB, since we obtain a negative
quantity if we subtract twice the length of this section from 5. A line of
dashes indicates where these changes have taken place, and a zigzag cancel-
ling the dotted line from C to B shows that this section has now become free.

Let us now see whether the alterations made to traffic on circle (3) call
for any corrections to the traffic systems on circuits already tested. On any
circle an increase in the difference between the length of sections carrying
traffic in the predominant direction and the remaining sections may cause
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traffic to appear on sections which were previously free, or may transform
negative sections into positive or positive into negative. The appearance of
a new free section, however, cannot lead to an increase in the difference with
which we are concerned, and for this reason the unoccupied section which
our alterations to circuit (3) have produced on the large circle (1, 2, 3, 4) does
not require further test calculations.

The advance which we have made on circle (3), therefore, necessitates a
second test only of circuit (2), which has a common section ji with circuit (3).
(Circuit (4) has not been tested at all as yet.) This new test of circuit (2) gives
us +70, —85, 5, and therefore a clockwise advance is necessary. If we
advance 3 units (the limiting sections are ji and cd), we arrive at a new version
of the system of connexions. This is shown in Fig. 8 by the dotted lines.

Traffic has appeared on section jF, and sections ji and dc have become
free. Twice the length of sections ji and dc is greater than 5. It follows that
it is not necessary to advance more than 3 units. But this has produced a
change in the situation or circuit (2), since traffic has now appeared on
section jF, and this requires a second test of circle (1). The result of this test
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will be obvious. The length of the negative sections will be increased at the
expense of the free sections by only 5 kilometres, and therefore the relation-
ship between the length of the sections carrying traffic in the predominant
direction (in this case positive) and the rest of the circle will remain undis-
turbed; circle (1) will continue to satisfy the conditions of Rule 4. In this
way we have examined all the consequences of our modifications of circuit (3).

Continuing the test of the circuits, we note that no change is required on
circle (4), since the relevant calculations show +65, —60, 10. Will it be
necessary to re-connect the points which are situated on circle (1, 2)? A
simple rule enables us to decide this question without resorting to further
calculations. Before formulating this
rule let us agree to call those sections
which form part of two circuits their
common line, and the remaining sections
of the same circuits their edges.

For example, line AEC in Fig. 9 1is
a common line for circuits ABCEA
and AECDA; ABC and CDA are the
edges of these two circuits. At the same
time ABC is a common line for the cir-
cuits ABCEA and ABCDA and the lines
AEC and CDA are their external parts.
Similarly, CDA is the common line, and
ABC and AEC are the edges of the
circuits ABCDA and AECDA.

Rule 6. 1f on a line common to two
circuits (e.g. 4EC) no free sections occur, and both the circuits (in our case
ABCEA and AEC D A) satisfy the conditions of Rule 4, then any circuit formed
from their edges (e.g. ABCDA) will also satisfy these conditions.

B

D
FiG. 9

Note. It is not necessary for all the areas encircled by the two original
circuits to lie within the circle formed by their edges. For example,
if there were no free sections on ABC and tests showed that the
circuits ABCEA and ABC DA met the requirements of Rule 4, testing
the circle AECDA would be superfluous.

Now let us return to Fig. 8. After the changes we have made jFL, the
line common to circuits (1) and (2), has no free sections. Consequently, by
virtue of Rule 6 circle (1, 2), formed by the edges of circles (1) and (2), does
not call for any further alterations to the system of connexions.

Calculations of positive, negative and free sections are required for
circuit (2, 3), and the results of these (+95, —35, 75) show that this circuit
satisfies Rule 4.

1 If we check circle (1, 2) by the method outlined earlier we see that Rule 6 is correct
for this case, for we obtain +80, -20, 85.
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No calculations are required for circuit (3, 4) because this circuit consists
of the edges of (3) and (4) which have already been tested, and because there
are no free sections on their common line Kj.

A test of circle (1, 4) shows that an anti-clockwise advance is necessary
(the figures here are +85, —70, 5). The number of units to be advanced is
indicated here by sections Gk and eD, with a traffic density of 7 units. We
show the consequences of this advance of 7 units of load by cancelling the
dotted lines running from e to D and from G to k by zigzag lines, and showing
by a line of dashes where traffic has appeared on section La.

The appearance of traffic on La calls for a second test of circuits (1, 2, 3, 4)
and (1). For (1, 2, 3, 4) it is sufficient to establish that the total length of nega-
five section (which has increased by 5 kilometres) is now 25 kilometres, and
therefore clearly less than the rest of the circle. We obtain the same result for
circle (1). It follows that no changes are needed in the system connecting the
points on these two circuits.

There remain to be tested now the circuits (1, 2, 3), (2, 3, 4), (3,4, 1) and
(4, 1, 2). Calculations are needed only in the case of circuit (3, 4, 1), and the
results of these (455, —65, 85) show that this circuit answers the require-
ments of Rule 4. Rule 6 shows that no changes are required in the system
connecting the points situated on the remaining circuits. To save reiterating
the same argument for every circuit, let us take circle (2, 3, 4) as a repre-
sentative example. This circle is made up of the edges of circuits (1, 2, 3, 4)
and (1) (i.e. of LeBCKDA and LjA4), and their common line AaL has no free
sections on it. It follows from this that (2, 3, 4) does satisfy the conditions
of Rule 4.

We have now tested and corrected all the circuits shown in Figs. 6, 7 and
8. The dotted lines in Fig. 8 which are not cancelled by zigzag lines show the
system guaranteeing the shortest overall running distance in its final form.*

5. THE Ustk OF POTENTIALS IN TESTING TRANSPORTATION SYSTEMS

The volume of work involved in the application of the graphico-analytical
method quickly grows with the increase in the number of closed circuits
which need to be tested and corrected by the calculation of circuit differences.
Moreover, where the layout of the transportation network is very complicated
the possibility of overlooking one or two circuits is not to be excluded. It is
therefore recommended that transportation systems set up by means of the
methods described above be submitted to a final check by the calculation of
potentials.?

1 In practice all the work may be done on one diagram by successively deleting lines
showing load-flow on sections which become free and adding lines on sections where our
modifications have caused traffic to appear.

2 See L. V. KantorovicH and M. K. GAVURIN, op. cit. In our opinion it is not always
desirable to calculate potentials while actually setting up transportation systems and to
enter them on the diagram for each intermediate version. More work may be involved in
setting up a traffic plan than in using the circuit differences method.
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Let us briefly explain the concept of potentials. Let each point on a
network i, k,!... (i,k,[... may be either dispatch or arrival points, or
Junctions) be allotted a value P (P;, P,, P, .. .).

If the traffic system ensures the shortest overall running distance for
loads, the values of P may be sclected in such a way as to satisfy two re-
quirements:

L. If on section ik traffic is travelling from i to k, the difference P, —P,
must be positive, and equal to the length of the section ik.

II. If section ik is free, the absolute value of the difference P, —P; must
not be greater than the length of section ik.

Values of P satisfying these requirements are called potentials. The possi-
bility of constructing a system of such potentials where any traffic plan is
being considered is not only a necessary but also a sufficient condition of the
establishment of the shortest overall running distances for loads.!

Still using our previous example we shall demonstrate the use of
potentials in testing the adequacy of networks. Let us determine the poten-
tials for the final version of the traffic plan shown in Fig. 8. To one of the
points on the network, to j let us say, we attribute an arbitrary potential
of 100.2 We obtain the potentials of the neighbouring points linked to j by
traffic routes either by adding the lengths of the relevant sections to 100 if
the traffic passes over them away from j, or by subtracting these lengths if
the traffic is moving in the opposite direction. This procedure ensures that
requirement I (above) is observed, and gives as a result a potential of 105
for F, 120 for A, and 85 for G (see the numbers in square brackets in Fig. 8).
By adding the distance from F to L to the potential of F we obtain the poten-
tial of the junction L (130), and it is now a simple matter to assign potentials
to a (135) and (b) (140). If we continue our calculations in this fashion we
shall obtain potentials for all the points on the network which are linked to j
by traffic routes.

For stations B, i and d, and stations C, K, k and e, which are not linked
by traffic routes to any points on the remainder of the network, we can obtain
potentials in the following way. To determine the potentials of the group of
stations B, i and d we commence with the station which is nearest to points
which have potentials already, in this case i. It is obvious that i’s potential
may not be greater than 130 (100, the potential of j, plus 30, the length of
section ji) or less than 100—30 = 70, otherwise requirement II will not be
observed. If we try out a potential of 130, we obtain 115 (130—15) for B and
130 (+1154-15) for d. As may be seen from Fig. 8, a potential of 130 satisfies
requirement II, since 160—130 = 30 < 40.

1 The relevant theorem was proved by Kantorovich in 1942 (see Reports of the USSR
Academy of Sciences, Vol. 37, Nos. 7-8, pp. 227-9, 1942). It is easy to show that the possi-

bility of constructing systems of potentials is equivalent to satisfying the requirements of
Rule 4.

2 It is convenient to take a positive number large enough to ensure that only positive
numbers are obtained in the successive calculations.
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If requirement II had not been satisfied with respect to section cd, we
should either have had to try out different potentials for i within the range
of values permissible (70 to 130) until we hit upon one which did satisfy
requirement II, or, if that proved impossible, recognise that the system we
had constructed was not the ‘best’, and that it would itself have to be changed.
For example, if the potential of point ¢ had been 80 instead of 160, the
difference (130—80 = 50) would have been greater than the length of the
section (40). In this case it would have been possible to reduce i’s potential
by 10, which would also have meant the reduction of d’s potential by 10
(120 instead of 130), which would ipso facio have ensured that requirement
II was met. But if ¢’s potential had been less than 30 or greater than 170,
no amount of adjustment could have brought about a simultaneous obser-
vation of requirement I with respect to both sections ij and c¢d. The
plan would have had to be rejected as not securing minimal overall running
distances.!

Let us assign potentials to the group of stations C, K, k and e. Let us
attribute 105 (854 20) to k; we obtain thereby the following potentials:
K 95, ¢ 100, C 85. It is easy to see that no adjustment of these figures is
necessary, since requirement II is satisfied for both sections BC and De. At
this point we may conclude our calculations of potentials. It follows from
the nature of these calculations that requirement I is satisfied, and a com-
parison by means of Fig. 8 of the length of any free section with its two
terminal points will show that requirement II is also satisfied. If the system
we were testing did not secure the miminum overall running distance for
loads, the simultaneous satisfaction of both requirement I and II would not
have been possible.

6. ANALYTICAL (TABULAR) METHODS FOR ESTABLISHING
THE SHORTEST RUNNING DISTANCES FOR LOADS WHEN
SETTING UP TRANSPORTATION SYSTEMS

A. N. Tolstoi has suggested a remarkably simple and convenient method
of drawing up traffic plans which will secure the shortest overall running
distance for loads in cases where only two dispatch points are involved: the
method of successive differences.? This method has great practical importance,
since quite complicated transportation systems may frequently be reduced,
either wholly or in part, to problems involving two dispatch points or two
arrival points, particularly if junctions are substituted for groups of stations.
Let us demonstrate this method.

1 For greater detail on the construction of potentials see L. V. KANTOROVICH and
M. K. GAVURIN, op. cit.

2 For this method see also T. S. KHACHATUROV, ‘Fundamentals of railway transport
economics, pt. 1°, Transzheldorizdat, 1946, pp. 363-6; Y. I. KoLpoMAsov, ‘Fundamentals
of transportation planning on railways’, Transzheldorizdat, 1949, chap. 6; E. D. KHANUKOV,
‘Transport and the location of production’, Transzheldorizdat, 1955, chap. 9; S. K. DaniLov,
ed., ‘Transport economics’, Transzheldorizdat, 1957, chap. 7.
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Let A dispatch 70 units of load, and B 80. The arrival points a, b, ¢, d, e
and f require respectively 10, 20, 30, 15, 35 and 40 units of load. Table 1
shows the distances between these points and 4 and B. Whatever the layout
of the railway track on which these points are situated, the connexions to be
made between 4 and B and a, b, ¢, d, e, f may be ascertained in the following
way':

TaBLE 1
" Distances between dispatch and arrival points
Dispat int

ispatch points 2 b . d . 7

A 30 20 40 10 50 15

B 50 30 20 25 5 10

Gain’ (+), ‘loss’ (-)

on being connected to 4 +20 +10 =20 +15 -45 -5

For each arrival point a, b, ¢, d, e and f we subtract its distance from A
from its distance from B. The differences will indicate the ‘gains’ (+) and
‘losses’ (—) which we should obtain for each unit of load if we connected
these arrival points to 4 in preference to B. Let us arrange the arrival points
in the order in which they should be connected to 4 to obtain maximum
advantage, and then join them to 4 one after another until all the loads
dispatched from A (70 units) are accounted for. This order is: a, d, b, f, c, e.
Taking into consideration the consumption requirements of each point we
are now brought to our final conclusions: a, d and b must be entirely supplied
from A4; f must receive 25 units from 4 and 15 from B; the remaining arrival
points (¢ and e) must be connected to B.

The method of successive differences is a purely analytical or tabular
method. Its application does not involve plotting load-flows on a diagram
of the track layout, and the only initial data needed are the distances between
the dispatch and arrival points. When dispatch and arrival points are situated
in a way that would involve the examination of a number of circles by the
graphico-analytical method the method of successive differences offers a
considerable simplification.

The question will suggest itself whether this purely analytical method may
be applied more generally to situations where there are more than two dis-
patch or arrival points. The method put forward by L. V., Kantorovich for
the solution of a number of technological, organisational and planning prob-
lems with the help of resolving multipliers or ratings makes it possible to give
an affirmative answer. We have already met a specific instance of the use of
ratings in the solution of the problem of drawing up a traffic plan by means
of potentials. It is possible to draw up a plan which will guarantee the shor-
test overall running distances by constructing a number of consecutive
alternative plans in the form of ‘chess tables” which are tested and corrected
by exactly the same calculations of potentials as we described above.!

1 Very close to this method of drawing up a transportation plan and solving this problem
are the various modifications of the simplex method put forward in foreign literature.



ANALYTICAL (TABULAR) METHODS 343

In this article, however, we put forward another means of solving these
problems by a tabular method which derives immediately from the process
using resolving multipliers evolved by Kantorovich in 1939. With this method
of establishing the ‘best’ system of transportation there is no need to multiply
the quantities which stand in the place of the resolving multipliers (as we shall
see below, they are simply added to the distances between dispatch and
arrival points), and for this reason we shall in future call these quantities
resolving addends.

The essence of the resolving addends method may be expressed as follows.
Let us renumber all the dispatch and arrival points, and let us denote the
numbers of the dispatch stations by the letter i, and the numbers of the
arrival stations by the letter k. If # is the number of dispatch points and m
the number of arrival points, then i will represent the values 1, 2, ..., n, and
k the values 1, 2, ..., m. The distances between dispatch and arrival points
may be denoted as [, i.c. /;; will be the distance from dispatch station to
arrival station 1, /;, the distance from the same dispatch station to arrival
station 2, etc.

Is it then possible to arrive at the least total ton-kilometre work by con-
necting each unloading point (k) to the dispatch station (i) to which the
distance (/;;) is shortest? This simple solution of the problem will not work.
The consumption requirements of a number of stations X would remain un-
satisfied, and no use would be made of loads at a number of points i because
as a rule the volume of loading and unloading at the dispatch and arrival
stations nearest to each other would not match.

The idea of the method proposed here is to select values for 1, 2, ..., 4,
in such a way that if we connect up our points according to the shortest
distance principle (each destination to the nearest dispatch point), but instead
of actual distances use some assumed distances (arrived at by adding to the
actual distances /;; the corresponding numbers 4,, i.e. taking /,; + 4, instead
of I;4, l;,+4, instead of /,, [, +4, instead of /,,, etc.), then the require-
ments of each destination will be fully met by the dispatch points to which
it is connected.

1 If we apply the connotations adopted by Kantorovich (see pp. 228-9) of the present
work) we can express the conditions of our problem as follows:

1) hiz>0 @ Z hie =1 (i=1,2,...,n)
K=1
n n m
3) Z athiy = zg @ Z o = ZZR:.
i=1 1 1

It is necessary with «; and z¢ given to find A which secures the minimum value of:

n m
Z CixctiPin
i=1 k=1

(cix are given). Because the values of «; are independent of & there is no need to carry out
multiplication to arrive at a solution of this problem.
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If values could be found for 1., 4,, ..., 4, which would satisfy this con-
dition (let us call them resolving addends), the problem of establishing the
shortest overall running distance would be solved. Connexions made over
the shortest assumed distances (/;;+ 4;) would be the most efficient, i.e., they
would ensure minimal ton-kilometre work.

Indeed, if we denote the number of loads to be sent from i to k by
xx (k=1,2,...,m), the overall running distance, if we reckon with actual

n m
distances, may be expressed as ) Y [;x,, and if we reckon with assumed
1 1

distances, as

; ; L+ 49 xy

It is easy to see that if we connect the arrival and dispatch points over
the shortest assumed distances (in this case we take the values of x; which
do not correspond to the shortest assumed distances as equal to zero) the
following inequality occurs:

S

n
))
i=1k

1(lik+iu-) Xk g.zl k;“""”") Xi o [

where x;; is the quantity of loads sent from i to k on any other version of the
system of connexions. Since, whatever the version of the plan used, all the
loads at every dispatch point must be distributed, it follows that

lek=le’k=a, (i=1,2.--n) “ . [2]
k=1

k=1

where « is the quantity of loads at the dispatch points. It follows further
that the sums

i=1 k=1 i=1 k=1
and .. [2]
n m n m
Z Z Aixy = Z A Z Xik
i=1 k=1 i=1 k=1

n
are equal, since each is equal to ) A,;. If we subtract these sums from the
T

left and right sides of the inequality (1), we obtain:

Z Z likxik = '—Zl kzl l,'kx['k . [3]

i=1k=1
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In other words, when arrival points are connected to dispatch points over
the shortest assumed distances (x;;), the overall running distance cannot be
greater than it would be in any other alternative plan (x/,).*

We have thus been able to reduce the problem of establishing the shortest
overall running distance for loads when drawing up a transportation plan link-
g dispatch points and destinations to the problem of determining the values
of the resolving addends (1,, A,, ..., 4,)* and of drawing up a plan based on
the shortest assumed distances. The resolving addends, and the system of

connexions giving the shortest running distances, may be found by means of
successive approximations.

7. CALCULATING PROCEDURE FOR THE METHOD OF
RESOLVING ADDENDS

Let us take an example. The conditions are set out in Table 2.3

TABLE 2
dy =35
Arrival points ‘Surplus’ or ‘de-
a4 b 30 clé d27 el8 f5 ficit’ of loads
Dispatch (+, =)
points
A 15 10 75 80 50 52 40 +11
G
B 20 100 22 16 48 70 29 -31
(20)
C 25 25 27 31 90 66 45 +25
D 40 44 26 38 37 33 50 -5
@27 a3
Differences in
distances 5 15 13 19 11

In this table letters denote dispatch points (4, B, C and D) and arrival
points (a, b, ¢, d, e and f). The figures beside these letters denote the quantity
of loads dispatched or received, and the figures in the respective columns

1 The existence of resolving addends is not only a sufficient but also a necessary condi-
tion for ensuring that the transportation plan meets the requirements for producing minimal
overall running distances for loads. This proposition can be considered as a consequence of
the potentials theorem. It is, in fact, easy to see that the resolving addends and shortest
assumed distances are the respective potentials of the dispatch and arrival points of loads.

2 Dispatch and arrival points have an exactly analogous role in setting up networks.
Where there are fewer arrival points than dispatch points it is more convenient
to find resolving addends for the arrival points instead of the dispatch points:
A Ay ..., Am. In this case the assumed distances will be expressed by the values
Lix+ A and not [z + A as in the text. Similar changes will be made in all subsequent
considerations.

3 The example shown and the form of table used were worked out in 1948 by A. M.
Dubinsky, at that time a student at the Moscow Institute of Railway Transport Engineers,
and put forward by him at a students’ scientific conference.
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indicate the distances between the dispatch and arrival points (e.g. from 4
to a is 10 kilometres, from A4 to & 75, etc.).

Let us first examine what would be the result of connecting each arrival
point to the nearest dispatch point. In that case we should have to connect
ato A; b, c and fto B; and d and e to D, and the distances (the smallest
number in each column) would be as shown in Table 2 in heavy type. With
this network A would meet in full the requirements of a, but 11 units of load
out of the 15 at A’s disposal would not be utilised.

A similar ‘surplus’ would occur at C, which is not the ‘nearest dispatch
point’ for any arrival point at all. None of C’s 25 units would be utilised.
We shall call such stations surplus points. At the same time the 20 units
available at B would prove insufficient to meet all the requirements of the
points connected to it (b, ¢ and f), since 30+16+5 = 51; 31 units would be
‘lacking’. Another ‘deficit’ would be revealed at D, which with only 40 units
to dispose of is connected to d and e which together require 45 units. Stations
in this position we shall call deficit points.

The ‘surpluses’ (+) and ‘deficits’ (—) obtained are set out in the last
column of Table 2. The totals of the positive and negative figures must
balance.

To obtain a clearer picture of the transportation possibilities between the
various stations with the present scheme, we have set out in Table 2 figures in
brackets to show the number of loads which may be received by each destina-
tion from its respective source. To some extent these figures are arbitrary. For
instance, if we reduced the supply from B to b shown here, we could route
some of the loads at B to other points connected to this station, such as c or f.
Such changes would make no difference to our argument, however, since the
amounts of ‘surplus’ or ‘deficit’ would remain the same.

The next part of our procedure is to calculate the differences between
(a) the distances between deficit dispatch stations and the arrival points
connected to them, and (&) the distances between these same arrival points
and the surplus stations nearest them. To the deficit station B are connected
points b, ¢ and . We can find the distances between these arrival points and
their nearest surplus stations in the relevant vertical columns: 27, 31 and 40.
The differences in distance which concern us are 27—22 = 5, 31-16 = 15
and 40—29 = 11. Similarly for d and e, which are connected to another
deficit station, D, we obtain 50—37 = 13 and 52—33 = 19. These differ-
ences are set out in the last row of Table 2.

Let us represent the smallest of these differences by ¢y and enter it in the
top right-hand corner of Table 2. This difference we may take as a first
approximation to our resolving addend for B and D (which are ‘deficit
stations’), that is to say, we shall use this number to obtain a first variant of
our ‘assumed distances’. To do this we increase all the distances between B
and D and the destination points (all the figures in the rows B and D) by d,
( = 5 in our example). The results obtained are shown in Table 3.
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TABLE 3
d. =8
Arrival points ‘Surplus’ or ‘de-
ad b 30 c16 d27 el8 f5 ficit’ of loads
Dispatch (+, =)
points
A 15 10 75 80 50 52 40 +11
4)
B 20 105 27 21 53 75 34 -6
(5 15)
C 25 25 27 31 920 66 45 -0
(25)
D 40 49 31 48 42 38 55 -5
(04)) (13)
Differences in
distances 48 59 8 14 6

Making use this time of the distances shown in Table 3, we once again
connect each destination point to its nearest dispatch point (as in Table 2 the
relevant figures are printed in heavy type) and assess the quantity of supplies
which the dispatch stations can now send to each destination (the figures in
brackets), always bearing in mind the need to make the best use of the loads
available at the dispatch stations and to satisfy as far as possible the require-
ments of the arrival points. The changes in the distances make it possible to
reduce the amounts ‘surplus’ and ‘deficit’. Now only 6 units are ‘lacking’
from the destinations connected to B instead of 35, and there is no longer
any ‘surplus’ of loads at C.

The question arises how we should regard C henceforth: is it a ‘surplus’
or a ‘deficit’ point? The goods available at this station are now utilised in
full, as in the case of deficit stations; at the same time the requirements of
point b connected to it are also fully satisfied, as in the case of destinations
connected to surplus stations. To cover cases like these we shall adhere to
the following rule. If the requirements of the destination points connected
to a given dispatch point are satisfied in full, but if even one of these points
is being simultancously supplied from another station which is a deficit point,
then the dispatch station we are considering must also be regarded as a
deficit point. In the converse case a station which is able to satisfy all the
requirements of the destinations connected to it must still be regarded as a
surplus point, even if in fact the ‘surplus’ at its disposal is equal to zero.

From this it follows that C is a deficit point, since B participates in the
supply to 5. We therefore prefix the ‘0’ in the last column of the Table,
row C, with the minus sign.

We now proceed as we did with Table 2, finding the differences between
(@) the distances between deficit dispatch stations and the arrival points con-

nected to them, and (b) the distances between these arrival points and their
UME 2A
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nearest surplus stations. By referring to the columns under the arrival points
which are connected to deficit stations, we obtain the figures shown in the
bottom row of Table 3. The smallest difference is 6.

However, if we increase all the distances between arrival points and deficit
stations by 6 (in the same way as we increased them by 5 when we made the
transition from Table 2 to Table 3) it soon becomes evident that in the
new network there will be no change in the classification of dispatch
points as surplus and deficit stations. The only change, in fact, will be that
alongside B the surplus station 4 will also have to be connected to f because
the distance between fand 4 and f and B will become the same. This will
ensure that f’s requirements are satisfied, but 4 will still remain a surplus
station and B and C deficit stations. To make the transition to the next
variant of the network in such cases as these it is best to use the second
smallest difference (i.e. the second smallest figure in the last row of the
relevant table) instead of the smallest or, if this fails to alter the balance
of surplus and deficit stations, the third smallest, and so on.

In Table 3 the smallest figure after 6 is 8 (the difference between the
distances d to D and d to A), and so we enter d, = 8 in the top right-hand
corner of the Table. By adding 8 to the figures in the rows of the deficit
stations we obtain our new assumed distances, and these are set out in
Table 4. Just as with Tables 2 and 3 we now set up a new network, calculate
the load ‘surpluses’ and ‘deficits’, and enter the differences in the distances
which concern us in the bottom row of the table.

TABLE 4
ds =4
Arrival points *Surplus’ or ‘de-
ad b 30 clé d27 el8 f5 ficit’ of loads
Dispatch (+, -)
points
A 15 10 45 80 50 52 40 +0
C)) (6) 5)
B 20 113 35 29 61 83 42 -1
(5) (15)
C 25 a3 35 39 98 74 53 -0
(25)
D 40 57 39 51 50 46 63 +1
20 (18)
Differences in
distances 4 22

We note that d; = 4, and then set up the next variant of the network
exactly the same way as when making the transitions from Table 2 to
Table 3 and Table 3 to Table 4. As is shown by Table 5, the new assumed
distances are now such as to permit the full supply of every arrival point
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from its ‘nearest’ dispatch points. Table 5, therefore, offers the final solu-
tion to this particular problem.! A4 supplies a, d and f (4, 6 and 5 units),
B supplies b and ¢ (4 and 16), C sends all its loads to b, and D has a share
in the supply of & (1), d (21) and e (18).

TABLE 5
Arrival points ‘Surplus’ or ‘de-
ad 530 clé d27 el f5 ficit’ of loads
Dispatch (+, =)
points
A 15 10 75 80 50 52 40 0
) (6) &)
B 20 117 39 33 65 87 46 0
) (16)
C 25 37 39 43 102 78 57 0
25
D 40 57 39 51 50 46 63 0
0)) 2D (18)

It will be readily observed that the distances in each row of Table 5 differ
from the corresponding figures in the same row of Table 2 by the same
amount. These amounts are: row A4, 0 (the figures aie the same in both
tables); row B, 17 (d, +d, +d;); row C, 12 (d; +d,); and row D, 13 (d, +d,).
In each case they are also the same as the resolving addends (A, Az Ac, Ap)
which were discussed in Section 6. As we can see, for the purposes of setting
up a transportation system there is no point in working out their ultimate
values because our network has already emerged at an earlier stage of our
calculations. The actual process of establishing the system requires only the
auxiliary numbers d,, d,, ds, . . . , d,. The method just outlined for estab-
lishing networks, however, is based on the fact that there exist systems of
numbers which will satisfy the definition of resolving addends and that trans-
portation schemes based on these systems will minimise overall running
distances.

It is advisable to calculate resolving addends for the purpose of checking

1 In this example three ‘steps’ are needed in the transition from the original to the final
version of the plan. It is possible to show that the number of ‘steps’ needed to solve the
problem is finite. This may be proved as follows. Let the squares of any table of assumed
distances from arrival points to their nearest dispatch points correspond exactly to the
same squares of a second table. These tables we shall call ‘equivalent’ (the same versions
of the system of connexions correspond to them). It is easy to see that the gradual transition
according to the rules stated above from one table of assumed distances to another cannot
produce ‘equivalent’ tables. It is similarly easy to show that the number of ‘non-equivalent’
tables distinguished from each other by the assumed distances set out in the corresponding
squares is finite. Hence it follows that a finite number of ‘steps’ must lead to a solution of
the problem. It must be borne in mind that when ordinary practical problems are being
tackled instead of specially selected examples, the number of ‘steps’ will as a rule remain
n+ m)

below n+m and, in fact, only in exceptional cases exceed half that sum (——2»-—~ .
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transportation systems which have been established by the method just des-
cribed. All that need be done is to check (as we did above) that the figures in
each row in the final table have indeed increased by the same amount (the
resolving addend) when compared with the figures in the corresponding rows
in the original table, and that the system does satisfy the principle of the
shortest assumed distances.

For each successive approximation to our ideal network we made use of
a separate table. We did this for clarity of exposition: in practice, so long as
the number of stations is not too great, all the calculations may be set out in
one large working table. Table 6 shows how such a table would look for the
example we selected.

If we take as starting data the distances between stations and the quanti-
ties of goods dispatched from and unloaded at separate points in accordance
with the network shown in Fig. 6, the final appearance of the working table
after the application of the method of resolving addends will be as shown by
Table 7. The network derived from this table is, as may have been anticipated,
identical with the one produced by the use of the circuit differences method
(see Fig. 8).

8. COMPARISON OF THE FEATURES OF DIFFERENT METHODS
OF SETTING UP TRANSPORTATION SYSTEMS

The possibility of successfully solving problems connected with trans-
portation systems by purely analytical methods by no means invalidates the
graphic or graphico-analytical methods. The graphic method (see Section 1)
remains, of course, the simplest and most convenient in all cases where closed
circuits are not involved. The first step in making connexions between
dispatch and arrival points when railway or inland waterway traffic is being
planned should therefore always be to plot the load data on a diagram of
the layout of the track (or waterways) and to apply the graphic method to
every section possible.

It is only when the load-flows which are discernible as efficient by a direct
examination of the diagram have been drawn in and relevant junctions sub-
stituted for groups of stations (see Section 4) that the question of making use
of the graphico-analytical or resolving addends methods arises. (Other
methods have not been examined in this paper.) To assess the relative merits
and defects of the two latter methods is a more complicated problem, and
the selection of one rather than the other must depend on the actual con-
ditions of the problem involved.

The comparative laboriousness of the two methods varies in accordance
with the number of stations to be linked up and the number of closed circuits
formed by the routes linking the dispatch and arrival points. The resolving
addends method grows rapidly more laborious with an increase in the number
of dispatch and arrival points, but is not directly affected by the configura-
tions of the transport network. On the other hand the amount of work
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involved with the graphico-analytical method depends mainly on the number
of ‘circles’ which must be checked, and only to a small extent on the number
of stations involved.

Thus, for example, constructing a network for the example dealt with
in Section 3 (see Fig. 4) with the aid of the circuit differences method in-
volves almost no work at all; whereas the use of this method to solve the
problem posed in Section 4 (see Figs. 5, 6, 7 and 8) would necessitate a
vast expenditure of labour, since here we would be dealing with thirteen
closed circuits instead of only one. However, the expenditure of labour
would differ but slightly, if either of these problems were solved by the
resolving addends method (5 dispatch and 5 arrival points as against 7 and
11). In many cases it may be best to combine different methods, including
the resolving addends and circuit differences methods. It is possible, for
example, where there is a large number of dispatch and arrival points, to
consider the loading and unloading at minor stations as functions of neigh-
bouring major stations, and having thus reduced the number of stations to
be examined, to apply the resolving addends method, and then to plot the
results obtained on the diagram and to check doubtful points with the aid
of the graphico-analytical method.

Where it is desired to establish minimum transport costs instead of
running distances, expressed either in money or natural units (roubles,
truck-hours, tons of fuel, etc.) it is important not to overlook one limitation
of the graphico-analytical method. It can be used only if the transport costs
from A to C via B are equal to the sum of the transport costs from A to B
and from B to C.

This proviso does not prevent the setting up of systems to minimise expen-
diture envisaged on the basis of actual or planned transportation costs on
separate sections. This may be done simply by substituting costs for distances
in the diagram and using these costs when calculating circuit differences or
potentials. This method of calculation need hardly be changed even where
the costs of running laden trucks and empty ones are to be kept apart. In this
case two figures (‘forward’ and ‘return’) must be entered for each section, and
slight modifications will have to be made to the rule formulated above.

Situations may arise, however, where the proviso as to the balance of
costs on adjacent sections cannot be observed. This is the case, for example,
where a plan is required to minimise transport costs arising from the system
of freight rates. The combined costs from A to B and from B to C will not,
as a rule, be equal to that from 4 to C (on account of freight reductions
for distance and the existence of special rates). In cases like these the
graphico-analytical method is not applicable (nor is the purely graphical
method), whereas calculations in accordance with the resolving addends
method may still be made exactly as outlined above. The resolving ad-
dends method can thus be applied more widely than the graphico-
analytical method.
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Definite conclusions as to the merits and demerits (especially the laborious-
ness) of the various methods of drawing up transportation plans to minimise
running distances and costs must await the accumulation of practical experi-
ence. It should be observed, however, that the application of any of the
methods described in this paper on a massive scale to an entire transport
network with a great number of widely scattered dispatch and arrival stations
will involve a formidable amount of labour and time, and for this reason it
is advisable to make use of the latest computer techniques. If fast modern
computers are used, any transportation system can be set up without any
difficulty in a minimum of time.

The methods described here have already given practical proof of their effi-
cacy. For example, the Institute of Complex Transportation Problems of the
Academy of Sciences used the resolving addends method to draw up a plan
for the most efficient road haulage of sand in Moscow. The orders for sand
issued by the construction enterprise Mosstroisbyt during a ten-day period
in June 1958 were used as starting data. To establish the most efficient plan
distances had to be calculated from each of the eight wharves where sand
was picked up to each of 209 building sites. All calculations were carried
out with the help of the Strela electronic digital computer in one hour
thirty-five minutes (including fifty minutes spent on preparation of input
data).

Comparison of the optimum plan obtained with the lorry journeys which
would have been necessary under the old system of ordering showed a re-
duction of 189,000 ton-kilometres, i.e. a saving of 11-4%/. Approximate
calculations show that the introduction of the optimum plan in Moscow
would mean a saving of more than two million roubles a year, solely for the
transportation of sand.



